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Abstract. We present a new, short, self-contained proof of localization
properties of multi-dimensional continuum random Schrödinger opera-
tors in the fluctuation boundary regime. Our method is based on the
recent extension of the fractional moment method to continuum models
in [2], but does not require the random potential to satisfy a cover-
ing condition. Applications to random surface potentials and potentials
with random displacements are included.

1. Introduction

1.1. Motivation. We are concerned here with proving localization proper-
ties of multi-dimensional continuum random Schrödinger operators in the
fluctuation boundary regime.

Such results were first found via the method of multiscale analysis, which
had been developed in the 80s to handle lattice models and was later ex-
tended to the continuum (for a rather complete history and list of references
on multiscale analysis see [30] and for some of the more recent developments
[12]).

Later, the fractional moment method was developed [3] as an alternative
approach to the same problem, also initially for lattice models. It leads to a
stronger form of dynamical localization than multiscale analysis (see [1, 4])
and has provided much shorter and more transparent proofs in the lattice
case, for example [13].

It was recently shown in [2] that all the main features of the fractional mo-
ment approach also apply to continuum random Schrödinger operators. This
extension required substantial new input from operator theory and harmonic
analysis. The paper [2] provides a framework of necessary and sufficient cri-
teria for localization in terms of fractional moment bounds, which can be
verified for a rather broad range of regimes.

One of our goals here is to complement the general framework from [2]
by focusing exclusively on presenting a short and self-contained proof of
localization properties via fractional moments for one specific regime, where
the technical effort remains minimal.

For this we pick a fairly general setting we label the fluctuation boundary
regime. This is described by a random Schrödinger operator of Anderson-
type in L2(Rd), where our approach allows for quite arbitrary background
potentials and geometries of the random impurities, provided the ground
state energy is induced by rare events (fluctuations) and therefore sensitive
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to changes in the random parameters. The goal is to prove localization in
the vicinity of the bottom of the spectrum. Of course, various versions of
the fluctuation boundary regime have been studied in many works and we
borrowed the term from [27].

Another motivation for our work is that we want to extend the fractional
moment method to situations where the random potential does not satisfy a
covering condition, i.e. where the individual impurity potentials have small
supports which do not cover all of Rd. This condition, which was required
for the technical approach to the continuum found in [2], is not natural
in the fluctuation boundary regime and should not be needed there as has
already been verified via multiscale analysis. Particularly interesting exam-
ples are random surface potentials which act in a small portion of space only.
Nevertheless, they lead to a fluctuation boundary by creating new “surface
spectrum” below the “bulk spectrum”.

In our main result, Theorem 1 below, the fluctuation boundary regime
will be described in form of an abstract condition. For random surface
potentials, which will be discussed as an application, this condition follows
in an appropriate setting from a result proven in [24] in order to derive
Lifshits tails. Another application concerns models with additional random
displacements as were originally studied in [10].

Let us confess that we require absolutely continuous distribution of ran-
dom couplings. While it might be possible to relax this to Hölder continuous
distribution (as has been done in the lattice case, e.g. [4]), the fractional
moment method is so far less flexible in that respect than the multiscale
technique. In particular, see the variant of multiscale analysis adapted to
Bernoulli-Anderson models recently developed in [6] and an application of
similar ideas to Poisson models announced in [11].

1.2. Results. Let us now describe our results in more detail after intro-
ducing some notation: On Rd we often consider the supremum norm |x| :=
maxi=1,...,d|xi| and write

Λr(x) :=
{
y ∈ Rd : |x− y| < r

2

}
for the d-dimensional cube with sidelength r centered at x. For an open set
G ⊂ Rd we denote the restriction of the Schrödinger operator H to L2(G)
with Dirichlet boundary conditions by HG. In our results we assume d ≤ 3
and rely upon the following assumptions, which guarantee self-adjointness
and lower semi-boundedness of all the Schrödinger operators appearing in
this paper:

(A1) The background potential V0 ∈ L2
loc,unif(Rd) is real-valued, H0 :=

−∆ + V0.
(A2) The set I ⊂ Rd, where the random impurities are located, is uniformly

discrete, i.e., inf{|α− β| : α 6= β ∈ I} =: rI > 0.
(A3) The random couplings ηα, α ∈ I, are independent random variables

supported in [0, ηmax] for some ηmax > 0 and with absolutely con-
tinuous distribution of bounded density ρα with a uniform bound
supα ‖ρα‖∞ =: Mρ <∞.
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The single site potentials Uα, α ∈ I satisfy

cUχΛrU
(α) ≤ Uα ≤ CUχΛRU

(α)

for all α with cU , CU , rU , RU > 0 independent of α.

Vω(x) =
∑
α∈I

ηα(ω)Uα(x)

and
H := H(ω) := H0 + Vω in L2(Rd).

The most important condition expresses the fact that the ground state en-
ergy comes from those realizations of the potential that vanish on large sets:

(A4) Denote E0 := inf σ(H0) ≤ inf σ(H(ω)) and let

HF := H0 + ηmax

∑
α∈I

Uα,

the subscript F standing for full coupling.
Assume that E0 is a fluctuation boundary in the sense that

(i) EF := inf σ(HF ) > E0, and
(ii) There is m ∈ (0, 2) and L∗ such that for md := 42 · d, all L ≥ L∗

and x ∈ Zd

P
(
σ(HΛL(x)(ω) ∩ [E0, E0 + L−m] 6= ∅

)
≤ L−md .

By χx we denote the characteristic function of the unit cube centered
at x. In the following it is understood that χx(HG − E − iε)−1χy = 0 if
Λ1(x) ∩G or Λ1(y) ∩G have measure zero.

Our main result is

Theorem 1. Let d ≤ 3 and assume (A1)-(A4). Then there exist δ > 0,
0 < s < 1, µ > 0 and C < ∞ such that for I := [E0, E0 + δ], all open sets
G ⊂ Rd and x, y ∈ Rd,

sup
E∈I, ε>0

E(‖χx(HG − E − iε)−1χy‖s) ≤ C e−µ|x−y|. (1)

Exponential decay of fractional moments of the resolvent as described by
(1) implies spectral and dynamical localization in the following sense:

Theorem 2. Let d ≤ 3, assume (A1)-(A4) and let I be given as in Theo-
rem 1. Then:

(a) For all open sets G ⊂ Rd the spectrum of HG in I is almost surely pure
point with exponentially decaying eigenfunctions.

(b) There are µ > 0 and C < ∞ such that for all x, y ∈ Rd and open
G ⊂ Rd,

E
(
sup‖χxg(HG)PI(HG)χy‖

)
≤ Ce−µ|x−y|. (2)

where the supremum is taken over all Borel measurable functions g which
satisfy |g| ≤ 1 pointwise and PI(HG) is the spectral projection for HG onto
I.
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Dynamical localization should be considered as the special case g(λ) = eitλ

in (b), with the supremum taken over t ∈ R.
The proof of Theorem 1 is given in Section 2. This will be done by a self-

contained presentation of a new version of the continuum fractional moment
method. While we use many of the same ideas as [2], due to the lack of a
covering condition we can not rely any more on the concept of “averaging
over local environments”, heavily exploited in [2]. It is interesting to note
that, in some sense, we instead use a global averaging procedure. Techni-
cally, this actually leads to some simplifications compared to the method
in [2], as repeated commutator arguments can be replaced by simpler iter-
ated resolvent identities. We also mention that exponential decay in (1) will
follow from smallness of the fractional moments at a suitable initial length
scale (the localization length) via an abstract contraction property.

As technical tools we need Combes-Thomas bounds (in operator norm as
well as in Hilbert-Schmidt norm) and a weak-L1-type bound for the bound-
ary values of resolvents of maximally dissipative operators, which is based
on results from [26] and was also central to the argument in [2]. We collect
these tools in an appendix.

That Theorem 2 follows from Theorem 1 was essentially shown in [2],
Section 2. In Section 3 below we will briefly discuss the changes which arise
due to our somewhat different set-up. In particular, the argument in [2] for
proving (2) uses the covering condition

0 < C1 ≤
∑

Uα ≤ C2 <∞ (3)

in one occasion. But this is easily circumvented.
In Sections 4 and 5 we apply our main result to concrete models by veri-

fying assumption (A4) for these models. In Section 4 we consider Anderson-
type random potentials supported in the vicinity of a lower-dimensional
surface. The “usual” fully stationary Anderson model is considered in Sec-
tion 5. The fact that we don’t have to assume a covering condition leads
to high flexibility in the geometry of the random scatterers. We could use
this to go for far reaching generalizations of Anderson models. Instead, we
restrict ourselves to the treatment of additional random displacements as
was done in [10].

