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Abstract

We consider three-dimensional Schrödinger operators with constant magnetic
fields and ergodic electric potentials. We study the strong-magnetic-field asymptotic
behaviour of the integrated density of states, distinguishing between the asymptotics
far from the Landau levels, and the asymptotics near a given Landau level.
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1 Introduction and main results

Random magnetic Schrödinger operators received much attention during the last few
decades both in mathematics and physics literature (see for example the monograph [23]
or the survey article [20] and the references cited there). In this paper we consider the 3D
Schrödinger operator with constant magnetic field of scalar intensity b > 0, and ergodic
electric potential, and investigate the asymptotic behavior as b → ∞ of its integrated
density of states (IDS).
The paper is a continuation of [12] and [19] where we considered electric potentials which
are almost surely uniformly bounded and continuous, and studied only the asymptotics
of the IDS near a given Landau level. In the present paper, we apply an approach
based on the Pastur-Shubin representation of the IDS (see e.g. [20, Section 2]) and
the Helffer-Sjöstrand representation of a smooth compactly supported function of a self-
adjoint operator (see e.g. [6, Chapter 8]). A similar approach has been systematically used
by F. Klopp and other authors (see e.g. [13], [14], [15], [5]) both in the cases of vanishing
and non-vanishing magnetic fields. This approach allowed us to extend the results of [12]
and [19] to a considerably larger class of potentials, and to obtain the leading asymptotic
term as b → ∞ of the IDS not only near a given Landau level, but also far from the
Landau levels.
Let us pass to the precise formulation of our results. Denote by H0,b := (−i∇−A)2−b the
unperturbed 3D Schrödinger operator with constant magnetic field B = curl A = (0, 0, b),
b > 0, generated by the magnetic potential A :=

(
− bx2

2
, bx1

2
, 0
)
. The self-adjoint operator
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H0,b is defined originally on C∞
0 (R3), and then is closed in L2(R3). It is well-known that

the spectrum of H0,b is purely absolutely continuous and coincides with [0,∞) (see e.g.
[1]). Moreover, the Landau levels 2bq, q ∈ Z+, play the role of thresholds in the spectrum
of H0,b. Further, let (Ω,F ,P) be a complete probability space, and let

Ω× R3 3 (ω, x) 7→ Vω(x) ∈ R

be a function measurable with respect to the product σ-algebra F × B(R3) where B(R3)
is the σ-algebra of the Borel sets in R3. We assume that Vω is G3-ergodic with G = R
or G = Z, i.e. that there exists an ergodic group of measure preserving automorphisms
Tk : Ω → Ω, k ∈ G3, such that Vω(x + k) = VTkω(x) for x ∈ R3 and ω ∈ Ω. We
recall that a group G of measure preserving automorphisms of Ω is called ergodic if the
G-invariance of a set A ∈ F implies either P(A) = 0 or P(A) = 1. Also, we suppose that
Vω is G-ergodic with G = R or G = Z in the direction of the magnetic field, i.e. that the
subgroup {Tk|k = (0, 0, k), k ∈ G} is ergodic. Finally, we assume that Vω satisfies

E
(∫

C
Vω(x)4dx

)
<∞ (1.1)

where E denotes the mathematical expectation, and C :=
(
−1

2
, 1

2

)3
. Note that if Vω is

R3-ergodic, then

E
(∫

C
Vω(x)4dx

)
= E

(
Vω(0)4

)
. (1.2)

Examples of random potentials satisfying the above assumptions can be found in [8], [23],
and [12]. Introduce the operator HV,b := H0,b + V = H0,b + Vω which is almost surely
essentially self-adjoint1 on C∞

0 (R3) (see [8]). We define the IDS %V,b associated with HV,b

by the Shubin-Pastur formula

%V,b(E) := E
(
Tr
(
χCχ(−∞,E)(HV,b)χC

))
, E ∈ R, (1.3)

where χC is the multiplier by the characteristic function of C, and χ(−∞,E)(HV,b) is the
spectral projection of the operator HV,b corresponding to the interval (−∞, E). The cor-
rectness of this definition of the IDS, and its equivalence to the traditional definition
involving a thermodynamical limit are discussed in [8] and [7]. Moreover, various prop-
erties of %V,b have been studied in [9]. We define the free IDS %0,b associated with the
unperturbed operator H0,b in a completely analogous way. The explicit form of %0,b is
well-known:

%0,b(E) =
b

2π2

∞∑
q=0

(E − 2bq)
1/2
+ , E ∈ R. (1.4)

1Whenever there is no risk of confusion, we will use the same notation for a given essentially self-adjoint
operator, and its self-adjoint closure.
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The aim of the article is to study the asymptotic behaviour as b→∞ of the quantities

%V,b(Eb+ λ2)− %V,b(Eb+ λ1),

the parameters E ∈ [0,∞), λ1, λ2, λ1 ≤ λ2, being fixed. As discussed in [12], it is reason-
able to distinguish two asymptotic regimes: asymptotics near a given Landau level which
corresponds to E ∈ 2Z+, and asymptotics far from the Landau levels which corresponds
to E ∈ (0,∞) \ 2Z+. This distinction is justified by the fact that (1.4) implies

lim
b→∞

b−1 (%0,b(Eb+ λ2)− %0,b(Eb+ λ1)) =
1

2π2

(
(λ2)

1/2
+ − (λ1)

1/2
+

)
(1.5)

if E ∈ 2Z+, and

lim
b→∞

b−1/2 (%0,b(Eb+ λ2)− %0,b(Eb+ λ1)) =
λ2 − λ1

4π2

[E/2]∑
q=0

(E − 2q)−1/2 (1.6)

if E ∈ (0,∞) \ 2Z+, i.e. in the case V = 0 the main asymptotic term of the IDS near
a given Landau level is of order b, while its main asymptotic term far from the Landau
levels is or order b1/2.
In order to formulate our results concerning the asymptotics of the IDS %V,b near a given
Landau level, we need some additional notations. For x = (x1, x2, x3) ∈ R3 we denote
by X⊥ = (x1, x2) the variables on the plane perpendicular to the magnetic field. Fix
X⊥ ∈ R2. Due to the our assumption about the ergodicity of V in direction of the
magnetic field, the function R 3 x3 7→ Vω(X⊥, x3) ∈ R is ergodic, and the operator

hV (X⊥) := − d2

dx2
3

+ V (X⊥, x3) (1.7)

is almost surely essentially self-adjoint on C∞
0 (R) (see [18, Chapter III]). Denote by

ρV (λ;X⊥), λ ∈ R, the IDS for the operator hV (X⊥). By [12], if V is R-ergodic (re-
spectively, Z-ergodic) in the direction of the magnetic field, then the IDS ρV (λ;X⊥) is
independent of X⊥ ∈ R2 (respectively, ρV (λ;X⊥) is Z2-periodic with respect to X⊥). Set

kV (λ) :=

∫
(− 1

2
, 1
2
)2
ρV (λ;X⊥)dX⊥.

Evidently, in the case of R-ergodicity we have kV (λ) = ρ(λ; 0). Moreover, since the
operator hV (X⊥) is an ordinary differential operator, it is easy to check that the function
R 3 λ 7→ kV (λ) ∈ R is continuous (see [18, Chapter III]).

