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ABSTRACT. We develop a novel approach to phase transitions in quantum spin models based on a
relation to the corresponding classical spin systems. Explicitly, we show that whenever chessboard
estimates can be used to prove a phase transition in the classical model, the corresponding quantum
model will have a similar phase transition, provided the inverse tempergtane the magnitude

of the quantum spin§ satisfy < +/S. From the quantum system we require that it is reflection
positive and that it has a meaningful classical limit; the core technical estimate may be described
as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general
theory is further applied to prove phase transitions in various quantum spin systends with.

The most notable examples are the quantum orbital-compass mo@élamd the quantum 120-
degree model ofZ3 which are shown to exhibit symmetry breaking at low-temperatures despite
the infinite degeneracy of their (classical) ground state.
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1. INTRODUCTION

It is considered common knowledge that, for spin systems, the behavior of a quantum model
at finite temperature is “like” the behavior of the corresponding classical model. However, be-
yond the level of heuristics, it is far from clear in what sense the above statement is meaningful.
Another, slightly more academic way to “recover” the classical spin system is to consider spin-
representations with spin-magnitudeand then letS — oo. A standard argument as to why

this should work is that the commutators between various spin operators are asdemaller

than the quantities themselves, and so the spins behave essentially classicall§ isHarge.
Notwithstanding, precise statements along these lines have only been madeSoepthe limit

of the free energies [4, 34, 26, 27, 42] and specific typeg Sfcbrrections [11, 35, 36].

A common shortcoming of the above studies is that neither spells explicit conditions on the
relative magnitude of andS for which the classical behavior is exhibited. This is of relevance
because even if the ground state of a quantum system with small/mofesatiassical, and well
understood, the important excitations arugntum For example, consider a collection of spins
with S = ¥, which are coupled exclusively through theicomponents. Then, for all intents and
purposes, this is exactly the corresponding Ising system. However, even the smallest coupling
amongst the other components causes drastic changes in the behavior of the spins at very low
temperatures; control of these perturbations is a non-trivial subject and is usually accomplished
only when finite-temperature effects are of little significance for the overall behavior.

The preceding discussion is particularly relevant for systems which undergo phase transitions.
Here several techniques have been available—infrared bounds [19, 25], chessboard estimates [24,
30, 22, 23] and contour expansions [9, 12, 13, 33]—some of which (specifically, the latter two)
are more or less based on the assumption that the quantum system of interest has a strong classical
component. However, while certain conclusions happen to apply uniformly well everaso,
the classical reference state of these techniques is udliatiyete(e.g., Ising type). This is
quite unlike theS — oo limit which inherently leads to @ontinuous-spinHeisenberg-like
model. Thus, the relation between the above “near-classical” techniques afid+theo results
discussed in the first paragraph is tenuous.

The purpose of this paper is to provide a direct connection betwees theco approach to
the classical limit of quantum spin systems and the proofs of phase transitions by the traditional
means of chessboard estimates. Explicitly, we will show how to convert the main technical step
of the chessboard-estimate proofs—the bound on the constrained partition function, a.k.a. the
universal contou—to a similar bound for the classical counterpart (i.e.,$he oo version) of
the quantum system. As a result, whenever chessboard estimates can be used to prove a phase
transition in the classical system, a corresponding transition will occur in the quantum system
provided+/S is much larger than the inverse temperature.

The core technical estimate is a bound on the matrix element of the Gibbs-Boltzmann weight
relative to coherent states which may be viewed as an extentension of Berezin-Lieb inequalities
down to the level of matrix elements. The result is thessicalGibbs-Boltzmann weight times
a correction that is exponential in volume times a constant of g#defS. Hence, if the latter is
sufficiently small, the exponential growth-rate of partition functions, even those constrained by
various projectors, is close to that of the classical system. This is ideally suited for an application
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of chesshoard estimates and the corresponding technology—developed in [24, 22, 23, 31]—for
proving first-order phase transitions. Unfortunately, part of the estimates need to be carried out
before the conversion to the classical counterpart takes place; so we still require that the quantum
system is reflection positive.

To showcase our approach, we will prove phase transitions in the following five quantum
systems (defined by their respective formal Hamiltonians):

(1) The anisotropic Heisenberg antiferromagnet:
H=+4> S2LYS+ 1YY +F5) (1.1)
r.r’)

where 0< Jy, Jo < 1.
(2) The non-linear XY-model:

g +99
H=->" ?(T (1.2)
(r.r')
whereP(x) = P1(x?) + xP»(x?) for two polynomialsP,, P, (of sufficiently high degree)
with positive coefficients.
(3) The non-linear nematic model:

H==> P(%S-5)) (1.3)
(r,r)

where? is a “large” polynomial with positive coefficients a®d- S = S+ +FS.
(4) The orbital compass model @%:

S22, ifr=r+8e,
H=Y ¥ " (1.4)
(r,r'y S2 Sfy y/, ifr'=r4+4 éy.
(5) The 120-degree model &
H=> S2TIT) if r'=r+g (1.5)
(r,r)
where
s, if j =1,
T =138 +%9. it j =2, (1.6)
—1lg -89, if j =3.

Here(r, r’y denotes a nearest-neighbor pairZfh—where unless specified we are only assum-
ing d > 2—the symbolg; stands for the unit vector in the-th lattice direction ands, =
(S, ¥, §) is atriplet of spinS operators for the spin at site The scaling of all interactions by
the indicated inverse powers &fis necessary to make tiéfe— oo limit meaningful.

Model (1) has been included only for illustration; the requisite transition was proved in [24]
for large anisotropy and in [30] for arbitrarily small anisotropy. The classical versions of models
(2-4) feature strong order-disorder transitions at intermediate temperatures; cf [15, 31, 1, 21].
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Here we will prove that corresponding transitions occur for lasggdgantum versions of these
systems. Models (4-5) are quite unusual even at the classical level: notwithstanding the fact that
the Hamiltonian has only discrete symmetries, there is a continuum of ground states. As was
shown in [6, 7], at positive temperatures the degeneracy is lifted leaving only a finite number
of preferential directions. The proofs of [6, 7] involve (classical) spin-wave calculations not
dissimilar to that of [17, 18]. However, since the massless spin-wave excitations are central to the
behavior of these systems—even at the classical level—it is by no means clear how to adapt the
methods of [19, 24, 22, 23, 30, 9, 12, 13, 33] to these cases.

The rest of the paper is organized as follows: In the next section, we recall the formalism of
coherent states, which is the basis of m&mwy oo limit results, and the techniques of reflection
positivity and chessboard estimates, which underlines many proofs of phase transitions in quan-
tum systems. In Sect. 3 we state our main theorems; the proofs come in Sect. 4. Applications to
the various phase transitions in the aforementioned models are the subject of Sect. 5. The Appen-
dix (Sect. 6) contains the proofs of some technical results that would detract from the main line
of argument in Sects. 5.3-5.5.

2. PRELIMINARIES

In this section, we summarize standard and well-known facts about tii2) 8oherent states

(Sect. 2.1) and the techniques of chessboard estimates (Sect. 2.2). The purpose of this section
is mostly informative; a reader familiar with these concepts may skip this section altogether and
pass directly to the statement of main results in Sect. 3.

2.1 Coherent states.

Here we will recall the Bloch coherent states which were the basis for rigorous control of various
classical limits of spin systems [4, 34, 26, 27, 42]. In a well defined sense, these states are the
“closest” objects to classical states that one can find in the Hilbert space. Our presentation follows
closely Lieb’s article [34]; some of the calculations go back to [3]. The theory extends to general
compact Lie groups, see [42, 16] for results at this level of generality. Indeed, the literature on
the subject of coherent states is quite large; we refer to, e.g., [39, 2] for comprehensive review
and further references.

GivenS e {1, 1,35,...}, consider thg2S + 1)-dimensional irreducible representa_tion of
the Lie algebra SU(2). The generatofS;, ¥, §), obeying the commutation ruleS[ S']=
2igijx S, are operators acting on sggd): M = =S, S +1,...,5 — 1,8} ~ C>*1 Interms
of spin-rasing/lowering operatorSf = S*+i9, we have

S IM) = M [M),
SHM) =/S(SE+1) — M(M + 1) |M + 1), (2.1)
SIM) =SS +1)— MM =1)|M —1).

In particular,S* and & are real whileSY is purely imaginary.
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The classical counterpart of SU(2)-spins are vectors’pa-the two-dimensional sphereRy.
For eachQ) € .%%, one can look for spin-statéQ) such that

Q-9 Q) =S|Q). (2.2)

These states are uniquely defined up to a phase fact@rcdrresponds to the spherical coordi-
nates(d, ¢) on.#, such that0< § < = and 0< ¢ < 2z, then one choice of the phase gives
S, (25 \” .
Q)= > ( ) [cos(?/2)] M [sin(@/)] 5™ =M M), (2.3)
— S+ M
This is thecoherent stateorresponding to vectde.

The fact that the statdS)) have been defined relative to the basis in (2.1) is inconsequential.
Indeed, a rotation of a coherent state is, to within a harmless phase factor, the coherent state
corresponding to the rotated vector. To see this precisely, let us consider a matrix representation
of SO(3) onC?5+! generated by operatofS*, &, §), e.g., via a triplet of Euler angles. For
each rotatiorR of the sphere”,, there is a unitary matriXOg representing? on C>+1. The
representation preserves the usual Euclidean scalar product, i.e.,

Or(S-Q)0Oz' =S RQ. (2.4)

From(Q - S) |Q) = S |Q) we thus have thatS- RQ) Or|Q) = S Og|Q) and, since the coherent
states are determined by these kinds of relati@igQ) is a complex-phase multiple pRQ).

The explicit formula (2.3) fotQ) yields

(Q|Q) = [cos?/2) cog?) + €9~ sin01) sin@12) > (2.5)
Defining the angle betwee andQ’ to be®, one also has
(Q1Q)] = [cos(®)]*. (2.6)
Another formula that is directly checked from (2.3) is
1— 2‘5;1: ! [ aoranal 2.7)

where d2 denotes the uniform surface measurednwith total mass 4.
Given any operatoA on C?5*1, one can form what is commonly known as tbever symbal
which is a functiorQ — (A)q defined by
(Alg = (QA[Q). (2.8)

(Here and hencefortiQ| A|Q) denotes the inner-product (@) with the vectorA|Q).) While
not entirely obvious, it turns out that the tracef/ofdmits the formula

2 1
T = 2 [ do A, 2.9)
T Sy
There is also a generalization of (2.7): There exists a fun€den [A]q such that
2 1
At dQ [Ala |Q)(Q. (2.10)

T Iy
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Any suchQ — [A]q is called anupper symbofor A. Unfortunately, such a function is not
unique and soA]q actually represents an equivalence class of functions. ObvioAslyB)q =
(A)g + (B)q. For the upper symbols, ifA]o and B]q are upper symbols foA and B then
[A+ Blo=[Alo+[B]gq is an upper symbol foA + B.

As an example, wheA = 1, one hag1), = 1 and, by (2.7), one can also choogdd= 1.
However, it is usually not the case that the lower symbol is also an upper symbol, e.g., we have

(Sq = S sinf cosy, [S]a = (S +1) sind cose,
(Y)q = S sind sing, [F]a = (S +1) sind sing, (2.11)
(S = S cosh, [S]a = (S +1) cosh.

As is easily checked, the leading ordeSof these expression is exactly the classical counterpart
of the corresponding operator. For more complicated products (and powers) of the spin compo-
nents, both symbols develop lower-order “non-classical” corrections but, as was shown in much
generality by Duffield [16], the leading order term is always the classical limit.

The above formalism generalizes to collections of many spins.AL¢ a finite set and, for
eachr € A, let (S, S, S°) be the spin operator for the spinratWe will assume that the spins
at all sites have magnitud® so we assume to have a joint (product) representation of these spins
ONHu = ®reA[(C25+1]r. Consider an assignment of a classical €pjre ., to eachr € A and
denote the resulting configuratidf®, ), by Q. The desired product coherent state then is

1Q):= X)1Q). (2.12)

reA

Given an operatoA onH ,, we may define its lower symbol by the generalization of (2.8),

(Ao = (QIAIQ), Qe ()M (2.13)
With this lower symbol we may generalize (2.9) into
28 + 1\
Try, (A) = ( i ) / dQ (A)g. (2.14)
4n ()N
There is also a representationAin terms of an upper symbol o,
2 1\
A:( S + ) / dQ [Ala |Q)(Q, (2.15)
477,' (5”2)‘/\‘

where d is the product surface measure @#>)'*! and whereQ — [A]q is now a function
(%) — C. A special case of this formula is the resulution of the identity-on

Itis easy to check th& — [ A]q has the expected behavior under (outer) product of operators,
provided these respect the product structuré{@f Indeed, suppose that is the disjoint union
of A1 andA; and let|Q;) and|Q;) be product coherent states frdify, and?,, respectively.
Given the operatoré\;: Hy, — Ha, and Ay Ha, = Ha,, let [Aq]q, and [Az]q, be their
associated upper symbols. Then

[Al ® A2]91®Qz = [Al] Q [AZ] Q (216)
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is an upper symbol oA; ® A, relative to statéQ, ® Q). On the other hand, ifA]o depends
only on(£2;);enr WhereA’ ;Cé A, then we can perform a partial trace in (2.15) by integrating over
the (Qr)rea~a @and applying (2.7) for each integral.