1.3. Remarks. We could have extended Theorem 1 in at least two differ-
ent ways, but refrained from doing so to keep the proofs as transparent as
possible:

(i) The restriction to d ≤ 3 is not necessary. We use it because in this
case the abstract fractional moment bound in Corollary 17 is more
directly applicable to our proof of Theorem 1 than in higher dimension
(which technically can be traced back to the fact that χx(−∆+1)−1 is
a Hilbert-Schmidt operator only for d ≤ 3). In higher dimension more
iterations of resolvent identities would be needed to yield the Hilbert-
Schmidt multipliers required by Corollary 17, leading to more involved
summations in the arguments of Section 2.

(ii) Instead of bounded Uα we can work with relatively ∆-bounded Uα, i.e.
allow for suitable Lp-type singularities in the single site potentials. In
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the course of our proofs they could be “absorbed” into resolvents using
standard arguments from relative perturbation theory.

In principle, our arguments can also be used to prove localization at fluc-
tuation type band edges more general than the bottom of the spectrum
without using a covering condition as in [2]. But this would require to be
much more specific with settings and assumptions and, in particular, with
the geometry of the impurity set. Inconvenience would also arise from having
to work with boundary conditions other than Dirichlet.

We mention that the applications in Section 4 improve the results on
continuum random surface potentials of [7, 24], obtained through the use of
multiscale analysis:

(i) The exponentially decaying correlations of the time evolution, shown
as a special case of Theorem 2(b), are stronger than the dynamical
bounds which follow from multiscale analysis.

(ii) Due to the use of the recent result of [24] on Lifshitz tails for surface
potentials, we do not need a condition on the smallness of the distribu-
tion of the ηα near the minimum of their support as in [7], a progress
that had been achieved in [24].

(iii) We can allow for more flexibility concerning the geometry of the scat-
terers.

Of course, due to using fractional moments we cannot include single site
measures as singular as the ones considered in [7, 24] but instead have to
assume absolute continuity of the ηα.

2. Localization near fluctuation boundaries

This section is entirely devoted to the proof of Theorem 1. For a conve-
nient normalization write

ξα(ω) := ηmax − ηα(ω)

for ω = (ωα)α∈I = (ηα(ω))α∈I ∈ Ω := [0, ηmax]I ,

and denote the product measure ⊗α∈I dηαρα(ηα) on Ω by P. We write

W (x) := Wω(x) :=
∑
α∈I

ξα(ω)Uα(x).

Note that Wω ≥ 0 and that

H = H(ω) = HF −Wω.

Fixing an open set G ⊂ Rd we write

RG = RG
z = (HG − z)−1,

RG
F = RG

F,z = (HG
F − z)−1

whenever z = E+iε. SinceHG
F ≥ HF due to our choice of Dirichlet boundary

conditions, and EF = inf σ(HF ) we know that (−∞, EF ) ⊂ ρ(HG
F ).

The resolvent equation yields

RG = RG
F +RG

FWRG
F +RG

FWRGWRG
F , (4)
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an identity that will be used over and again. The other workhorse result is
the following averaging estimate, that follows from Corollary 17 in the ap-
pendix below, taking into account the uniform boundedness of the densities
ρα.

Lemma 3. For all s ∈ [0, 1) there is c(s) such that∫
dηαρα(ηα)

∫
dηβρβ(ηβ)‖M1U

1/2
α (HG − E − iε)−1U

1/2
β M2‖s

HS

≤ c(s)‖M1‖s
HS‖M2‖s

HS.

As a warm-up, we prove boundedness of fractional moments:

Lemma 4. Let E1 < EF , I = [E0, E1] and s ∈ [0, 1). Then

sup{E ‖χxR
G
E+iεχy‖s | E ∈ I, ε > 0, x, y ∈ Rd, G ⊂ Rd open} <∞ . (5)

Proof. We use (4) above and write, suppressing the superscript G and the
subscript z = E + iε mostly:

χxRχy = χxRFχy + χxRFWRFχy + χxRFWRWRFχy.

The first two terms on the r.h.s. of this equation obey an exponential bound
due to the Combes-Thomas estimate, see subsection A.1 below:

‖χxRFχy‖ ≤ c e−µ0|x−y|

and

‖χxRFWRFχy‖ ≤ ηmax

∑
α∈I

‖χxRFU
1/2
α ‖ · ‖U1/2

α RFχy‖

≤ C
∑
α∈I

e−µ0|x−α|e−µ0|α−y| ≤ Ce−µ1|x−y|

with µ0 and µ1 = µ0/2 depending on E1 only. In the last estimate we have
used that I is uniformly discrete.

For the third term, expand W =
∑

α ξαUα and use the boundedness of
the ξα and the fact that (∑

an

)s
≤

∑
as

n

to estimate

‖χxRFWRWRFχy‖s ≤ c
∑

α, β∈I
‖χxRFUαRUβRFχy‖s.

We now fix α, β ∈ I and use the workhorse Lemma 3 to conclude∫
dηαρα(ηα)

∫
dηβρβ(ηβ)‖χxRFUαRUβRFχy‖s

≤ c(s)‖χxRFU
1/2
α ‖s

HS‖U
1/2
β RFχy‖s

HS

≤ c(s) · e−sµ0|x−α| · e−sµ0|y−β|

by the HS-norm Combes-Thomas bound from Proposition 15 and since
dist(x, suppUα) ≥ |x − α| − RU where RU majorizes the size of the sup-
port of Uα according to assumption (A3).

Note that here and in the following we use the convention that c, c(s),
etc. denote constants that only depend on non-crucial quantities and may
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change from line to line. In particular, the constants are independent of
ε > 0 and the random background.

Now, we can sum up the last terms and get the assertion. �

Remarks. (i) In this proof it is still quite easy to see how to extend to
arbitrary dimension through iterations of the resolvent identity. It will be
harder to keep track of this later.

(ii) Note that due to the α, β-summations, averaging over the ηα is re-
quired for all α, i.e., is global. In [2], due to the covering condition, an
argument is provided that only requires averaging over local environments
of x and y and proves Lemma 4 for arbitrary finite intervals I = [E0, E1],
i.e. without requiring E1 < EF .

(iii) The above proof shows that (5) also holds in HS-norm, but this will
not be used below.

We will now start an iterative procedure that will show exponential decay
of E(‖χxRχy‖s) in |x − y| for energies sufficiently close to E0. Clearly, it
suffices to consider x, y ∈ Zd. In view of the preceding lemma the following
quantity is finite:

τx,y := sup{E ‖χxR
G
E+iεχy‖s | E ∈ I, ε > 0 and G ⊂ Rd open} .

Moreover, we should actually keep in mind the dependence on the interval
I = [E0, E1]. In fact, E1 will later be chosen small enough.

In order to use that E0 appears rarely as an eigenvalue for boxes of side
length L we exploit the resolvent identity and what is sometimes called the
Simon-Lieb inequality in a way visualized in Figure 1!

Figure 1. The geometry of the induction step
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Consider

BL := ΛL(x) ∩G,
∂BL = (ΛL(x) \ ΛL−2(x)) ∩G, and χ−L := χ∂BL

.

Furthermore, with RU as in assumption (A3), define

CL := G \ Λ2RU+L(x),

∂CL =
(
Λ2RU+L+2(x) \ Λ2RU+L(x)

)
∩G, and χ+

L := χ∂CL
.

The geometry is chosen in such a way that RBL and RCL are stochastically
independent. For RBL we can use the fluctuation boundary assumption to
get small fractional moments and the right size of L will be adjusted. But
all that later...

Thus, by the Simon-Lieb inequality (e.g. [30], Sect. 2.5)

‖χxR
Gχy‖ ≤ C‖χxR

BLχ−L‖ · ‖χ
−
LR

Gχ+
L‖ · ‖χ

+
LR

CLχy‖ (SLI)

where C only depends on sup{ηα|α∈I}‖V ‖∞ and the interval I.
The basic idea for proving exponential decay of τx,y is to establish a

recurrence inequality for energies sufficiently close to E0. This recurrence
inequality is described in Proposition 6 below and allows to apply a discrete
Gronwall-type argument found in Lemma 7 below. To this end we exploit
smallness of fractional moments of the first factor on the r.h.s. of (SLI) for
energies close to E0 and sufficiently large, but fixed, L: This will follow from
(A4)(ii) as is presented in the following Lemma 5. Fractional moments of
the second factor are bounded due to Lemma 4 (up to a polynomial factor
in L). Finally, we use the third factor to start an iteration (with x replaced
by sites x′ covering the layer ΛL+RU+2 \ ΛL+RU

). By construction, the first
and third factor on the r.h.s. of (SLI) are probabilistically independent.
Unfortunately, the second factor introduces a correlation which prevents us
from simply factoring the expectation. We will rely on a version of the re-
sampling procedure developed in [2] to solve this problem. Moreover, we will
not use Lemma 4, but apply Lemma 3 directly to bound certain conditional
expectations. This will result in Proposition 6 below.

