Ground State Energy of the Polaron in the Relativistic
Quantum Electrodynamics

Itaru Sasaki
Department of Mathematics,
Hokkaido University,
Sapporo 060-0810, Japan
e-mail: i-sasaki@math.sci.hokudai.ac.jp

July 30, 2005

Abstract

We consider the polaron model in the relativistic quantum electrodynam-
ics(QED). We prove that the ground state energy of the model is finite for all
values of the fine-structure constant and the ultraviolet cutoff A. Moreover we

give an upper bound and a lower bound of the ground state energy.
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1 Introduction and Main Results

We consider the relativistic quantum electrodynamics(QED) for a fixed total momen-
tum — the polaron model of the relativistic QED. The Hamiltonian, which describes a
Dirac particle minimally coupled to the quantized radiation field, commutes with the
total momentum operator and has a direct integral decomposition with respect to the
total momentum operator{J 1000 20). Each fibre in this direct integral decomposition
is just the Hamiltonian of the polaron we consider. The Hilbert space of the polaron

model is defined by
F = C'@ F,(L*(R*x{1,2})), (1)



where

R E1.29) = ) | @R (1. 2)| 2
n=0 s
is the photon Fock space (®7 denotes n-fold symmetric tensor product). For a closable
operator T' on L?(R3x{1,2}) we denote by dI},(T"), the second quantization operator of
T (seed 40). Let a(f), f € L*(R3%x{1,2}) be the annihilation operator on the photon

Fock space. For a function g; € L*(R*x{1,2}), j = 1,2, 3, we set
Aj = algj) talg;)’, j=12.3. (3)

Let {1, as, az, B} be the 4 x 4-Dirac matrices, i.e., {a;, a;} = 26, {as, 3} = 0,3 =
1,4,7 = 1,2,3. Here {A,B} := AB + BA. For three objects ay,as, a3 we set a =

3 a;b;, provided that a;b; and Z?:1 a;b; are defined.

(ay,as,as), and write a-b := ijl

The Hamiltonian of the polaron model we consider is

Hp)=a -p+ Mg+ d}(w) — a-dlL (k) —qo - A, (4)

where p € R? is the fixed total momentum, M > 0 is the mass of the Dirac particle,
g € R is a constant proportional to the fine-structure constant, and w = |k| is the
1-photon Hamiltonian (k € R?). Note that we omit the symbol ® between the Hilbert
space for the Dirac matrices C* and the photon Fock space F,(L?*(R*x{1,2})). The

most important example of {g; ?:1 is of the form

£ty = XA 0y (5)

k-e”k) =0, e”(k)-e¥(k)=0,, ackecR} rs=12, (6)

and x4 (k) is the characteristic function of the ball {k € R3|[k| < A}, A > 0.

We define
Ey(p) = inf (U, H(p)¥) (7)

YeDom(H(p))
Iwl=1

the ground state energy of H(p), where “Dom” means operator domain. We assume

the following:

Hypothesis I. g; € Dom(w™2) N Dom(w), (g;,9:) € R, j, ¢ =1,2,3.



It should be noted that it is highly non-trivial whether or not Ey(p) is finite, because
H(p) contains the term —ac- dI}, (k). This is the main problem discussed in the present

paper.
We prove that the ground state energy Ey(p) is finite under suitable conditions:

Theorem 1.1. Assume Hypothesis I, and

k-gk'\r)*
G(g) = LLSECID 8
(&) = nf, ]k| Z e [k|K| — k- K > (®)

Then, the ground state energy Eo(p) is ﬁmte:
Ey(p) > —oc. (9)

In particular, if g; = f;, 7 =1,2,3, the ground state energy Ey(p) is finite.