Theorem 1.1. Assume that the random potential V : Ω × R3 → R is measurable with
respect to the product σ-algebra F×B(R3), and that (1.1) holds. Moreover, suppose that V
is R3-ergodic or Z3-ergodic, and is R-ergodic or Z-ergodic in the direction of the magnetic
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field.
i) Let E ∈ (0,∞) \ 2Z+, and λ1, λ2 ∈ R, λ1 < λ2. Then we have

lim
b→∞

b−1/2 (%V,b(Eb+ λ2)− %V,b(Eb+ λ1)) =
λ2 − λ1

4π2

[E/2]∑
q=0

(E − 2q)−1/2. (1.8)

ii) Let E ∈ 2Z+, and λ1, λ2 ∈ R, λ1 < λ2. Then we have

lim
b→∞

b−1 (%V,b(Eb+ λ2)− %V,b(Eb+ λ1)) =
1

2π
(kV (λ2)− kV (λ1)) . (1.9)

Let us discuss briefly our results.

• Relation (1.8) (see also (1.6)) implies that far from the Landau levels the main
asymptotic term of the IDS is independent of the potential V .

• It is easy to check that k0(λ) = 1
π
λ

1/2
+ , λ ∈ R. Therefore, (1.5) is a trivial special

case of (1.9).

• Under the additional assumption that V is almost surely bounded and continuous,
relation (1.9) was proved in [12] in the case of the first Landau level, and in [19]
in the case of the higher Landau levels. Here we cancel this restrictive assumption,
and give a new simpler proof of (1.9) which is coherent with that of (1.8).
Results related to (1.9) in the case of the first Landau level can be found also in [23,
Section 4.3].

• The results of Theorem 1.1 are typical for the 3D case, or more generally for the case
of a non-full-rank magnetic field. In the 2D case the asymptotic behaviour of the
IDS for the Schrödinger operator with strong constant magnetic field and random
electric potentials has been considered by numerous authors (see e.g, [2], [3], [17],
[22], [23, Subsection 3.2.2]). These results illustrate the situation where the constant
magnetic field is of full rank. In this respect we would also mention the recent work
[21] where the author studies various asymptotic properties (in particular, the high
field asymptotics) of the IDS for the Pauli operator with random magnetic field in
the case of even-dimensional underlying Euclidean spaces.

The article is organized as follows. Section 2 contains some auxiliary results and prelimi-
nary estimates. The proof of Theorem 1.1 can be found in Section 3.

2 Preliminary estimates

Introduce the Landau Hamiltonian

H(b) :=

(
i
∂

∂x1

− bx2

2

)2

+

(
i
∂

∂x2

+
bx1

2

)2

− b, (2.1)
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i.e. the two-dimensional Schrödinger operator with constant scalar magnetic field b > 0,
essentially self-adjoint on C∞

0 (R2). It is well-known that σ(H(b)) = ∪∞q=0 {2bq}, and each
eigenvalue 2bq, q ∈ Z+, has infinite multiplicity (see e.g. [1]).
For X⊥, X

′
⊥ ∈ R2 denote by Pq,b(X⊥, X

′
⊥) the integral kernel of the orthogonal projection

pq(b) onto the subspace Ker (H(b)− 2bq), q ∈ Z+. It is well-known that

Pq,b(X⊥, X
′
⊥) =

b

2π
Lq

(
b|X⊥ −X ′

⊥|2

2

)
exp

(
− b

4
(|X⊥ −X ′

⊥|2 + 2i(x1x
′
2 − x′1x2))

)
(2.2)

(see [16]) where Lq(t) :=
∑q

k=0

(
q
k

) (−t)k

k!
, t ∈ R, q ∈ Z+, are the Laguerre polynomials.

Note that

Pq,b(X⊥, X⊥) =
b

2π
(2.3)

for each q ∈ Z+ and X⊥ ∈ R2. Set Pq := pq ⊗ I‖, q ∈ Z+, where I‖ denotes the
identity operator in L2(R); thus Pq are orthogonal projections acting in L2(R3). For
E ∈ (0,∞) \ 2Z+ set

P−(E) :=

[E/2]∑
q=0

Pq, P+(E) = I − P−(E), (2.4)

where I denotes the identity operator in L2(R3). For E ∈ 2Z+ set

P−(E) :=

{ ∑E/2−1
q=0 Pq if E 6= 0,

0 if E = 0,
P+(E) := I − PE/2 − P−(E). (2.5)

Pick l > 0. Denote by χ⊥,l the characteristic function of the disk

Λ⊥,l :=
{
X⊥ ∈ R2 | |X⊥| < l

}
,

and by χ‖ the characteristic function of the interval Λ‖ :=
(
−1

2
, 1

2

)
. Thus χl(x) =

χ⊥,l(X⊥)χ‖(x3), x = (X⊥, x3) ∈ R3, is the characteristic function of the cylindrical set

Λl := Λ⊥,l × Λ‖. (2.6)

Let ζ ∈ C \ [0,∞). Denote by
√
ζ the branch of the square root satisfying Im

√
ζ > 0.

We have

Im
√
ζ =

(
|ζ| − Re ζ

2

)1/2

. (2.7)

For ζ ∈ C \ [0,∞) set

R0(ζ) := (H0,b − ζ)−1, r0(ζ) := (h0 − ζ)−1, (2.8)

where h0 = −d2/dx2
3 (see (1.7)).
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Lemma 2.1. Let q ∈ 2Z+, ζ ∈ C \ [0,∞). Then we have

‖χ⊥,lpq‖2
HS = TrL2(R2) (χ⊥,lpqχ⊥,l) = ‖χ⊥,lpqχ⊥,l‖Tr =

bl2

2
, (2.9)

‖χ‖r0(ζ)‖2
HS =

1

4|ζ| Im
√
ζ
, (2.10)

‖χlPqR0(ζ)‖2
HS =

bl2

8|ζ − 2bq| Im
√
ζ − 2bq

, (2.11)

where ‖.‖HS denotes the Hilbert-Schmidt norm, and ‖.‖Tr denotes the trace-class norm.

Proof. Since

‖χ⊥,lpq‖2
HS = TrL2(R2) (pqχ⊥,lpq) = ‖χ⊥,lpqχ⊥,l‖Tr =

∫
Λ⊥,l

Pq,b(x,x) dx,

(2.9) follows immediately from (2.3). Similarly, (2.10) follows from the explicit expression
for the integral kernel R0(x3, x

′
3; ζ) of the operator r0(ζ), ζ ∈ C \ [0,∞), namely

R0(x3, x
′
3; ζ) =

i

2
√
ζ

exp
(
i
√
ζ|x3 − x′3|

)
. (2.12)

Finally, since χlPqR0(ζ) = χ⊥,lpq ⊗ χ‖r0(ζ − 2bq), we find that (2.11) follows from (2.9)
and (2.10).