Lemma 5. For m as in (A4) and s ∈ (0, 1
3) there is L∗ = L∗(m, s) such

that for all L ≥ L∗, open B ⊂ ΛL(x), E ∈ I := [E0, E0 + L−
1
2
m], ε > 0 and

u, v ∈ Zd with |u− v| ≥ L
4 we have

E(‖χu(HB − E − iε)−1χv‖s) ≤ L−
1
2
md ,

where md = 42 · d.

Proof. Divide Ω into the good and bad sets

Ωgood := {ω | dist(σ(HB), E0) > L−m}, Ωbad = Ω \ Ωgood.

Since HB ≥ HΛL(x) by our choice of Dirichlet boundary conditions, (A4)
implies that

P(Ωbad) ≤ L−md .

We split the expectation into contributions from the good and bad sets: By
the improved Combes-Thomas bound Subsection A.1 we get, for ω ∈ Ωgood,
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E ∈ I:

‖χuR
B
E+iεχv‖s ≤ CL

1
2
mse−cs|u−v|L−

1
2 m

.

This gives a uniform bound of the same type for the expectation over Ωgood.
For the bad set Hölder with t ∈ (s, 1) gives

E(‖χuR
B
E+iεχv‖sχΩbad

) ≤
(
E(‖χuR

B
E+iεχv‖t)

) s
t P(Ωbad)1−

s
t

≤ c(t)
s
tL(1− s

t
)md .

Now we choose t = 1
2(s + 1) so that (1 − s

t ) >
1
2 if s < 1

3 . Putting things
together, we get

E(‖χuR
B
E+iεχv‖s) ≤ C(s)

(
L

1
2
mse−cs|u−v|·L−

1
2 m

+ L(1− s
t
)md

)
.

If L is large enough we can use 1
2m < 1 and |u−v| ≥ L

4 to see that the r.h.s.
is bounded as asserted. �

The exponential decay of the τx,y will follow from the following result,
whose proof will take most of the present section.

Proposition 6. There exist L∗, κ > 0, c > 0 and C > 0, all depending
on s,m,RU , rU ,Mρ, E0, EF , ηmax, such that for L ≥ L∗ and I = [E0, E0 +
L−

1
2
m] the above defined τx,y satisfy:

τx,y ≤ L−2d−κ
∑

x′, y′∈Zd

e−c(|x−x′|+|y−y′|)/L τx′,y′ + Ce−c|x−y|/L. (6)

Proof of Proposition 6. We now restrict to the energy interval I = [E0, E0 +
L−

1
2
m] assuming L is large enough to guarantee that I ⊂ [E0, EF ). Using

(SLI) above and denoting

Tx,L = χxR
BLχ−L ,

Sx,L = χ−LR
Gχ+

L ,

Qx,L = χ+
LR

CLχy

we get that

E(‖χxR
Gχy‖s) ≤ C E(‖Tx,L‖s‖Sx,L‖s‖Qx,L‖s).

Note that ‖Tx,L‖s and ‖Qx,L‖s are stochastically independent. Unfortu-
nately, they are correlated via ‖Sx,L‖s.

Fix s ∈ (0, 1
3) to estimate E(‖Tx,L‖s). Using the preceding Lemma, we

get that

E(‖Tx,L‖s) ≤
∑

z∈supp χ−L

E(‖χxR
BLχz‖s)

≤ CLd−1 · L−
1
2
md ,

for L large enough. We get that

E(‖Tx,L‖s) ≤ Ld− 1
2
md .
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We can now expand Sx,L to split off a uniformly bounded (in ω) term:

Sx,L = χ−LR
G
Fχ

+
L + χ−LR

G
FWRG

Fχ
+
L︸ ︷︷ ︸

S1,L

+χ−LR
G
FWRGWRG

Fχ
+
L︸ ︷︷ ︸

S2,L

.

Since I ⊂ [E0, EF ) we have that ‖S1,L‖s is uniformly bounded. Thus, we
get

E(‖χxR
G
E+iεχy‖s) ≤ C

(
E(‖Tx,L‖s · ‖Qx,L‖s) + Σ2

)
= C

(
E(‖Tx,L‖s) · E(‖Qx,L‖s) + Σ2

)
as ‖Tx,L‖s and ‖Qx,L‖s are independent. Here

Σ2 := E(‖Tx,L‖s‖S2,L‖sQx,L‖s).

Expanding χ+
L we get, for some c > 0, that

. . . ≤ CLd− 1
2
md

∑
x′∈∂CL

e−c|x−x′|/L E(‖χx′R
CLχy‖s) + C Σ2,

whence

τx,y ≤ Ld− 1
2
md

∑
x′∈∂CL

e−c|x−x′|/L τx′,y + C sup
E∈I, ε>0

G⊂Rd

Σ2. (7)

To estimate Σ2 we begin by expanding

Tx,L = χxR
BLχ−L

= χxR
BL
F χ−L + χxR

BL
F WRBL

F χ−L + χxR
BL
F WRBLWRBL

F χ−L . (8)

Since I has positive distance from σ(HF ), we have the Combes-Thomas
bound Ce−µ0L/2 for the norm of the first two terms on the r.h.s. of (8), see
Appendix A.1. Here C < ∞ and µ0 > 0 are uniform in the randomness,
E ∈ I, ε > 0 and x ∈ Zd. Expanding the third term and using boundedness
of the ξ’s yields

‖Tx,L‖s ≤ C

(
e−µ0·s·L2 +

∑
β,γ∈I∩ΛL+RU

(x)

‖Tβ,γ‖s

)
,

setting Tβ,γ = χxR
BL
F UβR

BLUγR
BL
F χ−L , and only summing over those β, γ

for which the corresponding U -terms touch BL.
A similar argument applied to Qx,L leads to

‖Qx,L‖s ≤ C

(
e−µ0·s·(|x−y|−L

2
) +

∑
β′,γ′∈I∩Λc

L+RU
(x)

‖Qβ′,γ′‖s

)
,

where we have chosen Qβ′,γ′ = χ+
LR

CL
F Uγ′R

CLUβ′R
CL
F χy.

Finally, expand

S2,L = χ−LR
G
FWRGWRG

Fχ
+
L =

∑
α,α′∈I

Sα,α′ ,

where Sα,α′ = χ−LR
G
F ξαUαR

Gξα′Uα′R
G
Fχ

+
L .
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Combining all this we get that

Σ2 ≤ C

(
e−µ0·s·L2

∑
α,α′

E ‖Sα,α′‖se−µ0·s·(|x−y|−L
2
)

+ e−µ0·s·L2
∑

α,α′,β′,γ′

E(‖Sα,α′‖s · ‖Qβ′,γ′‖s)

+
∑

α,α′,β,γ

E(‖Tβ,γ‖s · ‖Sα,α′‖s)e−µ0·s·(|x−y|−L
2
)

+
∑

α,α′,β,β′,γ,γ′

E(‖Tβ,γ‖s · ‖Sα,α′‖s · ‖Qβ′,γ′‖s)
)
.

The most complicated of these terms is the last one; it will be obvious how
to estimate the first three once we have established a bound for the last one
according to the assertion of Proposition 6. Thus we have to estimate

Σ3 :=
∑

α,α′,β,β′,γ,γ′

Aα,α′,β,β′,γ,γ′ ,

where
Aα,α′,β,β′,γ,γ′ = E

(
‖Tβ,γ‖s · ‖Sα,α′‖s · ‖Qβ′,γ′‖s

)
.

If it weren’t for the Sα,α′-terms, the Tβ,γ and Qβ′,γ′ would be independent,
leading to an estimate like in (7) above. We will reinforce a certain kind of
independence through re-sampling. For fixed

J := {α, α′, γ, γ′}

we introduce new independent random variables ξ̂j , j ∈ J , independent
of the ξζ , ζ ∈ I, and with the same distribution as the ξζ . We denote
the corresponding space by Ω̂, the corresponding probability by P̂ and the
expectation with respect to P̂ by Ê. Consider

Ĥ(ω, ω̂) = H(ω) +
∑
j∈J

(ξj(ω)− ξ̂j(ω̂))Uj︸ ︷︷ ︸cW
and note that Ĥ doesn’t depend on the ξj , j ∈ J . The resolvent identity
for R̂G

z = (ĤG − z)−1 gives

RG
z = R̂G

z + R̂G
z ŴRG

z .

