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Abstract. A popular wavelet reference [W] states that “in theoretical and practical studies,
the notion of (wavelet) regularity has been increasing in importance.” Not surprisingly, the

study of wavelet regularity is currently a major topic of investigation. Smoother wavelets

provide sharper frequency resolution of functions. Also, the iterative algorithms to construct
wavelets converge faster for smoother wavelets. The main goals of this paper are to extend,

refine, and unify the thermodynamic approach to the regularity of wavelets and to devise a
faster algorithm for estimating regularity.

We present an algorithm for computing the Sobolev regularity of wavelets and prove that

it converges with super-exponential speed. As an application we construct new examples of
wavelets that are smoother than the Daubechies wavelets and have the same support. We

establish smooth dependence of the regularity for wavelet families, and we derive a variational

formula for the regularity. We also show a general relation between the asymptotic regularity
of wavelet families and maximal measures for the doubling map. Finally, we describe how

these results generalize to higher dimensional wavelets.

0. Introduction

While the Fourier transform is useful for analyzing stationary functions, it is much less
useful for analyzing non-stationary cases, where the frequency content evolves over time. In
many applications one needs to estimate the frequency content of a nonstationary function
locally in time, for example, to determine when a transient event occurred. This might
arise from a sudden computer fan failure or from a pop on a music compact disk. The
usual Fourier transform does not provide simultaneous time and frequency localization of
a function.

The windowed or short-time Fourier transform does provide simultaneous time and
frequency localization. However, since it uses a fixed time window width, the same window
width is used over the entire frequency domain. In applications, a fixed window width is
frequently unnecessarily large for a signal having strong high frequency components and
unnecessarily small for a signal having strong low frequency components.

In contrast, the wavelet transform provides a decomposition of a function into compo-
nents from different scales whose degree of localization is connected to the size of the scale
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window. This is achieved by integer translations and dyadic dilations of a single function:
the wavelet.

The special class of orthogonal wavelets are those for which the translations and dilations
of a fixed function, say, ψ form an orthonormal basis of L2(R). Examples include Haar
wavelet, Shannon wavelet, Meyer wavelet, Battle-Lemari wavelets, Daubechies wavelets,
and Coiffman wavelets. A standard way to construct an orthogonal wavelet is to solve the
dilation equation

φ(x) =
√

2
∞∑

k=−∞

ckφ(2x− k), (0.1)

with the normalization
∑

k ck = 1. Very few solutions of the dilation equation for wavelets
are known to have closed form expressions. This is one reason why it is difficult to de-
termine the regularity of wavelets.1 Provided the solution φ satisfies some additional
conditions, the function ψ defined by

ψ(x) =
∞∑

n=−∞
(−1)kc1−kφ(2x− k),

is an orthogonal wavelet, i.e., the set {2j/2ψ(2jx− n) : j, n ∈ Z} is an orthonormal basis
for L2(R). Henceforth, the term wavelet will mean orthogonal wavelet.

Daubechies [Da1] made the breakthrough of constructing smoother compactly supported
wavelets. For these wavelets, the wavelet coefficients {ck} satisfy simple recursion relations,
and thus can be quickly computed. However, the Daubechies wavelets necessarily possess
only finite smoothness.2 Smoother wavelets provide sharper frequency resolution of func-
tions. Also, the regularity of the wavelet determines the speed of convergence of the cascade
algorithm [Da1], which is another standard method to construct the wavelet from equation
(0.1). Thus knowing the smoothness or regularity of wavelets has important practical and
theoretical consequences.

The main goals of this paper are to extend, refine, and unify the thermodynamic approach
to the regularity of wavelets and to devise a faster algorithm for estimating regularity.

In Section 1 we recall the construction of wavelets using multiresolution analysis. We
then discuss how the Lp-Sobolev regularity of wavelets is related to the thermodynamic
pressure of the doubling map E2 : [0, 2π) → [0, 2π). The latter is the crucial link between
wavelets and dynamical systems.