Corollary 2.1. Let z = x+ iy ∈ C \ R with x ∈ J , where J ⊂ R is a compact interval.
i) Let E ∈ (0,∞), q ∈ 2Z+, q < E/2. Then the estimate

‖χlPqR0(Eb+ z)‖2
HS ≤ c1b

1/2|y|−1l2 (2.13)

holds with c1 = c1(E ; b) :=
√

2
4(E−2q)1/2 provided that b ≥ 2maxx∈J (−x)

E−2q
.

ii) Let E ∈ 2Z+. Then we have

‖χlPE/2R0(Eb+ z)‖2
HS ≤

1

4
b|y|−3/2l2. (2.14)

iii) Let E ∈ (0,∞), q ∈ 2Z+, q > E/2. Then the estimate

‖χlPqR0(Eb+ z)‖2
HS ≤ c2b

−1/2l2 (2.15)

holds with c2 = c2(E ; b) :=
√

2
8(2q−E)3/2 provided that b ≥ 2maxx∈J x

2q−E .

Proof. Estimates (2.13) – (2.15) follow immediately from (2.7) and (2.11).

6



Let T be an operator symmetric on C∞
0 (R3) such that the operator HT := H0 + T is

essentially self-adjoint on C∞
0 (R3). For z ∈ C \ R denote by

RT (z) := (HT − z)−1 (2.16)

the resolvent of the self-adjoint operatorHT . In what follows we will often use the resolvent
equations

R0(z)−RT (z) = RT (z)TR0(z) = R0(z)TRT (z) (2.17)

where R0(z) is the free resolvent introduced in (2.8), and RT (z)TR0(z) (respectively,
R0(z)TRT (z)) should be understood as the (bounded) closure of the operator defined
originally on the domain (H0− z)C∞

0 (R3) (respectively, (HT − z)C∞
0 (R3)) which is dense

in L2(R3).

Corollary 2.2. Let z = x + iy ∈ C \ R with x ∈ J , where J ⊂ R is a compact interval.
Suppose in addition that V is an R3-ergodic potential measurable with respect to the product
σ-algebra F × B(R3), and satisfying E(V (0)2) <∞.
i) Let E ∈ (0,∞), q ∈ 2Z+, q < E/2. Then we have

E
(
‖χlPqRV (Eb+ z)‖2

HS

)
≤ 2c1b

1/2

|y|
l2
(

1 +
1

y2
E(V (0)2)

)
(2.18)

provided that b ≥ 2maxx∈J (−x)
(E−2q)

.

ii) Let E ∈ 2Z+. Then we have

E
(
‖χlPE/2RV (Eb+ z)‖2

HS

)
≤ bl2

2|y|3/2

(
1 +

1

y2
E(V (0)2)

)
. (2.19)

Proof. For both cases, i) and ii), the resolvent equation and the almost sure estimate
‖RV (Eb+ z)‖ ≤ 1

|y| , imply

E
(
‖χlPqRV (Eb+ z)‖2

HS

)
≤

2E
(
‖χlPqR0(Eb+ z)‖2

HS + y−2‖χlPqR0(Eb+ z)V ‖2
HS

)
. (2.20)

Further, by the R3-ergodicity

E
(
‖χlPqR0(Eb+ z)V ‖2

HS

)
=

E
(∫

Λl

∫
R3

|V (X ′
⊥, x

′
3)|2|Pq,b(X⊥, X

′
⊥)|2|R0(x3, x

′
3; ζ)|2dX ′

⊥dx
′
3dX⊥dx3

)
=

E(V (0)2)

∫
Λl

∫
R3

|Pq,b(X⊥, X
′
⊥)|2|R0(x3, x

′
3; ζ)|2dX ′

⊥dx
′
3dX⊥dx3 =

E(V (0)2)‖χlPqR0(Eb+ z)‖2
HS. (2.21)

Combining (2.20)-(2.21) for q < E/2 or q = E/2, with (2.13) or (2.14), we get (2.18) or
(2.19).
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Corollary 2.3. Assume the hypotheses of Corollary 2.2. Let E ∈ [0,∞). Then there
exists b0(J, E) > 0, and cj(E) > 0, j = 3, 4, such that b ≥ b0 implies

E(‖χlP−(E)RV (Eb+ z)‖2
HS) ≤ c3

b1/2l2

|y|

(
1 +

1

y2
E(V (0)2)

)
, (2.22)

E(‖χlP+(E)RV (Eb+ z)‖2
HS) ≤ c4

l2

b1/2

(
1 +

1

y2
E(V (0)2)

)
. (2.23)

Moreover,

E(‖χlRV (Eb+ z)‖2
HS) ≤ 2b1/2l2(c3|y|−1 + c4b

−1)

(
1 +

1

y2
E(V (0)2)

)
, (2.24)

if E 6∈ 2Z+, and

E(‖χlRV (Eb+ z)‖2
HS) ≤ 4bl2

(
1

2
|y|−3/2 + c3b

−1/2|y|−1 + c4b
−3/2

)(
1 +

1

y2
E(V (0)2)

)
,

(2.25)
if E ∈ 2Z+.

Proof. By analogy with (2.20) - (2.21) we have

E
(
‖χlP±RV (Eb+ z)‖2

HS

)
≤ 2‖χlP±R0(Eb+ z)‖2

HS

(
1 + y−2E(V (0)2)

)
. (2.26)

Let us check (2.22). Let at first E 6∈ 2Z+. Since

‖χlP−R0(Eb+ z)‖2
HS =

[E/2]∑
q=0

‖χlPqR0(Eb+ z)‖2
HS,

we find that estimate (2.22) with c3 := 2
∑[E/2]

q=0 c1(E ; q) follows from (2.26) and (2.13), if

b ≥ 2maxx∈J (−x)
(E−2[E/2])

. Let now E ∈ 2Z+. If E = 0, (2.22) is trivial. Assume E > 0. We have

‖χlP−(E)R0(Eb+ z)‖2
HS =

E/2−1∑
q=0

‖χlPqR0(Eb+ z)‖2
HS.

Thus we find that (2.22) holds with c3 := 2
∑E/2−1

q=0 c1(E ; q) if b ≥ 2 maxx∈J(−x).
Similarly, estimates (2.26) and (2.15) combined with

‖χlP+R0(Eb+ z)‖2
HS =

∞∑
q=[E/2]+1

‖χlPqR0(Eb+ z)‖2
HS
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imply that (2.23) holds with c4 := 2
∑∞

q=[E/2]+1 c2(E ; q) if b ≥ 2maxx∈J x
2([E/2]+1)−E .

Finally, (2.24) or, respectively, (2.25), follows from (2.22), (2.23), and the inequality,

‖χlRV (Eb+ z)‖2
HS ≤ 2(‖χlP−(E)RV (Eb+ z)‖2

HS + ‖χlP+(E)RV (Eb+ z)‖2
HS)

or, respectively, from (2.19), (2.22), (2.23), and

‖χlRV (Eb+ z)‖2
HS ≤

4(‖χlP−(E)RV (Eb+ z)‖2
HS + ‖χlPE/2RV (Eb+ z)‖2

HS) + ‖χlP+(E)RV (Eb+ z)‖2
HS.

