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Abstract

We have studied the liquid-gas phase transition of warm asymmetric nuclear
matter in the extended Zimanyi-Moszkowski model. The three sets of the isovector-
meson coupling constants are used. It is found that the critical temperature de-
pends only on the di¤erence of the symmetry energy but not on the di¤erences
of each isovector coupling constant. We treat the asymmetric nuclear matter as
one-component system and employ the Maxwell construction so as to calculate the
liquid-gas phase coexistence curve. The derived critical exponents depend on nei-
ther the symmetry energy nor the asymmetry of the system. Their values � = 0:33
and 
 = 1:21 agree with the empirical values derived from the recent multifragmen-
tation reactions. Consequently, we have con�rmed the universality of the critical
phenomena in the liquid-gas phase transition of nuclear matter.

1 Introduction

Now, it is well known [1,2] that the nuclear equation-of-state (EOS) behaves like van

der Waals EOS and so shows liquid-gas phase transition. In the resent progress of nu-

clear multifragmentation reaction, the signals of the phase transition are observed in the

plateau of the caloric curves [3] and the negative heat capacity [4]. The critical tem-

perature TC of the phase transition is also derived in several experimental e¤orts [5,6].

Although their values depend on the methods of analyses and are scattered over the wide

range due to the Coulomb interaction and the �nite-size e¤ect, Natowitz et al. [7] have

succeeded to estimate the critical temperature for in�nite symmetric nuclear matter, that

is, TC = 16:6� 0:86MeV.
Unfortunately, most of theoretical EOSs cannot reproduce this empirical value of

TC . To the contrary, in the recent work [8] the author has shown that the extended

Zimanyi-Moszkowski model [9,10] of relativistic mean-�eld theory [11] for nuclear matter

can reproduce the value. Moreover, the model reproduces the critical exponents � and 


derived from multifragmentation reactions [6,12-14], which also agree with their universal

values for liquid-gas phase transition of various materials. It is however noted that the
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hot homogeneous nuclear matter produced by heavy-ion reactions is isospin asymmetric.

Although the critical exponents are expected to be universal and so do not depend on

the asymmetry, we have to con�rm the universality. Therefore in the present work we

will extend the investigation of ref. [8] to asymmetric nuclear matter.

2 Formalism

The EZM model for asymmetric nuclear matter at �nite temperature has already been

developed in Ref. [15]. Nevertheless, for the completeness and convenience, we represent

the formulation here. The thermodynamic potential per volume ~
 � 
=V of asymmetric
nuclear matter at temperature T is
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where kB is the Boltzmann constant and E�ki = (k2 +M�
i
2)
1=2 with the e¤ective mass

M�
i of a proton or neutron in the medium. The spin degeneracy factor 
 is equal to 2.

The �i is de�ned by the chemical potential �i and the vector potential V0i of a proton or

neutron as

�i = �i � V0i: (2)

The isoscalar scalar mean-�eld h�i is determined from the e¤ective masses by
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�
1�m�
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where M is the free nucleon mass and M�
i = m

�
iM . Similarly, the isovector scalar mean-

�eld h�3i is determined by

h�3i =
�
1�m�

p

�
g�nn� � (1�m�

n) g
�
pp�

g�pp�g
�
nn� + g

�
nn�g

�
pp�
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On the other hand, the isoscalar vector mean-�eld h!0i is determined from the vector

potentials as

h!0i =
g�nn�v0p + g

�
pp�v0n

g�pp!g
�
nn� + g

�
nn!g

�
pp�

M; (5)
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where V0i = v0iM . Similarly, the isovector vector mean-�eld h�03i is determined from

h�03i =
g�nn!v0p � g�pp!v0n
g�pp!g

�
nn� + g

�
nn!g

�
pp�

M: (6)

The renormalized meson coupling constants [10] are

g�pp(nn)� = h
�
pp(nn)� gNN� (� = �; !; �; �) ; (7)
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with

� = 1=3: (12)

It is noted that � = 0 corresponds to the Walecka model [11].