For a vector u € C*, we set a; := (u, aju)cs, and

— |al? 1
E(N,u) :=p-a+ Mu,Bu) + 47TAq2 2 log ( i ’Z’) — 4w\

In the physical case (i.e. the function g¢;’s are given by (5)), the lower bound of
Eo(p) + /|p|? + M? are proportional to A:

Theorem 1.2. Let g; = f;, 7 = 1,2,3. Then

ChA — V/[p[* + M? < Ey(p), (10)
Eo(p) < Co(A) (11)
where

Cy = inf {€|q| + 16mq* + (e' + l>47TC]27 \/47T—M| + (1 + l>4ﬁq2} ; (12)

€,e/>0 € 3 €
Cy(A) == inf E(Au). (13)

u€C4
llull g =1

2 Proof of Theorem 1.1 and 1.2

Lemma 2.1. Let A be a positive self-adjoint operator on a Hilbert space H. Let B be
a symmetric operator with Dom(A) C Dom(B) and

|BU|| < [[A¥], ¥ € Dom(A). (14)

Then, for all ¥ € D(A), (¥, (A+ B)¥) > 0.
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Proof. By the Kato-Rellich theorem( 40), for all € € (—1,1), A + eB is self-adjoint
and A+ eB > 0. Therefore (¥, (A + B)¥) > 0 for all ¥ € Dom(A). |

By this lemma, it suffices to show that there exists a constant £ > 0 such that

[(dDy(w) + E)T[* > [le - (dTy (k) + gA)P|*, ¥ € Dom(dl},(w)). (15)
We use the following representation for a-matrices:

o O'j O .
aj_ |: O _O_j:|7 j_]-a2737

with (o1, 02, 03) being the Pauli matrices. Using anticommutation relation of oy, ap and

a3, we have

o (dTy (k) + gA) ¥ * = ZH ATy (k) + g A4;) ¥ |[* — (W, 8 a(ik x g) +a(ik x &) ]¥),
(16)
where S; = 0; @ 0j, j = 1,2,3. The Hilbert space C* ® [®"L*(R?® x {1,2})] is naturally
embedded in L2(R?® x {1,2}:C* @ [@" VLA(R? x {1,2})]). For a vector ¥ € C*®
(@7 L2(R? x {1,2})], we denote its value at point (k,r) € R3x{1,2} by ¥(k,r,-).
For U = (U™)> € F, we define

a" (k)T = <\If(1)(k,r), V22U (k) /nI ™ (k7 ), - ) eF, keR r=1,2,
(17)
a Fock space valued function. This operator a(” (k) is the distributional kernel of the

annihilation operator.

Lemma 2.2. For all ¥V € Dom(dl},(w)) and € > 0, the following inequality holds:
. . % q
(0. - [afik x &) + a(ik x &) 10)]| < ale(¥, B ()0 + D ig wg o)t (9

where (g, wg) := Z?:1<gj>ng>'



Proof.

Lh.s of (18) =2|q|

Re}l,;g(ﬂf, —iS - (k x g(k, r))a<7”>(k)\p>dk'
SQ"]%; IS - (k x gk, 7))@ [la" (k)¥||dk
=2!q|§tﬂig [k, 7)] - [[k['2a™) (k) W] - || ]| dk
1/2
<2lalig e ¥ Ik 00ul| )
<lale(, dnyw)w) + g wm) ),
where f :=37 _,, [ i
Lemma 2.3. For all ¥V € Dom(dl},(w)) and € > 0, the following inequality holds:
(T, A*T) < (2 + e+ %) (w1 g, w1 2g) (U, dT}, (w)T) + (1 - %) (g,g)||V|. (19)

Proof.

