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Abstract

Schrödinger operators H with oscillating potentials such as cos x2 are
considered. Such potentials are not relatively compact with respect to
the free Hamiltonian. But we show that they do not change the essential
spectrum. Moreover we derive upper bounds for negative eigenvalue sums
of H.
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1 Introduction

In this paper, we consider Schrödinger operators H with oscillating potentials
such as cos |x|2. To our knowledge, the spectral analysis of such Schrödinger
operators H has no antecedent.

First we show that a class of oscillating potentials V does not change
the essential spectrum of the free Hamiltonian(i.e. σess(−4 + V ) = [0,∞)).
This means that the negative part of the −4 + V is compact operator. We
remark that the potentials we consider are not compact with respect to the
free Hamiltonian.

It is well known that the moment of the eigenvalues of the Schrödinger
operator −4d + V (on L2(Rd)) has the following estimate:

∞∑

j=0

|ej |γ ≤ Lγ,d

∫

Rd

|V (x)|γ+d/2
− dx, (d = 1, 2, 3, · · · ), (1)

where |V (x)|− := −min{0, V (x)}, e0 ≤ e1 ≤ e2 ≤ · · · are negative eigenvalues
of −4 + V and Lγ,d is a universal constant([4, Theorem 12.4],[5]). For the
potential V (x) = cos(|x2|), the left hand side of (1) can be defined by com-
pactness of the negative part of H, |V (x)|γ+d/2

− is not integrable(d = 1, 2, . . .):
∫

Rd

|V (x)|γ+d/2
− dx = ∞, V (x) = cos |x|2,

but we show that
∑∞

j=0 |ej |γ is finite in the following cases:

{
γ ≥ 1

2 , for d = 1,

γ > 0, for d = 2, 3, . . .
(2)

Moreover in a general case we give new criteria for
∑∞

j=0 |ej |γ < ∞ and derive
upper bounds for negative eigenvalue sums of H.

In analysis of the Schrödinger operator with an oscillating potential, the
positive part of the potential is essential. Because, for a low energy state u, the
expectation value |〈u, V u〉| becomes small by the oscillation of the potential.
But |〈u, V u〉| does not become small if the positive part of V is cut off.

2 Essential Spectrum

We consider the Schrödinger operator on L2(Rd):

H := H0 + V, H0 = −4d, (3)
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where 4d is the d-dimensional Laplacian and V ∈ L2
loc(Rd) is a real-valued

function. Let Sd be the d-dimensional unit sphere, and let Θ be the stantard
measure on Sd. We write x ∈ Rd as x = rθ, r = |x|, θ ∈ Sd. We denote the
Laplace-Beltrami operator on Sd by Λd.

Throughout this section, we assume that the potential V has the following
properties:

[V.1] V : Rd 7→ R is bounded Borel measurable, and
for d = 1,

lim
R→∞

sup
x∈[R,∞)

∣∣∣∣
∫ x

R
V (y)dy

∣∣∣∣ = 0, lim
R→−∞

sup
x∈(−∞,R]

∣∣∣∣
∫ R

x
V (y)dy

∣∣∣∣ = 0; (4)

for d ≥ 2

lim
R→∞

sup
r∈[R,∞)

sup
θ∈Sd

∣∣∣∣
∫ r

R
V (rθ)dr

∣∣∣∣ = 0. (5)

Example 2.1. The following functions V1 and V2 satisfy condition [V.1]:

V1(r) := a sin(br`), V2(r) := a cos(br`) a, b ∈ R \ {0},
r = |x|, d ∈ N, ` ≥ 2. (6)

Under condition [V.1], H is self-adjoint with D(H) = D(H0) and bounded
below. For a self-adjoint operator A, we denote by A+, A− the positive and
negative part of A respectively:

A+ =
∫

[0,∞)
λdEA(λ), A− =

∫

(−∞,0)
λdEA(λ), (7)

where EA(·) is the spectral measure associated with A. When A is bounded
from below, we set

Σ(A) := inf σess(A). (8)

Theorem 2.2. Assume that V satisfies condition [V.1]. Then

σess(H) = [0,∞). (9)

In particular H− is compact.

