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ENERGETIC AND DYNAMIC PROPERTIES OF A
QUANTUM PARTICLE IN A SPATIALLY RANDOM MAGNETIC FIELD
WITH CONSTANT CORRELATIONS ALONG ONE DIRECTION

HAJO LESCHKE, SIMONE WARZEL, AND ALEXANDRA WEICHLEIN

ABSTRACT. We consider an electrically charged particle on the Euclidean plane sub-
jected to a perpendicular magnetic field which depends only on one of the two Cartesian
co-ordinates. For such a “unidirectionally constant” magnetic field (UMF), which other-
wise may be random or not, we prove certain spectral and transport properties associ-
ated with the corresponding one-particle Sihinger operator (without scalar potential)

by analysing its “energy-band structure”. In particular, for an ergodic random UMF we
provide conditions which ensure that the operator’s entire spectrum is almost surely ab-
solutely continuous. This implies that, along the direction in which the random UMF is
constant, the quantum-mechanical motion is almost surely ballistic, while in the perpen-
dicular direction in the plane one has dynamical localisation. The conditions are verified,
for example, for Gaussian and Poissonian random UMF’s with non-zero mean-values.
These results may be viewed as “random analogues” of results first obtained by A. Iwat-
suka [Publ. RIMS, Kyoto Univ21 (1985) 385] and (non-rigorously) by J. E.{Ner

[Phys. Rev. Lett68 (1992) 385].
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1. INTRODUCTION

The guantum-dynamical behaviour of electrically charged particles in a spatially
random magnetic fiel(RMF) has become a topic of growing interest over the last decade.
Most theoretical investigations of corresponding one-particle models take their motivation
from the physics of (quasi-) two-dimensional systems. For example, in connection with
the fractional quantum Hall effect, transport properties of interacting electrons on the
(infinitely-extended) Euclidean plafi&’ subjected to an external random scalar potential
and a perpendicular, strong homogeneous magnetic field are often described by (non-
interacting) effective, so-called composite fermions in a RMF, which is homogeneous
on average. Near half filling of the lowest Landau level, the values of this (fictitious)
RMF fluctuate at each point = (z1,22) € R? about a mean-value near zero [24, 70,
47]. Moreover, experimental realisations of gases of non-interacting fermions in (actual)
RMF’s by quasi-two-dimensional semiconductor heterostructures with certain randomly
built-in magnets have been reported [20, 63, 44, 3, 57, 9, 58]. Last but not least, there is a
fundamental interest in the theory of one-particle models with RMF’s in two dimensions.
Just like in Anderson’s problem [2] of a quantum particle subjected to a random scalar
potential (only), an important question is whether all (generalised) energy eigenstates are
spatially localised or whether some of them are delocalised. Until recently, in the RMF-
case the answer to the question has remained controversial within perturbative, quasi-
classical, field-theoretical and numerical studies [4, 40, 32, 59, 72, 6, 17, 19, 51, 31, 60,
71, 65, 48, 16, 33]. It is therefore desirable to establish exact localisation/delocalisation
results for the RMF-case as has been done for random scalar potentials [10, 50, 64] (see
also [41]). For the RMF-case (without a random scalar potential) we are aware of only
one rigorous work [35] devoted to the localisation/delocalisation problem. Therein Klopp,
Nakamura, Nakano and Nomura outline a proof of the existence of localised states at low
energies in a certain model for a particle on the (unit-) square ldfficimstead of the
two-dimensional continuuri?.

In the present paper we prove first exact localisation/delocalisation results for a
simplified model for a particle on the continuui?. The simplification arises from the
assumption that the fluctuations of the RMF A are anisotropically long-ranged cor-
related in the sense that we consider the limiting case of an infinite correlation length
along one direction and take the correlation length to be finite but strictly positive along
the perpendicular direction in the plane. In other words, the RMF is assumed to be inde-
pendent of one of the two Cartesian coordinates, which we choose to be the second one,
x2. The remaining dependence of the RMF-values on the first coordinate suppose
to be governed by the realisations ofemgodicreal-valued random process with the real
line R as its parameter set. For the precise description of suemdom unidirection-
ally constant magnetic fiel(RUMF) see Definition 3.1 below. To our knowledge, the
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first rigorous work explicitly dealing with a model involving a random UMF (with zero
mean-value) is one of Ueki [67].

Models for a single particle on the plafi? subjected to a non-randoumidirec-
tionally constant magnetic fiellUMF) have been the object of various studies in the
mathematics [28, 13, 45, 42] and physics [46, 49, 37, 56, 61, 39] literature. These models
illustrate unadulteratedly that inhomogeneous magnetic fields have a tendency to delo-
calise charged particles along the direction perpendicular to the magnetic-field gradient.
According to classical mechanics a particle with non-zero kinetic energy wanders off to
infinity along snake or cycloid-like orbits winding around contours of constant magnetic
field [13, 46]. The quantum analogue of this unbounded motion should manifest itself in
the exclusive appearence of absolutely continuous spectrum of the underlying one-particle
Schibdinger operator with a UMF (only), which is not globally constant. Although plau-
sible from the (quasi-) classical picture, a mathematical proof of this conjecture is non-
trivial and has been accomplished so far only for certain classes of UMF’s [28, 45]. From
the same picture, the absolutely continuous spectrum should come with ballistic transport
along the direction perpendicular to the gradient of the UMF. Along the direction paral-
lel to the gradient no propagation is expected, provided the UMF is non-zero on spatial
average - like in the case of a globally constant magnetic field.

In the second section of the present paper we compile rigorous results on spec-
tral and transport properties of one-particle Sctinger operators with UMF’s which
are non-zero on spatial average. As far as transport is concerned, these results slightly
extend the ones in [45]. In the third and main section we formulate conditions on the
RUMF which imply that the spectrum of the corresponding random &tthger oper-
ator is almost surely only absolutely continuous. By virtue of Section 2 such a RUMF
yields ballistic transport along one direction and dynamical localisation along the other
almost surely. These results apply, for example, to Gaussian and Poissonian RUMF’s with
non-zero mean-values.

Some of the results of the present paper have been announced in [43], where the key
ideas are outlined only briefly.

2. SCHRODINGER OPERATORS WITH UNIDIRECTIONALLY CONSTANT MAGNETIC
FIELDS

Throughout this section we are dealing with (non-random) unidirectionally constant
magnetic fields in the sense of

Definition 2.1 (UMF). A unidirectionally constant magnetic fie[(UMF) is given by a
real-valued functiorb : R — R, =7 — b(x1), which is locally Lebesgue-integrable,
b € Ll .(R), and whose anti-derivative

loc

x1
a:R—R, x1+ a(r) = / dy1 b(y1) (2.1)
0
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behaves near infinity according to

la(z1)]

0 < b:= liminf ——* < oo and oghmsupw

1| =0 |21] 21|00 |T1]*

< oo Wwith somea > 1.
(2.2)

Taking the function (2.1) as the second component of the vector pot&tiab
(z1,22)— (0,a(z1))€ R? in the asymmetric gauge, the Hamiltonian (or: Sctinger
operator) for a single spinless particle on the Euclidean pRthsubjected to a UMF,
which depends (at most) on the first Cartesian co-ordinatés informally given by the
second-order differential operator

1
H() = 5 [PE+ (P2 = a(Qu))’] - (2.3)
Here P, := —id/0xy, P» := —i0/0x and Q1(, Q=) are the two components of the

canonical momentum, respectively, position operator on the Hilbert spa@?) of
complex-valued, Lebesgue square-integrable functioos R? with squared nornfjy) ||?