Previous authors have noted that for compactly supported wavelets, the transfer op-
erator preserves a finite dimensional subspace and is thus represented by a d × d matrix.
Providing the matrix is small, its maximal eigenvalue, which is related to the pressure, can
be explicitly computed, and thus the Lp-Sobolev regularity can be determined by matrix
algebra.

1We learned in [Da2] (see references) that this dilation equation arises in other areas, including sub-

division schemes for computer aided design, where the goal is the fast generation of smooth curves and
surface.

2Frequently, increasing the support of the function leads to increased smoothness.
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Cohen and Daubechies identified the Lp-Sobolev regularity in terms of the smallest zero
of the Fredholm-Ruelle determinant for the transfer operator acting on a certain Hilbert
space of analytic functions [CD1, Da2]. Their analysis leads to an algorithm for the Sobolev
regularity of wavelets having analytic filters that converges with exponential speed. In
Section 2, we study the transfer operator acting on the Bergman space of analytic functions
and effect a more refined analysis. This leads to a more efficient algorithm which converges
with super-exponential speed to the Lp-Sobolev regularity of the wavelet. The algorithm
involves computing certain orbital averages over the periodic points of the doubling map
E2.

In Section 3 we illustrate, in a number of examples, the advantage of this method
over the earlier Cohen-Daubechies method. Running on a fast desktop computer, this
algorithm provides a highly accurate approximation for the Sobolev regularity in less than
two minutes.

A feature of this thermodynamic approach is that it works equally well for compactly
supported and non-compactly supported wavelets (e.g., Butterworth filters). In practice,
for wavelets with large support, the distinction may become immaterial, and the use of
our algorithm which applies to arbitrary wavelets may prove quite useful.

In Section 4, we use this improved algorithm to study the parameter dependence of the
Lp-Sobolev regularity in several smooth families of wavelets. In particular, we construct
new examples of wavelets having the same support as Daubechies wavelets, but with higher
regularity.

In Section 5, we show that the Lp-Sobolev regularity depends smoothly on the wavelet,
and we provide, via thermodynamic formalism, a variational formula. This problem has
been considered experimentally by Daubechies [Da1] and Ojanen [Oj1] for different param-
eterized families. Our thermodynamic approach, based on properties of pressure, gives a
sound theoretical foundation for this analysis.

In Section 6, we study the asymptotic behavior of the Lp-Sobolev regularity of wavelet
families. We establish a general relation between this asymptotic regularity and maximal
measures for the doubling map, extending work of Cohen and Conze [CC1]. The study of
maximal measures is currently an active research area in dynamical systems.

In Section 7, we describe the natural generalization of these results to arbitrary dimen-
sions.

Finally, in Section 8, we briefly describe the natural generalization of these results to
wavelets whose filters are not analytic.

1. Wavelets: construction and regularity

Constructing Wavelets. We begin by recalling the construction of wavelets via mul-
tiresolution analysis. A comprehensive reference for wavelets is [Da1], which also contains
an extensive bibliography.

The Fourier transform of the scaling equation (0.1) satisfies

φ̂(ξ) = m(ξ/2)φ̂(ξ/2), where m(ξ) =
1√
2

∑
k

cke
−ikξ. (1.1)
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The function m is sometimes called the filter defined by the scaling equation. Iterating
this expression, and assuming that m(0) = 1, one obtains that

φ̂(ξ) =
∞∏

j=1

m(2−jξ). (1.2)

Conditions (1)–(3) below allow one to invert this Fourier transform and obtain the scaling
function φ. The wavelet ψ is then explicitly given by

ψ(t) =
√

2
∞∑

k=−∞

dkφ(2t− k), where dk = (−1)k−1c−1−k, (1.3)

and thus the family
ψj,k =

{
2j/2ψ(2jt− k)

}
, j, k ∈ Z

forms an orthonormal basis of L2(R).3

A major result in the theory is the following.