2.2 Chessboard estimates.

Next we will review the salient features of the technology of reflection positivity/chessboard
estimates which was developed and applied to both classical and quantum systems in the works
of F. Dyson, J. Fahlich, R. Israel, E. Lieb, B. Simon and T. Spencer [25, 19, 24, 22, 23].

Consider &C*-algebra?l and suppose th&, and2l_ arecommutingsubalgebras which are
“mirror images” of each other in the sense that there is an algebraic automomphim- 2
such thap(2(,) = 2+ andd? = id. Assuming thafl is represented in terms of complex matri-
ces, forA e 2 we defineA to be the complex conjugatenst the adjoint—ofA. We will always
assume th&ll is closed under complex conjugation. Note that, since complex conjugation is not
a “covariant operation,” the representationfought to stay fixed throughout all calculations
involving complex conjugation.

A relevant example of the above setting is a quantum $paystem on thel-dimensional
torusT, of L x --- x L sites, withL even, which we think of as a union of tvdisjoint symmet-
ric halves,T; andT| . Then2l is theC*-algebra of all observables—representedhy + 1)/t
dimensional complex matrices—aRf. are the sets of observables 'Eﬁ, respectively. Explic-
itly, 2( are matrices of the form\, ® 1, whereA, “acts” only onT;", while the matrices i _
take the forml ® A_. The operatior® is the map that swaps the “left” and “right” half of the
torus; e.g., in a properly parametrized bagidd; ® 1) = 1 ® A.. The fact that arises from a
reflection leads to the following concept:

Definition 2.1 Let (—) be a state—i.e., a continuous linear functional—on 2. We say that (—)
is reflection positiverelative to 6) if for all A, B € 2,

(AB(B)) = (BO(A)) (2.17)

and

(AO(A)) > 0. (2.18)

The following condition, derived in [19, Theorem E.1] and again in [24, Theorem 2.1], is
sufficient for the Gibbs state to have the above property:

Theorem 2.2(Reflection positivity—sufficient condition)Given a reflection off' | as described
above and using to denote the associated reflection operator, if the Hamiltonian of a quantum
system ol can be written as

H=C+30©C) - / »(da) D, 3(DL). (2.19)
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where G D, € 2L, andg is a (finite) positive measure, then the canonical Gibbs state 4,
which is defined by
n Try, (€77 A)
" T €
is reflection positive relative t@ for all g > 0.

(2.20)

The crux of the proof of (2.18) is the fact that tie= O state iggeneralized reflection positiye
i.e., (A10(A1) ... AWf(An))Lo > 0. The rest follows by a Lie-Trotter expansion of’8 into
powers of the last term in (2.19)—hence the need fairaussign in front of the integral.

Remark2.3 We reiterate that the reflections Bf considered here are always for “planes of
reflections”betweersites. In classical models one can also consider the (slightly more robust)
reflections for “planes” on sites. However, due to non-commutativity issues, Theorem 2.2 does
not seem to generalize to quantum systems for these kinds of reflections.

Reflection positivity has two important (and related) consequer@asssian dominatioa-
leading ultimately to infrared bounds—anbessboard estimatefn this work we make no use
of the former; we proceed by discussing the details of the latter.

Let Ag be a block ofB x --- x B sites with the “lower-left” corner at the origin. Assuming
that L is a multiple of B, we can tileT, by disjoint translates ofAg. The positions of these
translates are given ly-multiples of vectors from the factor torudl', /g. In particular, ifr + Ag
denotes the translate ofg by r € T, thenT| is the disjoint UniOfUtequ/B(AB + Bt). LetRAx,
denote the algebra of observables\ip, i.e., eachA € 205, has the formA = Ag ® 1, whereAg
acts only on the portion of the Hilbert space corresponding go For eachA € 2, and each
t € T, which is a neighbor of the origin, we can define an antilinear opetat) in Ag+ Bt by

O(A) = 6(A) (2.21)
wheref is the operator of reflection along the corresponding sid& gf By taking further
reflections, we can defing(A) for everyt € T, ,g. (Thus, is linear for even-parityt and
antilinear for odd-parity.) It is easy to check that the resultidg(A) does not depend on what
sequence of reflections has been used to generate it.

The fundamental consequence of reflection positivity, derived in a rather general form in [24,
Theorem 2.2], is as follows:

Theorem 2.4 (Chessboard estimateuppose that the state-) is reflection positive for any
“plane of reflection” between sites ofi_. Then for any A ..., An € 2,4, and anydistinct
translatedty, ..., ty € Ty /g,

m m (B/L)
(o)< [T i) @22
j=1

j=1 teTL/B

This is the celebratechessboard estimatehich allows us to bound the expectation of a prod-
uct of operators by product of expectations of so called “disseminated” operators. Note that the
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giant products above can be written in any order by our assumption that the block-operators in
different blocks commute.

A corresponding statement works also for classical reflection-positive measures. The only
formal difference being that th&;’s are replaced by functions (e.g., indicators of events)
which depend only on the spin configurationAg. Then equation (2.22) becomes

m m (B/L)?
p(Nean) < [T2( N acn) (2:23)
j=1 j=1  “MeTy,
Hered:(A) is the (usual) reflection ofl to the blockA g + Bt. (We reserve the symbdi(A) for
an operation that more closely mimidgin the coherent-state representation; see the definitions
right before Proposition 3.4.) Refs. [6, 5, 8] contain a detailed account of the above formalism in
the classical context; the original statements are, of course, due to [22, 23].

Remark2.5 Unlike its classical counterpart, the quantum version of reflection positivity is a
rather mysterious concept. First, for most of the models listed in the introduction, in order to
bring the Hamiltonian to the form (2.19), we actually have to perform some sort of rotation of the
spins. (We may think of this as choosing a different representation of the spin operators.) The
purpose of this operation is to have all spins “represented” by real-valued matrices, while making
the overall sign of the interactions negative. This permits an application of Theorem 2.2.

It is somewhat ironic that this works beautifully for antiferromagnets, which thus become ef-
fectively ferromagnetic, but fails miserably [44] for genuine ferromagnets. For XY-type models,
when only two of the spin-components are involved in the interaction, we can always choose a
representation in which all matrices are real valued. If only quadratic interactions are considered,
the overall sign is inconsequential but, once interactions of different degrees are mixed—even if
we just add a general external field to the Hamiltonian—reflection positivity may fail again.

3. MAIN RESULTS

We now give precise statements of our main theorems. First we will state a bound on the matrix
elements of the Gibbs-Boltzmann weight in the (overcomplete) basis of coherent states. On the
theoretical side, this result generalizes the classic Berezin-Lieb inequalities [4, 34] and thus pro-
vides a more detailed demonstration of the approach to the classical lifiitasco. On the
practical side, the bound we obtain allows us to replace the “exponential localization” technique
of Frohlich and Lieb [24]—which is intrinsically quantum—Dby an estimate for the classical ver-
sion of the model. The rest of our results show in detail how Theorem 3.1 fits into the standard
line of proof for the classical models. In Sect. 5 we will apply this general strategy to the five
models of interest.

3.1 Matrix elements of Gibbs-Boltzmann weights.

We commence with a definition of the class of models to which our arguments apply. Consider
a finite setA c Z9 and, for each” c A, let hy be an operator ofity, = &, _,[C***Y]; that
depends only on the spinsn (l.e., hr is a tensor product of an operator &fy and the unity
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onHar.) We will assume thalir = 0 if the size ofl" exceeds some finite constant, i.e., each
interaction term involves only a bounded number of spins. The Hamiltonian is then

H= > hr (3.1)
I':TcA
Most of the interesting examples are such that= 0 unlesd" is a two point sefx, y} containing
a pair of nearest neighbors @i—as is the case of all of the models (1-5) discussed in Sect. 1.
As already noted, our principal technical result is a bound on the matrix eleé@gnt’H | Q).
To state this bound precisely, we need some more notatiorQ et [hr]q be an upper symbol
of the operatohr which, by (2.16), may be assumed independent of the compo(@ntgr.
We fix the upper symbol oH to
[Hlo= D [hrla. (3.2)
I''TcA
We will also usgTI'| to denote the number of elements in thelSend|| hr || to denote the operator
norm ofhr onH,.
Let |Q; — Q| denote the (3-dimensional) Euclidean distance of the péntandQ; on .7,
and consider the usuét and¢2-norms on(.#2)!Al:

12— Qli= > 1 — | (3.3)
reA
and
Y,
12 — Q|2 = (Zmr —Qélz) : (3.4)
reA
Besides these two norms, we will also need the “mixed” quantity
ds(Q, Q) = > (VSIQ — | A SIQ — ), (3.5)
reA

wherea denotes the minimum. Finally, from (2.6) we know th@&; |Q/)| = 1-O(S|Q, —Q;|?).
Hence, there ig > 0 such that

(QIQ)| < e77SIe-213 (3.6)

holds for allS, all Q, Q' € (%%)'* and allA. We fix this; throughout all forthcoming deriva-
tions. Our first main theorem then is:

Theorem 3.1 Suppose that there exists a number R such that

I'|>R = hr=0, (3.7)
and that, for some constantg and g independent af and A, we have

sup D lhell < co (38)

A e

as well as the Lipschitz bound
[hrlo—[hrle| < Q= Qalhel, T CA. (3.9)
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Then for any constantc> 0, there exists a constant ¢ 0, depending only ong¢ ¢, ¢, and R,
such that for allg < c,v/S,

|(Q|e_ﬂH Q)] < g AlHla—1ds(Q.Q)+csfIAl/NS (3.10)

holds for allQ, Q' € (.#2)* and all finite A..

Note that we do not assume that the Hamiltonian is translation-invariant. In fact, as long as the
conditions (3.7-3.9) hold as stated, the geometry of the underlying set is completely immaterial.
For the diagonal elements—which is all we need in the subsequent derivations anyway—the
above bound becomes somewhat more transparent:

Corollary 3.2 Suppose (3.7-3.9) hold and let&nd ¢ be as in Theorem 3.1. Then for il
andS with # < ¢,v/S, allQ € (%)M and all A,

e e < (e M |Q) < e FlHlat+eafIAlVS (3.11)

It is interesting to compare this result with the celebrated Berezin-Lieb inequalities [4, 34]
which state the following bounds between quantum and classical partition functions:

/ d—Q e AlHa ~ M < / d—Q e Al (3.12)
(pint ()N @S+ DM T Jgym (Ar)I

(As was shown in [42], both inequalities are simple consequences of Jensen’s inequality; the
original proof [34] invoked also the “intrinsically non-commutative” Golden-Thompson inequal-
ity.) From Corollary 3.2 we now know that, to within a correction of or@gr/S, the estimates
corresponding to (3.12) hold even for the (diagonal) matrix elements relative to coherent states.
However, the known proofs of (3.12) use the underlying trace structure in a very essential way
and are not readily extended to a generalization along the lines of (3.11).

Remark3.3 The correction of ordef|A|/+/S is the best one can do at the above level of gen-
erality. Indeed, whe2 and<Y’ are close in the sengg2 — Q'||; = O(|A|/V/S), then H]q

and [H]q differ by a quantity of ordeci|A|/+/S. Since the matrix element is symmetric@n

andQ’, the bound must account for the difference. However, even accounting for the above men-
tioned sources of discrepancy, there is a deeper reason—which shows up on the level of diagonal
matrix elements—why/+/S needs to be small for the classical Boltzmann weight to faithfully
describe the matrix elements of the quantum Boltzmann weight. Consider a single spin with
the HamiltonianH = S!S, and letQ correspond to the spherical angi@s ¢). A simple
calculation shows that then

(QleM|Q) = [cod(lp)e /S + si(9p)e 5]

52 - (3.13)
_ @B cost+ b5 (1-cog 0)+0(5%/5?)

The termp cosd is the (now unambiguous) classical interaction in “stae”The leading cor-
rection is of ordes?/S, which is only small ifg < +/S.
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3.2 Absence of clustering.

Our next task is to show how Theorem 3.1 can be applied to establish phase transitions in models
whose § — o0) classical version exhibits a phase transition that can be proved by means of
chessboard estimates. The principal conclusion islisence of clusteringthich, as we will see

in Sect. 3.3, directly implies a quantum phase transition.

Consider the setting as described in Sect. 2.2, i.e., we have dltprofsside L which is tiled
by (L/B)d disjoint translates of a block g of sideB. For each operator ing and eact € T\ /g,
we writed;(A) for the appropriate reflection—accompanied by complex conjugattas &#n odd
parity site—ofA “into” the block Ag+Bt. In addition to the operators Gy, = @, [C?5+Y,,
we will also consider eventd on the space of classical configuratiqng)'™! equipped with the
Borel productr-algebra and the product surface measuee-d|[ [, .y, dQ;. If A is an event that
depends only on the configuration A, we will call A a B-block eventFor eacht € T /5, we
used;(A) to denote the event ing + Bt that is obtained by (pure) reflection df“into” Ag+ Bt.

