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ABSTRACT. We develop a novel approach to phase transitions in quantum spin models based on a
relation to the corresponding classical spin systems. Explicitly, we show that whenever chessboard
estimates can be used to prove a phase transition in the classical model, the corresponding quantum
model will have a similar phase transition, provided the inverse temperatureβ and the magnitude
of the quantum spinsS satisfyβ �

√
S. From the quantum system we require that it is reflection

positive and that it has a meaningful classical limit; the core technical estimate may be described
as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general
theory is further applied to prove phase transitions in various quantum spin systems withS � 1.
The most notable examples are the quantum orbital-compass model onZ2 and the quantum 120-
degree model onZ3 which are shown to exhibit symmetry breaking at low-temperatures despite
the infinite degeneracy of their (classical) ground state.
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1. INTRODUCTION

It is considered common knowledge that, for spin systems, the behavior of a quantum model
at finite temperature is “like” the behavior of the corresponding classical model. However, be-
yond the level of heuristics, it is far from clear in what sense the above statement is meaningful.
Another, slightly more academic way to “recover” the classical spin system is to consider spin-
representations with spin-magnitudeS and then letS → ∞. A standard argument as to why
this should work is that the commutators between various spin operators are order-1/S smaller
than the quantities themselves, and so the spins behave essentially classically whenS is large.
Notwithstanding, precise statements along these lines have only been made for theS → ∞ limit
of the free energies [4, 34, 26, 27, 42] and specific types of 1/S corrections [11, 35, 36].

A common shortcoming of the above studies is that neither spells explicit conditions on the
relative magnitude ofβ andS for which the classical behavior is exhibited. This is of relevance
because even if the ground state of a quantum system with small/moderateS is classical, and well
understood, the important excitations arequantum. For example, consider a collection of spins
with S = 1/2 which are coupled exclusively through theirz-components. Then, for all intents and
purposes, this is exactly the corresponding Ising system. However, even the smallest coupling
amongst the other components causes drastic changes in the behavior of the spins at very low
temperatures; control of these perturbations is a non-trivial subject and is usually accomplished
only when finite-temperature effects are of little significance for the overall behavior.

The preceding discussion is particularly relevant for systems which undergo phase transitions.
Here several techniques have been available—infrared bounds [19, 25], chessboard estimates [24,
30, 22, 23] and contour expansions [9, 12, 13, 33]—some of which (specifically, the latter two)
are more or less based on the assumption that the quantum system of interest has a strong classical
component. However, while certain conclusions happen to apply uniformly well even asS → ∞,
the classical reference state of these techniques is usuallydiscrete(e.g., Ising type). This is
quite unlike theS → ∞ limit which inherently leads to acontinuous-spin, Heisenberg-like
model. Thus, the relation between the above “near-classical” techniques and theS → ∞ results
discussed in the first paragraph is tenuous.

The purpose of this paper is to provide a direct connection between theS → ∞ approach to
the classical limit of quantum spin systems and the proofs of phase transitions by the traditional
means of chessboard estimates. Explicitly, we will show how to convert the main technical step
of the chessboard-estimate proofs—the bound on the constrained partition function, a.k.a. the
universal contour—to a similar bound for the classical counterpart (i.e., theS = ∞ version) of
the quantum system. As a result, whenever chessboard estimates can be used to prove a phase
transition in the classical system, a corresponding transition will occur in the quantum system
provided

√
S is much larger than the inverse temperature.

The core technical estimate is a bound on the matrix element of the Gibbs-Boltzmann weight
relative to coherent states which may be viewed as an extentension of Berezin-Lieb inequalities
down to the level of matrix elements. The result is theclassicalGibbs-Boltzmann weight times
a correction that is exponential in volume times a constant of orderβ/

√
S. Hence, if the latter is

sufficiently small, the exponential growth-rate of partition functions, even those constrained by
various projectors, is close to that of the classical system. This is ideally suited for an application
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of chessboard estimates and the corresponding technology—developed in [24, 22, 23, 31]—for
proving first-order phase transitions. Unfortunately, part of the estimates need to be carried out
before the conversion to the classical counterpart takes place; so we still require that the quantum
system is reflection positive.

To showcase our approach, we will prove phase transitions in the following five quantum
systems (defined by their respective formal Hamiltonians):

(1) The anisotropic Heisenberg antiferromagnet:

H = +

∑
〈r ,r ′〉

S−2(J1Sx
r Sx

r ′ + J2Sy
r Sy

r ′ + Sz
r Sz

r ′) (1.1)

where 0≤ J1, J2 < 1.
(2) The non-linear XY-model:

H = −

∑
〈r ,r ′〉

P

(
Sx

r Sx
r ′ + Sy

r Sy
r ′

S2

)
(1.2)

whereP(x) = P1(x2) ± xP2(x2) for two polynomialsP1,P2 (of sufficiently high degree)
with positive coefficients.

(3) The non-linear nematic model:

H = −

∑
〈r ,r ′〉

P
(
S−2(Sr · Sr ′)2

)
(1.3)

whereP is a “large” polynomial with positive coefficients andSr ·Sr ′ = Sx
r Sx

r ′ +Sy
r Sy

r ′ +Sz
r Sz

r ′ .
(4) The orbital compass model onZ2:

H =

∑
〈r ,r ′〉

S
−2 Sx

r Sx
r ′, if r ′

= r ± êx,

S−2 Sy
r Sy

r ′, if r ′
= r ± êy.

(1.4)

(5) The 120-degree model onZ3:

H =

∑
〈r ,r ′〉

S−2 T j
r T j

r ′ if r ′
= r ± êj (1.5)

where

T j
r =


Sx

r , if j = 1,

−
1
2 Sx

r +

√
3

2 Sy
r , if j = 2,

−
1
2 Sx

r −

√
3

2 Sy
r , if j = 3.

(1.6)

Here〈r , r ′
〉 denotes a nearest-neighbor pair onZd—where unless specified we are only assum-

ing d ≥ 2—the symbolêj stands for the unit vector in thej -th lattice direction andSr =

(Sx
r , Sy

r , Sz
r ) is a triplet of spin-S operators for the spin at siter . The scaling of all interactions by

the indicated inverse powers ofS is necessary to make theS → ∞ limit meaningful.
Model (1) has been included only for illustration; the requisite transition was proved in [24]

for large anisotropy and in [30] for arbitrarily small anisotropy. The classical versions of models
(2-4) feature strong order-disorder transitions at intermediate temperatures; cf [15, 31, 1, 21].
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Here we will prove that corresponding transitions occur for large-S quantum versions of these
systems. Models (4-5) are quite unusual even at the classical level: notwithstanding the fact that
the Hamiltonian has only discrete symmetries, there is a continuum of ground states. As was
shown in [6, 7], at positive temperatures the degeneracy is lifted leaving only a finite number
of preferential directions. The proofs of [6, 7] involve (classical) spin-wave calculations not
dissimilar to that of [17, 18]. However, since the massless spin-wave excitations are central to the
behavior of these systems—even at the classical level—it is by no means clear how to adapt the
methods of [19, 24, 22, 23, 30, 9, 12, 13, 33] to these cases.

The rest of the paper is organized as follows: In the next section, we recall the formalism of
coherent states, which is the basis of manyS → ∞ limit results, and the techniques of reflection
positivity and chessboard estimates, which underlines many proofs of phase transitions in quan-
tum systems. In Sect. 3 we state our main theorems; the proofs come in Sect. 4. Applications to
the various phase transitions in the aforementioned models are the subject of Sect. 5. The Appen-
dix (Sect. 6) contains the proofs of some technical results that would detract from the main line
of argument in Sects. 5.3-5.5.

2. PRELIMINARIES

In this section, we summarize standard and well-known facts about the SU(2) coherent states
(Sect. 2.1) and the techniques of chessboard estimates (Sect. 2.2). The purpose of this section
is mostly informative; a reader familiar with these concepts may skip this section altogether and
pass directly to the statement of main results in Sect. 3.

2.1 Coherent states.

Here we will recall the Bloch coherent states which were the basis for rigorous control of various
classical limits of spin systems [4, 34, 26, 27, 42]. In a well defined sense, these states are the
“closest” objects to classical states that one can find in the Hilbert space. Our presentation follows
closely Lieb’s article [34]; some of the calculations go back to [3]. The theory extends to general
compact Lie groups, see [42, 16] for results at this level of generality. Indeed, the literature on
the subject of coherent states is quite large; we refer to, e.g., [39, 2] for comprehensive review
and further references.

GivenS ∈ {1/2,1, 3/2, . . . }, consider the(2S + 1)-dimensional irreducible representation of
the Lie algebra SU(2). The generators,(Sx, Sy, Sz), obeying the commutation rules [Si , Sj ]=
2iεi jk Sk, are operators acting on span{|M〉 : M = −S,S + 1, . . . ,S − 1,S} ' C2S+1. In terms
of spin-rasing/lowering operators,S±

= Sx
± i Sy, we have

Sz
|M〉 = M |M〉,

S+
|M〉 =

√
S(S + 1)− M(M + 1) |M + 1〉,

S−
|M〉 =

√
S(S + 1)− M(M − 1) |M − 1〉.

(2.1)

In particular,Sx andSz are real whileSy is purely imaginary.
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The classical counterpart of SU(2)-spins are vectors onS2—the two-dimensional sphere inR3.
For each� ∈ S2, one can look for spin-states|�〉 such that

(� · S) |�〉 = S |�〉. (2.2)

These states are uniquely defined up to a phase factor; if� corresponds to the spherical coordi-
nates(θ, φ) onS2 such that 0≤ θ ≤ π and 0≤ φ < 2π , then one choice of the phase gives

|�〉 =

S∑
M=−S

(
2S

S + M

)1/2

[cos(θ/2)]S+M [sin(θ/2)]S−M ei(S−M)φ
|M〉. (2.3)

This is thecoherent statecorresponding to vector�.
The fact that the states|�〉 have been defined relative to the basis in (2.1) is inconsequential.

Indeed, a rotation of a coherent state is, to within a harmless phase factor, the coherent state
corresponding to the rotated vector. To see this precisely, let us consider a matrix representation
of SO(3) onC2S+1 generated by operators(Sx, Sy, Sz), e.g., via a triplet of Euler angles. For
each rotationR of the sphereS2, there is a unitary matrixOR representingR on C2S+1. The
representation preserves the usual Euclidean scalar product, i.e.,

OR(S ·�)O−1
R = S · R�. (2.4)

From(� · S) |�〉 = S |�〉 we thus have that(S · R�)OR|�〉 = S OR|�〉 and, since the coherent
states are determined by these kinds of relations,OR|�〉 is a complex-phase multiple of|R�〉.

The explicit formula (2.3) for|�〉 yields

〈�′
|�〉 =

[
cos(θ/2) cos(θ ′

/2)+ ei(φ−φ′) sin(θ/2) sin(θ ′
/2)

]2S
. (2.5)

Defining the angle between� and�′ to be2, one also has∣∣〈�′
|�〉

∣∣ = [cos(2/2)]2S . (2.6)

Another formula that is directly checked from (2.3) is

1 =
2S + 1

4π

∫
S2

d� |�〉〈�|, (2.7)

where d� denotes the uniform surface measure onS2 with total mass 4π .
Given any operatorA onC2S+1, one can form what is commonly known as thelower symbol,

which is a function� 7→ 〈A〉� defined by

〈A〉� := 〈�|A|�〉. (2.8)

(Here and henceforth,〈�|A|�〉 denotes the inner-product of|�〉 with the vectorA|�〉.) While
not entirely obvious, it turns out that the trace ofA admits the formula

Tr(A) =
2S + 1

4π

∫
S2

d� 〈A〉�. (2.9)

There is also a generalization of (2.7): There exists a function� 7→ [ A]� such that

A =
2S + 1

4π

∫
S2

d� [ A]� |�〉〈�|. (2.10)
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Any such� 7→ [ A]� is called anupper symbolfor A. Unfortunately, such a function is not
unique and so [A]� actually represents an equivalence class of functions. Obviously〈A+ B〉� =

〈A〉� + 〈B〉�. For the upper symbols, if [A]� and [B]� are upper symbols forA and B then
[ A + B]�= [ A]�+[B]� is an upper symbol forA + B.

As an example, whenA = 1, one has〈1〉� = 1 and, by (2.7), one can also choose [A]�= 1.
However, it is usually not the case that the lower symbol is also an upper symbol, e.g., we have

〈Sx
〉� = S sinθ cosφ,

〈Sy
〉� = S sinθ sinφ,

〈Sz
〉� = S cosθ,

[Sx]� = (S + 1) sinθ cosφ,

[Sy]� = (S + 1) sinθ sinφ,

[Sz]� = (S + 1) cosθ.

(2.11)

As is easily checked, the leading order inS of these expression is exactly the classical counterpart
of the corresponding operator. For more complicated products (and powers) of the spin compo-
nents, both symbols develop lower-order “non-classical” corrections but, as was shown in much
generality by Duffield [16], the leading order term is always the classical limit.

The above formalism generalizes to collections of many spins. Let3 be a finite set and, for
eachr ∈ 3, let (S1

r , S2
r , S3

r ) be the spin operator for the spin atr . We will assume that the spins
at all sites have magnitudeS, so we assume to have a joint (product) representation of these spins
onH3 =

⊗
r∈3[C2S+1]r . Consider an assignment of a classical spin�r ∈ S2 to eachr ∈ 3 and

denote the resulting configuration(�r )r∈3 by�. The desired product coherent state then is

|�〉 :=
⊗
r∈3

|�r 〉. (2.12)

Given an operatorA onH3, we may define its lower symbol by the generalization of (2.8),

〈A〉� = 〈�|A|�〉, � ∈ (S2)
|3|. (2.13)

With this lower symbol we may generalize (2.9) into

TrH3(A) =

(
2S + 1

4π

)|3| ∫
(S2)|3|

d� 〈A〉�. (2.14)

There is also a representation ofA in terms of an upper symbol [A]�,

A =

(
2S + 1

4π

)|3| ∫
(S2)|3|

d� [ A]� |�〉〈�|, (2.15)

where d� is the product surface measure on(S2)
|3| and where� 7→ [ A]� is now a function

(S2)
|3|

→ C. A special case of this formula is the resulution of the identity onH3.
It is easy to check that� 7→ [ A]� has the expected behavior under (outer) product of operators,

provided these respect the product structure ofH3. Indeed, suppose that3 is the disjoint union
of 31 and32 and let|�1〉 and|�2〉 be product coherent states fromH31 andH32, respectively.
Given the operatorsA1 : H31 → H31 and A2 : H32 → H32, let [A1]�1 and [A2]�2 be their
associated upper symbols. Then

[ A1 ⊗ A2]�1⊗�2 := [ A1]�1 [ A2]�2 (2.16)
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is an upper symbol ofA1 ⊗ A2 relative to state|�1 ⊗ �2〉. On the other hand, if [A]� depends
only on(�r )r∈3′ where3′ $ 3, then we can perform a partial trace in (2.15) by integrating over
the(�r )r∈3r3′ and applying (2.7) for each integral.

2.2 Chessboard estimates.

Next we will review the salient features of the technology of reflection positivity/chessboard
estimates which was developed and applied to both classical and quantum systems in the works
of F. Dyson, J. Fr̈ohlich, R. Israel, E. Lieb, B. Simon and T. Spencer [25, 19, 24, 22, 23].