Assume that V is an R3-ergodic potential satisfying the assumptions of Theorem 1.1. For
x3 ∈ R and ω ∈ Ω put

v(x3) = vω(x3) := Vω(0, x3). (2.27)

Set hv := hV (0) (see (1.7)). For z ∈ C \ R and ω in a full-probability subset of Ω denote
by rv(z) := (hv − z)−1 the resolvent of the self-adjoint operator hv.

Lemma 2.2. Let z ∈ C \ R. Assume that V is an R3-ergodic potential satisfying the
assumptions of the Theorem 1.1. Then almost surely the resolvent rv(z), z ∈ C \ R,
admits an integral kernel Rv(x, x

′; z), x, x′ ∈ R, such that the function R 3 x 7→∫
R |Rv(x, x

′; z)|2dx′ ∈ [0,∞) is well-defined and continuous.

Proof. Fix ω ∈ Ω such that v ∈ L2
loc(R), and the operator hv is essentially self-adjoint on

C∞
0 (R). By (1.1) - (1.2) the set of such ω has probability one. Since v ∈ L2

loc(R), every
solution u of the differential equation

−u′′ + vu = zu, z ∈ C, (2.28)

is absolutely continuous. Suppose now that z ∈ C\R and denote by u− (respectively, u+)
a non-trivial solution of (2.28) whose restriction on any interval (−∞, a) (respectively,
(a,∞)), is square-integrable. The existence of such solutions is well-known (see e.g. [4,
Lemma III.1.2]). Obviously, u− and u+ are linearly independent. Let w := u′+(x)u−(x)−
u′−(x)u+(x), x ∈ R, be the Wronskian of the solutions u+ and u−. It is well-known that
w 6= 0 is independent of x ∈ R, and we have

wRv(x, x
′; z) =

{
u−(x)u+(x′) if x ≤ x′,
u+(x)u−(x′) if x′ ≤ x.

Therefore, ∫
R
|Rv(x, x

′; z)|2 dx′ =

|w|−2

(
|u+(x)|2

∫ x

−∞
|u−(x′)|2dx′ + |u−(x)|2

∫ ∞

x

|u+(x′)|2dx′
)

which proves the claim of the lemma.

9



Lemma 2.3. Let z ∈ C \ R. Suppose that V is an R3-ergodic potential satisfying the
assumptions of the Theorem 1.1. Then

E

((∫
R
|Rv(0, x

′; z)|2dx′
)2
)
≤ 1

2(|z|Im
√
z)2

(
1 +

1

y4
E
(
V (0)4

))
. (2.29)

Proof. Let J ∈ C∞
0 (R), J ≥ 0, and

∫
R J (x)dx = 1. Set Jε(x) := ε−1J (x/ε), x ∈ R,

ε > 0, and
Qε = Qε(z) :=

E
(
‖J 1/2

ε rv(z)‖4
HS

)
= E

((∫
R

∫
R
Jε(x)|Rv(x, x

′; z)|2dxdx′
)2
)
, ε > 0, z ∈ C \ R.

Since almost surely the operator rv(z) is self-adjoint and v ∈ L2
loc(R), by analogy with

(2.17) we can justify almost surely that the resolvent equation

rv(z) = r0(z)− r0(z)vrv(z)

with r0(z) = (h0 − z)−1 (see (2.8)). Similarly, almost surely we have ‖rv(z)‖ ≤ 1/|y|.
Therefore,

Qε ≤ 8E
(
‖J 1/2

ε r0(z)‖4
HS + y−4‖J 1/2

ε r0(z)v‖4
HS

)
. (2.30)

By the Cauchy-Schwarz inequality and the R3-ergodicity of V , we have

E
(
‖J 1/2

ε r0(z)v‖4
HS

)
≤ E

(
V (0)4

)
‖J 1/2

ε r0(z)‖4
HS. (2.31)

On the other hand, ∫
R

∫
R
Jε(x)|R0(x, x

′; z)|2dxdx′ =

1

4|z|

∫
R
Jε(x)dx

∫
R

exp
(
−2Im

√
z|s|
)
ds =

1

4|z|Im
√
z
. (2.32)

The combination of (2.30), (2.31), and (2.32) yields

Qε ≤
1

2(|z|Im
√
z)2

(
1 +

1

y4
E
(
V (0)4

))
, ε > 0. (2.33)

Further, by Lemma 2.2, the function x 3 R 7→
∫

R |Rv(x, x
′; z)|2dx′ is almost surely con-

tinuous. Therefore, almost surely

lim
ε→0

∫
R

∫
R
Jε(x)|Rv(x, x

′; z)|2dxdx′ =
∫

R
|Rv(0, x

′; z)|2dx′. (2.34)

Next, almost surely we have

‖J 1/2
ε rv(z)‖4

HS ≤ 8

(
‖J 1/2

ε r0(z)‖4
HS +

1

y4
‖J 1/2

ε r0(z)v‖4
HS

)
. (2.35)
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Finally, it follows from (2.12) that the estimates

‖J 1/2
ε r0(z)v‖4

HS ≤
1

16|z|2

(∫
R
J (x)e2εIm

√
z|x|dx

∫
R
e−2Im

√
z|x′|v(x′)2dx′

)2

≤

c5

(∫
R
v(x′)2e−2Im

√
z|x′|dx′

)2

≤ c5

∫
R
e−2Im

√
z|x′|dx′

∫
R
v(x′)4e−2Im

√
z|x′|dx′ (2.36)

hold with c5 = c5(z) > 0 provided that ε is small enough. The r.h.s of (2.36) is in
L1(Ω; dP) since E(V (0)4) < ∞, and is independent of ε. By (2.35), this is also true

for ‖J 1/2
ε rv(z)‖4

HS. Bearing in mind this fact and limiting relation (2.34), we apply the
dominated convergence theorem, and get

lim
ε→0

Qε = lim
ε→0

E
(
‖J 1/2

ε rv(z)‖4
HS

)
= E

((∫
R
|Rv(0, x

′; z)|2dx′
)2
)

which, combined with (2.33), proves the claim of the lemma.

3 Proof of Theorem 1.1

3.1. Throughout the section we assume the hypotheses of Theorem 1.1. Also, until
Subsection 3.8 we suppose that V is R3-ergodic and R-ergodic in the direction of the
magnetic field.
Since R 3 λ 7→ %V,b(Eb+λ) is a non-decreasing function, (1.8) and (1.9) can be interpreted
as measure-convergence relations. Since the measures related to the r.h.s. of (1.8) and
(1.9) have no atoms, we conclude that (1.8) is equivalent to the validity of the relation

lim
b→∞

b−1/2

∫
R
ϕ(λ)d%V,b(Eb+λ) =

1

4π2

[E/2]∑
q=0

(E−2q)−1/2

∫
R
ϕ(λ)dλ, E ∈ (0,∞)\2Z+, (3.1)

for any ϕ ∈ C∞
0 (R), while (1.9) is equivalent to the validity of the relation

lim
b→∞

b−1

∫
R
ϕ(λ)d%V,b(Eb+ λ) =

1

2π

∫
R
ϕ(λ)dkV (λ), E ∈ 2Z+. (3.2)

for any ϕ ∈ C∞
0 (R) (see e.g. [11]).