Given a quantum Hamiltonial of the form (3.1), let—)_ ; denote the thermal state (2.20).
Considering thelassicalHamiltonianH> : (.%%)/Tt! — R, which we define as

H(@) = lim (H)q = lim [H]a, (3.14)

we useP,_; to denote the usual Gibbs measure. Explictly, for any eveat (.#2) ™!,

S ARI(®)

P 4(A) = / d0 = (3.15)

whereZ (p) is the classical partition function. For eaBhblock event4 we will also consider
its disseminated versiof .y, . 6:(A) and introduce the abbreviation

(B/L)
PLA(A) = [PL,ﬁ( N 01(A))] (3.26)

tETL/B

for the corresponding quantity on the right-hand side of (2.23). An application of (2.22) shows
that A — p_ 4(A) is an outer measure on teealgebra ofB-block events (cf [6, Theorem 6.3]).
For each measurable sdtc (.#2)/"t! we consider the operator

. 2S +1 [Ty
QA:( 4+ ) /dQ 1Q)(Q. (3.17)
T A

Since the coherent states are overcomplete, this operator is not a projection; notwithstanding, we
may think of it as a non-commutative counterpart of the indicator of the eventn order to
describe the behavior & 4 underd;, we introduce the classical versidpof J; which is defined

as follows: Consider a “complex-conjugation” map (.%%)Tt! — (#)!TtI which, in a given
representation of the coherent states, has the effect

|Q)(Q = [0€2) (o€ (3.18)
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For the representation introduced in Sect. 2.1, we can choimsige the reflection through thez-
plane (in spin space), i.e., & = (0, ¢) thena(Q) = (6, —¢). For even parityt € T g, We
simply haved; = 6; while for odd parityt € T\ ;g we haved; = 6; o 6.

Here are some simple facts about deoperators:

Proposition 3.4 For any B-block eventl we have

3(Qu) = Qﬁt(A), teTys. (3.19)
Moreover, ifAy, ..., An are B-block events and, . . ., t, are distinctelements off g, then
[Qeti (Ai)> Qetj “Upl=0, 1<i<j<m, (3.20)
and
Qo (A1) - -+ Qo (Am) = Qb (A1) 1014y (Am) - (3.21)

Finally, Q of the full space (i.e(,%%)!Tt) is the unity,Q4 = 0, and if A3, As, ... is a countable
collection of disjoint events, then (in the strong-operator topology)

Quzian = 2, Qun: (3.22)
n=1

In particular, O 4c = 1 — O 4 for any eventA.

Proof. The mapd; is a pure reflection for even-paritye T ,s and so (3.19) holds by the fact
that pure reflection of) 4 is Q of the reflectedd. For odd-parityt, the relation (3.18) implies

Oy = Q(,(A), which again yields (3.19). The remaining identities are easy consequences of the
definitions and (2.7). O

Remark3.5 The last few properties listed in the lemma imply that the tdap> Q4 is a
positive-operator-valued (POV) measuithe sense of [14]. As a consequenced i€ A’ then
Q4 < Qu while if {A,} is a countable collection of events, not necessarily disjoint, then

Qu;glAn < Z Qu,- (3.23)
n=1

Both of these properties are manifestly true by the definition (3.17).

Before we state our next theorem, let us recall the “standard” setting for the application of
chessboard estimates to proofs of phase transitiooka#sicalmodels. GiverB that dividesL,
one typically singles out a collectigh, . . ., G, of “good” B-block events and defines

B=(GiU---UGy© (3.24)

to be the corresponding “bad-block event. Without much loss of generality we will assume
that B is invariant under “complex” reflections, i.e}(5) = rg:(53), wherer, denotes the shift
by r on (#2)/Ttl. In the best of situations, carefully chosen good events typically satisfy the
conditions in the following definition:

Definition 3.6 We say that the “good” B-block events are incompatibleif
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(1) they are mutually exclusive, i.e., Gi N Gj = @ wheneveri # |;
(2) their simultaneous occurrence at neighboring blocks forces an intermediate block (which
overlaps the two neighbors) i.e., there exists { with 1 < { < B such that

6:(Gi) N6y (Gj) C tatrew—y(B) (3.25)
holds for alli # j and any t,t' € T g with |t —t'| = 1. Here z, is the shift by r.

These conditions are much easier to achieve in situations where we are allowed to use reflec-
tions through planes containing sites. Then, typically, one can ensure that the neighboring blocks
cannot have distinct types of goodness. But as noted in Remark 2.3, we are not allowed to do this
in the quantum setting. Nevertheless, (1) and (2) taken together do ensure that a simultaneous
occurrence of two distinct types of goodness necessarily enforces a “contour” of bad blocks. The
weight of each such contour can be bounded by the quantii(5) to the number of consti-
tuting blocks; it then remains to show that 4 (B) is sufficiently small. For quantum models,
appropriate modifications of this strategy yield the following result:

Theorem 3.7 Consider a quantum spin systemBnwith spinS and interaction for which the
Gibbs state(—), ; from (2.20)is reflection positive for reflections through planes between sites
onT.. Let H*® be a function and > 0 a constant such that, for all I> 1,

sup [[Hloa=H*(@)|+ sup [(H)q—H>(Q)| <|Tul. (3.26)

Qe(F)ITL Qe ()L

Letd, ..., G, be incompatible “good” B-block events and defii@s in(3.24) Suppose thas
is invariant under reflections and conjugatieni.e.,%(B) = rgi(B) forall t € T\ /. Fixe > 0.
Then there exist§ > 0 such that iff < c,2/S and

pLp(B) fCHRIVS) ¢, (3.27)
where ¢ and g are as in Theorem 3.1, we have
(QB)L,/; <€ (3.28)
and, foralli =1, ..., n and all distinctt;, t; € T\ /g,
<Qetl(gi>[1 - Qetz(gi)]>L , <€ (3.29)

Hered may depend oa and d, but not or8, S, n nor on the details of the model.

Remarks3.8 Here are some observations concerning the previous theorem:

(1) By general results (e.g., [16]) on the convergence of upper and lower symh8ls-aso,
the quantity¢ in (3.26) can be made arbitrarily small by increaséhgppropriately. In fact,
for two-body interactions is typically a small constant times/& and so it provides a
harmless correction to the terg/+/S in (3.27). In particular, apart from the classical bound
thatp, 4(B) < 1, (3.27) will only require thap < v/S.

(2) Note that the result is stated for pure reflectioh&y;), of the good events, not their more
complicated counterpari%(Gi). This is important for maintaining a close link between the
nature of phase transition in the quantum model and its classical counterpart.
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(3) The stipulation that thé’s “act” on B only as translations is only mildly restrictive: In-
deedo(B) = B in all cases treated in the present work. However, if it turns outdtidy #
B, the condition (3.27) may be replaced by

JPLs(BIPL s (0(B) €46+ (3.30)

which—sincep, 4(c(B)) < 1—is anyway satisfied by a stricter version of (3.27). Note
thato(B) = B implies that every configuration #(G;) is also good. In most circumstances
we expect that(G;) is one of the good events.

3.3 Quantum phase transitions.

It remains to show how to adapt the main conclusion of Theorem 3.7 to the proof of phase
transition in quantum systems. We first note that (3.27) is a condition onldlssicalmodel
which, for¢é small, yields a classical variant of (3.29),

PLy(64(G) N6,(GY) <€,  1<i<n (3.31)

Under proper conditions on and the probabilities of thg;’s, this yields absence of clustering
for the classical torus Gibbs state which, by a conditioning “on the back of the torus,” implies the
existence of multiple infinite-volume Gibbs measures.

For a quantum system with an internal symmetry, a similar argument allows us to deal with the
cases when the symmetry has been “spontaneously” broken. For instance (see [24]) in magnetic
systems (3.29) might imply the non-vanishing of the spontaneous magnetization which, in turn,
yields a discontinuity in some derivative of the free energy, i.eheamodynamigphase tran-
sition. In the cases with no symmetry—or in situations where the symmetry is not particularly
useful, such as for temperature-driven phase transitions—we can still demonstrate a thermody-
namic transition either by concocting an “unusual” external field (which couples to distinctive
types of good blocks) or by directly proving a jump e.g. in the energy density.

An elegant route to these matters is via the formalism of the infinite-volume KMS states (see,
e.g., [29, 43]). Let us recall the principal aspects of this theory: Conside€Cthalgebra?l
of quasilocal observables defined as the norm-closurg) pf ;4 2(», where the union is over
all finite subsetsA, and®(, is the set of all bounded operators on the Hilbert splGe =
&, A [C?5+],, with the usual notion of inclusion (or isotong), ¢ 2 for A ¢ A’ obtained
by tensoringA € 2, with 1 on A’\ A. For eachL > 1, let us identifyT with the blockA_ and
let H_ be the Hamiltonian off', which we assume is of the form (3.1) with finite range and
translation invariant.

For each observabla € 2, , let a{L)(A) = @t Ae~ ™ML pe the strongly-continuous one-
parameter family of operators representing the time evolutioh iofthe Heisenberg picture. By
expanding into a series of commutators,

A= (Irtﬂ) [HL[HC ... [H AL T, (3.32)
n=0
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see [29, Theorem 111.3.6], the map— o~ (A) extends to alt € C. Moreover, since the
interaction is of finite range an#l is local, the infinite series representatiomélf)(A) converges
in norm, asL — oo, to a one-parameter family of operaterg A), uniformly int on compact
subsets of” (as was originally proved in [40]).

A state(—); on®l—i.e., alinear functional obeyin@) ; > 0if A > O and(1), = 1—is called
a KMS statg(for the translation-invariant, finite-range interactidnat inverse temperatug) if
for all local operatordA, B € 2, the equality

(AB); = {a-is(B)A),, (3.33)

also known as th&KMS condition holds.

We proceed by stating two general propositions which will help us apply the results from
previous sections to the proof of phase transitions. We begin with a statement which concerns
phase transitions due to symmetry breaking:

Proposition 3.9 Consider the quantum spin systems as in Theorem 3.7 and suppose that the in-
compatible good block evenfs, . . ., G, are such thatQg, ). s isthe same forallk=1, ..., n.
If (3.28-3.29) hold with ar such that(n + 1)e < 1, then there exist n distinct, translation-

invariant KMS stateg—)§°, k =1, ..., n, for which

(ng)/gk’ >1—(+1e k=1,...,n (3.34)

Our second proposition deals with temperature driven transitions. The following is a quantum
version of one of the principal theorems in [31, 32]:

Proposition 3.10 Consider the quantum spin systems as in Theorem 3.7 ang lahd G,
be two incompatible B-block events. L@t < S, be two inverse temperatures and suppose
thate € [0, V,) is such that for all L> 1,

(1) the bounds (3.28-3.29) hold for gll e [fS1, S2],

(2) (Qg,)Lp = 1—2eand(Qg,)L s, > 1 — 2e.

Then there exists an inverse temperatfire [51, f2] and two distinct translation-invariant KMS
states(—)§’ and (—){ at inverse temperaturg; such that
(Qa) = 1—4e and (Qg)? > 1 4e. (3.35)

The underlying idea of the latter proposition is the existence of a forbidden gap in the density
of, say,Gi-blocks. Such “forbidden gap” arguments have been invoked in (limiting) toroidal
states by, e.g., [31, 32, 28]; a generalization to infinite-volume, translation-invariant Gibbs states
has been achieved in [8]. Both propositions are proved in Sect. 4.3.

4. PROOFS

Here we provide the proofs of our general results from Sect. 3. We begin by the estimates of
matrix elements of Gibbs-Boltzmann weight (Theorem 3.1) and then, in Sect. 4.2, proceed to
apply these in quasiclassical Peierls’ arguments which lie at the core of Theorem 3.7. Finally, in
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Sect. 4.3, we elevate the conclusions of Theorem 3.7 to coexistence of multiple KMS states, thus

proving Propositions 3.9-3.10.