= [g2 d®z[¢(2)]* < co. The operators); andQ, act as multiplication by:;, respec-
tively, zo. Moreover, we use physical units in which Planck’s constant (dividezidythe
particle’s mass and charge are all equall.tdhe requirements in Definition 2.1 guarantee
thata is not only absolutely continuous and hence locally bounded, L° (R), but

also polynomially bounded near infinity. Therefore (2.3) is precisely defined as an essen-
tially self-adjoint and non-negative operator on the Schwartz sgégé) c L?(IR?) of
complex-valued, arbitrarily often differentiable functions of rapid decrease near infinity
(cf. [13, Thm. 1.15]). In the context of quantum mechanics the operator (2.3) represents
the total kinetic energy of the particle and generates its time evolution.

2.1. Energy bands and related spectral properties.Thanks to translation invariance
along thexs-direction the Hamiltonian (2.3) commutes with so that it may be fibred
(or: decomposed) into the one-parameter family

H® (b) = % PP+ (k—a(@))?], keR (2.4)

of effective Hamiltonian®n the Hilbert spacé.?(R) for the one-dimensional motion
along ther, -direction, where eactvave numbek € R may be interpreted as a spectral
value of P,. Definition 2.1 implies that eacH (*) (b) is essentially self-adjoint o8(RR).

The following proposition collects some well-known facts about the relations between
H®)(b) and H (b) and their spectral properties. For its precise formulation we introduce
the partial Fourier(-Plancherel) transformatifrgiven by

(F) P (21) = V%/ drs =2 (1, 25), 71 € R (2.5)
R

foranyy € S(IR?). ltuniquely extends to a unitary operater: L?(R?) — [*dk L*(R)
which maps onto the Hilbert space Iof(RR)-valued functionsFv) : R — L*(R), k —
(F)*) with Lebesgue square-integratild(R)-norm, [, dk || (F)*) [|* = [[¢]2 <
Q.
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Proposition 2.2(cf. [28, 45]). Letb be a UMF. Then

(i) the family of operators{H(’“)(b)}kem is analytic of type A (in the sense[5#,
Def. on p. 16] in some complex neighbourhood®f. For each fixed: € R the spectrum
of H(¥)(b) is only discrete and its spectral resolution reads

H® () =" e (b) B (0). (2.6)

n=0
The eigenvalue8 < aé’“)(b) < s§k)(b) < ... are non-degenerate, strictly positive and
analytic functions oft in some complex neighbourhood Bf By the non-degeneracy
the corresponding orthogonal eigenprojectioﬁgc)(b), E{’“)(b), ... are all one-dimen-
sional;
(i) the operatorH (b) is unitarily equivalent to a direct-integral decomposition in
the sense that .
FHOb)F! = / die H®) (b). (2.7)
R
Its spectrumo(H (b)) is the set-theoretic union ognergy bandslefined as the closed
intervals

By = (b) =] inf P (B), sup e (B)[C [0,00], neNg.  (2.8)
keR keR

It has an absolutely continuous past,.(H (b)) = Ulﬁn|>0 G, and a pure-point part
opp(H(b)) = U, =0 Bn. the latter of which consists at most of infinitely degenerate
eigenvalues. The corresponding spectral projectiBhgb) and E,,,, (b) satisfy

[S2) 2}
FE. () F =" / dk EF)(b),  FEp(b)F'= ) / di EF)(b).
|6 ]>0 "B |Ba|=0 "B

[Here and in the following - | denotes the one-dimensional Lebesgue megdsure.

Remarks 2.3. (i) Thatthe singular continuous spectrumidd) is empty,o (H (b))
= 0ac(H (b)) Uopp (H (b)), also follows from a rather general result on analytically fibered
operators [21].

(ii) Proposition 2.2 assures that théh energy-band function, (b) : R — R, k —
s&k)(b) is analytic for evenppand index: € Ny. If €, (b) is constant, equivalently, if the
bandwidth|3,,| is zero, theath bandg,, is calledflat. Because of the analyticity ef, (b),
the condition of a non-zero bandwidil#,,| > 0, is equivalent to

d=F) (b)
keR: =
fren. 220,

=0. (2.9)

Moreover, for alln € Ny and allk € R one has the strict inequality

LB\ L
(dk) < 2eM(b). (2.10)
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It is a consequence of the Feynman-Hellmann formula ([30, Ch.§814] or [26])

®)
dgi.zik(b) EP (b) = B () (k — a(Q) EP (), 2.11)

the inequalities
(ES 6) (k= a(@) EP 1)) < EPG) (k= (@) EP () < 2HM (6) EP (1)

and the fact thaff Py || > 0 for all ¢ € Dom(P;)\{0}.
(i) By (2.2) theeffective scalar potential

v® R - R, 21— 0¥ (21) = %(k‘ —a(x1))?, (2.12)

enteringH (*) (b) grows near infinity not slower than quadratically for dny R.

Proof of Proposition 2.2 By checking the requirements of [54, Def. on p. 16] the first
assertion in part (i) follows from arguments along the lines of [28, Lemma 2.4(b)]. By the
(at least) quadratic growth of*), the associated effective Hamiltoni&H*) (b) has only

discrete spectrum [54, Thm. XIII.16] with non-degenerate eigenv&hﬁ@s(b))n@qo [10,
Cor. lll.1.5]. Their analyticity as functions @f follows in turn from the fact that the fam-
ily {H®(b)},_p is analytic of type A (cf. [54, Thm. XI1.8]). The unitary equivalence

(2.7) derives from the identitF H (b)y = [, dk H*®) (b) Fy for all y» € Dom(H (b)),
the domain offH (b). This is easily checked fap € S(IR?) and then follows for general
Y € Dom(H (b)) from the essential self-adjointness Hf(b) and H*) (b) on S(RR?),
respectivelyS(RR). The condition of a non-zero bandwidtl$,,| > 0, and hence (2.9)
implies (cf. [54, Thm. XI11.86] and [28, Lemma 2.6]) that th¢h band contributes to the
absolutely continuous spectrum Hf(b). In the other casdf,,| = 0, thenth band con-
tributes to the pure-point spectrum Hf(b) [54, Thm. XIII.85]. The continuity ok, (b)
guarantees the equality in (2.8). We finally note that the set-theoretic L{rj%%o On

and{J,s, o Bn are closed sets, sine@p;cr sﬁlk)(b) C [0, 0] grows unboundedly as

n — oo. This follows from the quadratic growth of*) which implies the existence of

two constantsy > 0 andy € R such thaion + v < 55?)(1)) < SUpPLer sﬁf)(b) for all
n € Ny, by the min-max principle [54]. d

As already pointed out in Section 1, there is the conjecture, which basically goes
back to Iwatsuka, that there are no bounds stdigs(b) = 0, (equivalentlyg,, (H (b)) =
(), or|B,| > 0foralln € INy) holds true for general UMF’s provided they are not globally
constant [13, 45].