Then the e¤ective mass m�
i and the vector potential v0i are determined from extrem-

izing the thermodynamical potential ~
 by them. The results are
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where the quantities A, B, C and D are de�ned by
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The energy density is given by
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and the pressure is

P = �~
: (30)

3 Numerical analyses

Given the total baryon density �B = �Bn + �Bp, the asymmetry a =
�
�Bn � �Bp

�
=�B

and the temperature T , Eqs. (13)-(16) and (25) have to be solved numerically utilizing

6-dimensional Newton-Raphson method so that the e¤ective masses m�
p and m

�
n, the

vector potentials v0p and v0n, and the chemical potentials �p and �n are determined

selfconsistently.

Employing the isoscalar-meson coupling constants in Ref. [9] and the isovector-meson

coupling constants (gNN�=m�)
2 = 0:39 fm2 and (gNN�=m�)

2 = 0:82 fm2 (hereafter referred

to as the coupling set 1) from Bonn A potential [16], Figs. 1-4 calculate the pressure-

density isotherms for a = 0:2, 0:4, 0:6 and 0:8, respectively. We clearly see the behaviors

like van der Waals EOS and the liquid-gas phase transitions. The critical temperatures

(TC), and the pressures (PC) and the baryon densities (�C) at in�ection points are sum-

marized in Table 1. Moreover, the �ash temperatures, above which the pressure is always

positive at any �nite density, are T =12.451, 11.245, 9.275 and 6.559MeV, respectively.

The solid curve in Fig. 5 shows the dependence of TC on the asymmetry. The decrease

of TC with increasing asymmetry is the common feature to other models [17-20].

The isovector-meson coupling set 1 predicts lower symmetry energy Es = 24:6MeV

than its empirical value 30 � 4MeV. This is due to the relatively weak NN� coupling.
In order to investigate the e¤ect of the symmetry energy, we also calculate using another

coupling set 2 in which the NN� coupling is the same as set 1 but the NN� coupling

(gNN�=m�)
2 = 1:432 fm2 is stronger so that the symmetry energy Es = 32:0MeV is

reproduced. Moreover, in order to investigate the e¤ect of ambiguity in the isovector

coupling constants, we calculate using the coupling set 3 that also reproduces Es =

32:0MeV, but has strongerNN� coupling (gNN�=m�)
2 = 1:0 fm2 and much strongerNN�

coupling (gNN�=m�)
2 = 1:888 fm2. The critical temperatures and the in�ection points

using the set 2 and 3 are summarized in Table 2 and 3, respectively. The dependences
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of TC on the asymmetry are also shown by the dotted and dashed curves in Fig. 5,

respectively.

In the comparison of the solid curve with the dotted one in Fig. 5, it is seen that the

di¤erence of the symmetry energy has large e¤ect on the critical temperature especially at

high asymmetry. On the contrary, in the comparison of the dotted curve with the dashed

one, we see that the di¤erences in each isovector coupling constant have little e¤ect on

the temperature under de�nite symmetry energy. The most conspicuous di¤erence due

to the symmetry energy is that the solid curve has the value TC = 4:973MeV even at

a = 1:0 while the dotted and dashed curves vanish above a = 0:941 and a = 0:960,

respectively. In other words, for the lower symmetry energy we can always see the liquid-

gas phase transition while for the higher symmetry energy there are critical asymmetries,

above which no liquid-gas phase transitions occur. Such a critical asymmetry has also

been reported in Refs. [18] and [20]. Although they did not investigate the e¤ect of the

symmetry energy, we can guess their results are also due to the higher symmetry energies

than Es = 32:0MeV.

Then we will investigate the critical phenomena of asymmetric nuclear matter. Here it

is noted that the asymmetric nuclear matter is usually treated as two-component system

[21]. Namely, the proton and neutron are independent components because their chemical

potentials are di¤erent from each other due to the isovector-meson mean-�elds. However

in this case we do not have the phase coexistence curve in temperature-density plain

but the phase boundary (or separation) curve. See the curve marked with "CE" on Fig.

22(a) in Ref. [21]. On the curve the liquid and gas phases at a de�nite temperature

do not coexist because their pressures are di¤erent from each other. (See also Fig. 4 in

Ref. [21].) Moreover, the maximum temperature of the phase boundary curve does not

agree with the critical point. This situation is not consistent to the analyses [6,22] in

multifragmentation reactions.

For the comparison with the experimental analyses, in the present work the asym-

metric nuclear matter is treated as one-component system. Namely, we consider only the

Gibbs energy per particle ~G =
�
�Bp�p + �Bn�n

�
=�B rather than each chemical potential.