4.1 Bounds on matrix elements.

The proof of Theorem 3.1 is based on a continuity argument whose principal estimate is encap-

sulated into the following claim:

Proposition 4.1 Suppose that (3.7-3.9) hold with constants Raod g. Let Ho=H —[H]a.
Suppose there exists a constapsuch thatf < c,+/S, and that for some > 0

|(Qle o) | < e ds@ @A (4.1)

is true for allQ, Q' e (.#2)'Al. Then there exists a constantaepending ong ¢, ¢, and R (but
not A, S or ¢) such that

Qe

d Cs —7ds(Q,Q)+felA
— < — |A| e n9s@Q)F+elAl (4.2)
‘dﬁ S
Before we commence with the proof, we will make a simple observation:
Lemma4.2 Forall AandallQ, Q, Q" e ()",

ds(Q, Q) < ds(Q, Q") + VS Q- Q"ll1+ D La 2ap- (4.3)

reA

Proof. Since all “norms” in the formula are sums ovee A, it suffices to prove the above for
having only one point. This is easy: df = Q" the inequality is actually an equality. Otherwise,
we apply the bounds gQ, Q') < V/S|Q — | and &(Q, Q") +1 > /S|Q — Q"| to convert
the statement into the triangle inequality for #enorm. O

Proof of Proposition 4.1Let us fixQ2 andQ’ for the duration of this proof and abbrevidie(5) =
(Qle~#He|QY'). We begin by expressing the derivativeM{ ) as an integral over coherent states.
Indeed,M’(f) = —(Q|Hg e#2|Q’) and so inserting the upper-symbol representation (2.15)
for Hg = > realhr —[hr]a), we have

2 1 [A _ o _
M'(8) = —Z( Shs ) /(y)AdQ” (QIQ")(Q" e/ M) ([hrlg —[hrla).  (4.4)

4r
T'cA

By the fact that fir]g —[hr]a depends only on the portion 61" on T, the integrals over the
components of2” outsidel” can be carried out which yields

25 + 1\ o
M) =-> (2= 4O (QrlQ) Q|6 ) (Ihlar—[hila).  (4.5)
()

47
I'cA

Here, as for the rest of this prod®” is set toQ outsidel” and toQf. in T".
Let Zr denote the integral on the right-hand side of (4.5). Using (3.6), (4.1) and (3.9) we have

1Zr| < callbr |l eﬂfll\l/ inﬁ e_'7dS(Q/aQH)_WSHQN_QH%_ﬂ([H]Q”_[H]Q)”Q// - Q1. (4.6)
()
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In order to bound the right-hand side, first we note, from (3.8) and (3.9), that
[Hlo—[Hla| < c4llQf — Qrlly (4.7)
is true for some constat depending only oy, ¢; and R. This follows from (3.8), (3.9), and

the fact that
[Hlor—[H]ao= Z ([hr]a—[hrla) . (4.8)

[V:I'NC#£§
From Lemma 4.2 we have
—ds(Q, Q") < —ds(Q, Q) + VS |Qr — Qf [l + |T|. (4.9)
Finally, we may also bouniQ)” — Q||; by S~¥/2 times the exponential of/S || — Q”||;. Since
we are assuming that < cov/S, we conclude that

Ir|
e 795 @2 —p(Hlar—Hlo) | " — Q|; < & e nds@)tesVS 0r-0f Iy (4.10)

for some constarts independent o andA.
Plugging this back in the integral (4.6), we get

[Tl
Ihe || eﬁflAl—ﬂds(Q,Q’)/ dQ/F/ e05\@HQr—QFHl—nSHQr—Q’r’H%‘ (4.11)
()T

To estimate the integral, we note that both norms in the exponent are sums over individual com-
ponents. Hence, the integral is bounded by the produidt|ahtegrals of the form

) < &€

K = / dr” gfsvSIr=rI=nsir =", (4.12)
{Ir1=1}

wherer andr” are vectors on the unit sphereRd—representing the corresponding 3-dimensional
components of2r andQ.—and whergr —r”| denotes Euclidean distancelki. Parametrizing
byr = |r — r”| and integrating over the polar anglerdfrelative tor, we now get

2
K =/ dr g (r)e 7SSt (4.13)
0

Here the Jacobian? (r), is the circumference of the circle”: |r”| =1, |[r —r”| =r}. But this
circle has radius smaller thanand so_# (r) < 2zr. Scalingr by S~V/2 yieldsK < cg/S for
some constant; > 0 independent of.

Plugging this back in (4.11), we then get

C1 (Co€"\IT — 1 ds(Q.Q)+fel A
7= (S5) el i@, (414)
Inserting this into (4.5), using (3.7) to bound the terms exponentjdl|iby a constant depending
only on R (where we note that this is possible because therdarfactors ofS’s in the denomi-
nator of (4.14) that can be used to cancel the fad@$s+ 1) in front of the integral in (4.5)) and
applying (3.8), we then get (4.2). O

On the basis of Proposition 4.1, the proof of Theorem 3.1 is easily concluded:
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Proof of Theorem 3.1Let ¢, andcs be the constants from Proposition 4.1 andtlet c3/+/S. We
claim that (4.1) holds for alp < c,+/S. First, in light of (3.6) and the definition of Q, ),
(4.1) holds forp = 0. This allows us to defing, to be the least number such that (4.1) holds for
all g € [0, po]. Now, if B < fo A c2+/S, then Proposition 4.1 and our choicecofuarantee that
the p-derivative of(Q|e~#"2|Q’) is no larger than that of the right-hand side of (4.2). We deduce
(by continuity) thatBy = c,+/S. Using thatHo = H — [H]a, we now get (3.10). a

Proof of Corollary 3.2. First we observe that the diagonal matrix elemg@te”H|Q) is real

and positive. The upper bound is then e = Q version of Theorem 3.1; the lower bound

is a simple consequence of Jensen’'s—also known as the Peierls-Bogoliubov—inequality; see,
e.g., [43, Theorem 1.4.1]. a

4.2 Quasiclassical Peierls’ arguments.

Our goal is to prove the bounds (3.28-3.29). To this end, let us introduce the quantum version of
the quantity from (3.16): For anB-block event4, let

(/L)
qL,ﬂ(-A):< I1 QWA)> : (4.15)

IETL/B L.j
First we will note the following simple consequence of Theorem 3.1

Lemma 4.3 Leté be asin(3.26)and let ¢ and g be as in Theorem 3.1. If < cov/S, then for
any B-block event,

qus(A) < [pL,ﬁ(A)pL,/}(U(-A))]l/Z eﬁ(é+C3/~/§)_ (4.16)

Proof. By (3.21) and (3.19) we hawg_;(A) = <Qg)(f2”d whereA = .y, , 9i(A). Invoking
the integral representation (3.17), Corollary 3.2 and the definiti@gnfidm (3.26),

qup(A) < P s(A)E/D eferaavs), (4.17)

Now we may use (2.23) for the classical probability and we get (4.16). O

Next we will invoke the strategy of [24] to write a bound on the correlator in (3.29) in terms of
asum over Peierls contours. Let| ;g denote the set of connected s&ts” T, ;g with connected
complement. By aontourwe then mean the boundary of a 8¢te .#| /g, i.e., the setY of
nearest neighbor edges @p with one endpoint iy and the other endpoint iii® ¢ Ty ;g. The
desired bound is as follows:

Lemma 4.4 LetG,..., G, be incompatible good events and Ietbe the bad event with the
property thatrgi(B) = ¥(B) for all t € T, ,g. Then for all distinctty,t, € T, ;g and all i =
1,...,n,

oY

<Q9t1(gi>éet2(gf)>L < Z 2[4q. 4(B)] (4.18)

4 Y: Ye\ /B
t1€Y, trgY
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Proof. We begin by noting that # t; and (3.20-3.21) give us

[Ty

Qa, @) Qur,(G2) = (284+ 1) / dQ [Q)(Q]. (4.19)
T bty (GGt (GF)

Now pick Q € 6,,(Gi) N 6,(GF) and letY’ c T ,g be (the indices, of' g, of) the largest

connected component &-blocks—i.e., translates @fg by Bt, witht € T, ,g—such that; € Y’

and that?;(Gi) occurs for everyt € Y'. This set may not have a connected complement, so we

defineY e .#, ;g to be the set obtained by filling the “holes™ Bf, excepthat which contains.

Note that all translates of g corresponding to the boundary sitesibére of typeg; .

In order to extract the weight of the contour, we will have to introduce some more notation.
Decomposing the set of boundary edg&snto d components$: Y, ..., d4Y according to the co-
ordinate directions into which the edges are pointingj le¢ a direction wherg; Y| is maximal.
Furthermore, Ie’Ef?Xt be the set of sites ilV® which are on the “left” side of an edge ip Y. It is
easy to see that this singles out exactly half of the sité& ithat are at the endpoint of an edge
in 9;Y. Next we intend to show that the above setting implies the existence of aﬂﬁé‘g&
bad blocks whose position is more or less determined by

Recall thate; denotes the unit vector in thieth coordinate direction. Since the good events
satisfy the incompatibility condition (3.25), at least one of the following two possibilities must
occur: eithelQ € 7g(B) for at least half of Y?XtorQ € gt (B) for atleast half of e Y‘fx‘.
(Here? is the constant from the definition of incompatibility.) Indeed, if the former does not
occur then more than half dafe ij”“ mark a good block, but of a different type of goodness
thang;. Since this block neighbors onG-block, incompatibility of good block events implies
that a bad block must occérattice units along the line between these blocks.

Let us temporarily abbreviaté; = |Y‘J?X‘| and let% (Y) be the set of collections df; /2 sites
representing the positions of the aforementiokgd2 bad blocks. In light ofg(B) = U(B),
the above argument implies

Kj/2 Kj/2
0,(G) N6, ¢ | U () @ B) U ) 7 (9(B)) | - (4.20)
Y: YEJ//L/B (ti)e‘ﬁj Y) i=1 i=1

t1€Y, thgY

Using the inequalities from Remark 3.5 for the POV meastire Q 4, this implies

Kj/2 Kj/2
Q@) Quyien < D > H Qu, » + H Q%j (n,®) |- (4.21)
Y: Yeig (6)e6i(Y) \ i=1 i=1

t1€Y, trgY

Here the two terms account for the two choices of where the bad events can ocquisahe
direction with maximal projection of the boundary¥fas defined above. Since (2.22) allows us
to conclude that

Kj/2
< H Qu, (B)> < qup(B)<I72, (4.22)
i=1 L.B
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and the translation invariance of the torus statg_, yields a similar bound is valid also for the
second product, the expectation of each term in the sum in (4.21) is boundem,py&*(i/z.
The sum overt;) € €, (Y) can then be estimated dti2which yields

<Qet1<gi)éet2(gf)>L = > 2[4qL4B)]
’ Y: Ye B

t1€Y, trgY

Pz (4.23)

From here the claim follows by noting that our choice joimplies |Y?Xt| > %|6Y| (we may
assume thag_ 4(B) < Y4 without loss of generality). a

Proof of Theorem 3.7By Lemma 4.3, the assumptions Brand (3.27) we have, 4(B) < J. In-

voking a standard Peierls argument in toroidal geometry—see, e.g., the proof of [6, Lemma3.2]—
the right-hand side of (4.18) is bounded by a quantity) such that;(6) | 0ass | 0. Choosing
sufficiently small, we will thus have(d) < ¢, proving (3.29). The bound (3.28) is a consequence

of the chessboard estimates which yie@g)L,ﬂ < quLp(B) <o. O

4.3 Exhibiting phase coexistence.

In order to complete our general results, we still need to prove Propositions 3.9 and 3.10 whose
main point is to guarantee existence of multiple translation-invariant KMS states. (Recall that,
throughout this section, we work only with translation-invariant interactions.) The construction
of infinite-volume KMS states will be based on the following standard lemma:

Lemma 4.5 LetT, g be the factor torus and leky C T\ ,g be a block of Mx --- x M sites
at the “back side” ofT_ /g (i.e.,dist(0, Ay) > % — M). Given a B-block evertt, let

1 N
pLm(C) = Aul Z Qe 0)- (4.24)

teAm

Suppose tha(t@cnﬁ > cforall L > 1and some constante O, and define the state-), u.z
on local observables by
(PLM(C) B)Lg
Bhmp=—F 77"
b M:A (PLpC))Lp
If ()4 is a (subsequential) weak limit ¢f), \,; as L — oo (along multiples of B) followed
by M — oo, then(—), is a translation-invariant KMS state for inverse temperatfre

(4.25)

Proof. Translation invariance is a consequence of “conditioning” on the spatially-averaged quan-
tity (4.24). Thus, all we need to do is to prove that the limit state satisfies the KMS condition
(3.33). Lett — o™ be the unitary evolution off, . If B is a local observable that depends only

on the “front” side of the torus, the fact that the interaction is finite range and that the series (3.32)
converges in norm, uniformly if, implies

(" (B). pL.m(©] — 0 (4.26)
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in norm topology, uniformly irt on compact subsets @f. This means that for any bounded local
operatorsA and B on the “front” side of the torus,

(ALm(C) AB), <p|_ M(C)a_lﬂ(B)A>L LT, Lo oo (4.27)
Slncea(") (B) = a_ig(B)innorm, the staté — (A)_ m.z converges, ak — oo andM — oo,
toa KMS state at inverse temperatite U

Proof of Proposition 3.9By the symmetry assumption and (3.28) we know that
1—¢
—

(Qai, 5 = (4.28)

So, if pL m(Gk) is as in (4.24), the expectatidp, M(gk) L ¢ is uniformly positive. This means
that, for eactkk = 1, ..., n, we can define the state)L M:g k=1,...,n, by (4.25) with the

choiceC = Gi. Now, by (3.29) and the fact th&p + le -+ an = 1 we have

~ K) Ne
(le(gk))L,M;ﬁ >1-— 1—¢ k=1,...,n, (429)

for anyt on the “front” side ofT'_ g (provided thatM <« L/g). For(n + 1l)e < 1, the right-
hand side exceeds and so any thermodynamic limit Qf—)(k) m;p @sLk — oo andM — oo is

“domintated” byGg-blocks. Since, by Lemma 4.5, any such limit is a translation-invariant KMS
state, we hava distinct states satisfying, as is easy to check, (3.34). d

Proof of Proposition 3.10Consider the states-)("y,. , and(—) ;. , defined by (4.25) witlf’ =

G1 andC = G, respectively. From assumption (1) we know that: (pL.m(Gk)) > O for at least
onek = 1, 2 and so, for eaclf € [f1, f-], at least one of these states is well defined. We claim
that we cannot haver:)(g?n,,v.;ﬁ < 1 — 4¢ for bothk = 1, 2. Indeed, if that was the case then the
fact that

ALm(G1) + pLm(G2) + pLm(B) =1 (4.30)
and the bounds (3.28-3.29) yield

ata= <Q91 + ng>|_ B (le>|(_l)|v| B (le>|_ /3 (QQZ)L M; (QQZ)L B

+{pLmG) Qqy), 5 +(ALm(G2) Qay) , +(AmB)[L—Qs]) , (431)
< (1—-4de)(a1+ax) + 3¢

i.e., 4a; + ap) < 3. Sincee < Y4 (we may assume, without loss of generality, that 4¢ > 0)
this impliesa; + a; < 34 < 1 — ¢, in contradiction with assumption (1).