Example 2.4(Globally constant magnetic field)f b(xz;) = by for Lebesgue-almost all
r; € R with a constanb, € R\ {0}, one has a UMF witlh = |b,| and the Hamil-
tonian H*) (b) is that of a displaced harmonic oscillator witindependent eigenvalues,
sgf)(b) = (n+1/2) |bo|, n € Ny. Consequently, the spectrumBf(b) is only pure-point
and consists of infinitely degenerate, equidistant eigenvalues, the well-kreovdau lev-
els[18, 38].
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Because of the analyticity of the eigenvalué@ (b), a proof of lwatsuka’s conjec-
ture amounts to rule out flat bands as they occur in the globally constant case, that is, to
prove (2.9) for al € Ny. For Hamiltonians o.? (IR?) with (rather generalf.?-periodic
scalar potentials (only), the non-existence of flat bands has been proven several decades
ago [66, 54, 69, 15]. One class of UMF's, for which (2.9) was proven fonall N,
concerns certain UMF’s of a definite sign and is due to lwatsuka himself.

Example 2.5 (Iwatsuka [28]) Suppose that a UMF is (smooth,) strictly positive and
bounded, that ish— < b(x1) < by < oo for Lebesgue-almost alt; € IR with some
constantd. > 0. If additionally eitherlimsup,, ., b(z1) < liminf,, o b(x1) or
limsup,, ., b(x1) < liminf,, . b(x1), then|3,| > 0 for alln € No and hence the
spectrum off (b) is only absolutely continuous.

Another class of UMF’s yielding only absolutely continuous spectruf @f) cov-
ers in particular the UMF’s of indefinite sign studied in [46] and [56].

Example 2.6 (Semi-bounded vector potentialpuppose thab is a UMF and that ad-
ditionally its anti-derivativea is globally bounded either from above or from below.
Thenky, — a(z1) has a definite sign for alt; € R for a suitablek, € R. By the
Feynman-Hellmann formula (2.11) and the unigue-continuation property of eigenfunc-
tions of Schédinger operators [54] one hdsﬁf(’)(b)/dko # 0 and hencés,,| > 0 for all

n € Ny. Therefore the spectrum f (b) is only absolutely continuous.

For yet another example, see [45]. We stress that neither of these examples cover
the typical realisations of UMF’s being random in the sense of Section 3 below.

In the following theorem we prove the continuity of the eigenvalu(é%(b), n €
Ny, of each effective Hamiltonial *)(b) as a functional ob in case the latter has
a definite sign. As in Example 2.5, it suffices to consider strictly positive UMF’s. The
chosen distance

J+1
d®,¥) == > 27V min {1/ day [b(zy) — b/(xl)\} (2.13)
JEZ J

between two UMF's andd’ probes their absolute difference only locally as given by the
L] .(R)-norm. We will make use of the theorem in Section 3.

Theorem 2.7 (Continuity of the eigenvalues at sign-definite UMFE's)et b and b,,, for
eachm € N be UMF's. Suppose there exists a constant €]0, oo[ such that the
Lebesgue-essential rangestoénd b,,, satisfyb(IR) C [b_, oo and b,,,(R) C [b_, 00|
forall m € N. Then

M) =70) €l(n+1/2)b,00;
(ii) the convergencéim,, ... d(b;,b) = 0 implies the convergence

lim e®)(b,,) =¥ (b) (2.14)

m

for any band index. € Ny and any wave numbér € R.
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Remark 2.8. Elementary arguments yield the inequalities

9=+ min {1/

¢ 4 ‘
dx1|b<x1)|}§d(bvo>§/ dry [b(z1)| + Y 27V, (2.15)
¢ -t il =1

valid for all real? > 0 and allb € L{ _(R). Hencelim,;,—,o d(b.s, b) = 0 is equivalent

loc

t0 lim,, 0o fff dzy by (1) — b(21)| = 0 forall £ > 0.

Proof of Theorem 2.7Assertion (i) follows from the first inequality in (2.16) below, the
min-max principle [54] and Example 2.4. For a proof of assertion (ii) we:fix R and
let &(ff) € R denote, for eacln € N, the solution of the equatiom,, ( f,’f)) = k, which
is unique because the (absolutely) continuous functior> a,,(z1) = foxl dy1 b (Y1)

is strictly increasing. This solution obeys the estirdgiéﬂ < |k|/b_ for all m € IN. As
a consequence, the effective potential (2.12) associatedbyyiib bounded from below
by a quadratic potential according to

1

2 2
200 (1) = (/(k)dzn bm(y1)) > b <:E1 - fr(,]f)) = i —k° (2.16)

m

for all z; € R. Therefore the shifted effective Hamiltoni&f(*) (b,,,) 4+ k2 /2 is bounded

from below by the self-adjoint harmonic-oscillator Hamiltonielp := P?/2 + b Q? /4
onL2(IR). Hence one gets the resolvent estimaté (b,,,) := (H*) (b,,,) + k2/2)~! <

H; ' for all m € N by the operator monotonicity of the reciprocal function (cf. [23,
Prop. A.2.5]). The same lines of reasoning imgh{*) (b) := (H®)(b) + k2/2)~! <

Hgl. Since all involved resolvents are compact, the dominated-convergence theorem for
compact operators [62, Thm. 2.16(b)] ensures that the norm-resolvent convergence of
H®) (b,,) to H*)(b) asm — oo, that is

lim ||R™ (b,,) — R (0)]| = 0, (2.17)

m— 00
is implied by the respective strong-resolvent convergence. ki&e;= sup,,=1 [ B¢l
is the usual norm of a bounded operat®don L?(R) where the supremum is taken over

all normalisedy € L2(R). Now, to prove strong-resolvent convergence it suffices [55,
Thm. VIII1.25] to show that

i (k) ® ool = 1 () *) (1) |2 2 _
lim ||HY (b)) — H™(b)p| = lim dxq |vm (z1)—wv (a:l)| lp(z1)|* =0
m— 00 m— 00 R
(2.18)
for all ¢ € C3°(R), the space of arbitrarily often differentiable and compactly supported

functions, because the effective Hamiltonians are essentially self-adjoffP¢R) [53,
Thm. X.28]. In fact, the last equality follows frofim,, ., d(b,,,b) = 0, Remark 2.8
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and the estimate
2 sup ’v,ﬁ,’f) (z1) —v® (21)]

z1 €[—L,0]
= sup ‘(am(xl) — a(ml)) [am(xl) —a(xy) —2(k — a(xl))} ’
z1 €[—L,0]
< o = bll, , [llom = Bl o + 2051 + [o]], )] (2.19)

which is valid for all real¢. > 0 and relies on the inequalityup,, ¢_g ¢ [am(z1) —

a(zy)| < ffg dxy |bp (1) — b(z1)| = ||bm — b||, ,- This completes the proof of (2.17).
The claimed convergence (2.14) of the eigenvalues eventually follows therefrom and from
the inequality

(=8 (bm) + £2/2) " = (P 0) + £2/2) 7] < | R (b)) — RB D), (2.20)
which is valid for alln € Ny and allm € N [54, Prob. 2 on p. 364]. (]

1

2.2. Energy bands and some transport properties.Since the magnetic field depends
anisotropically on the two coordinates, any normalised wave pagketL?(R?), ||1o]| =

1, which is initially localised along one direction, should expand anisotropically over the
plane under its time evolution, := e~ () 4, t € R, generated by (2.3). As a simple
degree for the expansion along the-direction (j € {1,2}) we use the corresponding
second spatial moment

@l = [ o i)} (221)

of the (pure) quantum state given by € Dom(Q);) in the (maximal) domain of);.