We insert this for Tβ,γ and Qβ′,γ′ and get

Tβ,γ = χxR
BL
F UβR̂

BLUγR
BL
F χ−L︸ ︷︷ ︸bTβ,γ

+χxR
BL
F UβR̂

BLŴRBLUγR
BL
F χ−L︸ ︷︷ ︸eTβ,γ

and, similarly,
Qβ′,γ′ = Q̂β′,γ′ + Q̃β′,γ′ .

Now we can estimate

Aα,α′,β,β′,γ,γ′ ≤ Ê E
[
(‖T̂β,γ‖s + ‖T̃β,γ‖s)‖Sα,α′‖s(‖Q̂β′,γ′‖s + ‖Q̃β′,γ′‖s)

]
.

(9)
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This gives a sum of four terms we have to control. Let’s start with the
easiest one

A1
α,α′,β,β′,γ,γ′ := Ê E

[
‖T̂β,γ‖s‖Sα,α′‖s‖Q̂β′,γ′‖s

]
.

Denote

E(X|α, α′) =
∫

dξαρα(ξα)
∫

dξα′ρα′(ξα′)X(ξ)

for a random variable on Ω × Ω̂, so that E(X|α, α′) is nothing but the
conditional expectation with respect to the σ-field generated by the family
(ξβ | β ∈ I \ {α, α′}). According to the usual rules for conditional expecta-
tions:

A1
α,α′,β,β′,γ,γ′ = Ê E

[
E(‖T̂β,γ‖s‖Sα,α′‖s‖Q̂β′,γ′‖s|α, α′)

]
= Ê E

[
‖T̂β,γ‖s‖Q̂β′,γ′‖s E(‖Sα,α′‖s|α, α′)

]
(10)

since the T̂ and Q̂ are independent of ξα, ξα′ . Using the workhorse Lemma 3
and the Combes-Thomas estimate Proposition 15 we get

E(‖Sα,α′‖s|α, α′) ≤ c(s)‖χ−LR
G
FU

1
2
α ‖s

HS‖U
1
2
α′R

G
Fχ

+
L‖

s
HS

≤ c(s)L2s(d−1)e−µ1s(|L
2
−|α−x||+|L

2
−|α′−x||),

where the extra L2s(d−1) term comes from covering ∂BL and ∂CL. We have

Ê E
[
‖T̂β,γ‖s‖Q̂β′,γ′‖s

]
= E

[
‖Tβ,γ‖s‖Qβ′,γ′‖s

]
= E [‖Tβ,γ‖s] E

[
‖Qβ′,γ′‖s

]
since the ξ̂’s have the same distribution as the ξ’s and the T ’s and Q’s are
independent. Inserting into (10) gives

A1
α,α′,β,β′,γ,γ′ ≤ c(s)L2s(d−1)e−µ1s(|L

2
−|α−x||+|L

2
−|α′−x||) E [‖Tβ,γ‖s] E

[
‖Qβ′,γ′‖s

]
.

We will now treat the latter two terms separately:

Step 1. Denote by Z(γ′) = {y′ ∈ Zd | χy′ · Uγ′ 6= 0} those lattice points
whose 1-cubes support Uγ′ . By Combes-Thomas once again:

‖Qβ′,γ′‖s = ‖χ+
LR

CL
F Uγ′R

CLUβ′R
CL
F χy‖s

≤ C
∑

x′∈Z(γ′)

∑
y′∈Z(β′)

‖χx′R
CLχy′‖se−µ1s(|x−x′|−L)e−µ1s|y−y′|.

By assumption on the size of the support of Uγ′ we see that #Z(γ′) is
uniformly bounded. This and uniform discreteness of I gives∑

β′,γ′

E ‖Qβ′,γ′‖s ≤ C
∑

x′, y′∈Zd∩CL

e−µ1s(|x−x′|−L
2
)e−µ1s|y−y′| τx′,y′ .
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Step 2. For the Tβ,γ-term we have

‖Tβ,γ‖s = ‖χxR
BL
F UβR

BLUγR
BL
F χ−L‖

s

≤ C
∑

u∈Z(β)∩BL

∑
v∈Z(γ)∩BL

‖χxR
BL
F χu‖s‖χuR

BLχv‖s‖χvR
BL
F χ−L‖

s.

If |u− v| ≥ 1
4L, Lemma 5 gives

E(‖χuR
BLχv‖s) ≤ C · L−

1
2
md .

If, on the other hand, |u− v| ≤ 1
4L then dist(v, ∂BL) ≥ 1

8L or |x− u| ≥ 1
8L,

so that the uniform bound of Lemma 4 for E(‖χuR
BLχv‖s) together with

the Combes-Thomas bound for ‖χvR
BL
F χ−L‖s, resp. ‖χxR

BL
F χu‖s gives, for

L large enough,

E
(
‖χxR

BL
F χu‖s‖χuR

BLχv‖s‖χvR
BL
F χ−L‖

s
)
≤ Ce−

1
8
µ0sL

≤ L−
1
2
md .

Combined we get that, again for L sufficiently large,∑
β,γ

E(‖Tβ,γ‖s) ≤ CL2d− 1
2
md ,

where an extra factor L2d arises through the number of terms considered.
Joining Step 1, Step 2 and the bound∑

α,α′

e−µ1s(|L
2
−|α−x||+|L

2
−|α′−x||) ≤ C(s)L2d

we arrive at∑
α,α′,β,β′,γ,γ′

A1
α,α′,β,β′,γ,γ′

≤ C(s)L6d− 1
2
md

∑
x′, y′∈Zd∩CL

e−µ1s(|x−x′|−L
2
)e−µ1s|y−y′| τx′,y′ ,

which is a contribution to Σ3 (and therefore Σ2) bounded by one of the type
asserted in Proposition 6.

A look back at (9) shows that we still have to estimate three terms similar
to A1

α,α′,β,β′,γ,γ′ of which the last one,

A4
α,α′,β,β′,γ,γ′ := Ê E

[
‖T̃β,γ‖s‖Sα,α′‖s‖Q̃β′,γ′‖s

]
is the most complicated one. Using Steps 1 and 2 above as well as the steps
below it will be clear how to treat the two remaining terms.

Step 3. We start taking the conditional expectation:

A4
α,α′,β,β′,γ,γ′ = Ê E

[
E(‖T̃β,γ‖s‖Sα,α′‖s‖Q̃β′,γ′‖s|α, α′, γ, γ′)

]
≤ Ê E

[
E(‖T̃β,γ‖3s|α, α′, γ, γ′)

1
3

· E(‖Sα,α′‖3s|α, α′, γ, γ′)
1
3 · E(‖Q̃β′,γ′‖3s|α, α′, γ, γ′)

1
3

]
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by Hölder’s inequality. Like above, the middle term can, up to CL2s(d−1),
be estimated by

eα,α′ := e−µ1s||α−x|−L
2
|e−µ1s||α′−x|−L

2
|.

Recall that

‖Q̃β′,γ′‖3s =
∥∥χ+

LR
CL
F Uγ′R

CL
∑

j∈J\{γ}

(ξj − ξ̂j)UjR̂
CLUβ′R

CL
F χy

∥∥3s

≤ C ·
∑

j∈J\{γ}

‖χ+
LR

CL
F Uγ′R

CLUjR̂
CLUβ′R

CL
F χy‖3s,

where γ can be excluded from the summation as Uγ doesn’t touch CL.
Integration over ξj and ξγ′ gives a uniform bound by the workhorse Lemma 3:

E(‖Q̃β′,γ′‖3s|α, α′, γ, γ′)

≤
∑

j∈J\{γ}

E(‖χ+
LR

CL
F Uγ′R

CLUjR̂
CLUβ′R

CL
F χy‖3s|α, α′, γ, γ′)

≤ C(s) ·
∑

j∈J\{γ}

‖χ+
LR

CL
F U

1
2
γ′‖

3s
HS · ‖U

1
2
j R̂

CLUβ′R
CL
F χy‖3s

HS

so that, as the sum has only three terms,

E(‖Q̃β′,γ′‖3s|α, α′, γ, γ′)
1
3 ≤ C(s)·

∑
j∈J\{γ}

‖χ+
LR

CL
F U

1
2
γ′‖

s
HS · ‖U

1
2
j R̂

CLUβ′R
CL
F χy‖s

HS︸ ︷︷ ︸
ΣQ

.