Hence, we conclude that the larger frqrﬁgk>ﬂ?M;ﬁ, k = 1, 2 (among those states that exist)
must be at least + 4¢. The same will be true about any thermodynamic limits of these states.
Let 5 C [f1, f2], k = 1, 2, be the set of e [f1, f2] for which there exists an infinite-volume,
translation-invariant KMS state-), such that(ng>,; > 1—4e. ThenE, U 5y = [f1, B2].

Now, any (weak) limit of KMS states for inverse temperatuggs— S is a KMS state af,

and so bothZ; and &, are closed. Sincefj, f,] is closed and connected, to demonstrate a
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pointin £, N &5 it suffices to show that botA; and £, are non-empty. For that we will invoke
condition (2) of the proposition: FroQg, ). 5, > 1 — 2¢ we deduce

A\ A A \@ 2¢
(Qau) g, = 1= Qaz + Qi) g, = 1 > 14, (4.32)

1—2¢ —

and similarly for(QgZ)f_z,)M;ﬁz. Thuspi € &y andfs, € =5, i.e., both sets are non-empty. [

5. APPLICATIONS

Here we will discuss—with varying level of detail—the five quantum models described in the
introduction. We begin by listing the various conditions of our main theorems which can be
verified without much regard for the particulars of each model. Then, in Sect. 5.2, we proceed
to discuss model (1) which serves as a prototype system for the application of our technique.
Sects. 5.3-5.5 are devoted to the details specific for models (2-5).

5.1 General considerations.

Our strategy is, more or less, self evident. For each model we will need to apply one of the two
propositions from Sect. 3.3, depending on whether we are dealing with a “symmetry-breaking”
transition (Proposition 3.9) or a temperature-driven energy-entropy transition (Proposition 3.10).
The main input we need for this are the inequalities (3.28-3.29). These will in turn be sup-
plied by Theorem 3.7, provided we can check the condition (3.27). Invoking Theorem 3.1, which
requires our model satisfies the mild requirements (3.7—-3.9), condition (3.27) boils down to show-
ing thatp 4(B) is small for the requisite bad event. It is, for the most part, only the latter that
needs to be verified on a model-specific basis; the rest can be done is some generality.

We begin by checking the most stringent of our conditions: reflection positivity. Here, as
alluded to in Remark 2.5, we are facing the problem that reflection positivity may be available
only in a particular representation of the model—which is often distinct from that in which the
model isa priori defined. The “correct” representation is achieved by a unitary operation that, in
all cases at hand, is a “product rotation” of all spins.

There are two rotations we will need to consider; we will express these by means of unitary
operatorsOa and Og. Consider the Hilbert spackt, = @, [C*™!]; and let(§, §', )
have the usual form—cf (2.1)—0Hr, . In this representation, the action @k on a statéy )

Hr, is defined by

Oaly) = [] €25€%%y). (5.1)

reT.

The effect of this transformation is the cyclic permutat§h— § — § — § of the spin
components. The second unitaBg, is defined as follows:

Cely)= [] €. (52)

r ETL
odd-parity
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The effect of Og on spin operators is as follows: For even-parifythe spin operators are as
before. For odd-parity, the componen&’ remains the same, while bof and § pick up a
minus sign. Here are the precise conditions under which our models are reflection positive (RP):

Lemma 5.1 Let Oy and Qs be unitary transformations defined above. Then:

(@) OaH O, is RP for models (4-5), and for model (2) witix) = P1(x?) + xP2(x?).
(b) OgHOg'is RP for models (1,3).

(c) 0Oa0gH 0510t is RP for model (2) wittP(x) = P1(x?) — xP2(x?).

Proof. (a) Under the unitaryO, map, the Hamiltonians of models (4-5) are only using xhe
and z-components of the spins, which are both real valued. The resulting interaction couples
nearest-neighbor spins ferromagnetically, and thus conforms to (2.19).

(b) For two-body, nearest-neighbor interactio@g, has the effect

§§ - -9, a=xz (5.3)
while the 'S, terms remain unchanged. Writing
§9 =-308)31) (5.4)

we can thus change the sign of all quadratic terms in the interaction and, at the same time, ex-
press all operators by means of real-valued matrices. Under the conditions given in Sect. 1, the
Hamiltonians in (1.1) and (1.3) are then of the desired form (2.19).

(c) Finally, for model (2), the effect dDg is that the minus sign iP(x) = P1(x?) — xP(x?)
becomes a plus sign. Then we apply the argument in (a). O

Our next item of general interest are the “easy” conditions of Theorem 3.1 and Theorem 3.7.
These turn out to be quite simple to check:

Lemmab.2 The transformed versions—as defined in Lemma 5.1—of the five models from Sect. 1
satisfy the conditions (3.7-3.9) with some finite R and sgniredependent of. Moreover, for
each of the models (1-6) there exists a constant C such3t2é)holds with = C/S for all S.

Proof. All interactions involve at most two spins R = 2 suffices to have (3.7). Writing
the interaction in the form (3.1), the normalization by powersSomakes the corresponding
norms|hr| bounded by a quantity independent®fThis means that (3.8) holds in any finite set
(including the torus, with proper periodic extension of és). As to the Lipschitz bound (3.9),
in light of (2.11) we know thaf2 — [S']q is Lipschitz for alla = X, y, z; the same will hold for
powers of spins by using the upper-symbol representation multiple times. S o= Qr +
0O(1/S8), and similarly for the lower symbol, the same argument provesitkatO(1/S). O

To summarize our general observations, in order to apply Propositions 3.9-3.10, we only need
to check the following three conditions:
(1) The requisite bad event is such ti¥gtB) = B forall t € T /g.
(2) The occurrence of different types of goodness at neighbdibdpcks implies that an in-
termediate block is bad—cf condition (2) of Definition 3.6.
(3) The quantityp, 4(B) is sufficiently small.
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In all examples considered in this paper, conditions (1-2) will be checked directly but condi-
tion (3) will require estimates specific for the model at hand. (Note that, since we are forced to
work in the representation that makes the interaction reflection positive; the conditions (1-3) must
be verified inthis representation.)

Remark5.3 It is noted that all of the relevant classical models—regardless of the sign(s) of the
interaction(s)—are RP with respect to reflections in planes of sites. We will often use this fact
to “preprocess” the event underlyimg 5(B) by invoking chessboard estimates with respect to
these reflections. We will also repeatedly use the subadditivity propetty e$ p, ;(A) as
stated in [6, Theorem 6.3]. Both of these facts will be used without (much) apology.

5.2 Anisotropic Heisenberg antiferromagnet.

Consider the reflection-positive version of the Hamiltonian (1.1) which (in the standard represen-
tation of the spin operators) on torlis takes the form

Ho=-> S2LSS - 199 + §5). (5.5)
(r,r’)
(The classical version dfl, is obtained by replacing eacf by the corresponding component
of §Q,.) The good block events will be defined on &2 .- x 2 block Ag—i.e., B = 2—and,
roughly speaking, they will represent the tfesromagneticstates in the-direction one can put
on Ag. Explicitly, let G, be the event tha®, = (6;, ¢r) satisfiesé.| < « foralr € Ag and
letG_ be the eventthdt, — 7| < x forallr € Ag.

Theorem 5.4 Letd > 2 and letO < J;, J» < 1 be fixed. For eacla > 0 and eachx > O,
there exist constants ¢ anfiy and, for all # and S with gy < g < ¢S, there exist two distinct,
translation-invariant KMS state(s—)ljjr and (=) with the property

(Qa.); = 1-e. (5.6)
In particular, for all suchg we have

(), —(s), > 0. (5.7)

Proof. Let B = (G, U G_)° be the bad event. It is easy to check titatacts on only via
translations. Moreover, i, andG_ occur at neighboring (but disjoint) translates/of, then
the block between these is necessarily bad. In light of our general observations from Sect. 5.1,
we thus only need to produce good boundgpon(B), the classical probability of bad behavior.
Since these arguments are standard and appear, for all intents and purposes, in the union of
Refs. [22, 23, 41, 10], we will be succinct (and not particularly efficient).

Let A = min{(1 — Jy), (1 — J»), 2/aq} whereag = d29~1 and fixs > 0 with 5 <« 1 such that

1—cosy — Asirfx < 0. (5.8)

We will start with a lower estimate on the full partition function. For that we will restrict attention
to configurations wher@,| < 7, for all r € T_. The interaction energy of a pair of spins is
clearly maximized when both theandy-terms are negative. This allows us to bound the energy
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by that in the isotropic cas# = J, = 1—i.e., the cosine of the angle between the spins. Hence,
the energy between each neighboring pair is at rhestosy). We arrive at

Z(p) > [V (e, (5.9)

where the phase volumé(y) = 2z[1 — coq/2)] may be small but is anyway independenifof

To estimate the constrained partition function in the numeratpr @i B), we will classify the
bad blocks into two distinct categories: First there will be blocks where not all spins are within
of the pole and, second, there will be those bad blocks which, notwithstanding their Ising nature,
will have defects in their ferromagnetic pattern. We denote the respective evdfitahg5,. To
boundp, 4(B1), since we may decorate the torus from a single site, we may as well run a single
site argument2times. We are led to consider the constrained partition function where every site
is outside its respective polar cap. It is not hard to see that the maximal possible interaction is
1 — A sirf x; we may estimate the measure of such configurations as full. Thus,

pLs(By) < od Ar " opd@—cosy— Asmzx) (5.10)
V()
Note that, by (5.8), this is small wheh> 1.

The less interesting Ising violations are estimated as follows: The presence of such violations
implies the existence of a bond with nearly antialigned spins. We estimate the interaction of this
bond at co&«). Now there ar@y bonds on any cube so when we disseminate—using reflections
through sites—we end up with at least one out of exgrponds with this energy. The rest we
may as well assume are fully “aligned”—and have energy at least negative one—and we might
as well throw in full measure, for good measure. We thus arrive at

1
pLp(Bo) < &g W) exp[ﬁd (a coq2x)+1— a cos;y)] (5.12)

as our estimate for each such contribution to the Ising badness. Here the prajaatoounts
for the choice of the “bad” bond. Sincgdy > 2/, the constant multiplyingd in the exponent
is less than the left-hand side of (5.8); hepgegs(B2) < 1 oncef > 1 as well. It follows that,
given J;, J, < 1, we can finds, sufficiently large so tha s(B) < pL s(B1) + pLs(B2) < 1
onceff > fo. The statement of the theorem is now implied by Proposition 3.9 and-the
symmetry of the model. a

5.3 Large-entropy models.

Here we will state and prove order-disorder transitions in models (2-3). As in the previous sub-
section, most of our analysis is classical. While we note that much of the material of this section
has appeared in some form before, e.g., in [15, 31, 41, 10, 20, 21], here we must go a slightly
harder route dictated by the quantum versions of reflection positivity. Further, in this work we
will treat a problem which is stated with greater generality than heretofore.

We start with the observation that model (2) wittx) = P1(x?) — xP»(x) is unitarily equiva-
lent, via a rotation of all spins about tzeaxis, to the same model WitA(x) = P1(x?) + xPo(X).
Hence, it suffices to consider only the case the plus sign. We thus focus our attention on models
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with classical Hamiltonians of the form

p
H*@ == > a@ o)  &=0 (5.12)
(r,r’y k=1

where(Q; ¢ Q,) denotes (a variant of) the usual dot prod@&? QY — QY + QP Q® for
model (3) and the “dot product among the first two components” for model (2). We now state our
assumptions which ensure that models (2) and (3) have the large entropy property.

Let us regard the coefficients in (5.12) as an infinite (but summable) sequence, generally
thought of as terminating whelkn = p. The terms of this sequence may dependposo we
will write them asc® = (c{P, c{”, ...); we assume that thé*-norm of eachc(® is one. Let
¢, [-1, 1]— R be defined by

¢p(x) = > aPx . (5.13)
k>1

Here is the precise form of the large-entropy property:

Definition 5.5 We say that the sequence (¢(P)) has the large entropy propertyf there is a se-
quence (ep) of positive numbers with €, | O such that the function

Ap(S) = (1 — €ps) (5.14)

converges—uniformly on compact subsets of [0, co)—to a function S — A(S) with the boundary
values

lim A(s)=1 and lim A(s)=0 (5.15)
s—0t $—00

Remark5.6 Despite the abstract formulation, the above represents a reasonable mechanism to
amalgamate all known examples and to provide plenty of additional generality. Furthermore, the
condition as stated is readily verified. For example considgéPavhich terminates ak = p.

Then extracting a “density functiorg: [0, 1]— [0, c0) by ¢ (1) = C|,p), it is easy to see that if

#(0) = 0, we can generically usg = Y,. This already covers most cases of interest including

the models in [20, 21], which have received attention. Finally it is remarked that the large entropy
condition as formulated above ot a strict requirement for these methods. Indeed, as will
become clear when the details unfold, there is a specific obstacle dictated by dimension and other
details which, in the above specific formulation, is overcome by demanulingl.