3.2. The assumption that V is R3-ergodic implies

Lemma 3.1. [8, Corollary 3.3] Assume that V is an R3-ergodic potential satisfying the
hypotheses of Theorem 1.1. Let Λ ⊂ R3 be a Lebesgue-measurable set of positive finite
Lebesgue measure |Λ|. Then we have∫

R
ψ(λ)d%V,b(λ) =

1

|Λ|
E (Tr (χΛψ(HV,b)χΛ)) , ∀ψ ∈ C∞

0 (R), (3.3)

where χΛ is the characteristic function of Λ.
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In what follows we pick an arbitrary l > 0 and choose Λ in (3.3) as the cylindrical set
Λl defined in (2.6) (hence |Λ| = πl2). In consistence with our previous notations we will
write χl instead of χΛl

. Thus (3.3) implies∫
R
ϕ(λ)d%V,b(λ+ Eb) =

∫
R
ϕ(λ− Eb)d%V,b(λ) =

1

πl2
E (Tr (χlϕ(HV,b − Eb)χl)) . (3.4)

3.3. Further, we introduce a representation of Tr (χlϕ(HV,b − Eb)χl) by the Helffer-
Sjöstrand formula. Let ϕ ∈ C∞

0 (R), and ϕ̃ ∈ C∞
0 (R2) be a quasi-analytic extension of ϕ.

Note that ∣∣∣∣∂ϕ̃∂z̄ (x, y)

∣∣∣∣ = O(|y|N), y → 0, (3.5)

for each N ∈ Z+, and
ϕ̃(x, 0) = ϕ(x), x ∈ R. (3.6)

Lemma 3.2. [6, Theorem 8.1] Let L be a self-adjoint operator. Let ϕ ∈ C∞
0 (R). Then

for each m ∈ Z+ we have

ϕ(L) =
1

π

∫
R2

∂ϕ̃

∂z̄
(x, y)(z − i)m(L− i)−m(L− z)−1dxdy, (3.7)

the integral being understood in the Riemann-Bochner sense.

Remark: The Helffer-Sjöstrand formula (3.7) is written in [6, Theorem 8.1] only for m = 0,
but this special case easily implies the formula for arbitrary m ∈ Z+ (see e.g. [13], [14]).

For ϕ ∈ C∞
0 (R) and E ∈ [0,∞) set

Φ(b, E) :=
1

π2l2

∫
R2

∂ϕ̃

∂z̄
(x, y) (z − i)E (Tr (χlRV (Eb+ i)RV (Eb+ z)χl)) dxdy, (3.8)

the notation RV being introduced in (2.16). Applying the Cauchy-Schwarz inequality

|E (Tr (χlRV (Eb+ i)RV (Eb+ z)χl)) | ≤(
E(‖χlRV (Eb+ i)‖2

HS)
)1/2 (E(‖χlRV (Eb+ z)‖2

HS)
)1/2

,

estimates (2.24)-(2.25), assumption (1.1), and (3.5), we find that the quantity Φ(b, E) is
well-defined. Using (3.4), (3.7) with L = HV,b − Eb and m = 1, we get the following

Corollary 3.1. Let ϕ ∈ C∞
0 (R). Then under the assumptions of the Theorem 1.1 we

have ∫
R
ϕ(λ− Eb) d%V,b(λ) = Φ(b, E). (3.9)

12



3.4. For ϕ ∈ C∞
0 (R) and E ∈ [0,∞) set

Φ1(b, E)) :=

{
1

π2l2

∫
R2

∂ϕ̃
∂z̄

(x, y) E (Tr (χlP−(E)RV (Eb+ z)P−(E)χl)) dxdy if E 6∈ 2Z+,
1

π2l2

∫
R2

∂ϕ̃
∂z̄

(x, y) E
(
Tr
(
χlPE/2RV (Eb+ z)PE/2χl

))
dxdy if E ∈ 2Z+,

the orthogonal projections Pq, q ∈ Z+, and P− being introduced in (2.4) - (2.5). In order
to check that Φ1(b, E) is well-defined, set

P :=

{
P−(E) if E 6∈ 2Z+,
PE/2 if E ∈ 2Z+,

and note that resolvent equation almost surely implies

χlPRV (Eb+ z)Pχl = χlPR0(Eb+ z)Pχl − χlPR0(Eb+ z)V RV (Eb+ z)Pχl.

Therefore,

|E (Tr (χlPRV (Eb+ z)Pχl)) | ≤ ‖χlPR0(−1)1/2‖2
HS‖(H0,b + 1)R0(Eb+ z)‖+

(
E
(
‖χlPR0(Eb+ z)V ‖2

HS

))1/2 (E (‖RV (Eb+ z)Pχl‖2
HS

))1/2
. (3.10)

Since ‖χlPR0(−1)1/2‖2
HS = Tr (χlPR0(−1)) and χlPqR0(−1) = χ⊥,lpq ⊗ χ‖r0(−2bq − 1),

q ∈ 2Z+, we easily find that

‖χlPR0(−1)1/2‖2
HS =

bl2

4

{ ∑[E/2]
q=0 (2qb+ 1)−1/2 if E 6∈ 2Z+,

(Eb+ 1)−1/2 if E ∈ 2Z+,
(3.11)

taking into account (2.9) and (2.12). Moreover,

‖(H0,b + 1)R0(Eb+ z)‖ = sup
λ∈[0,∞)

λ+ 1√
(λ− Eb− x)2 + y2

≤ 1 +
(Eb+ x+ 1)+

|y|
. (3.12)

Finally, by analogy with (2.21) we have

E
(
‖χlPR0(Eb+ z)V ‖2

HS

)
= E(V (0)2)E

(
‖χlPR0(Eb+ z)‖2

HS

)
which combined with (2.20) or (2.26) yields

E
(
‖χlPR0(Eb+ z)V ‖2

HS

)
E
(
‖RV (Eb+ z)Pχl‖2

HS

)
≤

2‖χlPR0(Eb+ z)‖4
HSE(V (0)2)

(
1 + y−2E(V (0)2)

)
. (3.13)

Putting together (3.10) - (3.13), (2.13) or (2.14), and (3.5), we conclude that Φ1(b, E) is
well-defined.
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Proposition 3.1. Let ϕ ∈ C∞
0 (R). Then under the assumptions of Theorem 1.1 we have

Φ(b) = Φ1(b, E) +O(1), b→∞, (3.14)

if E 6∈ 2Z+, and
Φ(b) = Φ1(b, E) +O(b3/4), b→∞, (3.15)

if E ∈ 2Z+.

Proof. First of all, note that
∫

R2
∂ϕ̃
∂z̄

(x, y) dxdy = 0. Further, the resolvent equation implies

RV (Eb+ z)−RV (Eb+ i) = (z − i)RV (Eb+ i)RV (Eb+ z).