Consider aC?-algebraA and suppose thatA+ andA− arecommutingsubalgebras which are
“mirror images” of each other in the sense that there is an algebraic automorphismθ : A → A
such thatθ(A±) = A∓ andθ2

= id. Assuming thatA is represented in terms of complex matri-
ces, forA ∈ A we defineĀ to be the complex conjugate—not the adjoint—ofA. We will always
assume thatA is closed under complex conjugation. Note that, since complex conjugation is not
a “covariant operation,” the representation ofA ought to stay fixed throughout all calculations
involving complex conjugation.

A relevant example of the above setting is a quantum spin-S system on thed-dimensional
torusTL of L × · · · × L sites, withL even, which we think of as a union of twodisjoint symmet-
ric halves,T+

L andT−

L . ThenA is theC?-algebra of all observables—represented by(2S + 1)|TL |

dimensional complex matrices—andA± are the sets of observables onT±

L , respectively. Explic-
itly, A+ are matrices of the formA+ ⊗ 1, whereA+ “acts” only onT+

L , while the matrices inA−

take the form1 ⊗ A−. The operationθ is the map that swaps the “left” and “right” half of the
torus; e.g., in a properly parametrized basis,θ(A+ ⊗ 1) = 1 ⊗ A+. The fact thatθ arises from a
reflection leads to the following concept:

Definition 2.1 Let 〈−〉 be a state—i.e., a continuous linear functional—on A. We say that 〈−〉

is reflection positive(relative to θ ) if for all A, B ∈ A+,

〈
Aθ(B)

〉
=

〈
B θ(A)

〉
(2.17)

and 〈
Aθ(A)

〉
≥ 0. (2.18)

The following condition, derived in [19, Theorem E.1] and again in [24, Theorem 2.1], is
sufficient for the Gibbs state to have the above property:

Theorem 2.2(Reflection positivity—sufficient condition)Given a reflection ofTL as described
above and usingθ to denote the associated reflection operator, if the Hamiltonian of a quantum
system onTL can be written as

H = C + θ(C)−

∫
%(dα) Dα θ(Dα), (2.19)
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where C, Dα ∈ A+ and% is a (finite) positive measure, then the canonical Gibbs state〈−〉L ,β ,
which is defined by

〈A〉L ,β =
TrHTL

(e−βH A)

TrHTL
(e−βH )

, (2.20)

is reflection positive relative toθ for all β ≥ 0.

The crux of the proof of (2.18) is the fact that theβ = 0 state isgeneralized reflection positive,
i.e., 〈A1θ(A1) . . . Anθ(An)〉L ,0 ≥ 0. The rest follows by a Lie-Trotter expansion of e−βH into
powers of the last term in (2.19)—hence the need for aminussign in front of the integral.

Remark2.3 We reiterate that the reflections ofTL considered here are always for “planes of
reflections”betweensites. In classical models one can also consider the (slightly more robust)
reflections for “planes” on sites. However, due to non-commutativity issues, Theorem 2.2 does
not seem to generalize to quantum systems for these kinds of reflections.

Reflection positivity has two important (and related) consequences:Gaussian domination—
leading ultimately to infrared bounds—andchessboard estimates. In this work we make no use
of the former; we proceed by discussing the details of the latter.

Let3B be a block ofB × · · · × B sites with the “lower-left” corner at the origin. Assuming
that L is a multiple of B, we can tileTL by disjoint translates of3B. The positions of these
translates are given byB-multiples of vectorst from the factor torusTL/B. In particular, ifr +3B

denotes the translate of3B by r ∈ TL , thenTL is the disjoint union
⋃

t∈TL/B
(3B + Bt). LetA3B

denote the algebra of observables in3B, i.e., eachA ∈ A3B has the formA = AB ⊗1, whereAB

acts only on the portion of the Hilbert space corresponding to3B. For eachA ∈ A3B and each
t ∈ TL which is a neighbor of the origin, we can define an antilinear operatorϑ̂t(A) in3B + Bt by

ϑ̂t(A) = θ(A) (2.21)

whereθ is the operator of reflection along the corresponding side of3B. By taking further
reflections, we can definêϑt(A) for every t ∈ TL/B. (Thus ϑ̂t is linear for even-parityt and
antilinear for odd-parityt.) It is easy to check that the resultingϑ̂t(A) does not depend on what
sequence of reflections has been used to generate it.

The fundamental consequence of reflection positivity, derived in a rather general form in [24,
Theorem 2.2], is as follows:

Theorem 2.4 (Chessboard estimate)Suppose that the state〈−〉 is reflection positive for any
“plane of reflection” between sites onTL . Then for any A1, . . . , Am ∈ A3B and anydistinct
translatest1, . . . , tm ∈ TL/B,〈

m∏
j =1

ϑ̂t j (A j )

〉
≤

m∏
j =1

〈 ∏
t∈TL/B

ϑ̂t(A j )

〉(B/L)d

. (2.22)

This is the celebratedchessboard estimatewhich allows us to bound the expectation of a prod-
uct of operators by product of expectations of so called “disseminated” operators. Note that the
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giant products above can be written in any order by our assumption that the block-operators in
different blocks commute.

A corresponding statement works also for classical reflection-positive measures. The only
formal difference being that theA j ’s are replaced by functions (e.g., indicators of events)A j

which depend only on the spin configuration in3B. Then equation (2.22) becomes

P
( m⋂

j =1

θt j (A j )

)
≤

m∏
j =1

P
( ⋂

t∈TL/B

θt(A j )

)(B/L)d

. (2.23)

Hereθt(A) is the (usual) reflection ofA to the block3B + Bt. (We reserve the symbolϑt(A) for
an operation that more closely mimicsϑ̂t in the coherent-state representation; see the definitions
right before Proposition 3.4.) Refs. [6, 5, 8] contain a detailed account of the above formalism in
the classical context; the original statements are, of course, due to [22, 23].

Remark2.5 Unlike its classical counterpart, the quantum version of reflection positivity is a
rather mysterious concept. First, for most of the models listed in the introduction, in order to
bring the Hamiltonian to the form (2.19), we actually have to perform some sort of rotation of the
spins. (We may think of this as choosing a different representation of the spin operators.) The
purpose of this operation is to have all spins “represented” by real-valued matrices, while making
the overall sign of the interactions negative. This permits an application of Theorem 2.2.

It is somewhat ironic that this works beautifully for antiferromagnets, which thus become ef-
fectively ferromagnetic, but fails miserably [44] for genuine ferromagnets. For XY-type models,
when only two of the spin-components are involved in the interaction, we can always choose a
representation in which all matrices are real valued. If only quadratic interactions are considered,
the overall sign is inconsequential but, once interactions of different degrees are mixed—even if
we just add a general external field to the Hamiltonian—reflection positivity may fail again.

3. MAIN RESULTS

We now give precise statements of our main theorems. First we will state a bound on the matrix
elements of the Gibbs-Boltzmann weight in the (overcomplete) basis of coherent states. On the
theoretical side, this result generalizes the classic Berezin-Lieb inequalities [4, 34] and thus pro-
vides a more detailed demonstration of the approach to the classical limit asS → ∞. On the
practical side, the bound we obtain allows us to replace the “exponential localization” technique
of Fröhlich and Lieb [24]—which is intrinsically quantum—by an estimate for the classical ver-
sion of the model. The rest of our results show in detail how Theorem 3.1 fits into the standard
line of proof for the classical models. In Sect. 5 we will apply this general strategy to the five
models of interest.

3.1 Matrix elements of Gibbs-Boltzmann weights.

We commence with a definition of the class of models to which our arguments apply. Consider
a finite set3 ⊂ Zd and, for each0 ⊂ 3, let h0 be an operator onH3 =

⊗
r∈3[C2S+1]r that

depends only on the spins in0. (I.e.,h0 is a tensor product of an operator onH0 and the unity
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onH3r0.) We will assume thath0 = 0 if the size of0 exceeds some finite constant, i.e., each
interaction term involves only a bounded number of spins. The Hamiltonian is then

H =

∑
0 : 0⊂3

h0. (3.1)

Most of the interesting examples are such thath0 = 0 unless0 is a two point set{x, y} containing
a pair of nearest neighbors onZd—as is the case of all of the models (1-5) discussed in Sect. 1.

As already noted, our principal technical result is a bound on the matrix element〈�|e−βH
|�′

〉.
To state this bound precisely, we need some more notation. Let� 7→ [h0]� be an upper symbol
of the operatorh0 which, by (2.16), may be assumed independent of the components(�r )x 6∈0.
Wefix the upper symbol ofH to

[H ]�=

∑
0 : 0⊂3

[h0]�. (3.2)

We will also use|0| to denote the number of elements in the set0 and‖h0‖ to denote the operator
norm ofh0 onH3.

Let |�r − �′

r | denote the (3-dimensional) Euclidean distance of the points�r and�′

r on S2,
and consider the usual`1 and`2-norms on(S2)

|3|:

‖�−�′
‖1 =

∑
r∈3

|�r −�′

r | (3.3)

and

‖�−�′
‖2 =

( ∑
r∈3

|�r −�′

r |
2

)1/2

. (3.4)

Besides these two norms, we will also need the “mixed” quantity

dS(�,�
′) =

∑
r∈3

(√
S|�r −�′

r | ∧ S|�r −�′

r |
2
)
, (3.5)

where∧ denotes the minimum. Finally, from (2.6) we know that|〈�r |�
′

r 〉| = 1−O(S|�r −�
′

r |
2).

Hence, there isη > 0 such that ∣∣〈�|�′
〉
∣∣ ≤ e−ηS‖�−�′

‖
2
2 (3.6)

holds for allS, all �,�′
∈ (S2)

|3| and all3. We fix thisη throughout all forthcoming deriva-
tions. Our first main theorem then is:

Theorem 3.1 Suppose that there exists a number R such that

|0| > R ⇒ h0 = 0, (3.7)

and that, for some constants c0 and c1 independent ofS and3, we have

sup
x∈3

∑
0 :x∈0⊂3

‖h0‖ ≤ c0 (3.8)

as well as the Lipschitz bound∣∣[h0]�−[h0]�′

∣∣ ≤ c1‖�−�′
‖1‖h0‖, 0 ⊂ 3. (3.9)
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Then for any constant c2 > 0, there exists a constant c3 > 0, depending only on c0, c1, c2 and R,
such that for allβ ≤ c2

√
S,∣∣〈�|e−βH

|�′
〉
∣∣ ≤ e−β[H ]�−η dS (�,�′)+c3β|3|/

√
S (3.10)

holds for all�,�′
∈ (S2)

|3| and all finite3.

Note that we do not assume that the Hamiltonian is translation-invariant. In fact, as long as the
conditions (3.7–3.9) hold as stated, the geometry of the underlying set is completely immaterial.
For the diagonal elements—which is all we need in the subsequent derivations anyway—the
above bound becomes somewhat more transparent:

Corollary 3.2 Suppose (3.7–3.9) hold and let c2 and c3 be as in Theorem 3.1. Then for allβ
andS with β ≤ c2

√
S, all� ∈ (S2)

|3| and all3,

e−β〈H〉� ≤ 〈�|e−βH
|�〉 ≤ e−β[H ]�+c3β|3|/

√
S (3.11)

It is interesting to compare this result with the celebrated Berezin-Lieb inequalities [4, 34]
which state the following bounds between quantum and classical partition functions:∫

(S2)|3|

d�

(4π)|3|
e−β〈H〉� ≤

TrH3(e
−βH )

(2S + 1)|3|
≤

∫
(S2)|3|

d�

(4π)|3|
e−β[H ]� . (3.12)

(As was shown in [42], both inequalities are simple consequences of Jensen’s inequality; the
original proof [34] invoked also the “intrinsically non-commutative” Golden-Thompson inequal-
ity.) From Corollary 3.2 we now know that, to within a correction of orderβ/

√
S, the estimates

corresponding to (3.12) hold even for the (diagonal) matrix elements relative to coherent states.
However, the known proofs of (3.12) use the underlying trace structure in a very essential way
and are not readily extended to a generalization along the lines of (3.11).

Remark3.3 The correction of orderβ|3|/
√
S is the best one can do at the above level of gen-

erality. Indeed, when� and�′ are close in the sense‖� − �′
‖1 = O(|3|/

√
S), then [H ]�

and [H ]�′ differ by a quantity of orderc1|3|/
√
S. Since the matrix element is symmetric in�

and�′, the bound must account for the difference. However, even accounting for the above men-
tioned sources of discrepancy, there is a deeper reason—which shows up on the level of diagonal
matrix elements—whyβ/

√
S needs to be small for the classical Boltzmann weight to faithfully

describe the matrix elements of the quantum Boltzmann weight. Consider a single spin with
the HamiltonianH = S−1Sz, and let� correspond to the spherical angles(θ, φ). A simple
calculation shows that then

〈�|e−βH
|�〉 =

[
cos2(θ/2)e−

1
2β/S + sin2(θ/2)e

1
2β/S

]2S

= e−β cosθ+ β2

4S (1−cos2 θ)+O(β3/S2)
(3.13)

The termβ cosθ is the (now unambiguous) classical interaction in “state”�. The leading cor-
rection is of orderβ2/S, which is only small ifβ �

√
S.
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3.2 Absence of clustering.

Our next task is to show how Theorem 3.1 can be applied to establish phase transitions in models
whose (S → ∞) classical version exhibits a phase transition that can be proved by means of
chessboard estimates. The principal conclusion is theabsence of clusteringwhich, as we will see
in Sect. 3.3, directly implies a quantum phase transition.

Consider the setting as described in Sect. 2.2, i.e., we have a torusTL of sideL which is tiled
by (L/B)d disjoint translates of a block3B of sideB. For each operator in3B and eacht ∈ TL/B,
we writeϑ̂t(A) for the appropriate reflection—accompanied by complex conjugation ift is an odd
parity site—ofA “into” the block3B+Bt. In addition to the operators onHTL =

⊗
t∈TL

[C2S+1]t,
we will also consider eventsA on the space of classical configurations(S2)

|TL | equipped with the
Borel productσ-algebra and the product surface measure d� =

∏
r∈TL

d�r . If A is an event that
depends only on the configuration in3B, we will callA a B-block event. For eacht ∈ TL/B, we
useθt(A) to denote the event in3B + Bt that is obtained by (pure) reflection ofA “into” 3B + Bt.

Given a quantum HamiltonianH of the form (3.1), let〈−〉L ,β denote the thermal state (2.20).
Considering theclassicalHamiltonianH∞ : (S2)

|TL |
→ R, which we define as

H∞(�) = lim
S→∞

〈H〉� = lim
S→∞

[H ]�, (3.14)

we usePL ,β to denote the usual Gibbs measure. Explictly, for any eventA ⊂ (S2)
|TL |,

PL ,β(A) =

∫
A

d�
e−βH∞(�)

ZL(β)
, (3.15)

whereZL(β) is the classical partition function. For eachB-block eventA we will also consider
its disseminated version

⋂
t∈TL/B

θt(A) and introduce the abbreviation

pL ,β(A) =

[
PL ,β

( ⋂
t∈TL/B

θt(A)
)](B/L)d

(3.16)

for the corresponding quantity on the right-hand side of (2.23). An application of (2.22) shows
thatA 7→ pL ,β(A) is an outer measure on theσ-algebra ofB-block events (cf [6, Theorem 6.3]).