Theorem 1.1 [Da1, p.186]. Consider an analytic 2π-periodic function m with Fourier
expansion m(ξ) =

∑
n cne

inξ satisfying the following conditions:
(1) m(0) = 1;
(2) |m(ξ)|2 + |m(ξ + π)|2 = 1; and
(3) |m(ξ)|2 has no zeros in the interval [−π

3 ,
π
3 ].

Then the function φ̂ defined in (1.2) is the Fourier transform of a function φ ∈ L2(R) and
the function ψ defined by (1.3) defines a wavelet.

Condition (1) is equivalent to φ̂(0) 6= 0, which is necessary to ensure the completeness
in the multiresolution defined by φ. Condition (1) is also necessary for the infinite product
(1.2) to converge. Condition (2) is necessary for the wavelet to be orthogonal, and condition
(3), called the “Cohen condition”, is a sufficient condition for the wavelet to be orthogonal
[Da1, Cor. 6.3.2].

If one wishes to construct compactly supported wavelets, then one needs the additional
assumption:

(4) There exists N ≥ 1 with cn = 0 for |n| ≥ N .
If ck 6= 0 for k ∈ [N1, N2], then the support of φ is also contained in [N1, N2], and the

support of ψ is contained in [(N1 −N2 + 1)/2, (N2 −N1 + 1)/2].

It is frequently useful to work with the function q(ξ) = |m(ξ)|2. This function is
positive, analytic, and even. Condition (1) is equivalent to q(0) = 1 and (2) is equivalent
to q(ξ)+q(ξ+π) = 1. A simple exercise shows that (1) is equivalent to

∑
k∈Z ck = 1/2 and

(2) is equivalent to q(ξ) = 1/2+
∑

k∈Z c2k+1 cos((2k+1)ξ). Thus the set K of positive even

3Engineers often call the family {ck, dk} a quadratic mirror filter (QMF).
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analytic functions satisfying both (1) and (2) is a convex subset of the positive analytic
functions.

Example (Daubechies wavelet family).

This family of continuous and compactly supported wavelets φDaub
N {N ∈ N}, is obtained

by choosing the filter m such that

|m(ξ)|2 = cos2N (ξ/2)PN (sin2(ξ/2)), where PN (y) =
N−1∑
k=0

(
N−1+k

k

)
yk.

The wavelets in this family have no known closed form expression.
Note that |m(ξ)|2 vanishes to order 2N at ξ = π. More generally, a trigonometric

polynomial m with |m(ξ)|2 = cos2N
(

ξ
2

)
u(ξ) satisfies (2) only if u(ξ) = Q(sin2(ξ/2)),

where Q(y) = PN (y) + yNR(1/2 − y), and R is an odd polynomial, chosen such that
Q(y) ≥ 0 for 0 ≤ y ≤ 1 [Da1, 171].

Wavelet regularity. Since the Fourier transform is such a useful tool for constructing
wavelets, and since wavelets (and other solutions of the dilation equation) rarely have
closed form expressions, it seems useful to measure the regularity of wavelets using the
Fourier transform. For p ≥ 1, the Lp-Sobolov regularity of φ is defined by

sp(f) = sup
{
s : (1 + |ξ|p)s|f̂(ξ)|p ∈ L1(R)

}
.

The most commonly studied case is p = 2, where if s2(f) > 1/2, then f ∈ Cs2−1/2−ε.
One can also easily see that

sp(f)− sq(f) ≤ 1
p
− 1
q
, for 0 < p < q.

Thermodynamic Approach to Wavelet Regularity. We now discuss a thermody-
namic formalism approach to wavelet regularity. We assume that |m(ξ)|2 has a maximal
zero of order M at ±π and write

|m(ξ)|2 = cos2M (ξ/2)r(ξ), (1.1)

where r ∈ Cω([0, 2π)) is an analytic function with no zeros at ±π. We further assume that
r > 0, and thus log r ∈ Cω([0, 2π)).