By switching to the Heisenberg picture it can also be writtef{@s 1 ||* in terms of

the time-evolved position operat@; ; = e*®)Q, e~*H(®) Our first result on the
guantum dynamics is simple. Due to the (at least) quadratic confinement of the particle
by the effective scalar potential for largje; |, wave packets do not spread along the
direction in the course of time.

Theorem 2.9(Dynamical localisation along the, -direction) Letb be a UMF. Then any
normalised wave packet with finite total kinetic energy,e Dom(H (b)'/?), which is

initially localised in the sense that, € Dom(Q;) andvyy € Dom(a(Q1)), remains

localised for all times,

sup ||Q1 Y]l < 0. (2.22)
teR

Remarks 2.10. (i) The two initial-localisation conditions are fulfilled for anyy €
S(IR?). For more generab, € L?(IR?), the first condition)|Q; 1| < oo, implies the
second onef|a(Q1) o < oo, if limy,, | oo la(z1)]/|z1| = b > 0 (as will be the case by
ergodicity for a UMF being random in the sense of Section 3).

(i) For the validity of (2.22) the requirement> 0 (in Definition 2.1) cannot simply
be dispensed with. For example, if a given absolutely continuous functidR — IR is
Z-periodic, one has = 0 and the corresponding Hamiltonian (2.3)Iot(IR?) also fibres
into a one-parameter family of effective Hamiltonighd *) (b) }, .. onL?(R), but each
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member of which igZ-periodic and hence has only absolutely continuous spectrum [66,
54, 69]. The dynamical characterisation of scattering states in Hilbert space by the RAGE-
theorem [13, 68] therefore implies (for the present situation of one dimension and without
singular continuous spectrum) the second of the following two equalities

2 2

Jimn [ (@ e M| = [k Jim - (@u) e (o) =0

" 2.23)
for any realr > 0, wherex; — x[_,,(x1) denotes the indicator function of the in-
terval [—r, r]. The first equality in (2.23) is due to the dominated-convergence theorem
and the fact that the partial Fourier transformation (2.5) is an isometry which commutes
with Q;. Sincez? > r? (1 — x(_,,(z1)) for all z; € R and hence||Q v |*> >
2 (1= |[X (=, (Q1)¢]|?) for any (arbitrarily largeyr > 0, Eq. (2.23) implies that
|Q1 v¢]| grows unboundedly with increasingfor these examples dL-periodicb <
Ll .(R) defined byb(z1) := da(x1)/dz; (for Lebesgue-almost all; € R).

Proof of Theorem 2.9According to Assumption 2.1, there exists a length secale 0
such thab |z1]/2 < |a(z1)| for all z; € R with |z1] > r. As a consequence, we have
lz1| <7+ (2/b) |a(zy)| for all z; € R and therefore

lQuie]l < v+ (2/8) [Ja(@i)ee]- (2.24)
Using the inequality

(1220l — [la(@)es]1)* < 211H(5)/24o]%, (2.25)

being valid for alls € R, first for s = ¢ and then fors = 0 we bound the second term
on the right-hand side of (2.24) by a time-independent one accordifig(@; )| <
22| H (b)'/2 4| + ||a(Q1)vo]|. The validity of (2.25) itself follows from the triangle
inequality and the fact thaP, and H(b) are constants of the motion, that is, commute
with H (b). O

For a description of the long-time behaviour along #hedirection, we introduce

an operatol/s o, := F ! fﬂf deé’fio F onDom(H (b)'/?) in terms of its fibres

o o)
Vi =3 d&;ik(b) EP®), keR, (2.26)
n=0

on Dom(H*) (b)1/2). Our next task is to show thaf, .. is the asymptotic velocity op-
erator (in the sense of [14]) corresponding to the motion along skdirection. To do so,
we first make sure that, -, is well-defined and collect some of its properties.

Lemma 2.11(Properties of the asymptotic velocity.etb be a UMF. Then the operator
V.00 IS bounded fronDom (H (b)'/?) to L?(IR?) according to

V200t < V2| H(B)Y || (2.27)

for all 1» € Dom(H (b)'/?). Moreover, one has:
() Va.00Fac(b) = Voo and ||V ootp|| > 0forall o € E,.(b) Dom(H (b)'/?);
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(i) Va,ooEpp(b) =0.

Remark 2.12. The relation of the asymptotic velocity operator to the energy-band func-
tions is similar to that for one-dimensional motion i geriodic scalar potential [22, 5].

In case of a globally constant magnetic field (cf. Example 2.4), for whiglkiy) = 0, the
asymptotic velocity vanished/, .. = 0, in accordance with physical intuition. In any
case, the strict inequality (2.27) simply means that the asymptotic kinetic energy of the
particle’s motion along the-direction is always smaller than its (time-invariant) total
kinetic energy; cf. Theorem 2.13 below.

Proof of Lemma 2.11The proof of (2.27) is based on (2.6) and (2.10) which yield
( )
i = 5 () e <ot ean

forall p € Dom(H(k)(b)1/2). Since the partial Fourier transformation (2.5) is an isome-
try, one therefore has

el = s [P
<2/dk HH b1/ (Fap) k)H _2HH Wd’” (2.29)

for all v € Dom(H(b)'/?). For a proof of assertions (i) and (ii) we note that only
those terms contribute to the series in (2.26) for whigh| > 0. Thanks to the an-

alyticity of snk (b) the latter is the case if and only if (2.9) holds, which implies that

||V(k) Fb)g| > 0forall o € EY(b) Dom(H® (b)1/?) and Lebesgue-almost all
k € R. The second assertion in (i) is thus proven with the help of the first equality in
(2.29). O

We are now prepared to present our second result on the quantum dynamics. It
concerns the long-time limit of the motion along thg-direction and, after all, justifies
the name “asymptotic velocity operator” fof, .

Theorem 2.13(Ballistic transport along the-direction in the absence of flat bands)
Letb be a UMF. Then any normalised wave packet with finite total kinetic enéggy
Dom(H (b)'/?), and initial localisation in the sense that € Dom(Q3), hasVs ., as
its asymptotic velocity operator in the following limiting sense

’QQH%

—Va,00%0 (2.30)

f—>oo

If additionally the entire spectrum &f (b) is absolutely continuous, equivalentls,| > 0
for all n € Ny, the motion is ballistic in the sense thak ||V o ¥o]| < oo.