Hence,

Φ1(b, E) =
1

π2l2

∫
R2

∂ϕ̃

∂z̄
(x, y) (z − i)E (Tr (χlP−(E)RV (Eb+ i)RV (Eb+ z)P−(E)χl)) dxdy

if E 6∈ 2Z+, and

Φ1(b, E) =
1

π2l2

∫
R2

∂ϕ̃

∂z̄
(x, y) (z − i)E

(
Tr
(
χlPE/2RV (Eb+ i)RV (Eb+ z)PE/2χl

))
dxdy

if E ∈ 2Z+.
Assume E 6∈ 2Z+. Then we have

Tr (χlRV (Eb+ i)RV (Eb+ z)χl) = Tr (χlP−(E)RV (Eb+ i)RV (Eb+ z)P−(E)χl) +

Tr (χlP+(E)RV (Eb+ i)RV (Eb+ z)P−(E)χl) + Tr (χlRV (Eb+ i)RV (Eb+ z)P+(E)χl) =

Tr (χlP−(E)RV (Eb+ i)RV (Eb+ z)P−(E)χl) + I + II.

Therefore,

Φ(b)− Φ1(b, E) =
1

π2l2

∫
R2

∂ϕ̃

∂z̄
(x, y)(z − i) E(I + II) dxdy. (3.16)

Evidently,

|E(I)| ≤ E
(
‖χlP+(E)RV (Eb+ i)‖2

HS

)1/2 E
(
‖RV (Eb+ z)P−(E)χl‖2

HS

)1/2
, (3.17)

|E(II)| ≤ E
(
‖χlRV (Eb+ i)‖2

HS

)1/2 E
(
‖RV (Eb+ z)P+(E)χl‖2

HS

)1/2
. (3.18)

Combining (3.17) - (3.18) with Corollary 2.3, we find that (3.16) implies (3.14).
Assume now E ∈ 2Z+. Then we have

Tr (χlRV (Eb+ i)RV (Eb+ z)χl) = Tr
(
χlPE/2RV (Eb+ i)RV (Eb+ z)PE/2χl

)
+

Tr
(
χl(P−(E) + P+(E))RV (Eb+ i)RV (Eb+ z)PE/2χl

)
+
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Tr (χlRV (Eb+ i)RV (Eb+ z)(P−(E) + P+(E))χl) =

Tr (χlP−(E)RV (Eb+ i)RV (Eb+ z)P−(E)χl) + III + IV.

Hence, in this case

Φ(b, E)− Φ1(b, E) =
1

π2l2

∫
R2

∂ϕ̃

∂z̄
(x, y)(z − i) E(III + IV) dxdy.

Obviously,

|E(III)| ≤
((

E(‖χlP+(E)RV (Eb+ i)‖2
HS)
)1/2

+
(
E(‖χlP−(E)RV (Eb+ i)‖2

HS)
)1/2
)
×(

E(‖RV (Eb+ z)PE/2χl‖2
HS)
)1/2

and

|E(IV)| ≤
((

E(‖RV (Eb+ z)P+(E)χl‖2
HS)
)1/2

+
(
E(‖RV (Eb+ z)P−(E)χl‖2

HS)
)1/2
)
×(

E(‖χlRV (Eb+ i)‖2
HS)
)1/2

.

Arguing as in the proof of (3.14), we obtain (3.15) with the help of Corollaries 2.2 –
2.3.

3.5. In this subsection we establish several auxiliary results needed in the further steps
of the proof of Theorem 1.1. For x ∈ R3 set

C(x) := E
(
(V (0)− V (x))4

)
. (3.19)

Obviously,
sup
x∈R3

|C(x)| ≤ 8(E(V (0)4). (3.20)

We will need the continuity of the function C proved in a somewhat more general context
in the following

Lemma 3.3. Let
Ω× Rd 3 (ω, x) 7→ Vω(x) ∈ R

be a function measurable with respect to the product σ-algebra F ×B(Rd), where B(Rd) is
the σ-algebra of the Borel sets in Rd, d ≥ 1. Assume that Vω is Rd-ergodic, and for some
p ≥ 1 we have E(|V (0)|p) <∞. Then

lim
x→0

E(|Vω(x)− Vω(0)|p) = 0.
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Proof. It suffices to prove that for each sequence {xj}j∈N, xj ∈ Rd, such that limj→∞ xj =
0, we have

lim
j→∞

E(|Vω(xj)− Vω(0)|p) = 0. (3.21)

Note that for every Lebesgue-measurable set O ⊂ Rd of positive finite Lebesgue measure
|O| we have

|O|E(|Vω(0)|p) = E
(∫

O
|Vω(y)|pdy

)
, (3.22)

|O|E (|Vω(xj)− Vω(0)|p) = E(

∫
O
|Vω(y + xj)− Vω(y)|pdy), j ∈ N. (3.23)

Set C :=
(
−1

2
, 1

2

)d
, D := (−1, 1)d. Evidently, if |xj| is small enough, C ± xj ⊂ D.

By (3.22) with O = D there exists Ω0 ⊂ Ω such that P(Ω0) = 1, and Vω |D ∈ Lp(D) (and,
hence, Vω |C ∈ Lp(C)) for all ω ∈ Ω0. Pick ω ∈ Ω0 and set W := χDVω where χD is the
characteristic function of D. Then W ∈ Lp(Rd), and we have∫

Rd

|W(y + xj)−W(y)|pdy → 0 as j →∞. (3.24)

Set

fj(ω) =

{ ∫
C |Vω(y + xj)− Vω(y)|pdy if ω ∈ Ω0,

0 if ω ∈ Ω \ Ω0.

By (3.23) with O = C we have

E(|Vω(xj)− Vω(0)|p) =

∫
Ω

fj(ω)dP(ω). (3.25)

Let us now show that
lim
j→∞

fj(ω) = 0, ∀ω ∈ Ω. (3.26)

For ω ∈ Ω \ Ω0 this is trivial. If ω ∈ Ω0 we have∫
Rd

|W(y + xj)−W(y)|pdy ≥
∫
C
|Vω(y + xj)− Vω(y)|pdy = fj(ω). (3.27)

Since fj is non-negative, (3.24) and (3.27) imply (3.26). Now set

f̃(ω) =

{ ∫
D |Vω(y)|pdy if ω ∈ Ω0,

0 if ω ∈ Ω \ Ω0.

By (3.22) with O = D we have 0 ≤ f̃ ∈ L1(Ω; dP). Moreover, there exists a constant
c = c(p) such that

fj(ω) ≤ c(p)f̃(ω), ∀ω ∈ Ω. (3.28)

Putting together (3.26) and (3.28), we find that the dominated convergence theorem
implies limj→∞

∫
Ω
fj(ω)dP(ω) = 0 which combined with (3.25) yields (3.21).
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For l > 0 set

Dl =
1

4πl2

∫
Λ⊥,l

C(X⊥, 0)dX⊥. (3.29)

Remark: By Lemma 3.3, we have Dl → 0 as l→ 0.
For l > 0, q ∈ Z+, and x3 ∈ R, set

Kq,b(x3) :=

∫
Λ⊥,l

∫
R2

|Pq,b(X⊥, X
′
⊥)|2 (v(x3)− V (X ′

⊥, x3))
2
dX⊥dX

′
⊥, (3.30)

Pq,b being defined in (2.2), and v - in (2.27).