Given a function g : [0, 2π) → R and the doubling map E2 : [0, 2π) → [0, 2π) defined by
E2(x) = 2x(mod 2π), the pressure of g is defined by

P (g) = sup
{
h(µ) +

∫ 2π

0

g dµ : µ a E2-invariant probability measure
}
,

where h(µ) is the measure theoretic entropy of µ. If g is Hölder continuous, then this
supremum is realized by a unique E2−invariant measure µg, called the equilibrium state
for g.

The following theorem expresses the relationship between the pressure and the Sobolev
regularity sp(φ), and provides the crucial link between wavelets and dynamical systems.
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Theorem 1.2. The Lp-Sobolov regularity satisfies the expression

sp(φ) = M − P (p log r)
p log 2

.

Proof. The proof for p = 2 is due to Cohen and Daubechies [CD1] and the general case
is due to Eirola [Ei1] and Villemoes [Vi1]. See also [He1, He2]. This result was originally
formulated in terms of the spectra radius of the transfer operator on continuous functions;
but this is precisely the pressure (see Proposition 2.1). �

See Appendix I for a proof of ≥ in arbitrary dimensions.

2. Determinants and transfer operators

Given h : [0, 2π) → R we define the semi-norm

|h|β = sup
x6=y

|h(x)− h(y)|
|x− y|β

,

and the Hölder norm ||h||β = |h|∞ + |h|β , where 0 < β < 1.
Given g ∈ Cβ [0, 2π), the transfer operator Lg : Cβ([0, 2π) → Cβ([0, 2π) is the positive

linear operator defined by

Lgk(x) = exp
(
g
(x

2

))
k
(x

2

)
+ exp

(
g
(x

2
+ π

))
k
(x

2
+ π

)
.

The following properties of pressure are well known [Ru1, PP1].

Proposition 2.1.

(1) The spectral radius of Lg is exp(P (g));
(2) The pressure P (g) has an analytic dependence on g ∈ Cβ([0, 2π)); and
(3) The derivative DgP (f) =

∫ 2π

0
fdµg.

The transfer operator Lg : Cβ([0, 2π)) → Cβ([0, 2π)) is not trace class on this class of
functions. However, following Jenkinson and Pollicott [JP1, JP2], we consider the transfer
operator acting on the Bergman space A2(∆) of square-integrable analytic functions on
an open unit disk ∆ ⊂ C containing [0, 2π). In Appendix I we show that for analytic
functions g, the transfer operator Lg : A2(∆) → A2(∆) is trace class and Lg has a well-
defined Ruelle-Fredholm determinant. For small z this can be defined by det(I − zLg) =
exp(tr(log(I − zLg))) [Si]. We can write tr(log(I − zLg)) =

∑∞
k=1(zn/n)tr(Lk

g), and each
operator Lk

g is the sum of weighted composition operators having sharp-trace (in the sense
of Atiyah and Bott)

tr(Lk
g) =

∑
Ek

2 x=x

exp(Skg(x))
1− 2−k

.
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The Ruelle-Fredholm determinant for Lg can be expressed as

det(I − zLg) = exp

− ∞∑
n=1

zn

n

∑
En

2 x=x

exp(Sng(x))
1− 2−n

 , (2.1)

and has the “usual determinant property” det(I − zLg) =
∏∞

n=1 (1− zλn), where λn

denotes the n-th eigenvalue of Lg. Note that this determinant is formally quite similar to
the Ruelle zeta function, and has an additional factor of the form 1/(1− 2−n) in the inner
sum. More generally, Lg need not be trace class for expression (2.1) to be well defined for
small z (see Appendix III).

For our applications to wavelet regularity, we consider g = p log r (see (1.1)). To com-
pute the determinant, one needs to compute the orbital averages of the function g over all
the periodic points of E2. Every root of unity of order 2n − 1 is a periodic point for E2,
and there are exactly 2n − 1 such roots of unity, hence there are exactly 2n − 1 periodic
points of period n for E2. A routine calculation yields

dp(z) := det(I − zLplogr) = 1 +
∞∑

n=1

bnz
n, where

bn =
∑

n1+...+nk=n

(−1)k a
p
n1
· · · ap

nk

n1! · · ·nk!
and ap

n =
(

1
1− 2−n

) 2n−1∑
k=0

n−1∏
j=0

r

(
2jk

2n − 1

)p

.