Remark 2.14. Eq. (2.30) impliedim; o, f(Q2,/t) ¢ = f(V3.00) % for all bounded
and continuous functiong : R — R and ally € L2(IR?), a result which was already
proven [45, Thm. 4.2] for certain UMF’s. Here we give an argument for the validity of
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the slightly stronger assertion (2.30), which closely follows the lines of reasoning of [5,
Thm. 2.3].

Proof of Theorem 2.13We first introduce théime-averaged velocity operator
= L[t Em) —isH(b) IR gt
Vaii= : dse (P, —a(Qn))e =F dkVyy F (2.31)
0 R
which is defined fot # 0 on Dom(H (b)'/2) with its fibres
—(k 1t - ”
vy = 3 / ds 1O (| — q(Qy)) e #H " 0) (2.32)
0
onDom(H®) (b)1/2). Since

t
[Vasvnl < 5 [ ds | (P2 - al@u)e O] < VE[HO 0], @233)
0

V4., is bounded fromDom(H (b)'/?) to L2(IR?), uniformly int € R\{0}. Arguments

as in [52, Thm. 2.1] then justify that the time-evolved second component of the position
operator acts in the standard way, ; o = Q2o + tVQVt 1o on any (normalised)

Yo € Dom(H (b)'/?) N Dom(Q2). The assertion (2.30) is thus equivalent to

tlgglo ||V2,t¢0 - VZ,OO’(/)OH =0 (2-34)

for all o9 € Dom(H (b)/?). By the uniform boundedness (inc R\{0}) of V5, on
the domairDom(H (b)'/?) it suffices to prove (2.34) for any, in the finite-band-index
subspace

! ®
£ = {w € L2(R?) : Fyp = Z/R dk B (b)Fyp  for somel € lNO} (2.35)
n=0

which is dense irDom(H (b)'/?). Now, lety, € £ arbitrary and € N, its maximal
band index. Then the following equalities hold

(Vo — Voo ) tho|* = /R dk || (VS = V8L ) (Fu) ™ | = (2.36)

[ S 308 [ase (0500 00 1 @) B0 (< |
" p ) se n a 1 ™ 0 .

n=0 m=0
m#n

The second equality derives from (2.11) and (2.32). The convergence (2.34) fer
& now follows from the fact thatim; . t~! f(f ds exp {is(eﬁf)(b) - e,(ff)(b)} =0if

m # n together with the dominated-convergence theorem. The latter is applicable since
the squared norm on the right-hand side of (2.36) has the upper bound

(1+1) max [[EP @) (k- a(@Q1) B (0) (Fo)™ ||, (2.37)
j€{0,...,01}
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which is summable with respect to € Ny and Lebesgue integrable with respect to
k € RR. This completes the proof of (2.30). The assertion about ballistic transport in case
E,p(b) = 0 follows from Lemma 2.11. O

3. SCHRODINGER OPERATORS WITH RANDOM UNIDIRECTIONALLY CONSTANT
MAGNETIC FIELDS

Throughout this section we are dealing with unidirectionally constant magnetic
fields given by realisations : R — R of anR-valued random (or: stochastic) process
with parameter seR in the sense of

Definition 3.1 (RUMF). A random unidirectionally constant magnetic figRUMF) is
a probability spacéQ, B(2),P) with Q@ := {b € LL (R) : b(R) C R} as its set of
realisations(or: sample paths) and with the collectiét{(2) of all Borel subsets of2
as its sigma-algebra @vents The fixed measurable spa(®, 5(12)) is endowed with a
probability measur@& having two properties:

(i) IPisR-ergodic;

(i) P has a non-zero and finite mean-value, thabis; | [, P(db) b(z1)| < oo for

Lebesgue-almost all; € RR.

Remarks 3.2. (i) The metricd : Q x Q — [0, 3] given by (2.13) render§) a
Polish spacdcf. [7]). The Borel sigma-algebrg(£?) is the smallest sigma-algebran
containing all subsets @ which are open with respect tb Thetopological supporbf
the probability measure if2 is the (closed) event

supp P :={be Q : P (As(b)) > 0forallé > 0}, (3.1)

whereAs(b) := {V/ € Q : d(b,V) < ¢} is the open ball with centre € Q and radius
0> 0.

(i) By defining (0,,b)(x1) := b(z1 + #1) for all z; € R, Lebesgue-almost all;
R and anyb € (2, one gets a groufd., }.,cg of measurablehiftson (2, B(Q2)). The
probability measur® (and the resulting RUMF) iR-homogeneou$ P (4., A) = P(A)
forall z; € R and allA € B(Q). It is R-ergodicif, additionally, every shift-invariant
eventA € B(Q), 0,,A = Aforall z; € R, is eitheralmost impossibler almost sure
P(A) € {0,1}.

(ii) Due to the]R homogeneity ofP the (path) integral for its mean-value
JoP(db) b(z1) = Yo P(db ffllff dy b(yy), with £ > 0 arbitrary, does not de-
pend on Lebesgue almost all € IR In the following we adopt the convention to denote
the corresponding constant ky IP(db) b(0).

(iv) The probability measure of a RUMF can be specified bgltaracteristic func-
tional given byP( = JoP(db) exp {—i [ dz1 n(x1) b(z1)} for all real-valued; €
Ce(R), cf. [27].

As a first result, we show th&-almost every realisatioh: R — R, 21 — b(z1)
of a RUMF is a UMF in the sense of Definition 2.1.
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Lemma 3.3(Realisations of a RUMF are almost surely UME'det (2, B(Q2),IP) be a
RUMF and defind)y := {b € Q : bis a UMF}. Then
(i) Qo is an almost-sure everik,(Qy) = 1;
(ii) foranyb € € the two constants associated with it according to Definition 2.1
are given by = | [, P(db’) ¥’ (0)| andov = 1.

Proof. We first note that), € B(2), because the function&® > b — a(x;) =
fO”” dy1b(y1) is measurable for every; € R such that the lower and upper limits in
(2.2) are measurable functionals tofin fact, taking therex = 1 these limits coincide
with b = | [, P(db’) ¥'(0)| > 0 for P-almost allb € 2, since the Birkhoff-Khinchin
ergodic theorem [12, 11, 29] yields the identity

4
lim %/del b(x1) :/QIP(db’)b’(O) (3.2)

|£]— o0

for IP-almost allb € . O

Remark 3.4. As a consequence, all results of Section 2 apply to evegy o, that
is, to the RUMF-case with probability. In particular, each realisatioH *)(b) of any
random effective Hamiltonian has non-degenerate, strictly positive and isolated eigenval-

uese )(b), n € Ny. For each fixed, they have two basic properties: (i) the mapping
Qo xR > (b k) — 551k)(b) is measurable (cf. [10, Sec. V.1]), henceldsvalued random

process with parameter sBt, and (ii) its realisatiolR > &k +— 5(k)( b) has an analytic
extension to some complex neighbourhoodofor anyb € Qg (cf. Proposition 2.2).