Similarly,

E(‖T̃β,γ‖3s|α, α′, γ, γ′)
1
3 ≤ C(s)·

∑
j∈J\{γ′}

‖χxR
BL
F UβR̂

BLU
1
2
j ‖

s
HS · ‖U

1
2
γ R

BL
F χ−L‖

s
HS︸ ︷︷ ︸

ΣT

.

Now ΣT and ΣQ are independent so that

A4
α,α′,β,β′γ,γ′ ≤ C(s)L2s(d−1) · Ê E[ΣT ] · Ê E[ΣQ] · eα,α′ . (11)

Since the ξj and the ξ̂j have the same distribution, we can omit the hats in
R̂CL and R̂BL and replace Ê E by E in the bounds for Ê E[ΣT ] and Ê E[ΣQ]
to be derived below.

Step 4. We start with the Q-term. Combes-Thomas, Proposition 15 gives

‖χ+
LR

CL
F U

1
2
γ′‖

s
HS ≤ CLs(d−1)e−µ1s||γ′−x|−L

2
|.



LOCALIZATION NEAR FLUCTUATION BOUNDARIES 15

This will be used to deal with the term for j = γ′ which appears in the sum
over J \ {γ}; since ‖AB‖HS ≤ ‖A‖ ‖B‖HS we get that:

‖χ+
LR

CL
F U

1
2
γ′‖

s
HS · ‖U

1
2
γ′R

CLUβ′R
CL
F χy‖s

HS

≤ CLs(d−1)e−µ1s||γ′−x|−L
2
|‖U

1
2
γ′R

CLU
1
2
β′‖

s · ‖U
1
2
β′R

CL
F χy‖s

HS

≤ CLs(d−1)
∑

x′∈Z(γ′)
y′∈Z(β′)

e−
c
L
|x−x′|−µ1s|y−y′|‖χx′R

CLχy′‖s. (12)

For the terms j = α and j = α′ in the sum we borrow from eα,α′ above and
use that

e
1
3
α,α′ ≤ C · e−c|x−x′|/L

if j ∈ {α, α′} and x′ ∈ Z(j):

e
1
3
α,α′‖χ

+
LR

CL
F U

1
2
γ′‖

s · ‖U
1
2
j R

CLUβ′R
CL
F χy‖s

HS

≤ CLs(d−1)e−µ1s||γ′−x|−L
2

∑
x′∈Z(γ′)
y′∈Z(β′)

e−
c
L
|x−x′|−µ1s|y−y′|‖χx′R

CLχy′‖s. (13)

Summing each of the three contributions from (12) and (13) to e
1
3
α,αΣQ over

β′, γ′ (and extending the x′-sum in (13) to all of Zd) gives∑
β′,γ′∈I

e
1
3
α,α′ Ê E[ΣQ] ≤ CL2(d−1)

∑
x′,y′∈Zd

e−
c
L
|x−x′|−µ1s|y−y′| τx′,y′ . (14)

We now show that summation over α, α′, β, β′ gives a small prefactor. By
exponential decay: ∑

α,α′

e
1
3
α,α′ ≤ CL2d. (15)

Step 5. We analyze

‖E(χxR
BL
F UβR

BLU
1
2
j ‖

s
HS) ≤ ‖χxR

BL
F U

1
2
β ‖

s
HS · E(‖U

1
2
β R

BLU
1
2
j ‖

s).

If |β − j| < 1
4L then either |x − β| ≥ 1

8L or dist(j, ∂CL) ≥ 1
8L. Since

j ∈ J \ {γ′}

either E(‖χxR
BL
F UβR

BLU
1
2
j ‖

s
HS), e

1
3
α,α′ or ‖U

1
2
γ R

BL
F χ−L‖

s
HS

is bounded by L−
1
2
md ; see Step 2 above. If, on the other hand |β − j| ≥ 1

4L
we can use Lemma 5 above to estimate

E(‖U
1
2
β R

BLU
1
2
j ‖

s) ≤ C · L−
1
2
md .

Summing up these terms we get that∑
β,γ∈I

e
1
3
α,α′ Ê E[ΣT ] ≤ CL3d−1− 1

2
md (16)
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since β, γ run through at most cLd different points of I in BL. Putting the
estimates from (14),(16),(15) together we arrive at:∑

α,α′,β,β′,γ,γ′

A4
α,α′,β,β′,γ,γ′ ≤ C · L9d−5− 1

2
md

∑
x′,y′∈Zd

e−
c
L
|x−x′|−µ1s|y−y′| τx′,y′

which is the desired bound. To deal with the other terms appearing in
Aα,α′,β,β′,γ,γ′ we just combine the corresponding steps to control the T and
Q-sums respectively.

This concludes the proof of Proposition 6. �

For energies sufficiently close to E0 we will now complete the proof of
exponential decay of τx,y, and thus of Theorem 1, by applying a discrete
Gronwall-type argument to the recursion inequality established in Proposi-
tion 6.

For µ > 0 consider the weighted `∞-space

X = `∞(Z2d; eµ|x−y|/2),

i.e., for ψ = (ψx,y),

‖ψ‖X = sup
x,y∈Zd

eµ|x−y|/2|ψx,y|.

Lemma 7. The operator A defined by

(Aψ)x,y =
∑
x′,y′

e−µ(|x−x′|+|y−y′|)ψx′,y′

is bounded as an operator in X as well as an operator in `∞(Z2d) with

‖A‖X ≤ C(d)µ−2d and ‖A‖`∞ ≤ C(d)µ−2d. (17)

Proof of Lemma 7. The norm of A in X is the same as the norm of the
operator Â in `∞(Z2d) with kernel

Âxyx′y′ = eµ|x−y|/2e−µ(|x−x′|+|y−y′|)e−µ|x′−y′|/2.

Thus

‖A‖X = ‖Â‖`∞ = sup
x,y

∑
x′,y′

Âxyx′y′

≤ C sup
x,y

∫∫
dx′dy′eµ|x−y|/2e−µ(|x−x′|+|y−y′|)e−µ|x′−y′|/2

= C sup
∆

∫∫
dsdp eµ|∆|/2e−µ(|s|+|p−∆|)−µ|p−s|/2,

with the substitutions s = x− x′, p = y′ − x, ∆ = y − x.
Bound the latter exponent through

µ(|s|+ |p−∆|) +
µ

2
|p− s|

=
(
µ− µ

2

)
(|s|+ |p−∆|) +

µ

2
(|∆− p|+ |p− s|+ |s|)

≥ µ

2
(|s|+ |p−∆|) +

µ

2
|∆|.

After cancellation the integral factorizes and gives (17) for ‖A‖X after scal-
ing. The bound for ‖A‖`∞ is found more directly. �
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This may be applied to the situation of Proposition 6 as it shows that for
L sufficiently large the operator A with kernel

Axyx′y′ = L−2d−κ e−c(|x−x′|+|y−y′|)/L

has norm less than one, both as an operator in X = `∞(Z2d; ec|x−y|/2L) and
an operator in `∞(Z2d). Fix this L and choose δ = L−m, I = [E0, E0 + δ] in
Theorem 1 and the definition of τx,y.

The recursion inequality (6) now takes the form

τx,y ≤ (Aτ)x,y + bx,y (18)

with bx,y := Ce−c|x−y|/L. The conclusion of the proof of Theorem 1 is now
the content of

Lemma 8.

τ = (τx,y) ∈ X.

Proof of Lemma 8. With µ = c
L define the diagonal operator

D = diag(eµ|x−y|/2),

which is an isometry from X to `∞(Z2d). Let τ̂ = Dτ and b̂ = Db ∈ `∞.
Let Â = DAD−1. Then (18) implies that componentwise

τ̂ ≤ Âτ̂ + b̂. (19)

Since τ = D−1τ̂ is bounded and A a bounded operator in `∞(Z2d), we have
that τ̂ ∈ Y := `∞(Z2d; e−µ|x−y|/2) and Â is a bounded operator in Y with
non-negative kernel. Thus we obtain from (19) that

Ânτ̂ ≤ Ân+1τ̂ + Ânb̂

holds with finite components. Summation yields

τ̂ ≤ ÂN+1τ̂ +
N∑

n=0

Ânb̂

and thus

τ ≤ AN+1τ +
N∑

n=0

Anb

for all N .
A : `∞ → `∞ is a contraction and τ ∈ `∞. Thus AN+1t → 0 in `∞

and componentwise. Also, A : X → X is a contraction and b ∈ X. Thus∑N
n=0A

nb→ (I −A)−1b ∈ X and componentwise as N →∞. We conclude

τ ≤ (I −A)−1b ∈ X.