For each measurable setA ⊂ (S2)
|TL | we consider the operator

Q̂A =

(
2S + 1

4π

)|TL | ∫
A

d� |�〉〈�|. (3.17)

Since the coherent states are overcomplete, this operator is not a projection; notwithstanding, we
may think of it as a non-commutative counterpart of the indicator of the eventA. In order to
describe the behavior of̂QA underϑ̂t, we introduce the classical versionϑt of ϑ̂t which is defined
as follows: Consider a “complex-conjugation” mapσ: (S2)

|TL |
→ (S2)

|TL | which, in a given
representation of the coherent states, has the effect

|�〉〈�| = |σ�〉〈σ�|. (3.18)
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For the representation introduced in Sect. 2.1, we can chooseσ to be the reflection through thexz-
plane (in spin space), i.e., if� = (θ, φ) thenσ(�) = (θ,−φ). For even parityt ∈ TL/B, we
simply haveϑt = θt while for odd parityt ∈ TL/B we haveϑt = θt ◦ σ.

Here are some simple facts about theQ̂-operators:

Proposition 3.4 For any B-block eventA we have

ϑ̂t(Q̂A) = Q̂ϑt(A), t ∈ TL/B. (3.19)

Moreover, ifA1, . . . ,Am are B-block events andt1, . . . , tm aredistinctelements ofTL/B, then

[ Q̂θti (Ai ), Q̂θt j (A j )]= 0, 1 ≤ i < j ≤ m, (3.20)

and
Q̂θt1(A1) . . . Q̂θtm(Am) = Q̂θt1(A1)∩···∩ θtm(Am). (3.21)

Finally, Q̂ of the full space (i.e.,(S2)
|TL |) is the unity,Q̂∅ = 0, and ifA1,A2, . . . is a countable

collection of disjoint events, then (in the strong-operator topology)

Q̂⋃
∞

n=1An =

∞∑
n=1

Q̂An . (3.22)

In particular, Q̂Ac = 1 − Q̂A for any eventA.

Proof. The mapϑ̂t is a pure reflection for even-parityt ∈ TL/B and so (3.19) holds by the fact
that pure reflection ofQ̂A is Q̂ of the reflectedA. For odd-parityt, the relation (3.18) implies

Q̂A = Q̂σ(A), which again yields (3.19). The remaining identities are easy consequences of the
definitions and (2.7). �

Remark3.5 The last few properties listed in the lemma imply that the mapA → Q̂A is a
positive-operator-valued (POV) measure, in the sense of [14]. As a consequence, ifA ⊂ A′ then
Q̂A ≤ Q̂A′ while if {An} is a countable collection of events, not necessarily disjoint, then

Q̂⋃
∞

n=1An ≤

∞∑
n=1

Q̂An . (3.23)

Both of these properties are manifestly true by the definition (3.17).

Before we state our next theorem, let us recall the “standard” setting for the application of
chessboard estimates to proofs of phase transitions inclassicalmodels. GivenB that dividesL,
one typically singles out a collectionG1, . . . ,Gn of “good” B-block events and defines

B = (G1 ∪ · · · ∪ Gn)
c (3.24)

to be the corresponding “bad”B-block event. Without much loss of generality we will assume
thatB is invariant under “complex” reflections, i.e.,ϑt(B) = τBt(B), whereτr denotes the shift
by r on (S2)

|TL |. In the best of situations, carefully chosen good events typically satisfy the
conditions in the following definition:

Definition 3.6 We say that the “good” B-block events are incompatibleif
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(1) they are mutually exclusive, i.e., Gi ∩ G j = ∅ whenever i 6= j ;
(2) their simultaneous occurrence at neighboring blocks forces an intermediate block (which

overlaps the two neighbors) i.e., there exists ` with 1 ≤ ` < B such that

θt(Gi ) ∩ θt′(G j ) ⊂ τBt+`(t′−t)(B) (3.25)

holds for all i 6= j and any t, t′ ∈ TL/B with |t − t′| = 1. Here τr is the shift by r .

These conditions are much easier to achieve in situations where we are allowed to use reflec-
tions through planes containing sites. Then, typically, one can ensure that the neighboring blocks
cannot have distinct types of goodness. But as noted in Remark 2.3, we are not allowed to do this
in the quantum setting. Nevertheless, (1) and (2) taken together do ensure that a simultaneous
occurrence of two distinct types of goodness necessarily enforces a “contour” of bad blocks. The
weight of each such contour can be bounded by the quantitypL ,β(B) to the number of consti-
tuting blocks; it then remains to show thatpL ,β(B) is sufficiently small. For quantum models,
appropriate modifications of this strategy yield the following result:

Theorem 3.7 Consider a quantum spin system onTL with spinS and interaction for which the
Gibbs state〈−〉L ,β from (2.20) is reflection positive for reflections through planes between sites
onTL . Let H∞ be a function andξ > 0 a constant such that, for all L≥ 1,

sup
�∈(S2)

|TL |

∣∣[H ]�−H∞(�)
∣∣ + sup

�∈(S2)
|TL |

∣∣〈H〉� − H∞(�)
∣∣ ≤ ξ |TL |. (3.26)

LetG1, . . . ,Gn be incompatible “good” B-block events and defineB as in(3.24). Suppose thatB
is invariant under reflections and conjugationσ, i.e.,ϑt(B) = τBt(B) for all t ∈ TL/B. Fix ε > 0.
Then there existsδ > 0 such that ifβ ≤ c2

√
S and

pL ,β(B)eβ(ξ+c3/
√
S) < δ, (3.27)

where c2 and c3 are as in Theorem 3.1, we have〈
Q̂B

〉
L ,β

< ε (3.28)

and, for all i = 1, . . . ,n and all distinctt1, t2 ∈ TL/B,〈
Q̂θt1(Gi )[1 − Q̂θt2(Gi )]

〉
L ,β

< ε. (3.29)

Hereδ may depend onε and d, but not onβ, S, n nor on the details of the model.

Remarks3.8 Here are some observations concerning the previous theorem:

(1) By general results (e.g., [16]) on the convergence of upper and lower symbols asS → ∞,
the quantityξ in (3.26) can be made arbitrarily small by increasingS appropriately. In fact,
for two-body interactions,ξ is typically a small constant times 1/S and so it provides a
harmless correction to the termc3/

√
S in (3.27). In particular, apart from the classical bound

thatpL ,β(B) � 1, (3.27) will only require thatβ �
√
S.

(2) Note that the result is stated for pure reflections,θt(Gi ), of the good events, not their more
complicated counterpartsϑt(Gi ). This is important for maintaining a close link between the
nature of phase transition in the quantum model and its classical counterpart.
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(3) The stipulation that theϑt’s “act” on B only as translations is only mildly restrictive: In-
deed,σ(B) = B in all cases treated in the present work. However, if it turns out thatσ(B) 6=

B, the condition (3.27) may be replaced by√
pL ,β(B)pL ,β

(
σ(B)

)
eβ(ξ+c3/

√
S) < δ, (3.30)

which—sincepL ,β(σ(B)) ≤ 1—is anyway satisfied by a stricter version of (3.27). Note
thatσ(B) = B implies that every configuration inσ(Gi ) is also good. In most circumstances
we expect thatσ(Gi ) is one of the good events.

3.3 Quantum phase transitions.

It remains to show how to adapt the main conclusion of Theorem 3.7 to the proof of phase
transition in quantum systems. We first note that (3.27) is a condition on theclassicalmodel
which, forδ small, yields a classical variant of (3.29),

PL ,β
(
θt1(Gi ) ∩ θt2(Gc

i )
)
< ε, 1 ≤ i ≤ n. (3.31)

Under proper conditions onε and the probabilities of theGi ’s, this yields absence of clustering
for the classical torus Gibbs state which, by a conditioning “on the back of the torus,” implies the
existence of multiple infinite-volume Gibbs measures.

For a quantum system with an internal symmetry, a similar argument allows us to deal with the
cases when the symmetry has been “spontaneously” broken. For instance (see [24]) in magnetic
systems (3.29) might imply the non-vanishing of the spontaneous magnetization which, in turn,
yields a discontinuity in some derivative of the free energy, i.e., athermodynamicphase tran-
sition. In the cases with no symmetry—or in situations where the symmetry is not particularly
useful, such as for temperature-driven phase transitions—we can still demonstrate a thermody-
namic transition either by concocting an “unusual” external field (which couples to distinctive
types of good blocks) or by directly proving a jump e.g. in the energy density.

An elegant route to these matters is via the formalism of the infinite-volume KMS states (see,
e.g., [29, 43]). Let us recall the principal aspects of this theory: Consider theC? algebraA
of quasilocal observables defined as the norm-closure of

⋃
3⊂Zd A3, where the union is over

all finite subsets3, andA3 is the set of all bounded operators on the Hilbert spaceH3 =⊗
r∈3[C2S+1]r , with the usual notion of inclusion (or isotony)A3 ⊂ A3′ for 3 ⊂ 3′ obtained

by tensoringA ∈ A3 with 1 on3′
\3. For eachL ≥ 1, let us identifyTL with the block3L and

let HL be the Hamiltonian onTL which we assume is of the form (3.1) withh0 finite range and
translation invariant.

For each observableA ∈ A3L , let α(L)t (A) = ei t HL Ae−i t HL be the strongly-continuous one-
parameter family of operators representing the time evolution ofA in the Heisenberg picture. By
expanding into a series of commutators,

α(L)t (A) =

∑
n≥0

(i t)n

n!
[HL [HL . . . [HL , A]. . . ]] , (3.32)
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see [29, Theorem III.3.6], the mapt 7→ α(L)t (A) extends to allt ∈ C. Moreover, since the
interaction is of finite range andA is local, the infinite series representation ofα(L)t (A) converges
in norm, asL → ∞, to a one-parameter family of operatorsαt(A), uniformly in t on compact
subsets ofC (as was originally proved in [40]).

A state〈−〉β onA—i.e., a linear functional obeying〈A〉β ≥ 0 if A ≥ 0 and〈1〉β = 1—is called
a KMS state(for the translation-invariant, finite-range interactionH at inverse temperatureβ) if
for all local operatorsA, B ∈ A, the equality

〈AB〉β =
〈
α−iβ(B)A

〉
β
, (3.33)

also known as theKMS condition, holds.
We proceed by stating two general propositions which will help us apply the results from

previous sections to the proof of phase transitions. We begin with a statement which concerns
phase transitions due to symmetry breaking:

Proposition 3.9 Consider the quantum spin systems as in Theorem 3.7 and suppose that the in-
compatible good block eventsG1, . . . ,Gn are such that〈Q̂Gk〉L ,β is the same for all k= 1, . . . ,n.
If (3.28–3.29) hold with anε such that(n + 1)ε < 1/2, then there exist n distinct, translation-
invariant KMS states〈−〉

(k)
β , k = 1, . . . ,n, for which〈

Q̂Gk

〉(k)
β

≥ 1 − (n + 1)ε, k = 1, . . . ,n. (3.34)

Our second proposition deals with temperature driven transitions. The following is a quantum
version of one of the principal theorems in [31, 32]:

Proposition 3.10 Consider the quantum spin systems as in Theorem 3.7 and letG1 and G2

be two incompatible B-block events. Letβ1 < β2 be two inverse temperatures and suppose
that ε ∈ [0, 1/4) is such that for all L≥ 1,

(1) the bounds (3.28–3.29) hold for allβ ∈ [β1, β2],
(2) 〈Q̂G1〉L ,β1 ≥ 1 − 2ε and〈Q̂G2〉L ,β2 ≥ 1 − 2ε.

Then there exists an inverse temperatureβt ∈ [β1, β2] and two distinct translation-invariant KMS
states〈−〉

(1)
βt

and〈−〉
(2)
βt

at inverse temperatureβt such that〈
Q̂G1

〉(1)
βt

≥ 1 − 4ε and
〈
Q̂G2

〉(2)
βt

≥ 1 − 4ε. (3.35)

The underlying idea of the latter proposition is the existence of a forbidden gap in the density
of, say,G1-blocks. Such “forbidden gap” arguments have been invoked in (limiting) toroidal
states by, e.g., [31, 32, 28]; a generalization to infinite-volume, translation-invariant Gibbs states
has been achieved in [8]. Both propositions are proved in Sect. 4.3.

4. PROOFS

Here we provide the proofs of our general results from Sect. 3. We begin by the estimates of
matrix elements of Gibbs-Boltzmann weight (Theorem 3.1) and then, in Sect. 4.2, proceed to
apply these in quasiclassical Peierls’ arguments which lie at the core of Theorem 3.7. Finally, in
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Sect. 4.3, we elevate the conclusions of Theorem 3.7 to coexistence of multiple KMS states, thus
proving Propositions 3.9-3.10.

4.1 Bounds on matrix elements.

The proof of Theorem 3.1 is based on a continuity argument whose principal estimate is encap-
sulated into the following claim:

Proposition 4.1 Suppose that (3.7–3.9) hold with constants R, c0, and c1. Let Ĥ� = H − [H ]�.
Suppose there exists a constant c2 such thatβ ≤ c2

√
S, and that for someε > 0∣∣〈�|e−β Ĥ� |�′

〉
∣∣ ≤ e−η dS (�,�′)+βε|3| (4.1)

is true for all�,�′
∈ (S2)

|3|. Then there exists a constant c3 depending on c0, c1, c2 and R (but
not3, S or ε) such that∣∣∣ d

dβ
〈�|e−β Ĥ� |�′

〉

∣∣∣ ≤
c3

√
S

|3| e−η dS (�,�′)+βε|3|. (4.2)

Before we commence with the proof, we will make a simple observation:

Lemma 4.2 For all 3 and all�,�′, �′′
∈ (S2)

|3|,

dS(�,�
′) ≤ dS(�

′, �′′)+
√
S ‖�−�′′

‖1 +

∑
r∈3

1{�r 6=�′′
r }. (4.3)

Proof. Since all “norms” in the formula are sums overr ∈ 3, it suffices to prove the above for3
having only one point. This is easy: If� = �′′ the inequality is actually an equality. Otherwise,
we apply the bounds dS(�,�′) ≤

√
S|�−�′

| and dS(�′, �′′)+ 1 ≥
√
S|�′

−�′′
| to convert

the statement into the triangle inequality for the`1-norm. �

Proof of Proposition 4.1.Let us fix� and�′ for the duration of this proof and abbreviateM(β) =

〈�|e−β Ĥ� |�′
〉. We begin by expressing the derivative ofM(β) as an integral over coherent states.