Lemma 3.4. Suppose that E (V (0)4)) <∞. Then

lim sup
b→∞

E
(
b−2Kq,b(0)

2
)
≤ l4Dl. (3.31)

Proof. By the Cauchy-Schwarz inequality, we have

E
(
b−2Kq,b(0)2

)
= b−2E

(∫
Λ⊥,l

∫
R2

|Pq,b(X⊥, X
′
⊥)|2 (V (0)− V (X ′

⊥, 0))
2
dX⊥dX

′
⊥

)2

≤

b−2E
∫

Λ⊥,l

∫
R2

|Pq,b(X⊥, X
′
⊥)|2dX⊥dX

′
⊥×∫

Λ⊥,l

∫
R2

|Pq,b(X⊥, X
′
⊥)|2(V (0)− V (X ′

⊥, 0))4dX⊥dX
′
⊥. (3.32)

By (3.19) and the identity∫
Λ⊥,l

∫
R2

|Pq,b(X⊥, X
′
⊥)|2dX⊥dX

′
⊥ = ‖χΛ⊥,l

pq‖2
HS =

bl2

2

(see (2.9)), we get

E
(
b−2Kq,b(0)2

)
≤ b−1l2

2

∫
Λ⊥,l

∫
R2

|Pq,b(X⊥, X
′
⊥)|2C(X ′

⊥, 0)dX⊥dX
′
⊥. (3.33)

Changing the variables X⊥ = Y , X ′
⊥ = Y⊥ + b−1/2Y ′

⊥, we find that∫
Λ⊥,l

∫
R2

|Pq,b(X⊥, X
′
⊥)|2C(X ′

⊥, 0)dX⊥dX
′
⊥ =

b

∫
Λ⊥,l

∫
R2

|Pq,1(0, Y
′
⊥)|2C(Y⊥ + b−1/2Y ′

⊥, 0)dY⊥dY
′
⊥.
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Hence, by the dominated convergence theorem and (2.3),

lim
b→∞

b−1

∫
Λ⊥,l

∫
R2

|Pq,b(X⊥, X
′
⊥)|2C(X ′

⊥, 0)dX ′
⊥ =

∫
R2

|Pq,1(0, Y⊥)|2dY⊥
∫

Λ⊥,l

C(X⊥, 0)dX⊥ = 2l2Dl. (3.34)

The combination of (3.32) – (3.34) yields (3.31).

3.6. For E ∈ [0,∞), q ∈ Z+, and ϕ ∈ C∞
0 (R), set

Φ2,q(b, E) =
1

π2l2

∫
R2

∂ϕ̃

∂z̄
(x, y) E

(
Tr
(
χlPqRpq⊗v(Eb+ z)Pqχl

))
dxdy, (3.35)

the notation RT being introduced in (2.16), and v being defined in (2.27). Using (2.9),
we immediately get

Φ2,q(b, E) :=
b

2π2

∫
R2

∂ϕ̃

∂z̄
(x, y) E

(
TrL2(R)

(
χ‖rv(Eb− 2bq + z)χ‖

))
dxdy. (3.36)

As above rv(z) = (hv − z)−1, and hv = hV (0) (see (1.7)). It is easy to see that the
quantities Φ2,q(b, E) are well-defined. Put

Φ2(b, E) :=

{ ∑[E/2]
q=0 Φ2,q(b, E) if E 6∈ 2Z+,

Φ2,E/2(b, E) if E ∈ 2Z+.

Proposition 3.2. Let ϕ ∈ C∞
0 (R), E ∈ [0,∞). Assume that V satisfies the hypotheses

of Theorem 1.1. Then we have

lim sup
b→∞

b−1/2|Φ1(b, E)− Φ2(b, E)| ≤ c6D
1/2
l (3.37)

if E 6∈ 2Z+, and

lim sup
b→∞

b−1|Φ1(b, E)− Φ2(b, E)| ≤ c7D
1/2
l (3.38)

if E ∈ 2Z+, where c6 and c7 do not depend on l.

Proof. Assume at first E 6∈ Z+. Then we have

Φ2(b, E) =
1

π2l2

∫
R2

∂ϕ̃

∂z̄
(x, y)E

(
Tr
(
χlP−(E)RT (E)(Eb+ z)P−(E)χl

))
dxdy

where T (E) :=
∑[E/2]

q=0 pq ⊗ v, and the resolvent equation justified by analogy with (2.16).
Therefore,

Φ1(b, E)− Φ2(b, E) =
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1

π2l2

∫
R2

∂ϕ̃

∂z̄
(x, y)E

(
Tr
(
χlP−(E)RT (E)(Eb+ z)(T (E)− V )RV (Eb+ z)P−(E)χl

))
dxdy =

1

π2l2

[E/2]∑
q=0

∫
R2

∂ϕ̃

∂z̄
(x, y) ×

E
(
Tr
(
χlPqRpq⊗v(Eb+ z)(pq ⊗ v − PqV )RV (Eb+ z)P−(E)χl

))
dxdy. (3.39)

Applying the Cauchy-Schwarz inequality, we get

b−1/2 |Φ1(b, E)− Φ2(b, E)| ≤

1

π2l2

[E/2]∑
q=0

∫
R2

∣∣∣∣∂ϕ̃∂z̄ (x, y)

∣∣∣∣ (E (b−1/2‖χlPqRpq⊗v(Eb+ z)(pq ⊗ v − PqV )‖2
HS

))1/2×

(
E
(
b−1/2‖RV (Eb+ z)P−(E)χl‖2

HS

))1/2
dxdy. (3.40)

Note that we have χlPqRpq⊗v(Eb + z) = χ⊥,l pq ⊗ χ‖rv(Eb − 2bq + z). Recall that
Rv(x3, x

′
3; ζ), x3, x

′
3 ∈ R, denotes the integral kernel of the operator rv(ζ), ζ ∈ C \ R.

Using the ergodicity properties of Vω, we find that for q = 0, . . . , [E/2], we have

E
(
b−1/2‖χ⊥,l pq ⊗ χ‖rv(Eb− 2bq + z)(pq ⊗ v − PqV )‖2

HS

)
=

E

(
b−1/2

∫ 1/2

−1/2

∫
R
|Rv(x3, x

′
3; Eb− 2bq + z)|2Kq,b(x

′
3)dx

′
3dx3

)
=

E
(
b−1/2Kq,b(0)

∫
R
|Rv(0, s; Eb− 2bq + z)|2 ds

)
≤

≤
(
E(b−2Kq,b(0)2)

)1/2

(
E

(
b

(∫
R
|Rv(0, s; Eb− 2bq + z)|2ds

)2
))1/2

(3.41)

(see (3.30)) for the definition of Kq,b(0)). By Lemma 2.3,

E

(
b

(∫
R
|Rv(0, s; Eb− 2bq + z)|2ds

)2
)
≤

b

2(|Eb− 2bq + z|Im
√
Eb− 2bq + z)2

(
1 +

1

y4
E(V (0)4)

)
≤

1

2(E − 2q)y2

(
1 +

1

y4
E(V (0)4)

)
,

provided that x = Re z ∈ suppϕ, and b ≥ 2maxx∈ supp ϕ(−x)