Lemma 8 is proved. �
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3. On the proof of Theorem 2

That the localization properties stated in Theorem 2 follow from the
fractional moment bound for the resolvent established in Theorem 1 was
demonstrated in [2]. Here we want to comment on two minor changes in the
argument which are due to our somewhat different set-up.

First we note that spectral and dynamical localization as established in
parts (a) and (b) of Theorem 2 hold for restrictions of H to arbitrary open
domains G, and, in particular, that the exponential decay established in
equation (2) holds with respect to the standard distance |x− y| rather than
the domain adapted distance distG(x, y) used in [2]. Given that the corre-
sponding bound (1) in Theorem 1 is true for arbitrary G and in standard
distance, this follows with exactly the same proof as in Section 2 of [2] (with
one exception discussed below). That the authors of [2] chose to work with
the domain adapted distance was in order to include more general regimes
in which extended surface states might exist. This is not the case in the
regime considered here.

Second, let us provide a few details on how to eliminate the use of the
covering condition (3) from the proof of (2) provided in Section 2 of [2]. As
done there one first considers bounded open Λ ⊂ Rd and defines

YΛ(I;x, y) := sup
f∈Cc(I), |f |≤1

‖χxf(HΛ)χy‖.

If En and ψn are the eigenvalues and corresponding eigenfunctions of HΛ

and f is as above, then f(HΛ) =
∑

n: En∈I f(En)〈ψn, · 〉ψn readily implies

YΛ(I;x, y) ≤
∑

n: En∈I

‖χxψn‖ · ‖χyψn‖.

At this point we modify the argument of [2] and write

χyψn = χy(HΛ
F − En)−1(HΛ

F − En)ψn

= χy(HΛ
F − En)−1Wψn

=
∑
α∈I

ξαχy(HΛ
F − En)−1Uαψn.

As all En ∈ I have a uniform distance from inf σ(HΛ
F ) we get from Combes-

Thomas Proposition 14 that

‖χyψn‖ ≤ C
∑
α

‖χy(HΛ
F − En)−1U1/2

α ‖ · ‖U1/2
α ψn‖

≤ C
∑
α

e−µ0|y−α|‖U1/2
α ψn‖.

Inserting above yields

YΛ(I;x, y) ≤ C
∑
α

e−µ0|y−α|Q1(I;x, α)

with Q1(I;x, α) =
∑

n: En∈I ‖χxψn‖ · ‖U1/2
α ψn‖ defined as in [2], where the

bound E(Q1(I;x, α)) ≤ Ce−µ1|x−α| is established without any further refer-
ences to the covering condition. Thus we conclude

E
(
YΛ(I;x, y)

)
≤ Ce−µ2|x−y|. (20)
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The rest of the proof of Theorem 2, in particular the extension of (20) to
infinite volume and a supremum over arbitrary Borel functions, follows the
argument in [2] without change.

4. Localization for continuum random surface models

Random surface models have attracted quite some interest with most of
the work dealing with the discrete case [9, 14, 15, 17, 16, 18, 19] and some
with the continuum case [20, 24, 7, 8], as we do here. Our aim in this
section is to show that under suitable conditions such surface models obey
condition (A4) above. To achieve it, we combine recent results from [24]
with a technique from [29].

As usual, the background is assumed to be partially periodic:
(B1) Fix 1 ≤ d1 ≤ d and write Rd = Rd1 × Rd2 , x = (x1, x2); assume that

V0 ∈ L2
loc,unif(Rd) is real-valued and periodic with respect to the first

variable, i.e.,

V0(x1 +m,x2) = V0(x1, x2) for m ∈ Zd1 .

Denote H0 := −∆ + V0.
In order to state our second requirement, let us recall some facts from Bloch
theory. For more details, see [24]. For V0,H0 as in (B1) we get a direct
integral decomposition

H0 = (2π)−d1

∫ ⊕

Td1

hθ dθ,

where Td1 = Rd1/(2πZ)d1 is the d1-dimensional torus and

hθ = −∆ + V0 in L2(S1)

with θ-periodic boundary conditions on the unit strip S1 = Λ1(0)×Rd2 . We
now fix the assumption
(B2)

inf σ(h0) < inf σess(h0).
It is well known that under (B2) we have that

E0 := inf σ(H0) = inf σ(h0)

and there is a positive eigensolution ψ0 of the distributional equation

H0ψ0 = E0ψ0,

see [24, 23] and the references therein. Finally, our random perturbation is
assumed to satisfy
(B3) The set I ⊂ Rd, where the random impurities are located, is uniformly

discrete, i.e., inf{|α− β| : α 6= β ∈ I} =: rI > 0. Moreover I is dense
near the surface Rd1 × {0} in the sense that there exist R⊥, c⊥ > 0
such that for L large enough and x1 ∈ Rd1 :

#
[
I ∩

(
ΛL(x1)× ΛR⊥(0)

)]
≥ c⊥L

d1 .

We will see that (B1)-(B3) ensure (A4) from Section 1. Of course, there
might be other ways to verify (A4) for surface-like potentials so that Theo-
rems 1 and 2 could, in principle, be used for other examples.
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Theorem 9. Assume (B1)-(B3) and (A3). Then there exist δ > 0, 0 < s <
1, µ > 0 and C < ∞ such that for I := [E0, E0 + δ], all open sets G ⊂ Rd

and x, y ∈ Rd

sup
E∈I, ε>0

E(‖χx(HG − E − iε)−1χy‖s) ≤ C e−µ|x−y|. (21)

In particular, the following consequences hold:
(a) The spectrum of HG in I is almost surely pure point with exponentially

decaying eigenfunctions.
(b) There are µ > 0 and C <∞ such that for all x, y ∈ Zd,

E
(
sup
t∈R

‖χxe−itHG
PI(HG)χy‖

)
≤ Ce−µ|x−y|. (22)

The rest of this section is devoted to deducing (A4) under the assumptions
of the Theorem. Note that this will be accomplished once we have shown
the following, where

SL = SL(x1) := ΛL(x1)× Rd2

denotes the strip of side length L centered at x1 ∈ Rd1 perpendicular to the
“surface” Rd1 × {0}.

Proposition 10. For all γ, ξ > 0 there exists L(γ, ξ) such that for all odd
integers L ≥ L(γ, ξ) and x1 ∈ Zd1:

P
{
σ(HSL(x1)) ∩ [E0, E0 + L−γ ] 6= ∅

}
≤ L−ξ. (23)

In fact, (A4)(ii) then follows, since HΛL(x) ≥ HSL(x1) and therefore E0 ≤
inf σ(HSL(x1)) ≤ inf σ(HΛL(x)).

We will actually prove the analogue of Proposition 10 with Dirichlet
boundary conditions replaced by suitable Robin boundary conditions that
are defined using the periodic ground state ψ0 introduced above. Assume,
for later convenience, that ∫

S1

|ψ0(x)|2dx = 1.

We consider on SL, L ∈ 2N − 1, Mezincescu boundary conditions, given as
follows. Let

χ(x) := − 1
ψ0(x)

∇nψ0(x),

where ∇n denotes the outer normal derivatives. The Mezincescu boundary
condition can be thought of as the following requirement for functions φ in
the domain of HSL

χ :

∇nφ(x) = −χ(x)φ(x) for x ∈ ∂SL.

For the formal definition of HSL
χ via quadratic forms and more background,

see Mezincescu’s original paper [25] as well as [23, 24]. In particular, we
immediately get the following important relations in the sense of the corre-
sponding quadratic forms:

HSL
χ ≤ HSL (24)
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as well as

HSL
χ ≥

n⊕
k=1

H
Slk

(yk)
χ , (25)

whenever the strip SL is divided into disjoint strips Slk(yk) whose closures
exhaust the closure of SL.

Proof of Proposition 10. Due to the form inequality (24) above it remains
to prove the estimate for HSL

χ .
Denoting the bottom eigenvalue of an operatorH by E1(H) (caution: here

our notation differs from the one in [23, 24], where the second eigenvalue is
denoted by E1(H)) we see that

σ(HSL
χ ) ∩ [E0, E0 + L−γ ] 6= ∅ ⇐⇒ E1(HSL

χ ) ≤ E0 + L−γ .