The next theorem summarizes some important properties of this determinant dp(z).

Theorem 2.2. Assume log r ∈ Cω[0, 2π). Then
(1) The function dp(z) can be extended to an entire function of z and a real-analytic

function of p;
(2) The reciprocal of the exponential of pressure zp := exp(−P (p log r))) is the smallest

zero for dp(z);
(3) The Taylor coefficients bn of dp(z) decay to zero at a super-exponential rate,

i.e., there exists 0 < A < 1 such that bn = O(An2
);

(4) Let dp,N (z) = 1 +
∑N

n=1 bnz
n be the truncation of the Taylor series to N terms

and consider smallest zero dp,N (zN
p ) = 0. Then zN

p → zp at a super-exponential
rate, i.e., there exists 0 < B < 1 such that |zp − zN

p | = O(BN2
).

In fact, in Theorem 2.2 (3) and (4) we can choose A and B arbitrarily close to 1/2.

Parts (1) and (2) follow from [Ru2] and (4) follows from (3) via the argument principle.
The essential idea in proving (3) is that one can also express the determinant

dp(z) = 1 +
∞∑

n=1

bnz
n =

∞∏
n=1

(1− zλn) ,



8 M. POLLICOTT AND H. WEISS

where λn denotes the n-th eigenvalue of Lp log r [Sim]. It follows that the coefficient bn =∑
i1<···<in

λi1 · · ·λin
. To show that the Taylor coefficients have super exponential decay,

it suffices to show a suitable estimate on the eigenvalues. We present a proof in Appendix
I.

Part (4) of this theorem provides an algorithm for computing the Sobolev
regularity which converges with super-exponential speed in N . The calculation
of dp,N (z) for N = 12 takes less than two minutes on a desktop computer.

For our applications to wavelets, we shall take either g = log |m|2 or g = log r. In fact,
both functions lead to equivalent results. The following proposition relates the zeros of
det(1− zLlog r) and det(1− zL|m|2).4

Proposition 2.3. The determinant det(1− zLlog |m|2) has zeros at

(1) 1, 2, 4, . . . , 2M−1; and
(2) 2Mz, where z is a zero for det(1− zLlog r).

This was observed by Cohen and Daubechies [CD1] and we include a short proof in
Appendix II.

3. Examples: Computation of Sobolev regularity using the determinant

In this section we shall apply Theorem 2.2 to estimate the Sobolev exponent sp(φ) of
certain interesting examples.

3.1 Daubechies wavelet family.

Example 1: (N = 3 and p = 2). In this case d2(z) is a polynomial of degree 5 with rational
coefficients:

d2(z) = 1− 2z − 57.1875z2 − 74.53125z3 + 210.09375z4 − 91.125z5,

which has its first zero at z0 = 0.111 . . . . By Theorem 1.2 we deduce the precise value
s2(ψDaub

3 ) = 3 + log(0.1111 . . . )/2 log 2 = 1.415037 . . . .5

The following table illustrates the remarkable speed of approximation of this algorithm
by computing the first few approximations to s2(ψDaub

3 ). The level k approximation to
the determinant is obtained by summing over all periodic points with period less than or
equal to k. Level 6 approximations take less than a minute on a desktop computer.

4In our method it is desirable to factor out the zeros and work with r because this reduces the amount

of computation and may increase the efficiency of estimating the determinant by decreasing C > 0
5This compares with the numerical estimate of Cohen-Daubechies of 1.414947, which is accurate to

two decimal places.
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N Smallest root of d2 Approx to s2(ψDaub
3 )

1 0.50000000000000000 2.5000000000000000
2 0.11590073269851241 1.4454807959406297
3 0.10935186260699924 1.4035248496765980
4 0.11120565746767627 1.4156510452962938
5 0.11111111111111109 1.4150374992788437
6 0.11111111111111111 1.4150374992788437