The phase coexistence curve is determined by the Maxwell construction. The results are

shown in Fig. 6. The black solid and dotted curves are calculated for a = 0:2 using the

isovector-meson coupling set 1 and 2, respectively. The result for the coupling set 3 has

not been calculated because it is essentially the same as the set 2 as seen in Fig. 5. We

can see that there is little di¤erence between the two curves because their densities and

asymmetries are relatively low. Although the asymmetry higher than a = 0:2 has no

physical correspondence in the present multifragmentation experiments, in order to show

the e¤ect of the asymmetry we also calculate the red solid curve for a = 0:4 using the

coupling set 1. The di¤erence between the results of a = 0:2 and a = 0:4 is apparent.

Then the critical exponents � and 
 will be investigated. Figure 7 shows the dif-

ference between the densities of the nuclear liquid (�l) and gas
�
�g
�
phases versus tem-
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perature in log scale. The circles are calculated on the black solid curve in Fig. 6 at

T = 6:0; 7:0 � � � 15:0; 15:2 � � � 15:8MeV while the crosses are the results using the cou-
pling set 2 from T = 6:0MeV to T = 15:6MeV. In the near region to the critical point the

results lie on the red line while in the far region from the critical point they lie on the blue

line. The warm asymmetric nuclear matter clearly exhibits the critical phenomenon that

does not depend on the symmetry energy. The inclination of the line is just the critical

exponent �. According to its theoretical de�nition it seems reasonable to derive the value

� = 0:48 ' 1=2. It is however noted that in heavy-ion reactions the limit of Coulomb

instability prevents the nuclear system from reaching the critical point [22] and so the

empirical value of � is derived in the far region from the critical point [14]. According to

this fact, Fig. 7 predicts � = 0:33 ' 1=3 from the blue line rather than � = 0:48 ' 1=2
from the red line. The value agrees well with those derived from multifragmentation

reactions [6,12-14] and the universal value of the liquid-gas phase transition.

Figure 8 shows the inverse of incompressibility � versus temperature in log scale:

1

�
/ �B
PC

@P

@�B
/
�
1� T

TC

�

: (31)

The circles and crosses are calculated on the liquid branches of the phase coexistence

curves for a = 0:2 in Fig. 6 at the same temperatures as Fig. 7. In contrast to Fig.

7 the results lie on the single blue line. The obtained critical exponent 
 = 1:21 also

agrees with the empirical value derived from multifragmentation reactions [13-15] and

the universal value of the liquid-gas phase transition.

We have already calculated the critical exponents for symmetric nuclear matter in

Ref. [8]. In fact, the nuclear system produced by heavy-ion reaction is isospin asymmet-

ric. Therefore the present calculations for asymmetric nuclear matter seem to be more

reasonable for the comparison with experiments. Nevertheless, the above results of the

critical exponents in Figs. 7 and 8 are in good agreement with the results of Ref. [8]. This

suggests that the critical phenomena does not depend on the asymmetry and so is uni-

versal. In order to con�rm the universality, we further investigate the critical exponents

for a = 0:4 although such a large asymmetry has not been realized in the present exper-

iments of multifragmentation reactions. Figure 9 is the same as Fig. 7, but the circles

are calculated on the red solid curve in Fig. 6 at T = 5:0; 6:0 � � � 14:0; 14:2; 14:4MeV.
They lie on the red and blue lines again in the near region to and the far region from the

critical point, respectively. Figure 10 is the same as Fig. 8, but the circles are calculated

on the liquid branch of the red curve in Fig. 6 at the same temperatures as Fig. 9. They

lie on the single blue line as in Fig. 8. Because only the � derived from the blue line in

Fig. 9 is slightly smaller than that in Fig. 7, we can assert that the critical exponents do

not depend on the asymmetry.
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4 Summary

We have studied the thermodynamics of warm asymmetric nuclear matter below the

saturation density in the EZM model. The EOS behaves like van der Waals one and

so clearly shows the liquid-gas phase transition. The critical temperature decreases as

the asymmetry of the system increases. We have investigated three sets of the isovector

coupling constants. The �rst one is from Bonn A potential but predicts relatively lower

symmetry energy than its empirical value. The second one has much stronger NN�

coupling than the �rst so as to reproduce the empirical symmetry energy. The third

one has much stronger NN� coupling than the �rst and second ones but reproduces the

same symmetry energy as the second. It is found that the critical temperature depends

only on the di¤erence of the symmetry energy but not the di¤erences of each isovector

coupling. Moreover, for the coupling set 2 and 3, we have found the critical asymmetry,

above which no liquid-gas phase transitions occur.