(W, A%W) <

M)

[l vl + (14 1) g v

1

J

NE

= [<1 + e)[|[l] 7252 - [ AT (w) V2w 2

1

1 B 1
b (1) D2 aru 2wl 4+ (141 gl 1P

.
Il

i
The following Lemma is the most important fact in the proof of Theorem 1.1:
Lemma 2.4. For all ¥ € Dom(dl},(w)), the following inequality holds:
3
T (@)W1 =Y [|dLy (k)W 1* = g(dly (k) ¥, A¥) — g(AW, dT}, (k)W)
j=1
> —4¢*G(g)(V, ATy (w)¥) — ¢(¥, (a(k - g)* +a(k - g)) V). (20)
Proof. We define
k-g(k', )
F = 21
Kk kK 2y

>



For all ¥ € Dom(dl},(w)), we have
Lhs of (20) = ?,[ dk?,['dk' (|- K] — k- K) || (b — 2¢F)a¥|?
R3 R3
— (V. [a(k-g) +a(k-g)] )
gy i A k) 00 o
R3 R3

where a := a(k), b := a¥(K'), and f := PO 1.2/ Since k|- [K'| =k -k >0, the
inequality (20) holds. i

Proof of Theorem 1.1. Using Lemmas 2.2 - 2.4, we get

(dT (w Z ALy (k) + qA;)? — ¢S - [a(ik x g) + a(ik x g)*)]

> 2Bdl, (w) + E? — 4¢°G(g)dly (w) — qla(k - g)* + a(k - g)] — |q|dT(w)
— lal(g. we) — 4w g, w™ g)dl(w) - 2(g, &),

in the sense of quadratic form on Dom(dl},(w)). Since a(k - g) + a(k - g)* is dI}(w)/2-
bounded, for a large £ > 0 we have

(dTh(w) + E)* = > (dLy(ky) + qA;)* — ¢S - [a(ik x g) + a(ik x g))] > 0.

j=1
By Lemma 2.1, for a large £ > 0, we obtain

dl(w) —a - dlL (k) —ga- A > —F, (22)

in the sense of quadratic form on Dom(dl},(w)). This inequality implies that Fy(p) is
finite.

Next we show that G(f) < oo if g; = f;(j = 1,2,3). By the definitions of e (k), the
vectors k/|k|,e™) (k), e (k) are the orthonormal basis of C. Therefore

L oad)de 1 [ 2 <k-k’>2] [,
Gf)= sup — [ —F———7—— = dk’ = 47A.
T A0 v T L BTl S

Proof of Theorem 1.2. First we show (10). We set g; = f; (j = 1,2,3). It is easy to
see that

VPP + M2 + dT(w) — @ - ATy (k) — gax - A. (23)
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By the definition of e (k), we have k - f(k,7) = 0 (k € R® r = 1,2). Therefore, using

Lemmas 2.2 — 2.4, we have
(dl(w) + C1A)? — (dL (k) + gA)? — ¢S - [a(ik x f) + a(ik x £)*]

> <2C’1A — 2|qleA — 4¢*G(f) — (2 +€ + %) (w™2f, w_1/2f)> dly (w)
€

+O2A2 - %(f,wf) - (1 + §>q2(f, £), e >0. (24)

It is easy to see that (w™'/2f w™l/2f) = 87 A, (f,wf) = 87A3/3, (f,f) = 47A>. Hence,
by the definition of Cy, the left hand side of (24) is positive for suitable €, ¢’ > 0. Thus,

using Lemma 2.1 (and (16)), we have

H(p) =z —V|p|* + M? — C1A. (25)

For normalized vectors u € C*, ¢ € Dom(d[},(w)) we define
aj = (u,a4u), h(a):=d(w—a-k)—qa-A,
UV:=u®yelkF.

Note that w —a-k > 0 and w — a - k is injective as a multiplication operator. We have
(U, H(p)¥) =a-p+ Mu,fu) + (1, h(a)i) (26)
Since h(a) is a van Hove type Hamiltonian, we have
info(h(a)) = —¢*|[(k| —a-k)~/*a-f|”

k)
= —AnAg® + (1 — 2/ o xalk)
TAg +Q( |a|) de ’k|2_(ak)2

1 1-Ja
= —4rAq® + 27AG*(1 — |a]2)m log (TLD ,

where o means the spectrum(e.g.00 30). Thus we have

Eo(p) < inf inf (U, H(p)¥) = inf &E(u)

— ueC4; |lul|=1 y€Dom(dl} (w)) ueCH; [|ul=1
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