3.1. Non-randomness of the energy bandsilt is a comforting fact to learn that although
the spectrum of *)(b) in general depends ol € Q) for each fixedk € R, each
resulting energy band df (b) (cf. Proposition 2.2) is the same f*-almost allb € Q.

Theorem 3.5(Almost-sure non-randomness of the energy bantlsj (2, B(Q2),P) be
a RUMF. Then there exists a sequenite= (8, )ncn, Of non-random closed intervals
Bn C [0, 0o such that

(i) theevent
Qp = {ber . e®0) =6, foraIIneNo} (3.3

is almost surelP(Q23) = 1;
(i) each event

Q) — {b e : P (orb)=p, forallne NO} (3.4)

contains an almost-sure event which does not depend on the chosen wave huriRer
Therefore the super-event is itself almost sﬂR(&QgC)) = 1forall k € R.

Remarks 3.6. () As a consequence of Theorem 3.5, the pure-point spectrum and
the absolutely continuous spectrumidfb) are also closed sets,, (1 (b)) = U5, o Bn
andoac(H (b)) = U3, >0 Bn. Which do not depend ohe € (cf. Proposition 2.2).
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(i) The second part of Theorem 3.5 deals with the distribution of the random vari-

ablesh — aﬁf)(b) for a fixed wave numbek € R. In view of theR-ergodicity ofP, it is
not surprising that the whole barit] is explored by a single orb#ird := {0.,b : 2z; €
R} C Qg with IP-almost every “initial”b € €.

(i)  Similarly to the energy bands, eaasymptotic-velocity band

d=iP ®

inf & (b),sup den_(b) ,
keER dk kER dk

is the same fofP-almost allb € . As a consequence, the spectrum%jm does

not depend orP-almost allb € . The proof of this statement is similar to that of

Theorem 3.5.

Proof of Theorem 3.5Shifting a realisatiorb € Qg of a RUMF byz; € R (cf. Re-
mark 3.2(ii)) implies the (covariance) relation

e (0,,b) = lk+az0)(p) (3.6)
for the corresponding energy eigenvalues. As a consequence, foneadN, the two
random variable$ — infycp 5%’“)(1)) andb — sup,cp sgf)(b) are invariant under the
action of{6., } ., cr. By the ergodicity there exists an evedit) C Q, with P(Q™)) =
1, on which both random variables are constant [11, 29]. Sfigey, Q™) C Q4 by
virtue of (2.8) andP ((,,c, 2™) = 1, this proves the first assertion. To prove the
second one, we note that the continuityagdfc;) in z; € R and (3.2) guarantee that
P(Q) =1forQ:={b e Q : a(R) = R} and hence

e (b) = elfta®)(b) = £*) (R b) 3.7)

n

n € No, (3.5)

forall k € R and allb € Q N Q. This impliess, = & (b) = ¥ (0rd) for all n € N
and allb in the almost-sure evefit N €. O

3.2. More on the energy bands in the sign-definite caseTheorem 2.7 guarantees that

the energy eigenvalueék)(b) are continuous functionals éfe €, provided the proba-

bility measure is concentrated on realisations with a definite sign. This continuity has an
important consequence. The energy bands turn out to be determined by any suhset of
which is dense in the topological support of the probability measure. Such a subset may
well be almost impossible or not even an event.

Theorem 3.7 (Subsets of the energy bands in the sign-definite caset)(Q2, B(Q2),P)
be a RUMF for which there exists a constént €]0, co[ such that the event

Q. ={beQ : b(R) C [b_,o00[} (3.8)
is almost surelP(€2;,_) = 1. Then
() ¥ (b) € g, forall b € Q,_ N suppP;
(i) e(A) =B, forall A € Q,_ N suppP with A = supp P
for any band index: € Ny and any wave numbér € R.
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Remarks 3.8. (i) We recall from Theorem 2.7 that, C [(n + 1/2)b_, oo] for all
n € Ny in the situation of Theorem 3.7.

(i) Theorem 3.7 and its proof below is analogous to corresponding results fai-Schr
dinger operators with random scalar potentials [34, Thms. 1 and 2 on p. 304f].

(i) Theorem 3.7 can be used to prove the almost-sure absence of flat energy bands
of H(b). Namely, to prove thaB, is not flat one has to track down two realisatidns

b € Q_ NsuppP such thatsﬁf)(b) # 555)(13’) for somek € IR. This is the case,
for example, if there are two constaris > b, > b_ such that the constant functions
x1 — bg andz; — b, are both contained isupp IP, see Corollary 3.15 below.

Proof of Theorem 3.7For fixed but arbitraryy € ,_ N suppP andé > 0 we have the
strict positivityP (A5 (b)), _NQ3) = P(As(b)) > 0and thereforés (b)NQ,_NQg #
0. By pickingb; € Aq,,(b) N €_ N Q3 we can thus construct a sequeribg;cx such

thatlim; o d(b,b;) = 0 and hencéim,;_, 551’“)(1)1) = sgf)(b) by Theorem 2.7. Since
eﬁl’“)(b) € UzeN{5£Lk)(bl)} C 3, by the definition (3.3), this implies the first assertion. To
prove the second one, we lgte R andb € ,_N Qf@k) N supp IP. Since all three events

of the intersection are invariant undgr , we haved,, b € Q,_ N ng) N supp P. By the
assumed densenessAfin supp P, there exists a sequen¢l );cn with b, € A such
thatlim_ o d(6,,b,b;) = 0 and hencéim;_... e& (b)) = ' (0.,b) by Theorem 2.7.
Similarly as before, this impIies%k)(azlb) € &(A). Sincez; € R was arbitrary and
b e Qg"), Theorem 3.5 giveg,, = eﬁf)(eﬁb) - 5$Lk)(A). This completes the proof,

becauseﬁf)(A) C 3, by assertion (i). a

3.3. On the absence of flat energy bands in the non-sign-definite cas&he following
theorem provides a sufficient condition for the entire spectrufl @f) to be absolutely
continuous and given by the positive half-line for &lie Qg. According to Section 2

the transport along the,-direction is then almost surely ballistic. In fact, the condition
guarantees the occurrence of realisatipwith arbitrarily small absolute values on spatial
average over arbitrarily long line segments (cf. (3.1) and (2.15)). Not surprisingly, such
realisations, which are rare because of our assumpfidA(db) b(0) # 0, come with
nearly free motion.

Theorem 3.9(Almost-sure absence of flat energy bandsgt (2, B(Q2), IP) be a RUMF
with the null-function oL _(IR) lying in the topological support of its probability mea-
sure,0 € supp P. Then

U(H(b)) = Uac(H(b)) = [07 OO[ (3.9)
forall b € Qg.

Remark 3.10. The almost-sure absolute continuity of the entire spectrufi(@) implies
that of its integrated density of states. This means thatiédmsity of stategxists as a
non-negative function il (R) (cf. [41, Sec. 1.2]). For more general random vector

loc
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potentials the integrated density of states is known to be odlgé# continuous in certain
energy regimes [25].