Example 2: (N = 2 and p = 4). In this case d4(z) is a polynomial of degree 5 with rational
cofficients:

d4(z) = 1− 2z − 50.75z2 − 76.25z3 + 115z4 − 32z5,

which has its first zero at z0 = 0.115146 . . . . By Theorem 2.1 we deduce that s4(ψDaub
2 ) =

3 + log(0.115146 . . . )/2 log 2 = 1.22038 . . . .6

Example 3: (N = 4 and p = 2). In this case d2(z) is a polynomial of degree 7 with rational
coefficients

d2(z) = 1− 2z − 433z2 − 996z3 + 23572z4 − 32288z5 − 68627z6 − 24414z7,

which has its first zero at z0 = 0.045788 . . . . By Theorem 2.1 we deduce that s2(ψDaub
4 ) =

4 + log(0.045788 . . . )/2 log 2 = 1.77557 . . . .7

Based on the same approximation scheme, the following table contains our approxima-
tions to s2(ψdaub

N ) for N = 1, 2, . . . , 10, and compares them with the values obtained by
Cohen and Daubechies in [CD1].

N new approx to s2(ψDaub
4 ) previous approx to s2(ψDaub

4 )

1 0.500000 0.338856
2 1.000000 0.999820
3 1.415037 1.414947
4 1.775565 1.775305
5 2.096786 2.096541
6 2.388374 2.388060
7 2.658660 2.658569
8 2.914722 2.914556
9 3.161667 3.161380

10 3.402723 3.402546

6This compares with the estimate of Cohen-Daubechies of 1.220150 . . . , which is accurate to three

decimal places.
7This compares with the estimate of Cohen-Daubechies of 1.775305, which is accurate to three decimal

places.
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Remark. In examples 1 − 3 the determinant is a rational function. This is an immediate
consequence of the fact that the transfer operator preserves the finite dimensional subspace
of functions spanned by

{1, cos(ξ), cos(2ξ), · · · , cos(Nξ)}.

This fact has been observed by several authors, c.f., [Oj1].

3.2 Butterworth filter family.
The Butterworth filter is the filter type with flattest pass band and which allows a

moderate group delay [OS1]. These filters form an important family of non-compactly
supported wavelets and are defined by

|m(ξ)|2 =
cos2N (ξ/2)

sin2N (ξ/2) + cos2N (ξ/2)
, N ∈ N.

We suppress the index n for notational convenience. It is easy to check that |m(ξ)|2 satisfies
conditions (1)− (3) on page 4.

Example 4: (Butterworth filter with N=2, p=2. ) For this case the determinant d2(z) is a
power series of the form

d2(z) = 1− 2. z − 2.08 z2 − 0.479053 z3 − 0.0124521 z4 − 0.000086246 z5 − 2.06875 10−9 z6

− 3.2482 10−13 z7 − 7.38964 10−13 z8 + 4.24431 10−12 z9 − 2.94676 10−11 z10 + · · · ,

which has its first zero at z0 = 0.356702 . . . , and thus by Theorem 1.2 we deduce that
s2(ψButt

2 ) = 2 + log(0.356702 . . . )/2 log 2 = 1.25497 . . . .

The following table contains the first few approximations of s2(ψButt
2 ):

N Root Approx to s2(ψButt
2 )

1 0.500000000000000 1.0000000000000000
2 1.256072268804003 1.2689757055091953
3 0.356757200613385 1.2565072268804003
4 0.356702225093496 1.2563960602082473
5 0.356702089349239 1.2563957856969186
6 0.356702089348077 1.2563957856945698
7 0.356702089348077 1.2563957856945698

We can similarly compute s2(ψButt
N ) for N = 1, 2, . . . , 10 and compare these with the

values in [CD1].
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N new approx to s2(ψButt
N ) previous approx to s2(ψButt

N )

1 0.500000 0.338856
2 1.256211 1.256395
3 2.044109 2.044117
4 2.843768 2.843771
5 3.648646 3.648817
6 4.456118 4.456252
7 5.264533 5.264586
8 6.072947 6.073034
9 6.881125 6.881173