Our analysis begins with the definition of good and bad events. First we will discuss the
situation on bonds: The bond, r’) is considered to benergeticallygood if the attractive energy
is larger (in magnitude) than some strictly positive consitgatnumber of order unity depending
on gross details, where we recall that 1 is the optimal value), i.e., if

Ep(Q 0 Q) > b, (5.16)

Theentropicallygood bonds are simply the complementary events (so that every bond is a good
bond). Crucial to the analysis is the fact, ensured by our large entropy assumption, that the
crossover between the energetic and entropic phenotypes occurs when the deviation between
neighboring spins is of the ordefe,.
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On to the blocks; we define the good block evefigg and Ggis on 2 x --- x 2-block Ag
as follows: Gq is the set of spin configurations where every bond\gnis energetically good
while Ggis collects all spin configurations where every bond &g is entropically good. The
requisite bad event is defined Bs= (Gorg U Gais)°.

Our fundamental result will be a proof that the density of energetically good blocks is discon-
tinuous:

Theorem 5.7(Large-entropy models)Consider a family—indexed by integers>pl—of quan-
tum spin systems with the Hamiltonian

H® =—>" €,(S%(S 0 S)), (5.17)
(r,r’)

(with both interpretations ofS ¢ S-) possible) and suppose that the sequeé®) 1, giving
rise to &, has the large entropy property in the sense of Definition 5.5. Then there és@Jl)
for which the associated energetic bonds have discontinuous density in theSaggantum
systems. Specifically, for every> 0 there is a g so that for any p> po and all S sufficiently
large, there is an inverse temperatyfe(which depends o) at which there exist two distinct,

translation-invariant KMS states-)%® and (—) % with the property

Qo3> 1—¢ and (Qgu)4°>1—e. (5.18)

With a few small additional ingredients, we show that the above implies that the energy density
itself is discontinuous:

Corollary 5.8 There exist constants b and, bboth strictly less thar,, such that the energy
densitye(f)—defined via th@-derivative of the free energy—satifies

>1-0, if B> pr,
e(B) 1~ b= (5.19)
<b, it g < B
for all p sufficiently large.
The bulk of the proof of this theorem again boils down to the estimape @i 3):

Proposition 5.9 There exist p € (0,1), A > 0, C < oo, and for each be (0, bg] there
exists p < oo such that

L|im pLs(B) < C(ep)? (5.20)
— 00
hold forall p> ppand all g > 0.

Apart from a bound omp_ 4(B), we will also need to provide the estimates in condition (2) of
Proposition 3.10. Again we state these in their classical form:

Proposition 5.10 There exist constants;G< oo, p; < co and A; > 0 such that the following
is true for all p > p;: First, at § = 0 we have

lim suppL 0(Gora) < Ca(ep)™t. (5.21)

Lo oo
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Second, iffy € (0, c0) is large enough, specifically @? > ¢,21+41), then

lim SuppL,ﬂO(gdis) < Cl(ép)Al. (522)

L—>oo

The proof of these propositions is somewhat technical; we refer the details to the Appendix,
where we will also prove the corollary.

Proof of Theorem 5.ANe begin by verifying the three properties listed at the end of Sect. 5.1. As
is immediate from the definitions, neighboring blocks of distinct type of goodness must be sepa-
rated by a bad block. Similarly, reflectiofisact on3 only as translations. To see that the same
applies to the “complex” reflection%, we have to check thd is invariant under the “complex
conjugation” map. For that it suffices to verify that(Q2) ¢ 6(Q") = Q¢ Q' for anyQ, Q' € .%5.
This follows because both interpretations@fe Q are quadratic in the components @fand
because changes the sign of thecomponent and leaves the other components intact.

Letb < by wherely is as in Proposition 5.9. Then (5.20) implies that; (8) « 1 oncee, K
1. Quantum chessboard estimates yi@jA)L,ﬂ < qr,s(A) which by means of Theorem 3.1
implies that both Qg )10 and (Qg, ..}, are close to one onde > 1 and+/S is sufficiently
large compared witl#, (referring to Proposition 5.10). Theorem 3.7 then provides the remaining
conditions required for application of Proposition 3.10; we conclude that there exits=a
[0, Bo] and two translation-invariant KMS states)%® and(—)§° such that (5.18) hold. [

5.4 Order-by-disorder transitions: Orbital-compass model.

We begin by the easier of the models (4-5), the 2D orbital compass model. We stick with the
reflection-positive version of the Hamiltonian which, ©p, is given by

Ho= > > §95%,. (5.23)
reT a=X,z

with &, &, & denoting the unit vectors in (positive) coordinate directions. The nurBbeill
only be determined later, so we define the good events for geBef@ivenx > 0 (with x <« 1),
let G, be the event that all (classical) spins oB & B block Ag satisfy

1Q; - &] > codk). (5.24)
Let G, be the corresponding event in thspin-direction. Then we have:

Theorem 5.11(Orbital-compass model)Consider the model with the Hamiltonigh.4). For
eache > Othere existc > 0, Sy > 0and c> 0 and, for eachp with B < f < cV/S, there is a
positive integer B and two distinct, translation-invariant KMS sta(te;s(ﬂx) and ( —)22) such that

(an)ff) >2l-¢, a=xz (5.25)

In particular, for all # with g < g < ¢S,
(s 283 >821-e. a=xz (5.26)
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The proof is an adaptation of the results from [6, 7, 5] for the classical versions of order-by-
disorder. LetB = (Gx U G,)¢ denote the requisite bad event. By definitighis invariant under
reflections of (classical) spins through theplane; i.e.g(B) = B. Since the restrictions frori
are uniform over the sites ing, we haved,(B) = zg(B). S0, in light of our general claims from
Sect. 5.1, to apply the machinery leading to Proposition 3.9, it remains to show theB) is
small if # > 1 and the scal® is chosen appropriately. For that ldt°(Q) denote the classical
version of the Hamiltonian (5.23). By completing the nearest-neighbor terms to a square, we get

@) =2 > 3@ - Q% P+ S [V (5.27)

reT a=x,z reT,

HereQ!® denotes the:-th Cartesian component 6f; .

Unforuntately, the everif is too complex to allow a direct estimatef 4(53). Thus, we will
decomposés into two eventsBg andBsy depending on whether the “badness” comes from bad
energy or bad entropy. Let > 0 be a scale whose size will be determined later. Explicitly, the
eventBg marks the situations that either

QY] > ¢ A (5.28)

for some sita € Ag, or
Q@ — Q" | > A /B, (5.29)

for some pair andr + &,, both in Ag. Herec,, ¢, are constants to be determined momentarily.
The eventBsy is simply given by

Bsw = B\ Be. (5.30)
By the subadditity property qf, z, we havep g(B) < pr,s(Be) + pr s(Bsw)-

SinceBg implies the existence of energetically “charged” site or bond with energy @beyt
above its minimum, the value @f_ ;(Bg) is estimated relatively easily:

pLs(Be) < cpBZeFN/E, (5.31)

for some constantsandé. (HerecB? accounts for possible positions of the “excited” bond/site
andp comes from the lower bound on the classical partition function.)

As to Bsw, here we will decompose further into more elementary events: Given a collection
of vectorswy, . . ., Ws that are uniformly spaced on the first quadrant of the main ciwléf =
[Qe.%: Q-8 =0Q% >0,Q2 > 0}, we defineB), to be the set of configurations Bsw
such that

19 W0 +1QY . WY| > cogA), T € As. (5.32)

SinceBsy is disjoint from Bg, on Bsy the y-component of every spin is less than ordeand
any neighboring pair of spins differ by angle at masfup to a reflection). Hence, by choosicg
andc, appropriately, any two spins ifvg will differ by less thanA from some#;, i.e.,

S
Bsw c | B (5.33)

i=1



QUANTUM SPIN SYSTEMS AT FINITE TEMPERATURE 31

provided thassA exceeds the total length of;"". To estimatep, /;(B(') ) we will have to cal-
culate the constrained partition function for the evﬁgﬁ, The crucial steps of this estimate are
encapsulated into the following three propositions:

Proposition 5.12 Consider the classical orbital compass model with Hamiltonia® (&) in
(5.27)and suppose that « 1. Thenforalli=1,...,s

pLs(BY) < 22Bg=BA(FLAW)-FL @) (5.34)

where, for eachv € .7+ = (U € .%5: ¥ - & =0,9% > 0,0 > 0},

. 1 e\ T 0
FL’A(W) = —F |Og dQ (ﬁ ) L g #H Q) ( H 1{Qr~W2COS(A)})- (535)

T
(F)ITL 2 reT,

Proposition 5.13 For eache > 0there exist$ > 0 such that if

1
SA? > 5 and SA% <, (5.36)
then for all L sufficiently largelF A (W) — F(W)| < e holds for any e .#;"* with F given by
1 dk
FW) = log D 5.37
@ =3[ Grp'ob® (537)

Here Dy (W) = W2|1 — €412 4 W2|1 — ele|2,
Proposition 5.14 The functioni — F (W) is minimized (only) byv = +&, andw = +&,.

The proofs of these propositions consist of technical steps which are deferred to the Appendix.
We now finish the formal proof of the theorem subject to these propositions:

Proof of Theorem 5.11 completeds already mentioned, the bad event is invariant under both
spatial reflectiong; and the “internal” reflectiow; henced,(B) = zgi(83) as desired. Second, if
two good distinct events occur in neighboring blocks, 8ayand Ag + B&;, then at least one

of the bonds between these blocks must obey (5.29); i.e., the\lbok &, is (energetically) bad.
Third, we need to show that_ 4 (B) is small. We will setA andB to the values

A=p"% and B=~logg. (5.38)

These choices make ;(Bg) small oncef > 1 and, at the same time, ensure that (5.36) (even-
tually) holds for any giver. Since we have (5.34), Propositions 5.13-5.14 and the facBé‘j,@t
being a subset df, is empty whenw; is within, say/ -/, of £&, or +&, tell us that

pLp(Bsw) < se™2E° (5.39)

onceB > 1. Butsis proportional td/, and so this is small fof sufficiently large. We conclude
that asp — oo, we havep z(B) — 0 for the above choice d@ andA.

Having verified all conditions under which the general theory appliess trymmetry of the
model puts us in a position to apply Proposition 3.9. Hence, for all sufficiently fartieere exist
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two infinite-volume, translation-invariant KMS states)$ and(—)}? such that (5.25) holds. To
derive (5.26), we note that, for any vectiire .% and any single-spin coherent stgg

S WIQ) = S(W - Q)|Q) + O(VS). (5.40)

Hence,(S-8)2Qg, = 52Qg, + O(S5¥?), where all error terms indicate bounds in norm. Invoking
(5.25), the bound (5.26) follows. O

Remark5.15 The 3D orbital-compass model is expected to undergo a similar kind of symmetry
breaking, with three distinct states “aligned” along one of the three lattice directions. However,
the actual proof—for the classical model, a version of this statement has been established in [7]—
is considerably more involved because of the existence of (a large number of) inhomogeneous
ground states that are not distinguished at the leading order of spin-wave free-energy calculations.
We also note that an independent analysis of the classical version of the 2D orbital-compass
model, using an approach similar to Refs. [6, 7] and [38], has been performed in [37].

5.5 Order-by-disorder transitions: 120-degree model.

The statements (and proofs) for the 120-degree model are analogous, though more notationally
involved. Consider six vectofg, . . ., Vg defined by

~ A ~ 1a 3 ~ 1a A

V1 =&, Vo = 58+ %ez, V3 = —38& — 5§ (5.41)
~ A ~ 1a 3 A ~ 1a 3

V4 == _exj V5 == _ﬁex - %ezj V6 == Eex - \/7762. (5.42)

As is easy to check, these are the six sixth complex roots of unity. The reflection-positive version
of the Hamiltonian orl'; then has the form

H= Z z (& vZa)(S‘Jréa ’ \7211): (543)

reT, a=1,2,3

where&,, &, & is yet another labeling of the usual triplet of coordinate vecto&inTo define
good block events, let > 0 satisfyx « 1 and letGy, ..., Gs be theB-block events that all
spinsQ;, r € Ag, are such that

Q, -V, > codk), a=1...,6, (5.44)
respectively. Then we have:

Theorem 5.16(120-degree model) Consider the 120-degree model with the Hamiltor(ad 3)
For eache > Othere existc > 0, Sy > 0and c> 0and, for eachp with B < # < cV/S, there

is a number B and six distinct, translation-invariant states ", « = 1, ..., 6, such that
(Qa)’>1-¢,  a=1...6 (5.45)

In particular, for all # with g < g < ¢S,
(s .va);“) >S(1—¢), a=1,...,6 (5.46)
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Fixx > 0 (withx <« 1) and letB andA be as in (5.38). LeB = (G, . .., Gs)© be the relevant
bad event. It is easy to check thalts invariant with respect te and, consequently}(5) = B
forallr € T g as required. Introducing the projections

QY =Q, -9,, a=1,...,6, (5.47)
and noting that, for any vectev € .75,
3
> WY, = S[1— (W87, (5.48)
a=1,2,3

the classical Hamiltoniahi *° () can be written in the form

Ho@ =23 3 @ -0 P42 > @ 82— T (549)
reT, a=1,2,3 reTp
As for the orbital-compass model, we will estimaie; (B) by further decomposing into more
elementary bad events.
Let B denote the event that the blogks contains an energetically “charged” site or bond.
Explicitly, Bg is the event that either for sones Ag we have

A
Q- &y| > g (5.50)
or, for some nearest-neighbor pé&itrr + &,) in Ag, we have
N . A
|Qr - Vou — Qr+éa . V2a| > CZE. (551)

Herec; andc, are constants that will be specified later. The complementary pd&tvafl be
denoted byBsy, i.€.,

Bsw = B\ Be. (5.52)

By the fact thaf3sw C Bg, on Bsw the energetics of the entire block is good—i.e., the configura-
tion is near one of the ground states. Clearly, all constant configurations witly zenmponent
are ground states. However, unlike for the 2D orbital-compass model, there are other, inho-
mogeneous ground states which make the treatment of this model somewhat more complicated.
Fortunately, we will be able to plug, more or less directly, in the results of [6].