Proof of Theorem 3.9To start the proof of the first equality in (3.9) by contradiction, we
note that zero cannot be an eigenvalue of the effective HamiltaHidn(b) (and hence
Bo # {0}) for all b € Qq, because? is strictly positive on some non-empty open set in
R for all b € ©y. Suppose now that there exists an energy 0 such thats,, = {¢} for
somem € Ny. By (2.15) the assumptidh € supp [P implies the existence of a sequence
(©)1en of non-empty event®; C Q3 such that

l
sup |a(z1)] §/ day |b(zy)| < 171 (3.10)
z1€[=1,1] —1

for all b € ;. By picking ab, € Q; # () for eachl € N we can thus construct a sequence
(b1), o SUch thatim; . ||2H ) (b;) — P? || = 0 for all ¢ € C5°(R). According to
[55, Thm. VI11.25] the sequence of operatdi® *) (;)),_,, hence converges to the free
HamiltonianP? /2 on L2(IR) in the strong resolvent sense. Using [55, Thm. VIIl.24] and
[54, Prob. 167 on p. 385] this delivers the estimate

tT X0, <[ (P12/2) < lignsup tr X[O,E[(H(O)(bl)) =m. (3.11)

Here the equality stems from the fact that the number of eigenvaluds%(b) belowe
equalsm for all b € Qg, since,, = {e} by assumption. Inequality (3.11) now contra-
dicts the fact that the spectral projectigp .| (Pf) is not a trace-class operator for any

¢ > 0. To prove the second equality in (3.9), we note that the inequality in (3.11) also
implies that the number of eigenvaluesi® (b;) below a fixed energy > 0 exceeds
every given number fof large enough. Hence € 3, for all n € Ny. Sinces may be
chosen arbitrarily small and,, is closed, we thus haveé € 3, for all n € Ny. This
implies the assertion, becauBgb) is unbounded from above for dlle Q. O

3.4. Examples. In this final subsection we are going to present three examples of a
RUMF to which the general theory applies. Our first example of a RUMF will be a Gauss-
ian one in the sense of

Definition 3.11 (Gaussian RUMF) A Gaussian random unidirectionally constant mag-
netic fieldis a RUMF(Q, B(12), IP) with IP(n) having the form

exp{—iu [ w3 [ dfﬁdym(fcl)C(xl—yl)n(yl)}~ (3.12)

xR
Heren € R\{0} isaconstantand : R — R, x1 — c(z1) = [ &(dg) e'?™ is the
Fourier transform of a positive and symmetric Borel measumeR with 0 < ¢(R) < oo
and no pure-point part in its Lebesgue decomposition.

Remark 3.12. Itfollows thaty = [, P(db) b(x1) andc(z1—y1) = [, P(db) b(21)b(y1)—

u? for Lebesgue almost afly,y; € R, so thatu is the mean-value andthe covariance
function of the Gaussial?. According to the Bochner-Khinchin theorem [53, 11] the
Fourier representability of a (continuous) covariance function required in Definition 3.11
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is no loss of generality. According to the Fomin-Grenander-Maruyama theorem [11, 12]
the measure, known as thepectral measuref IP, has no pure-point part in its Lebesgue
decomposition, that is;({¢q}) = 0 for all ¢ € R, if and only if P is R-ergodic. By the

Wiener theorem [11, 13] this is also equivalentita, .., /=1 foe dxy (c(zl))Q =0.
An immediate consequence of Proposition A.1 in Appendix A below is
Corollary 3.13. Theorem 3.9 applies to a Gaussian RUMF.

Our second example is a RUMF with realisatiéns b_ + b2 given by the sum of
a strictly positive constarit_ > 0 and the square of realisatioh®f a Gaussian RUMF,
so that Theorem 3.7 (and Remark 3.8(iii)) is applicable.

Definition 3.14 (Squared-Gaussian RUMFA squared-Gaussian random unidirection-
ally constant magnetic field with infimubn. €0, oo is a RUMF (2, B(Q2), P) whose
probability measuré is defined in terms of a Gaussian RUMR, B(2),IP,, ;) with

mean-valug: and covariance functionby settingP (A) := P, .{b€ Q : b_+b*> € A}
forall A € B(Q).

Corollary 3.15. Let (2, B(f2), P) be a squared-Gaussian RUMF with infimém > 0.
Then

B = [(n+1/2)b_, 0] (3.13)
for all n € INy. Consequently, the entire spectrum/dtb) is absolutely continuous for
P-almost allb € .

Proof. With the help of Proposition A.1 it can be shown that the constant realisation
x1 — b_ + b3 is contained i), N suppP for everyb, € R. Theorem 3.7(i) thus
implies (n + 1/2)(b— + b2) € 3, for all n € Ny (cf. Example 2.4). O

Our last example of a RUMF is a Poissonian one in the sense of

Definition 3.16 (Poissonian RUMF) A Poissonian random unidirectionally constant
magnetic fields is a RUMF(2, B(2), ) with IP(n) having the form

ol [ (1o s [ it -w)}. o1

Herep €]0, oo is aconstantand : R — Ris a functioninL! (R) satisfying [, dy1 u(y1)
# 0.

Remark 3.17. It follows that[ is R-ergodic and thall # ¢ [ dy1 u(y1) = [, P(db)b(0)

< Jo P(db)[p(0)| < o [rdy1 |u(y1)| < co. Moreover, for every Poissonian RUMF there
exists a Poissonian (random) measuye Q2 x B(R) — [0, 00], (b, A) — v,(b, A) with
intensity parametes such thatP-almost everyh € €2 can be represented as

o) = [ wolbd) uler =) (3.15)

for Lebesgue-almost alt; € R. We recall thatv, is a random Borel measure di
which is almost surely only pure-point and positive-integer valued. The random variable
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Vo(A) : Q — [0,00], b — v,(b, A) associated witlh € B(IR) is distributed according to
Poisson’s law

P({beQ:v,(b,A) =m}) = (Q|7[;P exp (—olA]), m € N, (3.16)

so thatp may be interpreted as the mean spatial concentration of immobile magnetic

impurities. Each single one is located “completely at random” on the real line where it
creates a local magnetic field given by

Corollary 3.18. Theorem 3.9 applies to a Poissonian RUMF.

Proof. The triangle inequality, the Fubini-Tonelli theorem and the monotonﬁl}dwl

lu(zy —y1)| < [ day [u(z)] =: ||ul1, valid for all real? > 0, yield
¥/ ¥/
[ dm el < [ vav.dm) [ donfuon = )
—/ R —¢
< vy (b, [=r,7]) [[ull1 + we,r(b) (3.17)

for arbitrarily pickedr > 0. Here we have introduced the two-parameter family of non-
negative random variables ,. given byu, ,.(b) := fR\[_T,T] v,o(b, dyr) ffe dry |u(xy —
y1)|. The Poissonian nature of, implies that the two random variableg([—r, r]) and
ug,» are independent for afl » > 0. Inequality (3.17) therefore gives the following lower
estimate on the probability for thesmallness of its left-hand side:

IP({b cq: /idxl Ib(z1)] < 5})

> ({b €Q v, (b, [—rr]) ulh < g}) P <{b €0 up(b) < g}) . (3.18)

The first probability on the right-hand side is strictly positive forratt 0 by (3.16) with
m = 0. We estimate the second probability from below by bounding the probability of
the complementary event from above as follows