For calculating the liquid-gas phase coexistence curve in the pressure-density plain, we

treat the asymmetric nuclear matter as one-component system and employ the Maxwell

construction. This prescription is consistent to the experimental analyses of multifrag-

mentation reactions. Then the critical exponents � and 
 are derived. Their values for

the asymmetry a = 0:2 do not depend on the symmetry energy, and agree well with the

empirical values derived from multifragmentation reactions and the universal values for

the liquid-gas phase transition. Moreover, for the symmetric case a = 0:0 and for higher

asymmetry a = 0:4 we �nd almost the same critical exponents as a = 0:2. Consequently,

the universality of the critical phenomena in the liquid-gas phase transition of nuclear

matter has been con�rmed. In a future work we will investigate whether the universality

can be extended to strange hadronic matter.
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Table 1: The critical temperature TC , and the pressure PC and the baryon density �C
at in�ection point in the pressure-density isotherm for several asymmetries using the
isovector-meson coupling set 1.

a = 0:0 a = 0:2 a = 0:4 a = 0:6 a = 0:8

TC (MeV) 16.360 15.906 14.554 12.340 9.261

PC
�
MeV=fm3

�
0.3078 0.2925 0.2492 0.1862 0.1142

�C (fm
�3) 0.0588 0.0574 0.0533 0.0468 0.0381

Table 2: The same as Table 1 but for the isovector-meson coupling set 2.

a = 0:0 a = 0:2 a = 0:4 a = 0:6 a = 0:8

TC (MeV) 16.360 15.732 13.864 10.790 6.413

PC
�
MeV=fm3

�
0.3078 0.2877 0.2318 0.1522 0.0659

�C (fm
�3) 0.0588 0.0572 0.0520 0.0437 0.0317

Table 3: The same as Table 1 but for the isovector-meson coupling set 3.

a = 0:0 a = 0:2 a = 0:4 a = 0:6 a = 0:8

TC (MeV) 16.360 15.725 13.855 10.836 6.667

PC
�
MeV=fm3

�
0.3078 0.2869 0.2298 0.1509 0.0681

�C (fm
�3) 0.0588 0.0570 0.0516 0.0431 0.0315
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Figure 1: The pressure-density isotherms of asymmetric nuclear matter with a = 0:2
using the isovector-meson coupling set 1.
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Figure 2: The same as Fig. 1 but for a = 0:4.
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Figure 3: The same as Fig. 1 but for a = 0:6.
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Figure 4: The same as Fig. 1 but for a = 0:8.
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Figure 5: The dependence of the critical temperature on the asymmetry. The solid,
dotted and dashed curves are the results using the isovector-meson coupling set 1, 2 and
3, respectively.
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Figure 6: The liquid-gas phase coexistence curves. The black solid and dotted curves
are the results for a = 0:2 using the isovector-meson coupling set 1 and 2. The red solid
curve is the result for a = 0:4 using the coupling set 1.
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Figure 7: The di¤erence between the densities of the nuclear liquid (�l) and gas
�
�g
�

phases versus temperature in log scale calculated on the black solid and dotted curves in
Fig. 6.
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Figure 8: The inverse of compressibility versus temperature in log scale calculated on the
liquid branches of the black solid and dotted curves in Fig. 6 at the same temperatures
as Fig. 7.

15



ln
[(

l­
g)

/
c)

]
ρ

ρ
ρ

ln (1­T/Tc)

1.06+0.31ln(1­T/Tc)
1.27+0.48ln(1­T/Tc)

asymmetry = 0.4

­5 ­4 ­3 ­2 ­1 0­1

­0.5

0

0.5

1

Figure 9: The di¤erence between the densities of the nuclear liquid (�l) and gas
�
�g
�

phases versus temperature in log scale calculated on the red solid curve in Fig. 6.
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Figure 10: The inverse of compressibility versus temperature in log scale calculated on
the liquid branch of the red solid curve in Fig. 6 at the same temperatures as Fig. 9.
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