As for the orbital-compass model, to derive a good boung,0n(Bsw) we will further parti-
tion Bsy into more elementary events. We begin with the events corresponding to the homoge-

neous ground states: Given a collection of vectiars = 1, ..., s, that are uniformly spaced on
the circle.; c . in thexz-plane, we definﬁg) to be the subset dfsy on which
Q. -W; > coqA), r e Ag. (5.53)

To describe the remaining “parts B&w,” we will not try to keep track of the entire “near ground-
state” configuration. Instead, we will note that each inhomogeneous ground state contains a pair
of neighboring planes im\g where the homogenous configuration gets “flipped” through one

of the vectordry, ..., Ve. (We refer the reader to [6], particularly page 259.) Explicitly, given a
lattice directior = 1, 2, 3 and a vectow e .71, letW;" denote the reflection of; throughtz, ;.



34 M. BISKUP, L. CHAYES AND S. STARR

Foreachj =1,..., B — 1, we then define‘!Sfxi,)j to be the set of spin configurationsffay such
that for allr € Ag,

Q, -W; > cogA) if r-é& =j,
- . R ) (5.54)
Q- W > coqA) if r-g=j+1.

(Note thatr -&, = j means that the-th coordinate of is j. Hence, orB‘S,)j , the spins are neal;
on thej-th plane orthogonal t§, and neai¥; on thej + 1-st plane inAg.) The conditions under
which these events form a partition Bfis the subject of the following claim:

Proposition 5.17 Givenx > 0, there exist ¢, ¢, > 0 such that ifBg and Bsy are defined as in
(5.50-5.52) and iA and B are such that B <« ¥ < 1and sA > 4z, then

s B-1
Bsw C U(Bg,” vy U zsg‘}j) (5.55)
i=1 0=1,2,3 j=1

Next we will attend to the estimates pf ; for the various events constitutirigj As for the
orbital-compass model, the evdsy is dismissed easily:

pLs(Be) < cpB3e FA/B, (5.56)
wherec and¢ are positive constants. As to the eve,ﬁg@, here we get:
Proposition 5.18 For eachx > 0there exist® > 0 such that if§ and A obey

SA? > % and SA% <, (5.57)
then for all L sufficiently large,

pLs(BY) <e B =1, s (5.58)
Herep,(x) > Oforall x <« 1.
For the “inhomogeneous” events the decay rate is slower, but still sufficient for our needs.

Proposition 5.19 For eachx > 0 there exist$ > 0 such that if, A and¢ obey(5.57) then
forallj =1,...,B—1alla =1, 2, 3and all L sufficiently large,

pLpB) <e =1 s (5.59)
Herep,(x) > Oforall k « 1.

Again, the proofs of these propositions are deferred to the Appendix.

Proof of Theorem 5.16 completetlve proceed very much like for the orbital compass model.
The core of the proof again boils down to showing thats(B) is small, providedB is chosen
appropriately. LetA andB be related tq as in (5.38). By (5.56), this choice makgs s (Bg)
small and, at the same time, makes (5.57) eventually satisfied for anydfixed. Invoking
Propositions 5.18-5.19, and the subadditivityof> p_ 4(A), we have

pLp(Bsw) < s(e B7®) 4 3B B72() (5.60)
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which by the fact thas = O(A™!) impliesp. s(Bsw) < 1 onceg is sufficiently large. Using
thatp._,ﬂ(B) < pL,ﬂ(BE) + pL,ﬁ‘(BSW)’ the desired bOUﬂﬂL,ﬁ(B) « 1 follows.

It is easy to check, the bad evdpiis preserved by “complex conjugationas well as reflec-
tions and so thé’s act on it as mere translations. Moreover, orc& 1, if two distinct types
of goodness occur in neighboring blocks, all edges between the blocks are of high-energy—any
block containing these edges is thus bad. Finally, the model on torus is invariant under rotation
of all spins by 60 in thexz-plane. This means that all conditions of Proposition 3.9 are satisfied
and so, forg > 1 andS > f2, the quantum model features six distinct states obeying (5.45).
From here we also get (5.46). a

6. APPENDIX

This section is devoted to the proofs of various technical statements from Sects. 5.3, 5.4 and 5.5.
Some of the proofs in the latter two subsections are based on the corresponding claims from [6, 7].
In such cases we will indicate only the necessary changes.

6.1 Technical claims: Large-entropy models.

Consider a sequende'P) satisfying the large-entropy property and assume, without loss of
generality, that|¢®|| = 1 for all p > 1. Our goal here is to provide the bounds jang(5B)

and the asymptotic statements concerning the dominance of the two types of goodness which
were claimed in Propositions 5.9 and 5.10. We begin with a lower estimate on the full partition
function.

Lemma 6.1 Lett > 0 be fixed. Then there existg g co and constantsgc, € (0, o) such
thatforall p > pyandallg > 0,

liminf (z, )Y > max{ciep 4% ¢yl (6.1)
L—oo

Proof. We will derive two separate bounds on the partition function per site. Focussing on the
cases whe2; ¢ Q,/ involves all three components of the spins, let us restrict attention to con-
figurations when every spin is within angtg/e, of the vector(0, 0, 1), wherec is a constant to

be determined momentarily. L& andQ’ be two vectors with this property. Then the (diamond)
angle betwee andQ' is less than , /e, and so

Qo Q' > cog2c,/6p) > 1— 2¢%,, (6.2)

Choosing 22 = t, we thus have ¢ Q' > 1 — te,. This means that the energy of any bond
in the configuration obeying these constraint is at le§st); while each spin has at least4
cog(c, /€p) X %czep surface area at its disposal. This implies nt%\_t)l/'-d is bounded by the first
term in the maximum witle,; ~ %cz. The other interpretation @@, ¢ Q,. is handled analogously.

In order to derive the second bound, we will restrict all spins to a sector of angular apesture
e.g., the one described & = (Q!, Q2, Q3% e .#2: Q' > 1/4/2}. This has area which
is a fixed positive number. Moreover, the constraint ensures that the interaction between any
two spins is non-positive; the partition function per site then boils down to the entropy of such
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configurations. To evaluate this entropy, we fix the configuration on the even sublattice. Every
spin on the even sublattice is then presented witHspots” on this sector which it must avoid.

The area of each such spot is a constant tiepedt follows that(ZL)l/Ld > a— O(ep) which is
positive oncep is sufficiently large. O

Our next bound concerns the constrained partition funcifi(£) obtained by disseminating
a particular patterC of ordered and disordered bonds (i.e. energetically and entropically good
bonds) over the torus, whehis a genuine mixture of the two. That is, we assume thabntains
bonds of both phenotypes. We remark that this dissemination is carried out by means of reflec-
tions in planes of sitegwhich is permissible by the nearest-neighbor nature of the interaction).
Recall thatay = d29-1 is the number of bonds entirely contained in the 2. - x 2 block Ag.

Lemma 6.2 Lett > 0be such that

1-(1-b)/ag
and
def . 1 1 1 b

Then there exists a constant & oo such that for any? > 0 and any patterrnC of ordered and
disordered bonds (i.e. energetically and entropically good bonds) gmontaining at least one
bond of each phenotype,

lim sup ZE“X(E)l/'-d < cgmax{ciep €970 o) (ep)”. (6.5)
L—oo

Proof. Fix a patternC as specified above. As usual, we call a bond disordered if it is entropically
good. Letf, denote the fraction of disordered bonds in pati@riet us call a vertex an “entropic
site” if all bonds connected to it are disordered. (Note that this has two different, but logically
consistent, connotations depending on whether we are speaking of a verigxonin T .)
Let fs denote the fraction of entropic sites ifh Upon dissemination (by reflections through
planes of sites), these numbefigsand fs will represent the actual fractions of disordered bonds
and entropic sites ifif , respectively. Now each disordered bond has an energetic abpvaisile
we may estimate the energy of each ordered bond by 1. For each entropic site we will throw in
full measure so we just need to estimate the entropy of the non-entropic sites. Here we note that
each ordered bond disseminates into a “line” of ordered bonds, upon reflections. If we disregard
exactly one bond on this “line of sites”, then we see that there is a total measure proportional to
O(e,';‘l). Since this entropy is shared by thevertices on this line, the entropy density of each
vertex on this line i< (ep) in theL — oo limit. This is an upper bound for the entropy density
for each non-entropic site.

The bounds on energy show that the Boltzmann factor is no larger tii&n f@+/dbh —
efdll-A-Dfl \We thus conclude that, for some const&nt

limsup Z, (L)Y < Gy(ep)t oefAli=-A-D Tl (6.6)

L—ooo
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Now, we may write the right-hand side as

1—(1—b) fy
Cg(fpe/?dAp(t)) Ap(t) (Ep)A(E) (6.7)
where - (A—byf
AL)=1—fo————— 2P 6.8
©=1-f- "3 (6.8

Since L contains at least one entropic bond, we knfyv> 1/a4. Our choice oft guarantees
thatl— (1-b)f, <1—(1—b)/ag < Ap(t) and so the complicated power in (6.7) is bounded
by 1. We may use the famous ident/Y'~* < max(X,Y), true wheneveiX,Y > 0 and
0 < 4 < 1, to bound the term with the complicated power in (6.7) by the maximum in (6.5).
(We setX = ciep €/9%® andY = c,, absorbing extra order-1 constants into our evertglit
remains to show tha (£) exceedsA in (6.4) whenevelL contains both phenotypes of bonds.

We will derive a relation betweeffy and fy, that holds whenevef contains both phenotypes
of bonds. We may give the argument in either picture—where we restrict to the small/hjock
or where we consider the full tord§ after disseminating—which are entirely equivalent since
the fractions of entropic bonds and sites are the same. We will give the argument in the small
2x ---x 2blockAg. SinceL contains bonds of both phenotypes there are at least two vertices
in Ag each of which “emanates” bonds of both phenotypes. We mark these sites, and for each
of them we mark one of the incident entropically good (disordered) bonds. We now consider
the bonds ofAg to be split into half-bonds each of which is associated to the closest incident
vertex (disregarding the midpoints). We label each half-bond as entropic or energetic, according
to whether it is half of a full bond which is entropically or energetically good.

Let H be the total number of entropic half-bonds. Now note that for each entropic vertex, all
d of the half-bonds emanating from it (and contained\ig) are “entropic half-bonds”. We also
have at least two additional entropic half-bonds associated to the two marked sites. Therefore
the number of entropic half bonds satisfies the boking d29 fs 4+ 2. (Note that there are”Z;
entropic sites.) Since there ara;2= d29 total half-bonds inAg, the proportion of entropic half
bonds is at leasts + 1/a4. At this point let us observe that the proportion of entropic half-bonds
is exactly the same as the proportion of entropic full-borfgsTherefore

1
fo > fs+ a (6.9)
Plugging this into the formula foA (£) we thus get
1 1-(1-b)fy
AL)>14+ ——fp— ———. 6.10
(L) M A (6.10)
Allowing fy, to take arbitrary values in [@], the right-hand side is minimized by one of the
values in the maximum in (6.4). Henc&(L£) > A whereby (6.5) follows. O

Proof of Proposition 5.9As usual, we consider events disseminated by reflections in planes of
lattice sites. Leby < ﬁ If b < by, then, as a calculation shows, the bound (6.4) holds as well
as (6.3) fort such thatA,(t) > 1 —b. Such at can in turn be chosen by the assumption that

the model obeys the large-entropy condition. (This is where we neeg ibaufficiently large.)
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Hence, the bound in Lemma 6.2 is at our disposal. Now the maximum on the right-hand side
of (6.5) is a lower bound on the full partition function per site; the lemma thus gives us bounds
onp 4 of the events enforcing the various patterns/of SinceB can be decomposed into a
finite union of such pattern-events, the desired inequality (5.20) follows. O

Proof of Proposition 5.10Again we work with events disseminated using reflections in planes of
sites. In order to prove (5.21), we note ti&gH(Q2; ¢ Q) > b—which is what every bondr, r’)

in Ag satisfies provide®@ e Gor—impliesQ, o Q' > 1 — cep. The neighboring spins are thus
constrained to be within angl@(, /€p) of each other. Disregarding an appropriate subset of these
constraints (reusing the “line of sites” argument from the first part of the proof of Lemma 6.2) the
desired bound follows.

To prove (5.22), we note that the disseminated evgptforces all bonds to have energy
less thanb. Lemma 6.1 implies that the correspondipg s-functional is bounded above by
Ci(ep)~tefdb-AeM] - Assuming thab < 1, andt is chosen so thab,(t) — b > Y, we see that
if B is large enough to satisfy

&l > 2, (6.11)

then thep, ; bound is less tha@; (e,) 1. O

Given the existing results on the discontinuity of energetic bonds, it is almost inconceivable
that the energy density itself could be continuous. To mathematically rule out this possibility, we
will show that, in actuality very few of the energetic bonds have value in the vicinity &o
while the previous argument only considered two types of bonds, we will henceforth have the
following three types of bonds:

(1) strongly orderedf &,(€; © Q) > 1 -1,

(2) weakly orderedf 1 — b' > €p(Q; © Q) > b,

(3) disorderedif €,(Q; ¢ Q) < b.