E−2q
. Therefore, (3.41) entails

E
(
b−1/2‖χlPqRpq⊗v(Eb+ z)(pq ⊗ v − PqV )‖2

HS

)
≤
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(
E
(
b−2Kq,b(0)2

))1/2
(

1

2(E − 2q)y2

(
1 +

1

y4
E(V (0)4)

))1/2

. (3.42)

Combining (3.39), (3.40), (3.42), and (2.22), we get

b−1/2 |Φ1(b, E)− Φ2(b, E)| ≤ max
q≤[E/2]

(
b−2l−4E

(
Kq,b(0)

2
))1/4

[E/2]∑
q=0

1√
2π2(E − 2q)1/2

×

∫
R2

∣∣∣∣∂ϕ̃∂z̄ (x, y)

∣∣∣∣ (1 +
1

y2
(E(V (0)4)1/2

)
|y|−1dxdy. (3.43)

Putting together (3.43) and (3.31), we get (3.37).
Assume now E ∈ 2Z+. By analogy with (3.40) we have

b−1 |Φ1(b, E)− Φ2(b, E)| ≤

1

π2l2

∫
R2

∣∣∣∣∂ϕ̃∂z̄ (x, y)

∣∣∣∣ (b−1E
(
‖χlPE/2RpE/2⊗v(Eb+ z)(pE/2 ⊗ v − PE/2V )‖2

HS

))1/2

×

(
b−1E

(
‖RV (Eb+ z)PE/2χl‖2

HS

))1/2
dxdy, (3.44)

and, similarly to (3.41), we get

E
(
b−1‖χlPE/2RpE/2⊗v(Eb+ z)(pE/2 ⊗ v − PE/2V )‖2

HS

)
≤

(
E
(
b−2KE/2,b(0)

2
))1/2

(
E
(∫

R
|Rv(0, s; z)|2 ds

))1/2

. (3.45)

Using again Lemma 2.3, we obtain

E

((∫
R
|Rv(0, s; z)|2ds

)2
)
≤

1

2(|z|Im
√
z)2

(
1 +

1

y4
E(V (0)4

)
≤ 2

|y|3

(
1 +

1

y4
E(V (0)4

)
. (3.46)

Putting together (3.44) - (3.46) and (2.19), we get

b−1 |Φ1(b, E)− Φ2(b, E)| ≤

(
l−4b−2E

(
KE/2,b(0)2

))1/4 1√
2π2

∫
R2

∣∣∣∣∂ϕ̃∂z̄ (x, y)

∣∣∣∣ (1 +
1

y2
(E(V (0)4)1/2

)
|y|−3/2dxdy

which combined with (3.31) yields (3.38).
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3.7. Let E ∈ [0,∞), q ∈ Z+, ϕ ∈ C∞
0 (R). The Helffer-Sjöstrand formula (see (3.7)) with

L = hV − Eb, and m = 0, and the Pastur-Shubin formula (see [20, Section 2]) imply

Φ2,q(b, E) =
b

2π

∫
R
ϕ(λ− Eb+ 2bq)dρV (λ; 0).

Therefore,

Φ2(b, E) =

{
b

2π

∑[E/2]
q=0

∫
R ϕ(λ− Eb+ 2bq)dρV (λ; 0) if E 6∈ 2Z+,

b
2π

∫
R ϕ(λ)dρV (λ; 0) if E ∈ 2Z+.

(3.47)

Assume at first E 6∈ Z+. In order to complete the proof of (1.8) we need the following

Lemma 3.5. [18, Theorem 6.5] Assume that V satisfies the assumptions of Theorem 1.1.
Then we have

ρV (E; 0) =
E1/2

π
− E−1/2

2π
E(v(0)) + o(E−1), E →∞. (3.48)

Applying Lemma 3.5, we easily get

lim
b→∞

b1/2

∫
R
ϕ(λ− Eb+ 2bq)dρV (λ; 0) =

1

2π
(E − 2q)−1/2

∫
R
ϕ(λ)dλ, q = 0, . . . , [E/2].

(3.49)
Putting together (3.14), (3.37), (3.47), and (3.49), we obtain

lim sup
b→∞

∣∣∣∣∣∣b−1/2Φ(b, E)− 1

4π2

[E/2]∑
q=0

(E − 2q)−1/2

∫
R
ϕ(λ)dλ

∣∣∣∣∣∣ ≤ c6D
1/2
l . (3.50)

Since liml↓0Dl = 0, we conclude that in the case of R3-ergodic potentials V , relation (3.1)
follows from (3.50).
Now assume E ∈ 2Z+. Then (3.15), (3.38), and (3.47) directly entail

lim sup
b→∞

∣∣∣∣b−1Φ(b, E)− 1

2π

∫
R
ϕ(λ)dρV (λ; 0)

∣∣∣∣ ≤ c7D
1/2
l

yielding (3.2) in the case of R3-ergodic potentials V .

3.8. In this subsection we prove Theorem 1.1 in the case where V = Vω is Z3-ergodic
and Z-ergodic in the direction of the magnetic field. To this end we will use the so-called
suspension method ([10], [18]). Set

Ṽω,θ(x) = Vω(x + θ), ω ∈ Ω, θ ∈
(
−1

2
,
1

2

)3

, x ∈ R3.

21



Then the potential Ṽω,θ is R3-ergodic and R-ergodic in the direction of the magnetic field
on the probability space (Ω̃, F̃ , P̃) which is the product of the given probability space

(Ω,F ,P), and (Ω0,F0,P0) where Ω0 :=
(
−1

2
, 1

2

)3
, F0 is the σ-algebra of the Borel subsets

of Ω0, and P0 is the Lebesgue measure on Ω0 (see [10] or [18, pp. 28-29]). Moreover, due
to the unitary equivalence of the operators H0,b + Ṽω,θ and H0,b + Vω, we have

%V,b(λ) = %Ṽ ,b(λ), λ ∈ R. (3.51)

Now relation (1.8) for Z3-ergodic potentials follows from the same relation applied to the
R3-potential Ṽ , and (3.51). On the other hand, (1.9) applied to the R3-potential Ṽ and
(3.51) imply

lim
b→∞

b−1 (%V,b(Eb+ λ2)− %V,b(Eb+ λ1)) =
1

2π
(kṼ (λ2)− kṼ ((λ1)) . (3.52)

Using again the Pastur-Shubin formula for ρṼ (λ; 0) i.e.

ρṼ (λ; 0) =
1

|Λ|
Ẽ
(
Tr
(
χΛχ(−∞,λ)(hṼ (0))χΛ

))
,

it is easy to check that we have

kṼ (λ) = ρṼ (λ; 0) =

∫
(− 1

2
, 1
2)

2
ρV (λ;X⊥)dX⊥ = kV (λ), λ ∈ R. (3.53)

Combining (3.52) and (3.53), we get (1.9) for Z3-ergodic potentials.

Acknowledgements. Georgi Raikov was partially supported by the Chilean Science
Foundation Fondecyt under Grant 1050716. He is sincerely grateful for the warm hos-
pitality of his colleagues at the CPT, Marseille, where the major part of this work was
done.

References

[1] J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic fields. I.
General interactions, Duke Math. J. 235 (1978), 847-883.
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