Indeed,M ′(β) = −〈�|Ĥ� e−β Ĥ� |�′
〉 and so inserting the upper-symbol representation (2.15)

for Ĥ� =
∑

0⊂3(h0 − [h0]�), we have

M ′(β) = −

∑
0⊂3

(
2S + 1

4π

)|3| ∫
(S2)|3|

d�̃′′
〈�|�̃′′

〉〈�̃′′
|e−β Ĥ� |�′

〉
(
[h0]�̃′′−[h0]�

)
. (4.4)

By the fact that [h0]�̃′′−[h0]� depends only on the portion of̃�′′ on 0, the integrals over the
components of̃�′′ outside0 can be carried out which yields

M ′(β) = −

∑
0⊂3

(
2S + 1

4π

)|0| ∫
(S2)|0|

d�′′

0 〈�0|�
′′

0〉〈�
′′
|e−β Ĥ� |�′

〉
(
[h0]�′′−[h0]�

)
. (4.5)

Here, as for the rest of this proof,�′′ is set to� outside0 and to�′′

0 in 0.
Let I0 denote the integral on the right-hand side of (4.5). Using (3.6), (4.1) and (3.9) we have

|I0| ≤ c1‖h0‖ eβε|3|

∫
(S2)|0|

d�′′

0 e−η dS (�′,�′′)−ηS‖�′′
−�‖

2
2−β([H ]�′′−[H ]�)‖�′′

−�‖1. (4.6)
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In order to bound the right-hand side, first we note, from (3.8) and (3.9), that∣∣[H ]�′′−[H ]�
∣∣ ≤ c4‖�

′′

0 −�0‖1 (4.7)

is true for some constantc4 depending only onc0, c1 andR. This follows from (3.8), (3.9), and
the fact that

[H ]�′′−[H ]�=

∑
0′:0′∩0 6=∅

([h0′ ]�′′−[h0′ ]�) . (4.8)

From Lemma 4.2 we have

− dS(�
′, �′′) ≤ − dS(�,�

′)+
√
S ‖�0 −�′′

0‖1 + |0|. (4.9)

Finally, we may also bound‖�′′
−�‖1 by S−1/2 times the exponential of

√
S ‖�−�′′

‖1. Since
we are assuming thatβ ≤ c2

√
S, we conclude that

e−η dS (�′,�′′)−β([H ]�′′−[H ]�)‖�′′
−�‖1 ≤

eη|0|

√
S

e−η dS (�,�′)+c5
√
S ‖�0−�′′

0‖1 (4.10)

for some constantc5 independent ofS and3.
Plugging this back in the integral (4.6), we get

|I0| ≤
c1eη|0|

√
S

‖h0‖ eβε|3|−η dS (�,�′)

∫
(S2)|0|

d�′′

0 ec5
√
S ‖�0−�′′

0‖1−ηS‖�0−�′′
0‖

2
2. (4.11)

To estimate the integral, we note that both norms in the exponent are sums over individual com-
ponents. Hence, the integral is bounded by the product of|0| integrals of the form

K =

∫
{|r ′′|=1}

dr ′′ ec5
√
S|r−r ′′

|−ηS|r−r ′′
|
2
, (4.12)

wherer andr ′′ are vectors on the unit sphere inR3—representing the corresponding 3-dimensional
components of�0 and�′′

0—and where|r − r ′′
| denotes Euclidean distance inR3. Parametrizing

by r = |r − r ′′
| and integrating over the polar angle ofr ′′ relative tor , we now get

K =

∫ 2

0
dr J (r )e−

1
2ηS r2+c5

√
S r . (4.13)

Here the Jacobian,J (r ), is the circumference of the circle{r ′′ : |r ′′
| = 1, |r − r ′′

| = r }. But this
circle has radius smaller thanr and soJ (r ) ≤ 2πr . Scalingr by S−1/2 yields K ≤ c6/S for
some constantc6 > 0 independent ofS.

Plugging this back in (4.11), we then get

|I0| ≤
c1

√
S

(c6eη

S

)|0|

‖h0‖ e−η dS (�,�′)+βε|3|. (4.14)

Inserting this into (4.5), using (3.7) to bound the terms exponential in|0| by a constant depending
only on R (where we note that this is possible because there are|0| factors ofS ’s in the denomi-
nator of (4.14) that can be used to cancel the factors(2S + 1) in front of the integral in (4.5)) and
applying (3.8), we then get (4.2). �

On the basis of Proposition 4.1, the proof of Theorem 3.1 is easily concluded:
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Proof of Theorem 3.1.Let c2 andc3 be the constants from Proposition 4.1 and letε = c3/
√
S. We

claim that (4.1) holds for allβ ≤ c2

√
S. First, in light of (3.6) and the definition of dS(�,�′),

(4.1) holds forβ = 0. This allows us to defineβ0 to be the least number such that (4.1) holds for
all β ∈ [0, β0]. Now, if β ≤ β0 ∧ c2

√
S, then Proposition 4.1 and our choice ofε guarantee that

theβ-derivative of〈�|e−β Ĥ� |�′
〉 is no larger than that of the right-hand side of (4.2). We deduce

(by continuity) thatβ0 = c2

√
S. Using thatĤ� = H − [H ]�, we now get (3.10). �

Proof of Corollary 3.2. First we observe that the diagonal matrix element〈�|e−βH
|�〉 is real

and positive. The upper bound is then the�′
= � version of Theorem 3.1; the lower bound

is a simple consequence of Jensen’s—also known as the Peierls-Bogoliubov—inequality; see,
e.g., [43, Theorem I.4.1]. �

4.2 Quasiclassical Peierls’ arguments.

Our goal is to prove the bounds (3.28–3.29). To this end, let us introduce the quantum version of
the quantity from (3.16): For anyB-block eventA, let

qL ,β(A) =

〈 ∏
t∈TL/B

Q̂ϑt(A)

〉(B/L)d

L ,β

. (4.15)

First we will note the following simple consequence of Theorem 3.1:

Lemma 4.3 Let ξ be as in(3.26)and let c2 and c3 be as in Theorem 3.1. Ifβ ≤ c2

√
S, then for

any B-block eventA,

qL ,β(A) ≤
[
pL ,β(A)pL ,β

(
σ(A)

)]1/2 eβ(ξ+c3/
√
S). (4.16)

Proof. By (3.21) and (3.19) we haveqL ,β(A) = 〈Q̂Ã〉
(B/L)d

L ,β whereÃ =
⋂

t∈TL/B
ϑt(A). Invoking

the integral representation (3.17), Corollary 3.2 and the definition ofξ from (3.26),

qL ,β(A) ≤ PL ,β(Ã)(B/L)deβ(ξ+c3/
√
S). (4.17)

Now we may use (2.23) for the classical probability and we get (4.16). �

Next we will invoke the strategy of [24] to write a bound on the correlator in (3.29) in terms of
a sum over Peierls contours. LetML/B denote the set of connected setsY ⊂ TL/B with connected
complement. By acontourwe then mean the boundary of a setY ∈ ML/B, i.e., the set∂Y of
nearest neighbor edges onTL with one endpoint inY and the other endpoint inYc

⊂ TL/B. The
desired bound is as follows:

Lemma 4.4 Let G1, . . . ,Gn be incompatible good events and letB be the bad event with the
property thatτBt(B) = ϑt(B) for all t ∈ TL/B. Then for all distinctt1, t2 ∈ TL/B and all i =

1, . . . ,n, 〈
Q̂θt1(Gi )Q̂θt2(G

c
i )

〉
L ,β

≤

∑
Y : Y∈ML/B
t1∈Y, t2 6∈Y

2
[
4qL ,β(B)

] 1
4d |∂Y|

. (4.18)
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Proof. We begin by noting thatt1 6= t2 and (3.20–3.21) give us

Q̂θt1(Gi )Q̂θt2(G
c
i )

=

(
2S + 1

4π

)|TL | ∫
θt1(Gi )∩θt2(G

c
i )

d� |�〉〈�|. (4.19)

Now pick � ∈ θt1(Gi ) ∩ θt2(Gc
i ) and letY′

⊂ TL/B be (the indices, onTL/B, of) the largest
connected component ofB-blocks—i.e., translates of3B by Bt, with t ∈ TL/B—such thatt1 ∈ Y′

and thatθt(Gi ) occurs for everyt ∈ Y′. This set may not have a connected complement, so we
defineY ∈ ML/B to be the set obtained by filling the “holes” ofY′, exceptthat which containst2.
Note that all translates of3B corresponding to the boundary sites ofY are of typeGi .

In order to extract the weight of the contour, we will have to introduce some more notation.
Decomposing the set of boundary edges∂Y into d components∂1Y, . . . , ∂dY according to the co-
ordinate directions into which the edges are pointing, letj be a direction where|∂ j Y| is maximal.
Furthermore, letYext

j be the set of sites inYc which are on the “left” side of an edge in∂ j Y. It is
easy to see that this singles out exactly half of the sites inYc that are at the endpoint of an edge
in ∂ j Y. Next we intend to show that the above setting implies the existence of at least|Yext

j |/2
bad blocks whose position is more or less determined byY.

Recall thatêj denotes the unit vector in thej -th coordinate direction. Since the good events
satisfy the incompatibility condition (3.25), at least one of the following two possibilities must
occur: either� ∈ τBt(B) for at least half oft ∈ Yext

j or� ∈ τBt+`êj (B) for at least half oft ∈ Yext
j .

(Here` is the constant from the definition of incompatibility.) Indeed, if the former does not
occur then more than half oft ∈ Yext

j mark a good block, but of a different type of goodness
thanGi . Since this block neighbors on aGi -block, incompatibility of good block events implies
that a bad block must occur` lattice units along the line between these blocks.

Let us temporarily abbreviateK j = |Yext
j | and letC j (Y) be the set of collections ofK j /2 sites

representing the positions of the aforementionedK j /2 bad blocks. In light ofτBt(B) = ϑt(B),
the above argument implies

θt1(Gi ) ∩ θt2(Gc
i ) ⊂

⋃
Y : Y∈ML/B
t1∈Y, t2 6∈Y

⋃
(ti )∈C j (Y)

 K j /2⋂
i =1

(
ϑti (B)

)
∪

K j /2⋂
i =1

τ`êj

(
ϑti (B)

) . (4.20)

Using the inequalities from Remark 3.5 for the POV measureA 7→ Q̂A, this implies

Q̂θt1(Gi )Q̂θt2(G
c
i )

≤

∑
Y : Y∈ML/B
t1∈Y, t2 6∈Y

∑
(ti )∈C j (Y)

 K j /2∏
i =1

Q̂ϑti (B) +

K j /2∏
i =1

Q̂
τ`êj

(
ϑti (B)

) . (4.21)

Here the two terms account for the two choices of where the bad events can occur andj is the
direction with maximal projection of the boundary ofY as defined above. Since (2.22) allows us
to conclude that 〈 K j /2∏

i =1

Q̂ϑti (B)

〉
L ,β

≤ qL ,β(B)K j /2, (4.22)
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and the translation invariance of the torus state〈−〉L ,β yields a similar bound is valid also for the
second product, the expectation of each term in the sum in (4.21) is bounded by 2qL ,β(B)K j /2.
The sum over(ti ) ∈ C j (Y) can then be estimated at 2K j which yields〈

Q̂θt1(Gi )Q̂θt2(G
c
i )

〉
L ,β

≤

∑
Y : Y∈ML/B
t1∈Y, t2 6∈Y

2
[
4qL ,β(B)

]|Yext
j |/2

. (4.23)

From here the claim follows by noting that our choice ofj implies |Yext
j | ≥

1
2d |∂Y| (we may

assume thatqL ,β(B) ≤ 1/4 without loss of generality). �

Proof of Theorem 3.7.By Lemma 4.3, the assumptions onB and (3.27) we haveqL ,β(B) < δ. In-
voking a standard Peierls argument in toroidal geometry—see, e.g., the proof of [6, Lemma3.2]—
the right-hand side of (4.18) is bounded by a quantityη(δ) such thatη(δ) ↓ 0 asδ ↓ 0. Choosingδ
sufficiently small, we will thus haveη(δ) ≤ ε, proving (3.29). The bound (3.28) is a consequence
of the chessboard estimates which yield〈Q̂B〉L ,β ≤ qL ,β(B) < δ. �

4.3 Exhibiting phase coexistence.

In order to complete our general results, we still need to prove Propositions 3.9 and 3.10 whose
main point is to guarantee existence of multiple translation-invariant KMS states. (Recall that,
throughout this section, we work only with translation-invariant interactions.) The construction
of infinite-volume KMS states will be based on the following standard lemma:

Lemma 4.5 Let TL/B be the factor torus and let1M ⊂ TL/B be a block of M× · · · × M sites
at the “back side” ofTL/B (i.e.,dist(0,1M) ≥

L
2B − M). Given a B-block eventC, let

ρ̂L ,M(C) =
1

|1M |

∑
t∈1M

Q̂θt(C). (4.24)

Suppose that〈Q̂C〉L ,β ≥ c for all L � 1 and some constant c> 0, and define the state〈−〉L ,M;β

on local observables by

〈B〉L ,M;β =
〈 ρ̂L ,M(C) B〉L ,β

〈 ρ̂L ,β(C)〉L ,β
. (4.25)

If 〈−〉β is a (subsequential) weak limit of〈−〉L ,M;β as L → ∞ (along multiples of B) followed
by M → ∞, then〈−〉β is a translation-invariant KMS state for inverse temperatureβ.

Proof. Translation invariance is a consequence of “conditioning” on the spatially-averaged quan-
tity (4.24). Thus, all we need to do is to prove that the limit state satisfies the KMS condition
(3.33). Lett 7→ α(L)t be the unitary evolution onTL . If B is a local observable that depends only
on the “front” side of the torus, the fact that the interaction is finite range and that the series (3.32)
converges in norm, uniformly inL, implies[

α(L)t (B), ρ̂L ,M(C)
]

−→
L→∞

0 (4.26)
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in norm topology, uniformly int on compact subsets ofC. This means that for any bounded local
operatorsA andB on the “front” side of the torus,〈

ρ̂L ,M(C) AB
〉
L ,β

=

〈
ρ̂L ,M(C) α(L)−iβ(B)A

〉
L ,β

+ o(1), L → ∞. (4.27)

Sinceα(L)
−iβ(B) → α−iβ(B) in norm, the stateA 7→ 〈A〉L ,M;β converges, asL → ∞ andM → ∞,

to a KMS state at inverse temperatureβ. �

Proof of Proposition 3.9.By the symmetry assumption and (3.28) we know that〈
Q̂Gk

〉
L ,β

≥
1 − ε

n
. (4.28)

So, if ρ̂L ,M(Gk) is as in (4.24), the expectation〈ρ̂L ,M(Gk)〉L ,β is uniformly positive. This means
that, for eachk = 1, . . . ,n, we can define the state〈−〉

(k)
L ,M;β , k = 1, . . . ,n, by (4.25) with the

choiceC = Gk. Now, by (3.29) and the fact that̂QB + Q̂G1 + · · · + Q̂Gn = 1 we have〈
Q̂θt(Gk)

〉(k)
L ,M;β

≥ 1 −
nε

1 − ε
, k = 1, . . . ,n, (4.29)

for any t on the “front” side ofTL/B (provided thatM � L/B). For (n + 1)ε < 1/2, the right-
hand side exceeds1/2 and so any thermodynamic limit of〈−〉

(k)
L ,M;β asL → ∞ andM → ∞ is

“domintated” byGk-blocks. Since, by Lemma 4.5, any such limit is a translation-invariant KMS
state, we haven distinct states satisfying, as is easy to check, (3.34). �

Proof of Proposition 3.10.Consider the states〈−〉
(1)
L ,M;β and〈−〉

(2)
L ,M;β defined by (4.25) withC =

G1 andC = G2, respectively. From assumption (1) we know thatak = 〈ρ̂L ,M(Gk)〉 > 0 for at least
onek = 1,2 and so, for eachβ ∈ [β1, β2], at least one of these states is well defined. We claim
that we cannot have〈Q̂(k)

Gk
〉L ,M;β < 1− 4ε for bothk = 1,2. Indeed, if that was the case then the

fact that

ρ̂L ,M(G1)+ ρ̂L ,M(G2)+ ρ̂L ,M(B) = 1 (4.30)

and the bounds (3.28–3.29) yield

a1 + a2 =
〈
Q̂G1 + Q̂G2

〉
L ,β

=
〈
Q̂G1

〉(1)
L ,M;β

〈
Q̂G1

〉
L ,β

+
〈
Q̂G2

〉(2)
L ,M;β

〈
Q̂G2

〉
L ,β

+
〈
ρ̂L ,M(G1) Q̂G2

〉
L ,β

+
〈
ρ̂L ,M(G2) Q̂G1

〉
L ,β

+
〈
ρ̂L ,M(B) [1 − Q̂B]

〉
L ,β

< (1 − 4ε)(a1 + a2)+ 3ε

(4.31)

i.e., 4(a1 + a2) ≤ 3. Sinceε ≤ 1/4 (we may assume, without loss of generality, that 1− 4ε ≥ 0)
this impliesa1 + a2 < 3/4 ≤ 1 − ε, in contradiction with assumption (1).