Remark. The potentials V1 and V2 with ` ≥ 2 in Example 2.1 are not Hn
0 -

compact(n = 1, 2, . . .), and |V1| and |V2| are not H0-form compact. In-
deed, if cos bx`(Hn

0 + 1)−1 is compact, then sin bx` · cos bx` = (sin 2bx`)/2
is Hn

0 -compact. Hence sin bx`(Hn
0 + 1)−1 is compact. Therefore [(sin bx`)2 +

(cos bx`)2](Hn
0 +1)−1 = (H0 +1)−1 is compact, but (Hn

0 +1)−1 is not compact
which is a contradiction. Therefore V2 is not Hn

0 -compact. Similarly we can
show that V1 is not Hn

0 -compact. Therefore Theorem 2.2 is nontrivial.
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Remark. Let V = V1(or V2). If d = 1 and

lim
L→∞

∫

R
V1(x)e−|x|/Ldx < 0,

(
or lim

L→∞

∫

R
V2(x)e−|x|/Ldx < 0

)
, (10)

then H− 6= 0. Indeed, for ψL(x) := exp(−|x|/2L) ∈ L2(R), we have

lim
L→∞

〈ψL,HψL〉 < 0. (11)

In particular, in the case l = 2, H− 6= 0 for all a < 0, b > 0. If d ≥ 2, there
exist a constants α > 0 and β < 0 such that for all |a| > α and |b| > β,
H− 6= 0 (see [1, Lemma 4.3]).

Proof of Theorem 2.2. For R ≥ 0, we denote by χR the characteristic function
of {x ∈ Rd||x| ≤ R}. Then χRV is H0-compact([8, p.117, Example 6]). For
all u ∈ C∞

0 (Rd), we have

〈u, V u〉 = 〈u, χRV u〉+
∫

Sd

dΘ(θ)
∫

[R,∞)
rd−1drV (rθ)|u(rθ)|2. (12)

Let
W (R, r; θ) :=

∫

[R,r]
V (sθ)ds. (13)

Then, for almost every θ ∈ Sd,
∫

[R,∞)
rd−1drV (rθ)|u(rθ)|2 = −

∫

[R,∞)
W (R, r; θ)

d
dr

(
|u(rθ)|2rd−1

)
dr. (14)

Therefore

|(l.h.s(14))| ≤
(

1 +
d− 1

R

)
sup
r≥R

|W (R, r; θ)|
∫

[0,∞)
|u(rθ)|2rd−1dr

+ sup
r≥R

|W (R, r; θ)|
∫

[0,∞)

∣∣∣∣
du(rθ)

dr

∣∣∣∣
2

rd−1dr, (15)

By the definition of Λd we have

〈u, H0u〉 =
∫

Sd

dΘ(θ)
∫ ∞

0

[∣∣∣∣
du(rθ)

dr

∣∣∣∣
2

− u(rθ)∗

r2
(Λdu)(rθ)

]
rd−1dr,

and
−

∫

Sd

dΘ(θ)
∫ ∞

0
u(rθ)∗(Λdu)(rθ)rd−1dr ≥ 0. (16)
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Therefore, for all u ∈ D(H0) and R > 0, we have

|〈u, V u〉| ≤ |〈u, χRV u〉|+ a(R)‖u‖2 + b(R)〈u, H0u〉, (17)

where

a(R) :=
(

1 +
d− 1

R

)
sup
r≥R
θ∈Sd

|W (R, r; θ)|,

b(R) := sup
r≥R
θ∈Sd

|W (R, r; θ)|.

By condition [V.1],
lim

R→∞
a(R) = lim

R→∞
b(R) = 0. (18)

Hence, the following operator inequality on D(H0) holds:

H ≥ (1− b(R))H0 − |χRV | − a(R), (R > 0). (19)

By the min-max principle,

Σ(H) ≥ −a(R), (20)

for all R with 1 ≥ b(R). Taking R → ∞, we have Σ(H) ≥ 0. Therefore
σess(H) ⊂ [0,∞). This means that H− is compact.

Next we show that σess(H) ⊃ [0,∞). Let u ∈ C∞
0 (Rd) be a normalized

vector and set
uL(x) := u(x/L)/

√
Ld, x ∈ Rd. (21)

It is easy to see that

‖uL‖ = 1, uL
w→ 0 (L →∞), 〈uL, H0uL〉 → 0 (L →∞). (22)

Using (17), one can show that

lim
L→∞

〈uL, V uL〉 = 0. (23)

Hence
‖H1/2

+ uL‖2 = 〈uL,HuL〉 − 〈uL,H−uL〉 → 0, (L →∞), (24)

where we have used the fact that H− is compact. Therefore 0 ∈ σess(H
1/2
+ ).