Step 1. There exist b,K, β > 0 such that

P
{
E1(HSL

χ ) ≤ E0 + bL−2
}
≤ K · exp(−K · Ld1). (26)

We use here the method from [29]. Denote H(t, ω) := (H0 + tVω)SL
χ , and

its first eigenvalue by E1(t, ω). Since E1(t, ω) increases in t the event in
(26) implies that E1(t, ω) be small for all t ≤ 1 which in turn implies that
E′

1(0, ω) must be small.
We infer from [24], Theorem 3.25 that the gap between the first two

eigenvalues satisfies

E2(0, ω)− E1(0, ω) ≥ const. L−2.

As in [29], Lemma 2.3 this gives that

|E1(t, ω)− (E0 + t · E′
1(0, ω))| ≤ KL2 · t2 for 0 ≤ t ≤ τ · L−2. (27)

Now assume that
E1(HSL

χ ) ≤ E0 + bL−2

for b > 0. From (27) we get that

E′
1(0, ω) ≤ c(b)

with c(b) → 0 for b→ 0.
On the other hand

E′
1(0, ω) = (Vωψ0,L|ψ0,L)

where ψ0,L is the normalized ground state of HSL
0,χ. Now, the boundary

condition of HSL
0,χ is defined so as to make sure that ψ0 is an eigenfunction;

see the discussion in [24]. Therefore ψ0,L = L−d1/2ψ0 and we get

E′
1(0, ω) = (Vωψ0,L|ψ0,L)

= L−d1
∑
α∈I

ηα(ω) ·
∫

SL

Uα(x)|ψ0(x)|2dx

≥ L−d1
∑

α∈I∩SL−rU

ηα(ω) · cU ·
∫

ΛrU
(α)
|ψ0(x)|2dx.
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Since, by (B3), there are at least c⊥(L − rU )d1 elements of I ∩ SL−rU
in

Rd1 × ΛR⊥(0) and

inf
(x1,x2)∈Rd1×ΛR⊥(0)

∫
ΛrU

(x1,x2)
|ψ0(x)|2dx > 0

we arrive at

E′
1(0, ω) ≥ c1 ·

1
|I⊥|

∑
α∈I⊥

ηα(ω) (28)

with c1 > 0 and independent variables ηα running through an index set I⊥
of cardinality at least c2Ld1 . If we now choose b > 0 so small that c(b)

c1
< M

where M is smaller than the mean of all the ηα’s we get that:

P
{
E1(HSL

χ ) ≤ E0 + bL−2
}
≤ P

{
c1 ·

1
|I⊥|

∑
α∈I⊥

ηα(ω) ≤ c(b)
}

≤ K · exp(−β0|I⊥|)

≤ K · exp(−βLd1),

by a standard large deviation estimate; see [21] or [31], Theorem 1.4. This
finishes the proof of Step 1.

Step 2. To deduce the desired bound from Step 1 we divide the strip SL into
disjoint strips Slk(yk) whose closures exhaust the closure of SL and such that

L−γ ≤ b · l−2
k ≤ 42 · L−γ , lk ∈ 2N + 1

which is possible for L large enough.
Their number n is at most const. L(1− γ

2
)d1 . By (25) we know that

E1

(
HSL

χ

)
≥ min

1≤k≤n
E1

(
H

Slk
(yk)

χ

)
so that

P
{
E1(HSL

χ ) ≤ E0 + L−γ
}
≤ P

{
min

1≤k≤n
E1(H

Slk
(yk)

χ ) ≤ E0 + L−γ
}

≤
n∑

k=1

P
{
E1(H

Slk
(yk)

χ ) ≤ E0 + L−γ
}

≤
n∑

k=1

P
{
E1(H

Slk
(yk)

χ ) ≤ E0 + b · l−2
k

}
≤ n ·K · exp(−βlkd1)

≤ L−ξ

provided L is large enough. �

Remarks. (1) In cases where the operator H is ergodic, a stronger bound
than (23) is provided in [24, Proposition 5.2]. Their bound is in terms of the
integrated density of states for which [24] establishes Lifshits asymptotics.
As we are only interested in localization properties here, the bound (23)
suffices and allows to handle the non-ergodic random potentials defined in
(B3) and (A3).
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(2) We have established localization near the bottom of the spectrum
for the random surface models considered in this section. If d1 = 1 one
expects for physical reasons that the entire spectrum of H below inf σ(HF )
(see (A4)) is localized. A corresponding result for lattice operators has been
proven in [18] (in situations where HF is the discrete Laplacian and d2 = 1).
To show this for continuum models remains an open problem.

5. Anderson models with displacement

By considering the special case d1 = d, the results of the previous Section
also cover “usual” Anderson models, sometimes also called alloy models.
Note that in this case (B2) becomes trivial. Let us nevertheless state the
assumptions and result again for this case, mainly because we want to point
out below that the obtained bounds hold uniformly in the geometric param-
eters describing the random potential. This will then be applied to models
with random displacements. Here are the assumptions we rely upon:

(D1) V0 ∈ L2
loc,unif(Rd) is real-valued and periodic.

(D2) The set I ⊂ Rd, where the random impurities are located, is uniformly
discrete, i.e., inf{|α− β| : α 6= β ∈ I} =: rI > 0 and uniformly dense,
i.e., there exists RI > 0 such that ΛRI (x) ∩ I 6= ∅ for every x ∈ Rd.

Theorem 11. Assume (D1), (D2) and (A3). Then there exist δ > 0,
0 < s < 1, µ > 0 and C < ∞ such that for I := [E0, E0 + δ], all open sets
G ⊂ Rd and x, y ∈ Rd

sup
E∈I,ε>0

E(‖χx(HG − E − iε)−1χy‖s) ≤ C e−µ|x−y|. (29)

In particular, the following consequences hold:

(a) The spectrum of HG in I is almost surely pure point with exponentially
decaying eigenfunctions.

(b) There are µ1 > 0 and C1 <∞ such that for all x, y ∈ Zd,

E
(
sup
t∈R

‖χxe−itHG
PI(HG)χy‖

)
≤ C1e−µ1|x−y|. (30)

Here all the constants δ, s, C, µ, C1, µ1 can be chosen to only depend on the
potential through the parameters V0, ηmax,Mρ, cU , CU , rU , RU , rI , RI .

To this end we first observe that (D1), (D2) and (A3) imply (A4) with
constants EF , m and L∗ only depending on the listed parameters:

Proposition 12. Assume (D1), (D2) and (A3). Then there exist

E1 = E1(V0, ηmax,Mρ, cU , CU , rU , RU , rI , RI) > E0,

m = m(V0, ηmax,Mρ, cU , CU , rU , RU , rI , RI) ∈ (0, 2)

and L∗ = L∗(. . .) such that

(1) EF ≥ E1.
(2) For md := 42 · d, all L ≥ L∗ and x ∈ Zd:

P
(
σ(HΛL(x)(ω)) ∩ [E0, E0 + L−m] 6= ∅

)
≤ L−md .
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Proof. First we show that (D2) implies that there exist cI , CI and LI de-
pending only on rI , RI such that for all L ≥ LI :

cI · Ld ≤ # (I ∩ ΛL(x)) ≤ CI · Ld. (31)

The upper bound follows from uniform discreteness:

# (I ∩ ΛL(x)) · |BrI/2| ≤ |ΛL+rI/2
| ≤ (2L)d,

provided L ≥ rI/2. For the lower bound use uniform denseness: Divide
ΛL(x) into disjoint boxes of side length RI . If L ≥ 2RI there are at least
(L/2RI)d of them each of which contains at least one point from I.

Now we can use the analysis of the preceding Section. Since the relevant
quantities depend only on the indicated parameters, the assertions follow.

�

With this uniform version of (A4) and the proofs provided in Sections 2
and 3 we also get corresponding uniform versions of Theorems 1 and 2, i.e.
Theorem 11.

As a specific application of the previous observation, we can start from
an Anderson model as above and additionally vary the set I in a random
way, as long as rI and RI obey uniform upper and lower bounds. Instead
of formulating the most general result in this direction we look at models
that were introduced in [10] and further studied in [32].
(D3) Let ηj , j ∈ Zd be independent random couplings, defined on a proba-

bility space Ω with distribution ρj and Uj as in (A3).
(D4) Let xj , j ∈ Zd be independent random vectors of length at most 1

3 in
Rd; denote the corresponding probability space by Ω̃.

Define
H(ω, ω̃) := −∆ + V0 +

∑
j∈Zd

ηj(ω)Uj( · − j − xj(ω̃)).