Hence, we conclude that the larger from〈Q̂Gk〉
(k)
L ,M;β , k = 1,2 (among those states that exist)

must be at least 1− 4ε. The same will be true about any thermodynamic limits of these states.
LetΞk ⊂ [β1, β2], k = 1,2, be the set ofβ ∈ [β1, β2] for which there exists an infinite-volume,
translation-invariant KMS state〈−〉β such that〈Q̂Gk〉β ≥ 1 − 4ε. ThenΞ1 ∪ Ξ2 = [β1, β2].
Now, any (weak) limit of KMS states for inverse temperaturesβn → β is a KMS state atβ,
and so bothΞ1 andΞ2 are closed. Since [β1, β2] is closed and connected, to demonstrate a
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point inΞ1 ∩ Ξ2 it suffices to show that bothΞ1 andΞ2 are non-empty. For that we will invoke
condition (2) of the proposition: From〈Q̂G1〉L ,β1 ≥ 1 − 2ε we deduce〈

Q̂G1

〉(1)
L ,M;β1

= 1 −
〈
Q̂G2 + Q̂B

〉(1)
L ,M;β1

≥ 1 −
2ε

1 − 2ε
≥ 1 − 4ε, (4.32)

and similarly for〈Q̂G2〉
(2)
L ,M;β2

. Thusβ1 ∈ Ξ1 andβ2 ∈ Ξ2, i.e., both sets are non-empty. �

5. APPLICATIONS

Here we will discuss—with varying level of detail—the five quantum models described in the
introduction. We begin by listing the various conditions of our main theorems which can be
verified without much regard for the particulars of each model. Then, in Sect. 5.2, we proceed
to discuss model (1) which serves as a prototype system for the application of our technique.
Sects. 5.3-5.5 are devoted to the details specific for models (2-5).

5.1 General considerations.

Our strategy is, more or less, self evident. For each model we will need to apply one of the two
propositions from Sect. 3.3, depending on whether we are dealing with a “symmetry-breaking”
transition (Proposition 3.9) or a temperature-driven energy-entropy transition (Proposition 3.10).
The main input we need for this are the inequalities (3.28–3.29). These will in turn be sup-
plied by Theorem 3.7, provided we can check the condition (3.27). Invoking Theorem 3.1, which
requires our model satisfies the mild requirements (3.7–3.9), condition (3.27) boils down to show-
ing thatpL ,β(B) is small for the requisite bad event. It is, for the most part, only the latter that
needs to be verified on a model-specific basis; the rest can be done is some generality.

We begin by checking the most stringent of our conditions: reflection positivity. Here, as
alluded to in Remark 2.5, we are facing the problem that reflection positivity may be available
only in a particular representation of the model—which is often distinct from that in which the
model isa priori defined. The “correct” representation is achieved by a unitary operation that, in
all cases at hand, is a “product rotation” of all spins.

There are two rotations we will need to consider; we will express these by means of unitary
operatorsOA and OB. Consider the Hilbert spaceHTL =

⊗
r∈TL

[C2S+1]r and let(Sx
r , Sy

r , Sz
r )

have the usual form—cf (2.1)—onHTL . In this representation, the action ofOA on a state|ψ〉 ∈

HTL is defined by

OA|ψ〉 =

∏
r∈TL

ei π2 Sx
r ei π2 Sy

r |ψ〉. (5.1)

The effect of this transformation is the cyclic permutationSx
r → Sy

r → Sz
r → Sx

r of the spin
components. The second unitary,OB, is defined as follows:

OB|ψ〉 =

∏
r∈TL

odd-parity

eiπSy
r |ψ〉. (5.2)
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The effect ofOB on spin operators is as follows: For even-parityr , the spin operators are as
before. For odd-parityr , the componentSy

r remains the same, while bothSx
r and Sz

r pick up a
minus sign. Here are the precise conditions under which our models are reflection positive (RP):

Lemma 5.1 Let OA and OB be unitary transformations defined above. Then:

(a) OA H O−1
A is RP for models (4-5), and for model (2) withP(x) = P1(x2)+ xP2(x2).

(b) OB H O−1
B is RP for models (1,3).

(c) OA OB H O−1
B O−1

A is RP for model (2) withP(x) = P1(x2)− xP2(x2).

Proof. (a) Under the unitaryOA map, the Hamiltonians of models (4-5) are only using thex
and z-components of the spins, which are both real valued. The resulting interaction couples
nearest-neighbor spins ferromagnetically, and thus conforms to (2.19).

(b) For two-body, nearest-neighbor interactions,OB has the effect

Sαr Sαr ′ → −Sαr Sαr ′, α = x, z, (5.3)

while theSy
r Sy

r ′ terms remain unchanged. Writing

Sy
r Sy

r ′ = −(i Sy
r )(i S

y
r ′) (5.4)

we can thus change the sign of all quadratic terms in the interaction and, at the same time, ex-
press all operators by means of real-valued matrices. Under the conditions given in Sect. 1, the
Hamiltonians in (1.1) and (1.3) are then of the desired form (2.19).

(c) Finally, for model (2), the effect ofOB is that the minus sign inP(x) = P1(x2)− xP2(x2)

becomes a plus sign. Then we apply the argument in (a). �

Our next item of general interest are the “easy” conditions of Theorem 3.1 and Theorem 3.7.
These turn out to be quite simple to check:

Lemma 5.2 The transformed versions—as defined in Lemma 5.1—of the five models from Sect. 1
satisfy the conditions (3.7–3.9) with some finite R and some c1 independent ofS. Moreover, for
each of the models (1-6) there exists a constant C such that(3.26)holds withξ = C/S for all S.

Proof. All interactions involve at most two spins soR = 2 suffices to have (3.7). Writing
the interaction in the form (3.1), the normalization by powers ofS makes the corresponding
norms‖h0‖ bounded by a quantity independent ofS. This means that (3.8) holds in any finite set
(including the torus, with proper periodic extension of theh0 ’s). As to the Lipschitz bound (3.9),
in light of (2.11) we know that� 7→ [Sαr ]� is Lipschitz for allα = x, y, z; the same will hold for
powers of spins by using the upper-symbol representation multiple times. SinceS−1[Sαr ]�= �r +

O(1/S), and similarly for the lower symbol, the same argument proves thatξ = O(1/S). �

To summarize our general observations, in order to apply Propositions 3.9-3.10, we only need
to check the following three conditions:

(1) The requisite bad event is such thatϑt(B) = B for all t ∈ TL/B.
(2) The occurrence of different types of goodness at neighboringB-blocks implies that an in-

termediate block is bad—cf condition (2) of Definition 3.6.
(3) The quantitypL ,β(B) is sufficiently small.
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In all examples considered in this paper, conditions (1-2) will be checked directly but condi-
tion (3) will require estimates specific for the model at hand. (Note that, since we are forced to
work in the representation that makes the interaction reflection positive; the conditions (1-3) must
be verified inthis representation.)

Remark5.3 It is noted that all of the relevant classical models—regardless of the sign(s) of the
interaction(s)—are RP with respect to reflections in planes of sites. We will often use this fact
to “preprocess” the event underlyingpL ,β(B) by invoking chessboard estimates with respect to
these reflections. We will also repeatedly use the subadditivity property ofA 7→ pL ,β(A) as
stated in [6, Theorem 6.3]. Both of these facts will be used without (much) apology.

5.2 Anisotropic Heisenberg antiferromagnet.

Consider the reflection-positive version of the Hamiltonian (1.1) which (in the standard represen-
tation of the spin operators) on torusTL takes the form

HL = −

∑
〈r ,r ′〉

S−2(J1Sx
r Sx

r ′ − J2Sy
r Sy

r ′ + Sz
r Sz

r ′). (5.5)

(The classical version ofHL is obtained by replacing eachSαr by the corresponding component
of S�r .) The good block events will be defined on a 2× · · · × 2 block3B—i.e., B = 2—and,
roughly speaking, they will represent the twoferromagneticstates in thez-direction one can put
on3B. Explicitly, let G+ be the event that�r = (θr , φr ) satisfies|θr | < κ for al r ∈ 3B and
let G− be the event that|θr − π | < κ for all r ∈ 3B.

Theorem 5.4 Let d ≥ 2 and let0 ≤ J1, J2 < 1 be fixed. For eachε > 0 and eachκ > 0,
there exist constants c andβ0 and, for allβ andS with β0 ≤ β ≤ c

√
S, there exist two distinct,

translation-invariant KMS states〈−〉
+

β and〈−〉
−

β with the property〈
Q̂G±

〉±
β

≥ 1 − ε. (5.6)

In particular, for all suchβ we have 〈
Sz

0

〉+
β

−
〈
Sz

0

〉−
β
> 0. (5.7)

Proof. Let B = (G+ ∪ G−)
c be the bad event. It is easy to check thatϑt acts onB only via

translations. Moreover, ifG+ andG− occur at neighboring (but disjoint) translates of3B, then
the block between these is necessarily bad. In light of our general observations from Sect. 5.1,
we thus only need to produce good bounds onpL ,β(B), the classical probability of bad behavior.
Since these arguments are standard and appear, for all intents and purposes, in the union of
Refs. [22, 23, 41, 10], we will be succinct (and not particularly efficient).

Let1 = min{(1− J1), (1− J2),2/ad} wheread = d2d−1 and fixη > 0 with η � 1 such that

1 − cosη −1 sin2 κ < 0. (5.8)

We will start with a lower estimate on the full partition function. For that we will restrict attention
to configurations where|θr | ≤ η/2 for all r ∈ TL . The interaction energy of a pair of spins is
clearly maximized when both thex andy-terms are negative. This allows us to bound the energy
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by that in the isotropic caseJ1 = J2 = 1—i.e., the cosine of the angle between the spins. Hence,
the energy between each neighboring pair is at most(− cosη). We arrive at

ZL(β) ≥
[
V(η)edβ cosη

]Ld

, (5.9)

where the phase volumeV(η) = 2π [1 − cos(η/2)] may be small but is anyway independent ofβ.
To estimate the constrained partition function in the numerator ofpL ,β(B), we will classify the

bad blocks into two distinct categories: First there will be blocks where not all spins are withinκ

of the pole and, second, there will be those bad blocks which, notwithstanding their Ising nature,
will have defects in their ferromagnetic pattern. We denote the respective events byB1 andB2. To
boundpL ,β(B1), since we may decorate the torus from a single site, we may as well run a single
site argument 2d-times. We are led to consider the constrained partition function where every site
is outside its respective polar cap. It is not hard to see that the maximal possible interaction is
1 −1 sin2 κ; we may estimate the measure of such configurations as full. Thus,

pL ,β(B1) ≤ 2d 4π

V(η)
eβd(1−cosη−1 sin2 κ). (5.10)

Note that, by (5.8), this is small whenβ � 1.
The less interesting Ising violations are estimated as follows: The presence of such violations

implies the existence of a bond with nearly antialigned spins. We estimate the interaction of this
bond at cos(2κ). Now there aread bonds on any cube so when we disseminate—using reflections
through sites—we end up with at least one out of everyad bonds with this energy. The rest we
may as well assume are fully “aligned”—and have energy at least negative one—and we might
as well throw in full measure, for good measure. We thus arrive at

pL ,β(B2) ≤ ad
4π

V(η)
exp

{
βd

( 1

ad
cos(2κ)+ 1 −

1

ad
− cosη

)}
(5.11)

as our estimate for each such contribution to the Ising badness. Here the prefactorad accounts
for the choice of the “bad” bond. Since 1/ad > 1/2, the constant multiplyingβd in the exponent
is less than the left-hand side of (5.8); hencepL ,β(B2) � 1 onceβ � 1 as well. It follows that,
given J1, J2 < 1, we can findβ0 sufficiently large so thatpL ,β(B) ≤ pL ,β(B1) + pL ,β(B2) � 1
onceβ ≥ β0. The statement of the theorem is now implied by Proposition 3.9 and the±-
symmetry of the model. �

5.3 Large-entropy models.

Here we will state and prove order-disorder transitions in models (2-3). As in the previous sub-
section, most of our analysis is classical. While we note that much of the material of this section
has appeared in some form before, e.g., in [15, 31, 41, 10, 20, 21], here we must go a slightly
harder route dictated by the quantum versions of reflection positivity. Further, in this work we
will treat a problem which is stated with greater generality than heretofore.

We start with the observation that model (2) withP(x) = P1(x2)− xP2(x) is unitarily equiva-
lent, via a rotation of all spins about thez-axis, to the same model withP(x) = P1(x2)+ xP2(x).
Hence, it suffices to consider only the case the plus sign. We thus focus our attention on models
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with classical Hamiltonians of the form

H∞(�) = −

∑
〈r ,r ′〉

p∑
k=1

ck (�r ��r ′)k, ck ≥ 0, (5.12)

where(�1 ��2) denotes (a variant of) the usual dot product�(x)1 �(x)1 −�
(y)
1 �

(y)
1 +�(z)1 �

(z)
1 for

model (3) and the “dot product among the first two components” for model (2). We now state our
assumptions which ensure that models (2) and (3) have the large entropy property.

Let us regard the coefficients in (5.12) as an infinite (but summable) sequence, generally
thought of as terminating whenk = p. The terms of this sequence may depend onp so we
will write them asc(p) = (c(p)1 , c(p)2 , . . . ); we assume that thè1-norm of eachc(p) is one. Let
Ep : [−1,1]→ R be defined by

Ep(x) =

∑
k≥1

c(p)k xk. (5.13)

Here is the precise form of the large-entropy property:

Definition 5.5 We say that the sequence (c(p)) has the large entropy propertyif there is a se-
quence (εp) of positive numbers with εp ↓ 0 such that the function

Ap(s) = Ep(1 − εps) (5.14)

converges—uniformly on compact subsets of [0,∞)—to a function s 7→ A(s) with the boundary
values

lim
s→0+

A(s) = 1 and lim
s→∞

A(s) = 0 (5.15)

Remark5.6 Despite the abstract formulation, the above represents a reasonable mechanism to
amalgamate all known examples and to provide plenty of additional generality. Furthermore, the
condition as stated is readily verified. For example consider ac(p) which terminates atk = p.
Then extracting a “density function”φ : [0,1]→ [0,∞) by φ(λ) = cbλpc, it is easy to see that if
φ(0) = 0, we can generically useεp = 1/p. This already covers most cases of interest including
the models in [20, 21], which have received attention. Finally it is remarked that the large entropy
condition as formulated above isnot a strict requirement for these methods. Indeed, as will
become clear when the details unfold, there is a specific obstacle dictated by dimension and other
details which, in the above specific formulation, is overcome by demandingp � 1.