P ({b € up,(b) > g}) < % /QIP(db) g (b)

20 ¢

=5 dyl/ dxy |u(z1 —y1)|- (3.19)
R\[—7,7] —£

Here we have used the Chebyshev-Markov inequality, the Fubini-Tonelli theorem and

the identity [, P(db)v, (b, A) = o|A| for the mean number of Poissonian pointshire

B(R). The right-hand side of (3.19) becomes arbitrarily small witlarge enough for

any paird, ¢ > 0 because: € L!(IR). Therefore the probability on the left-hand side of

(3.18) is strictly positive for any, £ > 0. Hence the constant realisatibe= 0 belongs to

supp PP (cf. (3.1) and (2.15)). |

Remark 3.19. In this paper we have only considered random UMF's whichRuergodic
(by definition). But the results can easily be extended to certain random UMF'’s, which
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are notR-ergodic but onlyZ-ergodic. For example, I?(n) has the form

H / A(dg) exp {—ig/ dxy n(z1) u(zy —j)} (3.20)

jez 'R R

where ) is a probability measure ofR, B(RR)) with 0 € supp A and0 < | [ A(dg)g]

< 00, andu : R — RisafunctioninL'(R) satisfying [, dy u(y1) # 0. ThenP-almost
every realisatiorb can be represented &6c1) = 3,4 9;(b)u(z1 — j) for Lebesgue-
almost allz; € R in terms ofu and a two-sided sequengg ) jcz of independent random
variables with common distributiohand can easily be shown to be a UMF in the sense of
Definition 2.1. The assertions of Theorem 3.5 and Theorem 3.9 remain trifedbnost

all realisationg of this Z-ergodic random UMF. The proof of the latter statement is in
close analogy to that of Corollary 3.18.

APPENDIXA. ON THE TOPOLOGICAL SUPPORT OF CERTAINGAUSSIAN PATH

MEASURES
For any Gaussian RUMEY, 5(€2), P) in the sense of Definition 3.11 the event
Q:={beQ:beli (R)}={beLi.(R): b(R) CR} (A1)

is almost-surelP(Q22) = 1, because the Fubini-Tonelli theorem and omogeneity
of P gives [, P(db) [*, dx1[b(z1)|? = 20(u2 + ¢(0)) < oo for all real ¢ > 0. Itis
therefore natural to consider thé -topological support

supp, P := {b €0y P({V €y : do(b,) <8}) >0 foralld> o} (A.2)
associated with the metric &, defined byds (b, ') := >, 27 min {1, (fjjJrl dzy
|b(z1) — b’($1)|2)1/2}. Sinced(b,v’) < da(b,b') for all b, b’ € L2 (R), this L2 -
topological support oP is contained in itsI. _-)topological support as given by (3.1).

Now we are able to recall a known fact (cf. [36, p. 451]), which is actually valid
for slightly more general Gaussian processes than Gaussian RUMF’s. Its detailed proof is
included here for the reader’s (and authors’) convenience.

Proposition A.1 (Topological support of a Gaussian RUMHjor any Gaussian RUMF
(Q,B(Q),P) one hasls = supp, P (C supp P).

To prepare a proof we first recall the Karhunerele expansion [1] of Gaussian
processes. It relies on the fact that for each fikeg|0, co[ the covariance function de-
fines a non-negative and compact integral operatan the Hilbert spacé.?([—/, {])
through the kernel—¢,¢]? > (x1,41) — c(z1 — y1). Mercer's theorem [8] therefore
yields the existence of a basis of continuous real-valued eigenfun¢tighgn, which
is orthonormaly¢;, ¢;)¢ = 6, for all j, 1 € Ny, with respect to the usual scalar product
onL2([—¢,¢]) such that

c(rr —y1) = ch ¢ (1) (y1)- (A.3)

J=0
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Herecy > ¢; > --- > 0 are the corresponding non-negative (possibly coinciding)
eigenvalues and the convergence of the series is absolute and uniform on the square
[—¢,£]> C R?. One even has; > 0 for all j € Ny, if the spectral measuré has
a continuous part in its Lebesgue decomposition (as is the case for a Gaussian RUMF
because of ergodicity). This follows from the strict positivity of the quadratic form as-
sociated withC'. Namely, the assumptiofip, Cp), = f]R c(dq)|p(q)]? = 0 implies
o(q) == ffz drie %1 p(xy) = 0 for all ¢ € L2([—¢,¢]) and allg € supp¢ := {q €
R : &g — k,q+ &[) > 0 forall x > 0}. Since|supp ¢| > 0 by the assumed existence
of a continuous part df, the analyticity of the complex-valued functid > ¢ — ©(q)
impliesp(g) = 0 even for all € R and hencep = 0.

Using (A.3) we can define a sequer{eg);cn, Of (jointly) Gaussian random vari-
ables by

£
- [ doy 65(e0) (@) =10, bED. (A4)

They have zero mean-values, have strictly positive variances and are pairwise uncorre-
lated, [, P(db)~;(b) = 0 and [, P(db) ~;(b)yi(b) = ¢;d; for all j, 1 € No. By their
Gaussian nature, they are thus independent [29].

Proof of Proposition A.1Inequalities analogous to (2.15) show that supp, PP if and
only if

P ({b €yt [|b—bllay < 5}) >0 (A.5)

forall & > 0 and all/ > 0. Here we have introduced the abbreviatihi|3 , :=
ffz dz1|b(x1)|* for the squared norm df € L?([—¢,¢]). For a proof of (A.5) for ar-
bitrary b € Q,, we may assumg = Jo P(db) b(0) = 0 by adding a suitable constant
to b. We L2([—, ¢])-expand with respect to the basgis;) ;cn, and employ the triangle
inequality to obtain
b= bll,, = (3 (8 — o0 (A.6)
j=0

m—1

< (X oo ) (m )/2+(§|<¢j,e>e|2)“2

for anym € N. Now, givené > 0, the last term does not exce&( for m large enough,
because of Parseval's identy ;2 , (¢, b)e|*> = [|blI3,, < oc. By the independence of
the (vy;), for all m large enough the probability in (A.5) is therefore bounded from below
by the following product of two probabilities:

n»({be%.z,% i <DV p({penn: Y oE < 2)).

j=m
(A7)
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The second probability in (A.7) becomes strictly positive forallarge enough, because
the Chebyshev-Markov inequality and the converge@%’éo c; =20c¢(0) =20¢(R) <
oo then yield

IP({bng : iwj(b)ﬁz%}) g%icja. (A.8)
P _

j=m

It remains to ensure the strict positivity of the first probability in (A.7). By the indepen-
dence of the Gaussian random varialjles one has

IP({bE Qy mz_:l i (0) — <¢j’5>€‘2 < %2})

=0

) nﬁl P ({be Qo : | (b) — (¢, b)e] < 3\%}) (A.9)

Sincec; > 0 for all j € Ny, each of then probabilities on the right-hand side of (A.9)
is strictly positive, because a Gaussian probability measuréRo8(IR)) with strictly
positive variance assigns a strictly positive value to any non-empty open interval
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