This means that 0 ∈ σess(H). Therefore there exists a sequence {vn}∞n=0 ⊂
C∞

0 (Rd) such that

‖vn‖ = 1, vn
w→ 0(n →∞), ‖Hvn‖ → 0(n →∞). (25)
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It is easy to see that 〈vn, H0vn〉 is uniformly founded. By this fact, a suit-
able subsequence {H1/2

0 vnj}∞j=0 has a weak limit. Since vn
w→ 0, we obtain

H
1/2
0 vnj

w→ 0(j → ∞). Thus, by using [4, Theorem 8.6], χRvnj converges in
norm. By (17), we have

(1− b(R))〈vnj ,H0vnj 〉 ≤ |〈vnj ,Hvnj 〉|+ |〈vnj , χRV vnj 〉|+ a(R), (R > 0).

Therefore, H
1/2
0 vnj

s→ 0 (j →∞). For each k ∈ Rd, we set

wj(x) = eik·xvnj (x), j = 0, 1, 2, . . . . (26)

Then, {wj}∞j=1 satisfy following:

{wj}∞j=1 ⊂ C∞
0 (Rd), ‖wj‖ = 1, wj

w→ 0(j →∞). (27)

It is not so hard to see that

‖(H − k2)wj‖ = ‖Hvnj‖+ 2|k|‖H1/2
0 vnj‖ → 0 (j →∞). (28)

Since k ∈ Rd is arbitrary, we obtain σess(H) ⊃ [0,∞).

3 Bounds for Eigenvalue Sums

We assume the following:

[V.2] In the case d = 1, there exist constants R2 < R1 such that

lim
x→∞

∫ x

R1

V (y)dy ∈ [0,∞), lim
x→−∞

∫ R2

x
V (y)dy ∈ [0,∞). (29)

In the case d ≥ 2, there exists a constant R ≥ 0 such that for almost
every θ ∈ Sd,

lim
r→∞

∫ r

R
V (rθ)dr ∈ [0,∞). (30)

Example 3.1. The functions V1 and V2 in Example 2.1 satisfy [V.2].

Proof. It is enough to show [V.2] in the case d ≥ 2. If d ≥ 2, ` = 2, and
a, b > 0, by Fresnel’s formula, we have

lim
r→∞

∫ r

0
a sin(bs2)ds = lim

r→∞

∫ r

0
a cos(bs2)ds =

√
πa2

8b
> 0. (31)
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Therefore [V.2] holds with R = 0. In the case a < 0, b > 0, it is easy to see
that

−
∫ ∞
√

π/b
sin br2dr > 0, (32)

−
∫ ∞
√

π/2b
cos br2dr > 0. (33)

Therefore [V.2] holds with R =
√

π/b or R =
√

π/2b. In the case ` > 2, it is
not so hard to see that∫ ∞

0
sin r`dr ≥ 0,

∫ ∞

(2π)1/`

sin r`dr ≤ 0 (34)
∫ ∞

(π/2)1/`

cos r`dr ≤ 0,

∫ ∞

(3π/2)1/`

cos r`dr ≥ 0. (35)

This means that [V.2] holds with R = 0, (2π)1/`, (π/2)1/`, (3π/2)1/`.

For d ≥ 2, V , and R satistying [V.2], we define

W̄ (θ) := lim
r→∞W (R, r; θ), (36)

Ṽ (rθ) := |W̄ (θ)−W (R, r; θ)|(1− χR). (37)

For a self-adjoint operator T , we set

En(T ) := sup
φ1,...,φn−1

inf
ψ∈D(T );‖ψ‖=1

ψ∈[φ1,...,φn−1]⊥

〈ψ, Tψ〉, (38)

where [φ1, . . . , φn−1]⊥ is a shorthand for {ψ|〈ψ, φi〉 = 0, i = 1, . . . , n− 1}. By
the min-max principle([8, Theorem XIII.1]), En(T ) is nth eigenvalues below
the bottom of the essential spectrum of T or the bottom of the essential
spectrum.

Our main theorem is:

Theorem 3.2. Let d ≥ 2. Suppose that V satisfies condition [V.1] and [V.2].
Assume that ∫

Rd

∣∣∣Ṽ /r
∣∣∣
γ+d/2

dx +
∫

Rd

∣∣∣Ṽ
∣∣∣
2γ+d

dx < ∞, (39)

where γ > 0 for d = 2 and γ ≥ 0 for d ≥ 3. Then,
∑

n≥0

|En(H)|γ (40)

≤ Lγ,d inf
0<ε<1

(1− ε)−d/2

∫

Rd

[
|χRV−|γ+d/2 +

∣∣∣d− 1
r

Ṽ +
Ṽ 2

ε

∣∣∣
γ+d/2

]
dx.
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where Lγ,d is a universal constant(given in [2], [3], [4, Theorem 12.4], and
references therein).