Our analysis begins with the definition of good and bad events. First we will discuss the
situation on bonds: The bond〈r , r ′

〉 is considered to beenergeticallygood if the attractive energy
is larger (in magnitude) than some strictly positive constantb (a number of order unity depending
on gross details, where we recall that 1 is the optimal value), i.e., if

Ep(�r ��r ′) ≥ b. (5.16)

Theentropicallygood bonds are simply the complementary events (so that every bond is a good
bond). Crucial to the analysis is the fact, ensured by our large entropy assumption, that the
crossover between the energetic and entropic phenotypes occurs when the deviation between
neighboring spins is of the order

√
εp.
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On to the blocks; we define the good block eventsGord andGdis on 2× · · · × 2-block3B

as follows:Gord is the set of spin configurations where every bond on3B is energetically good
while Gdis collects all spin configurations where every bond on3B is entropically good. The
requisite bad event is defined asB = (Gord ∪ Gdis)

c.

Our fundamental result will be a proof that the density of energetically good blocks is discon-
tinuous:

Theorem 5.7(Large-entropy models)Consider a family—indexed by integers p≥ 1—of quan-
tum spin systems with the Hamiltonian

H (p)
= −

∑
〈r ,r ′〉

Ep
(
S−2(Sr � Sr ′)

)
, (5.17)

(with both interpretations of(Sr � Sr ′) possible) and suppose that the sequence(c(p))p≥1, giving
rise toEp, has the large entropy property in the sense of Definition 5.5. Then there is a b∈ (0,1)
for which the associated energetic bonds have discontinuous density in the largeS quantum
systems. Specifically, for everyε > 0 there is a p0 so that for any p> p0 and allS sufficiently
large, there is an inverse temperatureβt (which depends onS) at which there exist two distinct,
translation-invariant KMS states〈−〉

ord
βt

and〈−〉
dis
βt

with the property

〈Q̂Gord〉
ord
βt

≥ 1 − ε and 〈Q̂Gdis〉
dis
βt

≥ 1 − ε. (5.18)

With a few small additional ingredients, we show that the above implies that the energy density
itself is discontinuous:

Corollary 5.8 There exist constants b and b′, both strictly less than1/2, such that the energy
densitye(β)—defined via theβ-derivative of the free energy—satifies

e(β)

{
≥ 1 − b′, if β > βt,

≤ b, if β < βt,
(5.19)

for all p sufficiently large.

The bulk of the proof of this theorem again boils down to the estimate ofpL ,β(B):

Proposition 5.9 There exist b0 ∈ (0,1), 1 > 0, C < ∞, and for each b∈ (0,b0] there
exists p0 < ∞ such that

lim
L→∞

pL ,β(B) < C(εp)
1 (5.20)

hold for all p ≥ p0 and allβ ≥ 0.

Apart from a bound onpL ,β(B), we will also need to provide the estimates in condition (2) of
Proposition 3.10. Again we state these in their classical form:

Proposition 5.10 There exist constants C1 < ∞, p1 < ∞ and11 > 0 such that the following
is true for all p≥ p1: First, at β = 0 we have

lim sup
L→∞

pL ,0(Gord) ≤ C1(εp)
11. (5.21)
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Second, ifβ0 ∈ (0,∞) is large enough, specifically ifeβ0d
≥ ε−2(1+11)

p , then

lim sup
L→∞

pL ,β0(Gdis) ≤ C1(εp)
11. (5.22)

The proof of these propositions is somewhat technical; we refer the details to the Appendix,
where we will also prove the corollary.

Proof of Theorem 5.7.We begin by verifying the three properties listed at the end of Sect. 5.1. As
is immediate from the definitions, neighboring blocks of distinct type of goodness must be sepa-
rated by a bad block. Similarly, reflectionsθt act onB only as translations. To see that the same
applies to the “complex” reflectionsϑt, we have to check thatB is invariant under the “complex
conjugation” mapσ. For that it suffices to verify thatσ(�)�σ(�′) = ���′ for any�,�′

∈ S2.
This follows because both interpretations of� � � are quadratic in the components of� and
becauseσ changes the sign of they-component and leaves the other components intact.

Let b < b0 whereb0 is as in Proposition 5.9. Then (5.20) implies thatpL ,β(B) � 1 onceεp �

1. Quantum chessboard estimates yield〈Q̂A〉L ,β ≤ qL ,β(A) which by means of Theorem 3.1
implies that both〈Q̂Gdis〉L ,0 and〈Q̂Gord〉L ,β0 are close to one onceL � 1 and

√
S is sufficiently

large compared withβ0 (referring to Proposition 5.10). Theorem 3.7 then provides the remaining
conditions required for application of Proposition 3.10; we conclude that there exists aβt ∈

[0, β0] and two translation-invariant KMS states〈−〉
ord
βt

and〈−〉
dis
βt

such that (5.18) hold. �

5.4 Order-by-disorder transitions: Orbital-compass model.

We begin by the easier of the models (4-5), the 2D orbital compass model. We stick with the
reflection-positive version of the Hamiltonian which, onTL , is given by

HL =

∑
r∈TL

∑
α=x,z

S(α)r S(α)r+êα
, (5.23)

with êx, êy, êz denoting the unit vectors in (positive) coordinate directions. The numberB will
only be determined later, so we define the good events for generalB. Givenκ > 0 (with κ � 1),
let Gx be the event that all (classical) spins on aB × B block3B satisfy

|�r · êx| ≥ cos(κ). (5.24)

Let Gz be the corresponding event in thez spin-direction. Then we have:

Theorem 5.11(Orbital-compass model)Consider the model with the Hamiltonian(1.4). For
eachε > 0 there existκ > 0, β0 > 0 and c> 0 and, for eachβ with β0 ≤ β ≤ c

√
S, there is a

positive integer B and two distinct, translation-invariant KMS states〈−〉
(x)
β and〈−〉

(z)
β such that〈

Q̂Gα
〉(α)
β

≥ 1 − ε, α = x, z. (5.25)

In particular, for all β with β0 ≤ β ≤ c
√
S,〈

(Sr · êα)
2
〉(α)
β

≥ S2(1 − ε), α = x, z. (5.26)
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The proof is an adaptation of the results from [6, 7, 5] for the classical versions of order-by-
disorder. LetB = (Gx ∪ Gz)

c denote the requisite bad event. By definition,B is invariant under
reflections of (classical) spins through thexz-plane; i.e.,σ(B) = B. Since the restrictions fromB
are uniform over the sites in3B, we haveϑt(B) = τBt(B). So, in light of our general claims from
Sect. 5.1, to apply the machinery leading to Proposition 3.9, it remains to show thatpL ,β(B) is
small if β � 1 and the scaleB is chosen appropriately. For that letH∞(�) denote the classical
version of the Hamiltonian (5.23). By completing the nearest-neighbor terms to a square, we get

H∞(�) =
1

2

∑
r∈TL

∑
α=x,z

(�(α)r −�(α)r+êα
)2 +

∑
r∈TL

[�(y)r ]2
−|TL |. (5.27)

Here�(α)r denotes theα-th Cartesian component of�r .
Unforuntately, the eventB is too complex to allow a direct estimate ofpL ,β(B). Thus, we will

decomposeB into two events,BE andBSW depending on whether the “badness” comes from bad
energy or bad entropy. Let1 > 0 be a scale whose size will be determined later. Explicitly, the
eventBE marks the situations that either

|�(y)r | ≥ c11 (5.28)

for some siter ∈ 3B, or

|�(a)r −�(α)r +êα
| ≥ c21/B, (5.29)

for some pairr andr + êα, both in3B. Herec1, c2 are constants to be determined momentarily.
The eventBSW is simply given by

BSW = B \ BE. (5.30)

By the subadditity property ofpL ,β , we havepL ,β(B) ≤ pL ,β(BE)+ pL ,β(BSW).
SinceBE implies the existence of energetically “charged” site or bond with energy about(1/B)

2

above its minimum, the value ofpL ,β(BE) is estimated relatively easily:

pL ,β(BE) ≤ cβB2e−c̃β12/B2
, (5.31)

for some constantsc andc̃. (HerecB2 accounts for possible positions of the “excited” bond/site
andβ comes from the lower bound on the classical partition function.)

As toBSW, here we will decompose further into more elementary events: Given a collection
of vectorsŵ1, . . . , ŵs that are uniformly spaced on the first quadrant of the main circle,S ++

1 =

{� ∈ S2 : � · êy = 0, �(x) ≥ 0, �(z) ≥ 0}, we defineB(i )SW to be the set of configurations inBSW

such that

|�(x)r · ŵ(x)
i | + |�(y)r · ŵ(y)

i | ≥ cos(1), r ∈ 3B. (5.32)

SinceBSW is disjoint fromBE, onBSW the y-component of every spin is less than order1 and
any neighboring pair of spins differ by angle at most1 (up to a reflection). Hence, by choosingc1

andc2 appropriately, any two spins in3B will differ by less than1 from someŵi , i.e.,

BSW ⊂

s⋃
i =1

B(i )SW, (5.33)
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provided thats1 exceeds the total length ofS ++

1 . To estimatepL ,β(B(i )SW) we will have to cal-
culate the constrained partition function for the eventB(i )SW. The crucial steps of this estimate are
encapsulated into the following three propositions:

Proposition 5.12 Consider the classical orbital compass model with Hamiltonian H∞(�) in
(5.27)and suppose that1 � 1. Then for all i = 1, . . . , s,

pL ,β(B(i )SW) ≤ 22Be−B2(FL ,1(ŵi )−FL ,1(ê1)), (5.34)

where, for eacĥw ∈ S ++

1 = {v̂ ∈ S2 : v̂ · ê2 = 0, v̂(x) ≥ 0, v̂(z) ≥ 0},

FL ,1(ŵ) = −
1

L2
log

∫
(S2)

|TL |

d�
(βeβ

2π

)|TL |

e−βH∞(�)

( ∏
r∈TL

1{�r ·ŵ≥cos(1)}

)
. (5.35)

Proposition 5.13 For eachε > 0 there existsδ > 0 such that if

β12 >
1

δ
and β13 < δ, (5.36)

then for all L sufficiently large,|FL ,1(ŵ)− F(ŵ)| < ε holds for anyŵ ∈ S ++

1 with F given by

F(ŵ) =
1

2

∫
[−π,π ]2

dk
(2π)2

log D̂k(ŵ). (5.37)

Here D̂k(ŵ) = ŵ2
z|1 − eik1|

2
+ ŵ2

x|1 − eik2|
2.

Proposition 5.14 The functionŵ 7→ F(ŵ) is minimized (only) bŷw = ±êx andŵ = ±êz.

The proofs of these propositions consist of technical steps which are deferred to the Appendix.
We now finish the formal proof of the theorem subject to these propositions:

Proof of Theorem 5.11 completed.As already mentioned, the bad event is invariant under both
spatial reflectionsθt and the “internal” reflectionσ; henceϑt(B) = τBt(B) as desired. Second, if
two good distinct events occur in neighboring blocks, say3B and3B + Bê1, then at least one
of the bonds between these blocks must obey (5.29); i.e., the box3B + ê1 is (energetically) bad.
Third, we need to show thatpL ,β(B) is small. We will set1 andB to the values

1 = β−
5
12 and B ≈ logβ. (5.38)

These choices makepL ,β(BE) small onceβ � 1 and, at the same time, ensure that (5.36) (even-
tually) holds for any givenδ. Since we have (5.34), Propositions 5.13-5.14 and the fact thatB(i )SW,
being a subset ofB, is empty when̂wi is within, say,κ/2 of ±êx or ±êz tell us that

pL ,β(BSW) ≤ se−
1
2εB2

(5.39)

onceB � 1. Buts is proportional to1/1 and so this is small forβ sufficiently large. We conclude
that asβ → ∞, we havepL ,β(B) → 0 for the above choice ofB and1.

Having verified all conditions under which the general theory applies, thexz-symmetry of the
model puts us in a position to apply Proposition 3.9. Hence, for all sufficiently largeβ, there exist
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two infinite-volume, translation-invariant KMS states〈−〉
(x)
β and〈−〉

(z)
β such that (5.25) holds. To

derive (5.26), we note that, for any vectorŵ ∈ S2 and any single-spin coherent state|�〉

S · ŵ|�〉 = S(ŵ ·�)|�〉 + O(
√
S). (5.40)

Hence,(S·êk)
2Q̂Gk = S2Q̂Gk +O(S3/2), where all error terms indicate bounds in norm. Invoking

(5.25), the bound (5.26) follows. �

Remark5.15 The 3D orbital-compass model is expected to undergo a similar kind of symmetry
breaking, with three distinct states “aligned” along one of the three lattice directions. However,
the actual proof—for the classical model, a version of this statement has been established in [7]—
is considerably more involved because of the existence of (a large number of) inhomogeneous
ground states that are not distinguished at the leading order of spin-wave free-energy calculations.
We also note that an independent analysis of the classical version of the 2D orbital-compass
model, using an approach similar to Refs. [6, 7] and [38], has been performed in [37].

5.5 Order-by-disorder transitions: 120-degree model.

The statements (and proofs) for the 120-degree model are analogous, though more notationally
involved. Consider six vectorŝv1, . . . , v̂6 defined by

v̂1 = êx, v̂2 =
1
2êx +

√
3

2 êz, v̂3 = −
1
2êx −

√
3

2 êz (5.41)

v̂4 = −êx, v̂5 = −
1
2êx −

√
3

2 êz, v̂6 =
1
2êx −

√
3

2 êz. (5.42)

As is easy to check, these are the six sixth complex roots of unity. The reflection-positive version
of the Hamiltonian onTL then has the form

H =

∑
r∈TL

∑
α=1,2,3

(Sr · v̂2α)(Sr+êα · v̂2α), (5.43)

whereê1, ê2, ê3 is yet another labeling of the usual triplet of coordinate vectors inZ3. To define
good block events, letκ > 0 satisfyκ � 1 and letG1, . . . ,G6 be theB-block events that all
spins�r , r ∈ 3B, are such that

�r · v̂α ≥ cos(κ), α = 1, . . . ,6, (5.44)

respectively. Then we have:

Theorem 5.16(120-degree model)Consider the 120-degree model with the Hamiltonian(5.43).
For eachε > 0 there existκ > 0, β0 > 0 and c> 0 and, for eachβ with β0 ≤ β ≤ c

√
S, there

is a number B and six distinct, translation-invariant states〈−〉
(α)
β , α = 1, . . . ,6, such that〈

Q̂Gα
〉(α)
β

≥ 1 − ε, α = 1, . . . ,6. (5.45)

In particular, for all β with β0 ≤ β ≤ c
√
S,〈

Sr · v̂α
〉(α)
β

≥ S(1 − ε), α = 1, . . . ,6. (5.46)
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Fix κ > 0 (with κ � 1) and letB and1 be as in (5.38). LetB = (G1, . . . ,G6)
c be the relevant

bad event. It is easy to check thatB is invariant with respect toσ and, consequently,ϑt(B) = B
for all r ∈ TL/B as required. Introducing the projections

�(α)r = �r · v̂α, α = 1, . . . ,6, (5.47)

and noting that, for any vector̂w ∈ S2,∑
α=1,2,3

ŵ · v̂α =
3

2

[
1 − (ŵ · êy)

2
]
, (5.48)

the classical HamiltonianH∞(�) can be written in the form

H∞(�) =
1

2

∑
r∈TL

∑
α=1,2,3

(�(2α)r −�(2α)r+êα
)2 +

3

2

∑
r∈TL

(�r · êy)
2
−

3

2
|TL |. (5.49)

As for the orbital-compass model, we will estimatepL ,β(B) by further decomposingB into more
elementary bad events.