Corollary 13. Assume (D1), (D3), (D4). Then, for H(ω, ω̃) as above there
exist δ > 0, 0 < s < 1, µ > 0 and C <∞ such that for I := [E0, E0 + δ], all
open sets G ⊂ Rd and x, y ∈ Rd

sup
E∈I,ε>0

Ẽ E(‖χx(HG − E − iε)−1χy‖s) ≤ C e−µ|x−y|. (32)

In particular, the following consequences hold:
(a) The spectrum of HG in I is almost surely pure point with exponentially

decaying eigenfunctions.
(b) There are µ > 0 and C <∞ such that for all x, y ∈ Zd,

Ẽ E
(
sup
t∈R

‖χxe−itHG
PI(HG)χy‖

)
≤ Ce−µ|x−y|. (33)

Proof. The corresponding inequality holds uniformly in ω̃ by what we proved
above. �

Note that in this last Corollary we have not assumed that the random
perturbations cover the whole space. In that respect our result provides
substantial progress as compared to [10, 32].



LOCALIZATION NEAR FLUCTUATION BOUNDARIES 25

Appendix A. Some technical tools

Here we collect some technical background which was used in Section 2
above. All of this is known. We either provide references or, for convenience,
in some cases sketch the proof.

A.1. Combes-Thomas bounds. Proofs of the following improved Combes-
Thomas bound can be found in [5] (where it was first observed) and [30].
We state it here under assumptions which are sufficient for our applications.
In particular, we assume d ≤ 3, while the result holds in arbitrary dimension
for a suitably modified class of potentials. As above, for an open G ⊂ Rd we
denote by HG the restriction of −∆ + V to L2(G) with Dirichlet boundary
conditions.

Proposition 14. Let d ≤ 3, V ∈ L2
loc,unif(Rd) with supx ‖V χΛ1(x)‖2 ≤ M .

Let M ≥ 1 and R > 0. Then there exist c1 = c1(M,R) and c2 = c2(M,R)
such that the following conditions

(i) G ⊂ Rd open, A,B ⊂ G, dist(A,B) =: δ > 0,
(ii) (r, s) ⊂ ρ(HG) ∩ (−R,R), E ∈ (r, s) and η := dist(E, (r, s)c) > 0,

imply the estimate

sup
ε∈R

‖χA(HG − E − iε)−1χB‖ ≤
c1
η

e−c2
√

s−rη1/2δ. (34)

Note that the results in [5] and [30] are stated for ε = 0, but the proofs
are easily adjusted to show that the bounds are uniform in the additional
imaginary part.

A.2. Combes-Thomas bounds in Hilbert-Schmidt norm. A conse-
quence of (34) is that ‖χx(H(G) − E − iε)−1χy‖ decays exponentially in
|x− y|. Due to the restriction to d ≤ 3 this is also true in Hilbert-Schmidt
norm:

Proposition 15. Let d ≤ 3, V ∈ L2
loc,unif(Rd), H = −∆+V in L2(Rd) and

I ⊂ (−∞, inf σ(H)) a compact interval. Then there exist C <∞ and µ > 0
such that

sup
E∈I, ε>0
G⊂Rdopen

‖χx(HG − E − iε)−1χy‖HS ≤ Ce−µ|x−y| (35)

for all x, y ∈ Rd.

Proof. Let us sketch the proof by combining several well known facts. To
this end, let Sp denote the p-th Schatten class, i.e. the set of all bounded op-
erators A such that ‖A‖p := (tr |A|p)1/p <∞. As d ≤ 3, by Theorem B.9.3
of [28] we have

‖χx(H − E)−1/2‖p ≤ C1 <∞ (36)

for each p > 3 and E < inf σ(H). The proof provided in [28] shows that
C1 can be chosen uniform in x ∈ Rd and E ∈ I. In the sense of quadratic
forms it holds that HG ≥ H for each open G ⊂ Rd, i.e. ‖(H − E)1/2(HG −
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E)−1/2‖ ≤ 1 for all E < inf σ(H), see e.g. Section VI.2 of [22]. Thus

‖χx(HG − E)−1/2‖p ≤ ‖χx(H − E)−1/2‖p ‖(H − E)1/2(HG − E)−1/2‖
≤ C1 <∞. (37)

The Hölder property of Schatten classes implies

‖χx(HG − E)−1χy‖p/2 ≤ C2
1 (38)

uniformly in x, y ∈ Rd, E ∈ I and G ⊂ Rd open. From the resolvent identity

χx(HG−E−iε)−1χy = χx(HG−E)−1χy+iεχx(HG−E−iε)−1(HG−E)−1χy

we easily see that

‖χx(HG − E − iε)−1χy‖p/2 ≤ C2 <∞ (39)

holds uniformly also in the additional parameter ε ∈ R. By Proposition 14
we also have C3 <∞ and µ1 > 0 such that

‖χx(HG − E − iε)−1χy‖ ≤ C3e−µ1|x−y| (40)

uniform in G, E ∈ I and ε ∈ R. As we may choose p/2 ∈ (3/2, 2), (35)
follows from (39) and (40) by interpolation, more precisely from the fact that
‖ · ‖HS = ‖ · ‖2 and ‖A‖2

2 = tr |A|2 = tr(|A|p/2|A|2−p/2) ≤ ‖A‖2−p/2‖A‖p/2
p/2.

�

A.3. A fractional-moment bound. The next result and its proof are
found in [2], where it played a central role in the extension of the fractional-
moment method to Anderson-type random Schrödinger operators in the
continuum.

Recall that an operator A is called dissipative if Im〈Aϕ,ϕ〉 ≥ 0 for all
ϕ ∈ D(A). It is called maximally dissipative if it has no proper dissipative
extension. Below we also use the notation | · | for Lebesgue measure in R2.

Proposition 16. There exists a universal constant C < ∞ such that for
every separable Hilbert space H, every maximally dissipative operator A in
H with strictly positive imaginary part (i.e. Im〈Aϕ,ϕ〉 ≥ δ‖ϕ‖2 for some
δ > 0 and all ϕ ∈ D(A)), for arbitrary Hilbert-Schmidt operators M1, M2

in H, for arbitrary bounded non-negative operators U1, U2 in H, and for all
t > 0 the following holds:∣∣{(v1, v2) ∈ [0, 1]2 : ‖M1U

1/2
1 (A− v1U1 − v2U2)−1U

1/2
2 M2‖HS > t

}∣∣
≤ C‖M1‖HS‖M2‖HS ·

1
t
. (41)

The weak-L1-type bound (41) yields a fractional moment bound:

Corollary 17. Let s ∈ (0, 1). Then for the constant C and operators A,
M1, M2, U1, U2 as in Proposition 16,∫ 1

0
dv1

∫ 1

0
dv2‖M1U

1/2
1 (A− v1U1 − v2U2)−1U

1/2
2 M2‖s

HS

≤ Cs

1− s
‖M1‖s

HS‖M2‖s
HS. (42)
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This follows with layer-cake integration, which gives for the l.h.s. of (42)∫ 1

0
dv1

∫ 1

0
dv2‖. . .‖s ≤

∫ ∞

0

∣∣{(v1, v2) ∈ [0, 1]2 : ‖. . .‖ > t1/s}
∣∣ dt.

The integrand is bounded by the minimum of 1 and a bound following from
(41). Splitting the integral accordingly leads to (42).

Remarks. (1) The use of the interval [0, 1] as support of v1, v2 in Proposi-
tion 16 and Corollary 17 is not essential. Using shifting and scaling it can
be replaced by an arbitrary compact interval K, with constants becoming
K-dependent.

(2) In our applications maximally dissipative operators arise in the form
A = −(S − E − iε) for self-adjoint operators S, with ε > 0 providing a
strictly positive imaginary part.

(3) Note that, as seen from the argument in [2], a bound like (42) also
holds in the “diagonal” case, i.e. for

∫ 1
0 dv ‖MU1/2(A− vU)−1U1/2M‖s

HS.
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Helv. Phys. Acta 71(5), (1998) 459–490.

[10] J.-M. Combes and P. D. Hislop: Localization for some continuous, random Hamilto-
nians in d-dimensions, J. Funct. Anal. 124 (1994) 149–180.

[11] F. Germinet, P. Hislop and A. Klein: On localization for the Schrödinger operator
with a Poisson random potential, Preprint 2005, arxiv.org/math-ph/0506012.

[12] F. Germinet and A. Klein: Bootstrap multiscale analysis and localization in random
media, Commun. Math. Phys. 222(2) (2001) 415–448.

[13] G. M. Graf: Anderson localization and the space-time characteristic of continuum
states, J. Stat. Phys. 75 (1994) 337–346.

[14] V. Grinshpun: Localization for random potentials supported on a subspace, Lett.
Math. Phys. 34(2) (1995) 103–117.



28 A. BOUTET DE MONVEL, S. NABOKO, P. STOLLMANN, AND G. STOLZ
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