In the case d = 1, we define

Ṽ (x) :=





∣∣∣∣ lim
r→∞

∫ r

x
V (y)dy

∣∣∣∣ , x ≥ R1,

0, R1 < x < R2,∣∣∣∣ lim
r→−∞

∫ x

r
V (y)dy

∣∣∣∣ , x ≤ R2.

(41)

Theorem 3.3. Let d = 1. Assume [V.1] and [V.2]. For a γ ≥ 1/2, we assume
Ṽ ∈ L2γ+1(R). Then

∞∑

n=0

|En(H)|γ ≤ Lγ,1

∫

R

[
|V−(x)|γ+1/2χ[R1,R2](x) + |Ṽ |2γ+1(x)

]
dx, (42)

where Lγ,1 is a universal constant(given in [4, Theorem 12.4]).

Example 3.4. In the case d = 1, potentials V1 and V2 in Example 2.1 satisfy
the condition

Ṽ ∈ L2γ+1(R), γ ≥ 1
2
, (43)

for all ` ≥ 2. In the case d ≥ 2 and ` = 2, V1 and V2 satisfy the condition (39)
for γ > 0. In the case d ≥ 2 and ` > 2, V1 and V2 satisfy (39) for all γ ≥ 0.

Proof. We give proof only in the case where V = V1 and a = b = 1. If d ≥ 2,
we have

|Ṽ (rθ)| = (1− χR(r))
∣∣∣
∫ ∞

r
cos s`ds

∣∣∣ = (1− χR(r))
∣∣∣
∫ ∞

r

1
`s`−1

d(sin s`)
ds

ds
∣∣∣.

By integration by parts, we obtain

|Ṽ (rθ)| ≤ (1− χR(r))
2

`r`−1
. (44)

Therefore
∫

Rd

|Ṽ /r|γ+d/2dx ≤
(

2
`

)γ+d/2

Θ(Sd)
∫ ∞

R

(
1
r

)`(γ+d/2)−d+1

dr,

∫

R−d
|Ṽ |2γ+ddx ≤

(
2
`

)2γ+d

Θ(Sd)
∫ ∞

R

(
1
r

)(`−1)(2γ+d)−d+1

dr.

Since R = (3π/2)1/`, we obtain the desired result.
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Proof of Theorem 3.2. For almost every θ ∈ Sd and for all u ∈ C∞
0 (Rd), we

have

−
∫ ∞

R
W (R, r; θ)

d
dr

(rd−1|u(rθ)|2)dr

=
∫ ∞

R
(W̄ (θ)−W (R, r; θ))

d
dr

(rd−1|u(rθ)|2)dr + W̄ (θ)Rd−1|u(Rθ)|2

≥
∫ ∞

R
(W̄ (θ)−W (R, r; θ))

d
dr

(rd−1|u(rθ)|2)dr.

≥ −
∫ ∞

R
Ṽ (rθ)

[
(d− 1)rd−2|u(rθ)|2 + 2rd−1|du(rθ)/dr||u(rθ)|

]
dr,

where we have used condition [V.2]. By using equation (12) and (14), for any
ε > 0 we obtain

〈u, V u〉 ≥ 〈u, χRV u〉 − ε〈u,H0u〉 −
〈
u,

[d− 1
r

Ṽ +
Ṽ 2

ε

]
u
〉
. (45)

Therefore, for all u ∈ D(H0), we have

〈u,Hu〉 ≥ (1− ε)〈u,H0u〉 −
〈
u,

[
χR|V−|+ d− 1

r
Ṽ +

Ṽ 2

ε

]
u
〉
. (46)

Thus we can apply [4, Theorem 12.4] to obtain
∑

n≥0

|En(H)|γ

≤ (1− ε)γ
∑

n≥0

∣∣∣En

(
H0 − 1

1− ε

[
χR|V−|+ d− 1

r
Ṽ +

Ṽ 2

ε

])∣∣∣
γ

≤ Lγ,d(1− ε)−d/2

∫

Rd

[
|χRV−|γ+d/2 +

∣∣∣d− 1
r

Ṽ +
Ṽ 2

ε

∣∣∣
γ+d/2

]
dx,

for any 0 < ε < 1.

Proof of Theorem 3.3. Similar to the proof of Theorem 3.2
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