Let BE denote the event that the block3B contains an energetically “charged” site or bond.
Explicitly, BE is the event that either for somer ∈ 3B we have

|�r · êy| ≥ c1
1

B
, (5.50)

or, for some nearest-neighbor pair〈r , r + êα〉 in 3B, we have∣∣�r · v̂2α −�r+êα · v̂2α

∣∣ ≥ c2
1

B
. (5.51)

Herec1 andc2 are constants that will be specified later. The complementary part ofB will be
denoted byBSW, i.e.,

BSW = B \ BE. (5.52)

By the fact thatBSW ⊂ Bc
E, onBSW the energetics of the entire block is good—i.e., the configura-

tion is near one of the ground states. Clearly, all constant configurations with zeroy-component
are ground states. However, unlike for the 2D orbital-compass model, there are other, inho-
mogeneous ground states which make the treatment of this model somewhat more complicated.
Fortunately, we will be able to plug, more or less directly, in the results of [6].

As for the orbital-compass model, to derive a good bound onpL ,β(BSW) we will further parti-
tion BSW into more elementary events. We begin with the events corresponding to the homoge-
neous ground states: Given a collection of vectorsŵi , i = 1, . . . , s, that are uniformly spaced on
the circleS1 ⊂ S2 in thexz-plane, we defineB(i )0 to be the subset ofBSW on which

�r · ŵi ≥ cos(1), r ∈ 3B. (5.53)

To describe the remaining “parts ofBSW,” we will not try to keep track of the entire “near ground-
state” configuration. Instead, we will note that each inhomogeneous ground state contains a pair
of neighboring planes in3B where the homogenous configuration gets “flipped” through one
of the vectorŝv1, . . . , v̂6. (We refer the reader to [6], particularly page 259.) Explicitly, given a
lattice directionα = 1,2,3 and a vector̂w ∈ S1, let ŵ?

i denote the reflection of̂wi throughv̂2α−1.
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For eachj = 1, . . . , B − 1, we then defineB(i )α, j to be the set of spin configurations inBSW such
that for allr ∈ 3B,

�r · ŵi ≥ cos(1) if r · êα = j,

�r · ŵ?
i ≥ cos(1) if r · êα = j + 1.

(5.54)

(Note thatr · êα = j means that theα-th coordinate ofr is j . Hence, onB(i )α, j , the spins are near̂wi

on the j -th plane orthogonal tôeα and near̂w?
i on the j +1-st plane in3B.) The conditions under

which these events form a partition ofB is the subject of the following claim:

Proposition 5.17 Givenκ > 0, there exist c1, c2 > 0 such that ifBE andBSW are defined as in
(5.50–5.52) and if1 and B are such that B1 � κ � 1 and s1 > 4π , then

BSW ⊆

s⋃
i =1

(
B(i )0 ∪

⋃
α=1,2,3

B−1⋃
j =1

B(i )α, j
)

(5.55)

Next we will attend to the estimates ofpL ,β for the various events constitutingB. As for the
orbital-compass model, the eventBE is dismissed easily:

pL ,β(BE) ≤ cβB3e−c̃β12/B2
, (5.56)

wherec andc̃ are positive constants. As to the eventsB(i )0 , here we get:

Proposition 5.18 For eachκ > 0 there existsδ > 0 such that ifβ and1 obey

β12 >
1

δ
and β13 < δ, (5.57)

then for all L sufficiently large,

pL ,β(B(i )0 ) ≤ e−B3ρ1(κ), i = 1, . . . , s. (5.58)

Hereρ1(κ) > 0 for all κ � 1.

For the “inhomogeneous” events the decay rate is slower, but still sufficient for our needs.

Proposition 5.19 For eachκ > 0 there existsδ > 0 such that ifβ, 1 andδ obey(5.57), then
for all j = 1, . . . , B − 1, all α = 1,2,3 and all L sufficiently large,

pL ,β(B(i )α, j ) ≤ e−B2ρ2(κ), i = 1, . . . , s. (5.59)

Hereρ2(κ) > 0 for all κ � 1.

Again, the proofs of these propositions are deferred to the Appendix.

Proof of Theorem 5.16 completed.We proceed very much like for the orbital compass model.
The core of the proof again boils down to showing thatpL ,β(B) is small, providedB is chosen
appropriately. Let1 and B be related toβ as in (5.38). By (5.56), this choice makespL ,β(BE)

small and, at the same time, makes (5.57) eventually satisfied for any fixedδ > 0. Invoking
Propositions 5.18-5.19, and the subadditivity ofA 7→ pL ,β(A), we have

pL ,β(BSW) ≤ s
(
e−B3ρ1(κ) + 3Be−B2ρ2(κ)

)
(5.60)
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which by the fact thats = O(1−1) impliespL ,β(BSW) � 1 onceβ is sufficiently large. Using
thatpL ,β(B) ≤ pL ,β(BE)+ pL ,β(BSW), the desired boundpL ,β(B) � 1 follows.

It is easy to check, the bad eventB is preserved by “complex conjugation”σ as well as reflec-
tions and so theϑt’s act on it as mere translations. Moreover, onceκ � 1, if two distinct types
of goodness occur in neighboring blocks, all edges between the blocks are of high-energy—any
block containing these edges is thus bad. Finally, the model on torus is invariant under rotation
of all spins by 60◦ in thexz-plane. This means that all conditions of Proposition 3.9 are satisfied
and so, forβ � 1 andS � β2, the quantum model features six distinct states obeying (5.45).
From here we also get (5.46). �

6. APPENDIX

This section is devoted to the proofs of various technical statements from Sects. 5.3, 5.4 and 5.5.
Some of the proofs in the latter two subsections are based on the corresponding claims from [6, 7].
In such cases we will indicate only the necessary changes.

6.1 Technical claims: Large-entropy models.

Consider a sequence(c(p)) satisfying the large-entropy property and assume, without loss of
generality, that‖c(p)‖ = 1 for all p ≥ 1. Our goal here is to provide the bounds onpL ,β(B)
and the asymptotic statements concerning the dominance of the two types of goodness which
were claimed in Propositions 5.9 and 5.10. We begin with a lower estimate on the full partition
function.

Lemma 6.1 Let t > 0 be fixed. Then there exists p1 < ∞ and constants c1, c2 ∈ (0,∞) such
that for all p ≥ p1 and allβ ≥ 0,

lim inf
L→∞

(ZL)
1/Ld

≥ max
{
c1εp eβd Ap(t), c2

}
. (6.1)

Proof. We will derive two separate bounds on the partition function per site. Focussing on the
cases when�r � �r ′ involves all three components of the spins, let us restrict attention to con-
figurations when every spin is within anglec

√
εp of the vector(0,0,1), wherec is a constant to

be determined momentarily. Let� and�′ be two vectors with this property. Then the (diamond)
angle between� and�′ is less than 2c

√
εp and so

� ��′
≥ cos

(
2c

√
εp

)
≥ 1 − 2c2εp. (6.2)

Choosing 2c2
= t , we thus have� � �′

≥ 1 − tεp. This means that the energy of any bond
in the configuration obeying these constraint is at leastAp(t); while each spin has at least 1−
cos(c

√
εp) ≈

1
2c2εp surface area at its disposal. This implies that(ZL)

1/Ld
is bounded by the first

term in the maximum withc1 ≈
1
2c2. The other interpretation of�r ��r ′ is handled analogously.

In order to derive the second bound, we will restrict all spins to a sector of angular apertureπ/2,
e.g., the one described as{� = (�1, �2, �3) ∈ S 2 : �1 > 1/

√
2}. This has areaa which

is a fixed positive number. Moreover, the constraint ensures that the interaction between any
two spins is non-positive; the partition function per site then boils down to the entropy of such
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configurations. To evaluate this entropy, we fix the configuration on the even sublattice. Every
spin on the even sublattice is then presented with 2d “spots” on this sector which it must avoid.
The area of each such spot is a constant timesεp. It follows that(ZL)

1/Ld
≥ a − O(εp) which is

positive oncep is sufficiently large. �

Our next bound concerns the constrained partition functionZmix
L (L) obtained by disseminating

a particular patternL of ordered and disordered bonds (i.e. energetically and entropically good
bonds) over the torus, whenL is a genuine mixture of the two. That is, we assume thatL contains
bonds of both phenotypes. We remark that this dissemination is carried out by means of reflec-
tions in planes of sites(which is permissible by the nearest-neighbor nature of the interaction).
Recall thatad = d2d−1 is the number of bonds entirely contained in the 2× · · · × 2 block3B.

Lemma 6.2 Let t > 0 be such that

1 − (1 − b)/ad

Ap(t)
≤ 1 (6.3)

and

1
def
= min

{
1 +

1

ad
−

1

Ap(t)
,

1

ad
−

b

Ap(t)

}
> 0. (6.4)

Then there exists a constant c3 < ∞ such that for anyβ ≥ 0 and any patternL of ordered and
disordered bonds (i.e. energetically and entropically good bonds) on3B containing at least one
bond of each phenotype,

lim sup
L→∞

Zmix
L (L)1/Ld

≤ c3 max
{
c1εp eβd Ap(t), c2

}
(εp)

1. (6.5)

Proof. Fix a patternL as specified above. As usual, we call a bond disordered if it is entropically
good. Let fb denote the fraction of disordered bonds in patternL. Let us call a vertex an “entropic
site” if all bonds connected to it are disordered. (Note that this has two different, but logically
consistent, connotations depending on whether we are speaking of a vertex in3B or in TL .)
Let fs denote the fraction of entropic sites inL. Upon dissemination (by reflections through
planes of sites), these numbersfb and fs will represent the actual fractions of disordered bonds
and entropic sites inTL , respectively. Now each disordered bond has an energetic at mostb, while
we may estimate the energy of each ordered bond by 1. For each entropic site we will throw in
full measure so we just need to estimate the entropy of the non-entropic sites. Here we note that
each ordered bond disseminates into a “line” of ordered bonds, upon reflections. If we disregard
exactly one bond on this “line of sites”, then we see that there is a total measure proportional to
O(εL−1

p ). Since this entropy is shared by theL vertices on this line, the entropy density of each
vertex on this line isO(εp) in the L → ∞ limit. This is an upper bound for the entropy density
for each non-entropic site.

The bounds on energy show that the Boltzmann factor is no larger than eβd(1− fb)+βdbfb =

eβd[1−(1−b) fb] . We thus conclude that, for some constantc̃3,

lim sup
L→∞

ZL(L)1/Ld
≤ c̃3(εp)

1− fseβd[1−(1−b) fb] . (6.6)
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Now, we may write the right-hand side as

c̃3

(
εpeβd Ap(t)

)1−(1−b) fb
Ap(t) (εp)

1(L) (6.7)

where

1(L) = 1 − fs −
1 − (1 − b) fb

Ap(t)
. (6.8)

SinceL contains at least one entropic bond, we knowfb > 1/ad. Our choice oft guarantees
that 1− (1 − b) fb ≤ 1 − (1 − b)/ad ≤ Ap(t) and so the complicated power in (6.7) is bounded
by 1. We may use the famous identityXλY1−λ

≤ max(X,Y), true wheneverX,Y ≥ 0 and
0 ≤ λ ≤ 1, to bound the term with the complicated power in (6.7) by the maximum in (6.5).
(We setX = c1εp eβd Ap(t) andY = c2, absorbing extra order-1 constants into our eventualc3.) It
remains to show that1(L) exceeds1 in (6.4) wheneverL contains both phenotypes of bonds.

We will derive a relation betweenfs and fb that holds wheneverL contains both phenotypes
of bonds. We may give the argument in either picture—where we restrict to the small block3B

or where we consider the full torusTL after disseminatingL—which are entirely equivalent since
the fractions of entropic bonds and sites are the same. We will give the argument in the small
2 × · · · × 2 block3B. SinceL contains bonds of both phenotypes there are at least two vertices
in 3B each of which “emanates” bonds of both phenotypes. We mark these sites, and for each
of them we mark one of the incident entropically good (disordered) bonds. We now consider
the bonds of3B to be split into half-bonds each of which is associated to the closest incident
vertex (disregarding the midpoints). We label each half-bond as entropic or energetic, according
to whether it is half of a full bond which is entropically or energetically good.

Let H be the total number of entropic half-bonds. Now note that for each entropic vertex, all
d of the half-bonds emanating from it (and contained in3B) are “entropic half-bonds”. We also
have at least two additional entropic half-bonds associated to the two marked sites. Therefore
the number of entropic half bonds satisfies the boundH ≥ d2d fs + 2. (Note that there are 2d fs

entropic sites.) Since there are 2ad = d2d total half-bonds in3B, the proportion of entropic half
bonds is at leastfs + 1/ad. At this point let us observe that the proportion of entropic half-bonds
is exactly the same as the proportion of entropic full-bonds,fb. Therefore

fb ≥ fs +
1

ad
. (6.9)

Plugging this into the formula for1(L) we thus get

1(L) ≥ 1 +
1

ad
− fb −

1 − (1 − b) fb

Ap(t)
. (6.10)

Allowing fb to take arbitrary values in [0,1], the right-hand side is minimized by one of the
values in the maximum in (6.4). Hence,1(L) ≥ 1 whereby (6.5) follows. �

Proof of Proposition 5.9.As usual, we consider events disseminated by reflections in planes of
lattice sites. Letb0 <

1
1+ad

. If b ≤ b0, then, as a calculation shows, the bound (6.4) holds as well
as (6.3) fort such thatAp(t) ≥ 1 − b. Such at can in turn be chosen by the assumption that
the model obeys the large-entropy condition. (This is where we need thatp is sufficiently large.)
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Hence, the bound in Lemma 6.2 is at our disposal. Now the maximum on the right-hand side
of (6.5) is a lower bound on the full partition function per site; the lemma thus gives us bounds
on pL ,β of the events enforcing the various patterns on3B. SinceB can be decomposed into a
finite union of such pattern-events, the desired inequality (5.20) follows. �

Proof of Proposition 5.10.Again we work with events disseminated using reflections in planes of
sites. In order to prove (5.21), we note thatEp(�r ��r ′) ≥ b—which is what every bond〈r , r ′

〉

in 3B satisfies provided� ∈ Gord—implies�r ��r ′ ≥ 1 − cεp. The neighboring spins are thus
constrained to be within angleO(

√
εp) of each other. Disregarding an appropriate subset of these

constraints (reusing the “line of sites” argument from the first part of the proof of Lemma 6.2) the
desired bound follows.

To prove (5.22), we note that the disseminated eventGdis forces all bonds to have energy
less thanb. Lemma 6.1 implies that the correspondingpL ,β-functional is bounded above by
C̃1(εp)

−1eβd[b−Ap(t)] . Assuming thatb < 1/2 andt is chosen so thatAp(t) − b > 1/2, we see that
if β is large enough to satisfy

eβd
≥ ε−2(1+11)

p , (6.11)

then thepL ,β bound is less thañC1(εp)
11. �

Given the existing results on the discontinuity of energetic bonds, it is almost inconceivable
that the energy density itself could be continuous. To mathematically rule out this possibility, we
will show that, in actuality very few of the energetic bonds have value in the vicinity ofb. So
while the previous argument only considered two types of bonds, we will henceforth have the
following three types of bonds:

(1) strongly orderedif Ep(�r ��r ′) ≥ 1 − b′,
(2) weakly orderedif 1 − b′ > Ep(�r ��r ′) ≥ b,
(3) disorderedif Ep(�r ��r ′) < b.