Here 0< b/, b < 1, are constants which we will choose later, although we already know that we
have the restrictiob < 1/(1 + ag) as was necessary in the proof of Proposition 5.9. A rather
similar line of argument to that previously used for mixed patterns of ordered and disordered
bonds handles the situation for mixed patterns of weak and strong order. For each fatfern
weakly and strongly ordered bonds am, let Zﬁrd(ﬁ) denote the partition function obtained by
disseminating’ all over the torus. Then we have:

Lemma 6.3 Lett > 0be a number such that
1-b'/ag
Ap(t)
There exists a constanf & oo such that for any; > 0 and any patternC of weakly and strongly

ordered bonds on th2 x - - - x 2 block Ag containing at least one weakly ordered bond,

lim sup Z(L)Y < ¢, max{ciep €90, ¢} (ep)?'. (6.13)

L—oo

AL > 0. (6.12)

Proof. Consider an ordered pattethwith fraction f,, of weakly ordered bonds. After dissemi-
nation all overT|, there is a fractiorf,, of bonds o, that are weakly ordered and a fraction
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fraction 1— f, that are strongly ordered. Putting energy-1’ for each weakly ordered bond
and 1 for each strongly ordered bond, the Boltzmann weight of any spin configuration contribut-
ing to Z2'(L) is at most

PAA-D) fu+pd(A—fu) _ gBd1-b'f,) (6.14)

To calculate the entropy, we again use the “line of sites” argument from the first part of the
proof of Lemma 6.2, which gives an entropy per site on the ordeD@f,) in the L — oo
limit. This implies that the limsup oZ2"(£)Y1* is bounded by a constant timege?d@-b'fu).
Since 1-b'f, < 1—b'/ag we get
1-b'/ag
lim sup o)L < C4(EpeﬁdAp(t>) A () (6.15)
L—oo

for some constarty < co. By (6.12), the exponent of the terepe??® is less than 1 and so
the famous identityX*Y1~* < max{X, Y}, may be used again (as in the proof of Lemma 6.2)
which readily yields the bound (6.13). O

Proof of Corollary 5.8.The proof is based on thermodynamical arguments. First, standard calcu-
lations using coherent states show that

Ep(STAS © 5))IQ) = Ep(Qr © Q)[Q) + O(1/VS) (6.16)

where the error term depends implicitly gn Hence, for a giverp andd > 0, we can findS so
large that for any,r’ € Ag

(QEp(S72(S ©5))Qu|Q) [21-b -0, if A= Gom,
(Q|Q4lQ) <b+, if A= Gais.

(At the classical level the second case is by definition, whereas the first case follows from
Lemma 6.3.) Sincegg — ¢(p) is increasing, we conclude that (5.19) holds. As a technical
point, we note that in the statement of the corollary we did not include the small corrections cor-
responding t@ > 0. This was primarily for aesthetic reasons: we wanted to state the simplest
possible result. We can clearly accomplish this by talbrendb’ to be a little smaller than is
otherwise needed. O

(6.17)

6.2 Technical claims: Orbital-compass model.

Here we will prove Propositions 5.12-5.14 concerning the orbital-compass model. The proofs
follow the strategy outlined in [6].

Proof of Proposition 5.12.The proof goes by one more partitioning ngv Consider a spin
configurationQ = (Q)re, € ngv SinceBg\)N C Bswand A « 1, itis easy to check the
following facts:
(1) they-components of all spins ing are small.
(2) thex-components of the spins along each “line of sites’Xig) in thex-direction are either
all near thex-component of vectof; or its negative.
(3) same is true for the-components of the spins on “lines of sites” in thiattice direction.
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Thus, at the cost of reflecting thecomponents of spins along each “line of sites” in the
direction, and similarly for the-components, we may assume that all spins are alignedyith
in the sense that
Q- W; > coqA), r e Ag. (6.18)
Let Bg\’,s) denote the set of configurations satisfying (6.18). The above reflection preserves both
thea priori measure and the Hamiltonian (5.27); the e\té&k, is thus partitioned into?® “ver-
sions” of evemBg\’,S) all of which have the same value pf ;-functional. Invoking the Subaddi-
tivity Lemma, (5.34) is proved once we show that

pL,ﬂ(B(si\’/S)) < e—BB(FL,A(VAVi)—FL,A(él)). (6.19)

This follows by noting that g8° FL.a@ jg, to within a convenient multiplier, the integral of the
Boltzmann weight 1@ on the evenBL;) while e 8°FL.4@) provides a lower bound on the

partition function (again, to within the same multiplier which thus cancels from the ratio).]

Proof of Proposition 5.13The principal idea is to conveR, 5 (W), as upper and lower bounds,
to the same Gaussian integral. Let us parametiize .#;"* as(cosb,, 0, sind,) and, given a
spin configuratiorf2 that satisfie€2, - W > cogA) for allr € T, let us introduce the deviation
variables(?,, ¢;) by the formula

Q = (,/1 — 220080, + 1), Cry /1 — 22 Sind, + 19,)). (6.20)

Noting that bothy, and¢; are orderA, we derive thaH > (Q) + |T | is to within a quantity of
orderL?A? of the quadratic form

TLa9,0) = % SR = 0e )2+ O — )P+ D2 (62D)
reT. reT.
The Jacobian of the transformati@ — (¢, ;) is unity.
Next we will derive upper and lower bounds on the integral @f.# against the product of
indicators in (5.35). For the upper bound we invoke the inequality

Lio, wocoqay < €3HFL°A7 exp{—E 192}, 6.22

rl;{ (€ W=cogA)) > r%% ‘ (6.22)
valid for eachi > 0. The¢;’s are then unrestricted and their integrals can be performed yielding
a factor/2z /B per integral. The integral ovel s involves passing to the Fourier components,
which diagonalizes the covariance matrix. The result is best expresgeebirvo limit:

liminf Fy o () = O(BA% + %z/mz + F(4, W), (6.23)
—00
where 1

F(A,W) = > /[_M]z on)? log[4 + Dy (W)] (6.24)

By the Monotone Convergence TheoreR\,., W) converges td- (W) asl | 0. SincefAdis
less thary, which is up to us to choose, takidg| 0 on both sides of (6.23) we deduce that
FL.A(W) > F (W) — € for L sufficiently large.



QUANTUM SPIN SYSTEMS AT FINITE TEMPERATURE 41

It remains to derive the corresponding lower bound. Here we will still work with the parame-
ter 2 above but, unlike for the upper bound, we will not be able to take0 at the end. Consider
the Gaussian measuRe which assigns any Borel sgt ¢ (R x R)"t the probability

P,(A) = le( 5 /,4 (%)TL exp{—ﬁfL,W(ﬂ, o) — ﬁ—; > ﬁf} [T do.dz. (6.25)

YETL re’]I‘._

Let E; denote the corresponding expectation. Figin> 0 we get
/y . |dQ R ( I 1{Qr-v‘vzcos(A)}) > Z(4) E/l( 11 1{Q,-\ivzcos(A)})- (6.26)
("L

reT, reT,

The free-energy corresponding to the normalization consZait) is exactly F (4, W) above.
Thus, givere > 0, we can findi > 0 such thaZ, (1) > e~ IFW+€/2 gncel > 1. It remains
to show that the expectation is at least&/2 provideds in (5.36) is sufficiently small.

Here we first decrease the product by noting that

Larwzcota) 2 Lyori<opLigi<2a- (6.27)

This decouples thg 's from the#,’s and allows us to use the independence of these fields un-
der P,. Since the;’'s are themselves independent, the integral gvéoils down to

2
Ei( [1 1”@'5%}) = [1 Pl < 22) = (- e 274", (6.28)
reT, reT.
where we used the standard tail bound for normal distribution. Thus, for any fixed, the
term 1— e~*#4%/4 can be made as close to one as desired by incregsid@ppropriately.
The ¥,’s are not independent, but reflection positivity through bonds shows that the corre-
sponding indicators are positively correlated, i.e.,

Ei( I1 1{w,|<A/2}) > [T Pi(10r] < 22). (6.29)

TETL I’ETL

The probability on the right-hand side is estimated using a variance bound:

2\2 4 1 1 4
P(10r] > ) < () Varw) = -5 > < :
(1= 2 < (§) Varton A212 & plj+ Dy(W)] ~ ABA2
Sl

(6.30)

whereT; denotes the reciprocal torus. Again, for any fixgdP; (|J;| < 4/2) can be made as
close to one as desired ongé? is sufficiently large. We conclude that, given> 0, we can
choose such that (W) < F(W) 4 € onceL > 1. This finishes the proof. O

Proof of Proposition 5.14Since\fv§ +\iv§ = 1, thisis a simple consequence of Jensen’s inequality
and the strict concavity of the logarithm. O

6.3 Technical claims: 120-degree model.

Here we will provide the proofs of technical Propositions 5.17-5.19. The core of all proofs is the
fact that any spin configuratiog2, ) can be naturally deformed, by rotating along the main circle
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orthogonal to thexz-plane, to have zerg-component. An explicit form of this transformation
is as follows: Let us write eacf), e .%, using two variableg; € [—1,1] andé. e [0, 2x)
interpreted as the cylindrical coordinates,

Q = (,/1—;,2 costy, ¢r, \/1—¢2 sin@r). (6.31)

Then(; is the vector in which we sgt =0, i.e.,
Q; = (cost, 0, sinb;). (6.32)

(We have already used this transformation in the proof of Proposition 5.13.) An additional useful
feature of this parametrization is that the surface (Haar) measyreod ., then decomposes

into the product of the Lebesgue measuf¥ @n.~; and the Lebesgue measurig on [-1, 1].

Proof of Proposition 5.17.We will use the fact that, for configurations @xs with vanishing

component in they-direction, this was already proved as Theorem 6.4 in [6]. (KBY) € Bsw
and defingQ;) be as above. Sind€;, - &/| < c;A/Bforallr € Ag, we have

[(Q — ) -&| <cA/B (6.33)
while
Q — Q)-8 =0(A?/BY, a =X,z (6.34)

In particular, the configuratiof€2;) is contained in the version of eveBig, from [6], providedc,
is a sufficiently small numerical constant. Thus, under the condBon « « « 1—which
translates to the conditioB/T « x <« 1 of [6, Theorem 6.4]+Q}) is contained in one of
the events on the right-hand side of (5.55). But, at the cost of a slight adjustmenttbe
corresponding event will then contain also the configuratten. a

To prove the bounds in the remaining two propositions, we will more or less directly plug
into the results of [6]. This is possible because yh@omponent of the spins contributes only an
additive factor to the overall spin-wave free energy. The crucial estimate is derived as follows:

Lemma 6.4 There exists a constant s 0 such that the following is true: LeA « 1 and
let @ = () be a configuration off. such thatjQ, - &| < A2and|Q® — Q%) | < A, for
all a =1, 2, 3. DefineQ’ = (Q;) as above. Then

H>®(Q) — H®(Q) — ;rezm(gy -8))?| < cA3L3 (6.35)
Proof. By the fact tha€, - & = O(A) we have
Q -V, =Q -0, + O(A?). (6.36)
But then the assumptia2®) — Q*? = O(A) yields
[(©@ — Qo) - V2" = [(@Q — Qo) - V2] + O(AY). (6.37)

Using (5.49), this proves the claim. O
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Proof of Proposition 5.18The quantitpr,,;(Bg)) is the ratio of the partition function in which
all spins are constrained to make angle at mstith W;, and the full partition function. The
restrictiont) C Bsw can, for the most part, be ignored except for thés that are close to
one of the six preferred directions. In such cases the factthat « tells us thath) is empty
whenever the angle betwe#n and the closest dly, .. ., Vs is less than, say/,. In particular,
we may restrict attention to thi,'s that are farther thas, of any of these vectors.

Viewing the collection of angle¢d;) as a configuration 0D (2)-spins, Lemma 6.4 tells us
that the Hamiltonian ofQ;) is, to within corrections of ordet3A3, the sum of2 3, 2 and
the Hamiltonian of the classical)(2)-spin 120-degree model evaluated at configurat@m.
Since the measurelj equals the productggdd, on the respective domain, we may ignore the
restriction of¢; to values less tha@(A) and integrated thg's. We conclude thamL,ﬂ(Bg)) is
bounded by the same quantity for tBg2)-spin 120-degree model timeSé4*). Sincep A3 is
controlled via (5.57), the desired bound follows from [6, Lemma 6.9]. O

Proof of Proposition 5.19The proof is very much like that of the previous proposition. Eﬂ
denote the event that the top line in (5.54) holds foradl Ag for whichr - &, is odd and the
bottom line for all suchr for whichr - &, is even. Chessboard estimates then yield

pLp(B) < pLs(B)"".

On the disseminated evefi, ., . et(ES,’j) the assumptions of Lemma 6.4 are satisfied. Hence,
we may again integrate out thies to reduce the calculation to that f@x(2)-spins. The latter cal-
culation was performed in detail in [6]; the desired bound is then proved exactly as Lemma 6.10

of [6] (explicitly, applying inequality (6.24) of [6] and the paragraph thereafter). d

(6.38)
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