Here 0< b′,b < 1/2 are constants which we will choose later, although we already know that we
have the restrictionb < 1/(1 + ad) as was necessary in the proof of Proposition 5.9. A rather
similar line of argument to that previously used for mixed patterns of ordered and disordered
bonds handles the situation for mixed patterns of weak and strong order. For each patternL of
weakly and strongly ordered bonds on3B, let Zord

L (L) denote the partition function obtained by
disseminatingL all over the torus. Then we have:

Lemma 6.3 Let t > 0 be a number such that

1′ def
= 1 −

1 − b′/ad

Ap(t)
> 0. (6.12)

There exists a constant c4 < ∞ such that for anyβ ≥ 0 and any patternL of weakly and strongly
ordered bonds on the2 × · · · × 2 block3B containing at least one weakly ordered bond,

lim sup
L→∞

Zord
L (L)1/Ld

≤ c4 max
{
c1εp eβd Ap(t), c2

}
(εp)

1′

. (6.13)

Proof. Consider an ordered patternL with fraction fw of weakly ordered bonds. After dissemi-
nation all overTL , there is a fractionfw of bonds onTL that are weakly ordered and a fraction
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fraction 1− fw that are strongly ordered. Putting energy 1− b′ for each weakly ordered bond
and 1 for each strongly ordered bond, the Boltzmann weight of any spin configuration contribut-
ing to Zord

L (L) is at most

eβd(1−b′) fw+βd(1− fw) = eβd(1−b′ fw). (6.14)

To calculate the entropy, we again use the “line of sites” argument from the first part of the
proof of Lemma 6.2, which gives an entropy per site on the order ofO(εp) in the L → ∞

limit. This implies that the limsup ofZord
L (L)1/Ld

is bounded by a constant timesεpeβd(1−b′ fw).
Since 1− b′ fw ≤ 1 − b′/ad we get

lim sup
L→∞

Zord
L (L)1/Ld

≤ c̃4

(
εpeβd Ap(t)

)1−b′/ad
Ap(t) (εp)

1′

, (6.15)

for some constant̃c4 < ∞. By (6.12), the exponent of the termεpeβd Ap(t) is less than 1 and so
the famous identity,XλY1−λ

≤ max{X,Y}, may be used again (as in the proof of Lemma 6.2)
which readily yields the bound (6.13). �

Proof of Corollary 5.8.The proof is based on thermodynamical arguments. First, standard calcu-
lations using coherent states show that

Ep
(
S−2(Sr � Sr ′)

)
|�〉 = Ep(�r ��r ′)|�〉 + O(1/

√
S) (6.16)

where the error term depends implicitly onp. Hence, for a givenp andδ > 0, we can findS so
large that for anyr , r ′

∈ 3B〈
�

∣∣Ep
(
S−2(Sr � Sr ′)

)
Q̂A

∣∣�〉〈
�

∣∣Q̂A
∣∣�〉 {

≥ 1 − b′
− δ, if A = Gord,

≤ b + δ, if A = Gdis.
(6.17)

(At the classical level the second case is by definition, whereas the first case follows from
Lemma 6.3.) Sinceβ 7→ e(β) is increasing, we conclude that (5.19) holds. As a technical
point, we note that in the statement of the corollary we did not include the small corrections cor-
responding toδ > 0. This was primarily for æsthetic reasons: we wanted to state the simplest
possible result. We can clearly accomplish this by takingb andb′ to be a little smaller than is
otherwise needed. �

6.2 Technical claims: Orbital-compass model.

Here we will prove Propositions 5.12-5.14 concerning the orbital-compass model. The proofs
follow the strategy outlined in [6].

Proof of Proposition 5.12.The proof goes by one more partitioning ofB(i )SW. Consider a spin
configuration� = (�r )r∈TL ∈ B(i )SW. SinceB(i )SW ⊂ BSW and1 � 1, it is easy to check the
following facts:

(1) they-components of all spins in3B are small.
(2) thex-components of the spins along each “line of sites” (in3B) in thex-direction are either

all near thex-component of vector̂wi or its negative.
(3) same is true for thez-components of the spins on “lines of sites” in thez lattice direction.
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Thus, at the cost of reflecting thex-components of spins along each “line of sites” in thex-
direction, and similarly for thez-components, we may assume that all spins are aligned withŵi

in the sense that
�r · ŵi ≥ cos(1), r ∈ 3B. (6.18)

Let B(i,0)SW denote the set of configurations satisfying (6.18). The above reflection preserves both
thea priori measure and the Hamiltonian (5.27); the eventB(i )SW is thus partitioned into 22B “ver-
sions” of eventB(i,0)SW all of which have the same value ofpL ,β-functional. Invoking the Subaddi-
tivity Lemma, (5.34) is proved once we show that

pL ,β(B(i,0)SW ) ≤ e−B3(FL ,1(ŵi )−FL ,1(ê1)). (6.19)

This follows by noting that e−B3 FL ,1(ŵi ) is, to within a convenient multiplier, the integral of the
Boltzmann weight e−βH∞(�) on the eventB(i,0)SW while e−B3FL ,1(ê1) provides a lower bound on the
partition function (again, to within the same multiplier which thus cancels from the ratio).�

Proof of Proposition 5.13.The principal idea is to convertFL ,1(ŵ), as upper and lower bounds,
to the same Gaussian integral. Let us parametrizeŵ ∈ S ++

1 as(cosθ?,0, sinθ?) and, given a
spin configuration� that satisfies�r · ŵ ≥ cos(1) for all r ∈ TL , let us introduce the deviation
variables(ϑr , ζr ) by the formula

�r =

(√
1 − ζ 2

r cos(θ? + ϑr ), ζr ,
√

1 − ζ 2
r sin(θ? + ϑr )

)
. (6.20)

Noting that bothϑr andζr are order1, we derive thatH∞(�) + |TL | is to within a quantity of
orderL213 of the quadratic form

IL ,ŵ(ϑ, ζ ) =
1

2

∑
r∈TL

{
ŵ2

z (ϑr − ϑr+êx)
2
+ ŵ2

x (ϑr − ϑr+êz)
2
}

+

∑
r∈TL

ζ 2
r (6.21)

The Jacobian of the transformation�r 7→ (ϑr , ζr ) is unity.
Next we will derive upper and lower bounds on the integral of e−βIL ,ŵ against the product of

indicators in (5.35). For the upper bound we invoke the inequality∏
r∈TL

1{�r ·ŵ≥cos(1)} ≤ e
1
2λβL212

exp
{
−
λβ

2

∑
r∈TL

ϑ2
r

}
, (6.22)

valid for eachλ ≥ 0. Theζr ’s are then unrestricted and their integrals can be performed yielding
a factor

√
2π/β per integral. The integral overϑr ’s involves passing to the Fourier components,

which diagonalizes the covariance matrix. The result is best expressed inL → ∞ limit:

lim inf
L→∞

FL ,1(ŵ) = O(β13)+
1

2
λβ12

+ F(λ, ŵ), (6.23)

where

F(λ, ŵ) =
1

2

∫
[−π,π ]2

dk
(2π)2

log
[
λ+ D̂k(ŵ)

]
(6.24)

By the Monotone Convergence Theorem,F(λ, ŵ) converges toF(ŵ) asλ ↓ 0. Sinceβ13 is
less thanδ, which is up to us to choose, takingλ ↓ 0 on both sides of (6.23) we deduce that
FL ,1(ŵ) ≥ F(ŵ)− ε for L sufficiently large.
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It remains to derive the corresponding lower bound. Here we will still work with the parame-
terλ above but, unlike for the upper bound, we will not be able to takeλ ↓ 0 at the end. Consider
the Gaussian measurePλ which assigns any Borel setA ⊂ (R × R)TL the probability

Pλ(A) =
1

ZL(λ)

∫
A

( β
2π

)TL

exp
{
−βIL ,ŵ(ϑ, ζ )−

βλ

2

∑
r∈TL

ϑ2
r

} ∏
r∈TL

dϑr dζr . (6.25)

Let Eλ denote the corresponding expectation. Fromβλ ≥ 0 we get∫
(S2)

|TL |

d� e−βIL ,ŵ(ϑ,ζ )

( ∏
r∈TL

1{�r ·ŵ≥cos(1)}

)
≥ ZL(λ) Eλ

( ∏
r∈TL

1{�r ·ŵ≥cos(1)}

)
. (6.26)

The free-energy corresponding to the normalization constantZL(λ) is exactly F(λ, ŵ) above.
Thus, givenε > 0, we can findλ > 0 such thatZL(λ) ≥ e−L2[F(ŵ)+ε/2] onceL � 1. It remains
to show that the expectation is at least e−L2ε/2 providedδ in (5.36) is sufficiently small.

Here we first decrease the product by noting that

1{�r ·ŵ≥cos(1)} ≥ 1{|ϑr |≤
1/2}

1{|ζr |≤
1/2}
. (6.27)

This decouples theζr ’s from theϑr ’s and allows us to use the independence of these fields un-
der Pλ. Since theζr ’s are themselves independent, the integral overζr boils down to

Eλ

( ∏
r∈TL

1{|ζr |≤
1/2}

)
=

∏
r∈TL

Pλ
(
|ζr | ≤ 1/2

)
≥

(
1 − e−λβ12/4

)L2

, (6.28)

where we used the standard tail bound for normal distribution. Thus, for any fixedλ > 0, the
term 1− e−λβ12/4 can be made as close to one as desired by increasingβ12 appropriately.

The ϑr ’s are not independent, but reflection positivity through bonds shows that the corre-
sponding indicators are positively correlated, i.e.,

Eλ

( ∏
r∈TL

1{|ϑr |≤
1/2}

)
≥

∏
r∈TL

Pλ
(
|ϑr | ≤ 1/2

)
. (6.29)

The probability on the right-hand side is estimated using a variance bound:

Pλ
(
|ϑr | > 1/2

)
≤

( 2

1

)2
Var(ϑr ) =

4

12

1

L2

∑
k∈T?L

1

β[λ+ D̂k(ŵ)]
≤

4

λβ12
, (6.30)

whereT?L denotes the reciprocal torus. Again, for any fixedλ, Pλ(|ϑr | ≤ 1/2) can be made as
close to one as desired onceβ12 is sufficiently large. We conclude that, givenε > 0, we can
chooseδ such thatFL ,1(ŵ) ≤ F(ŵ)+ ε onceL � 1. This finishes the proof. �

Proof of Proposition 5.14.Sinceŵ2
x +ŵ2

z = 1, this is a simple consequence of Jensen’s inequality
and the strict concavity of the logarithm. �

6.3 Technical claims: 120-degree model.

Here we will provide the proofs of technical Propositions 5.17-5.19. The core of all proofs is the
fact that any spin configuration(�r ) can be naturally deformed, by rotating along the main circle
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orthogonal to thexz-plane, to have zeroy-component. An explicit form of this transformation
is as follows: Let us write each�r ∈ S2 using two variablesζr ∈ [−1,1] andθr ∈ [0,2π)
interpreted as the cylindrical coordinates,

�r =

( √
1 − ζ 2

r cosθr , ζr ,
√

1 − ζ 2
r sinθr

)
. (6.31)

Then�′

r is the vector in which we setζr = 0, i.e.,

�′

r = (cosθr ,0, sinθr ). (6.32)

(We have already used this transformation in the proof of Proposition 5.13.) An additional useful
feature of this parametrization is that the surface (Haar) measure d�r on S2 then decomposes
into the product of the Lebesgue measure d�′

r onS1 and the Lebesgue measure dζr on [−1,1].

Proof of Proposition 5.17.We will use the fact that, for configurations on3B with vanishing
component in they-direction, this was already proved as Theorem 6.4 in [6]. Let(�r ) ∈ BSW

and define(�′

r ) be as above. Since|�r · êy| ≤ c11/B for all r ∈ 3B, we have∣∣(�r −�′

r ) · êy

∣∣ ≤ c11/B (6.33)

while

(�r −�′

r ) · êα = O(12/B2), α = x, z. (6.34)

In particular, the configuration(�′

r ) is contained in the version of eventBSW from [6], providedc2

is a sufficiently small numerical constant. Thus, under the conditionB1 � κ � 1—which
translates to the conditionB

√
0 � κ � 1 of [6, Theorem 6.4]—(�′

r ) is contained in one of
the events on the right-hand side of (5.55). But, at the cost of a slight adjustment of1, the
corresponding event will then contain also the configuration(�r ). �

To prove the bounds in the remaining two propositions, we will more or less directly plug
into the results of [6]. This is possible because they-component of the spins contributes only an
additive factor to the overall spin-wave free energy. The crucial estimate is derived as follows:

Lemma 6.4 There exists a constant c> 0 such that the following is true: Let1 � 1 and
let � = (�r ) be a configuration onTL such that|�r · êy| ≤ 12 and |�(2α)r − �(2α)r+êα

| ≤ 1, for
all α = 1,2,3. Define�′

= (�′

r ) as above. Then∣∣∣∣ H∞(�)− H∞(�′)−
3

2

∑
r∈TL

(�y · êy)
2

∣∣∣∣ ≤ c13L3. (6.35)

Proof. By the fact that�r · êy = O(1) we have

�r · v̂α = �′

r · v̂α + O(12). (6.36)

But then the assumption�(2α)r −�(2α)r+êα
= O(1) yields[

(�r −�r+êα ) · v̂2α
]2

=
[
(�′

r −�′

r+êα
) · v̂2α

]2
+ O(13). (6.37)

Using (5.49), this proves the claim. �
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Proof of Proposition 5.18.The quantitypL ,β(B(i )0 ) is the ratio of the partition function in which
all spins are constrained to make angle at most1 with ŵi , and the full partition function. The
restrictionB(i )0 ⊂ BSW can, for the most part, be ignored except for theŵi ’s that are close to
one of the six preferred directions. In such cases the fact that1 � κ tells us thatB(i )0 is empty
whenever the angle betweenŵi and the closest of̂v1, . . . , v̂6 is less than, say,κ/2. In particular,
we may restrict attention to thêwi ’s that are farther thanκ/2 of any of these vectors.

Viewing the collection of angles(θr ) as a configuration ofO(2)-spins, Lemma 6.4 tells us
that the Hamiltonian of(�r ) is, to within corrections of orderL313, the sum of3

2

∑
r ζ

2
r and

the Hamiltonian of the classical,O(2)-spin 120-degree model evaluated at configuration(θr ).
Since the measure d�r equals the product dζr dθr on the respective domain, we may ignore the
restriction ofζr to values less thanO(1) and integrated theζr ’s. We conclude thatpL ,β(B(i )0 ) is
bounded by the same quantity for theO(2)-spin 120-degree model times eO(β13). Sinceβ13 is
controlled via (5.57), the desired bound follows from [6, Lemma 6.9]. �

Proof of Proposition 5.19.The proof is very much like that of the previous proposition. LetB̃(i )α, j
denote the event that the top line in (5.54) holds for allr ∈ 3B for which r · êα is odd and the
bottom line for all suchr for which r · êα is even. Chessboard estimates then yield

pL ,β
(
B(i )α, j

)
≤ pL ,β

(
B̃(i )α, j

)2/B
. (6.38)

On the disseminated event
⋂

t∈TL/B
θt(B̃(i )α, j ) the assumptions of Lemma 6.4 are satisfied. Hence,

we may again integrate out theζr ’s to reduce the calculation to that forO(2)-spins. The latter cal-
culation was performed in detail in [6]; the desired bound is then proved exactly as Lemma 6.10
of [6] (explicitly, applying inequality (6.24) of [6] and the paragraph thereafter). �
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