10 7.688598 7.688776

4. Compactly supported wavelets smoother than the Daubechies family

We now consider smooth finite dimensional families of wavelets and attempt to find
the maximally regular wavelets in the family. Several authors have used this approach to
find compactly supported wavelets that are more regular than the Daubechies wavelets
with the same support. The most straightforward approach to the problem of maximizing
the regularity of compactly supported wavelets in parameterized families reduces to the
problem of maximizing the maximal eigenvalue of an N × N matrix. However, except
for very small N , there is no algebraic expression for the eigenvalue. In this section, we
illustrate the advantages of our fast converging algorithm in seeking more regular wavelets.

Example 1. Ojanen [Oj1] experimentally studied the regularity of wavelets corresponding
to filters |m(ξ)|2 of width N and which vanish to order M at π. In the case that M ≥ N−1
he found that the Daubechies polynomials (where M = N) are apparently the smoothest.
For N = 2 and M = 1, say, one can define the family of filters

|m(ξ)|2 =
1
2

(1 + cos ξ) (1 + 8a cos2 ξ − 8a cos ξ)︸ ︷︷ ︸
:=r(ξ)

. (4.1)

The transfer operator preserves the subspace spanned by {1, cos(ξ), cos(2ξ)} and thus can
be represented by a 3 × 3 matrix whose maximal eigenvalue is expP = 1 +

√
1 + 16a. In

the special case when a = −1/16 one obtains the filter corresponding to ψDaub
2 , for which

r(π) = 0. One can easily show that this wavelet is the smoothest in this family. However,
for the broader class M ≤ N − 2, this is no longer the case.

Example 2. We consider the two-parameter family of putative wavelets corresponding to
filters

|m(x)|2 =
1
2

+ a cos(x) + b cos(3x) +
(

1
2
− a− b

)
cos(5x). (4.2)

We say putative, because all the conditions in Theorem 1.1 need to be verified for all
parameter values. The Daubechies wavelet ψDaub

3 corresponds to parameters a = 75/128
and b = −25/256.
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Here |m(x)|2 has a double zero at x = π and thus one can always take out (at least) a
factor of (1 + cos(ξ)) /2. However, it is always necessary to check “by hand” that for each
particular choice of a and b expression (4.2) is positive and the Cohen condition holds.

It is useful to write (4.2) in the form r(ξ)(1 + cos(ξ))/2, where

r(ξ) = 1− 4 (−1 + 2 a+ 4 b) cos(ξ) + 4 (−1 + 2 a+ 4 b) cos2(ξ)

+ 16 (−1 + 2 a+ 2 b) cos3(ξ)− 16 (−1 + 2 a+ 2 b) cos4(ξ).

Notice this trigonometric polynomial has the form r(ξ) = 1 − α cos(ξ) + α cos2(ξ) +
β cos3(ξ)− β cos4(ξ).

(A) The transfer matrix approach
We consider the finite dimensional space spanned by {1, cos(ξ), cos2(ξ), cos3(ξ), cos4(ξ)}

and write the action of the transfer operator associated to weights of the general form

r(ξ) = 1− α cos(ξ) + α cos2(ξ) + β cos3(ξ)− β cos4(ξ).

A routine calculation yields that the transfer operator on this space has the following
matrix representation:

Llog r = Llog r(α, β) =


2 + α− β

2 α− β −β
2 0 0

−α+ β
2 −α+ β β

2 0 0
1 + α

2 −
β
4 1 + α− 3β

4
α
2 −

3β
4 −β

4 0
−α

2 + β
4 −α+ 3β

4 −α
2 + 3β

4
β
4 0

1
2 + α

4 −
β
8 1 + 3α

4 − β
2

1
2 + 3α

4 − 3β
4

α
4 −

β
2 −β

8

 .

The matrix corresponding to ψDaub
3 is

Llog r(−7/8,−3/8) =


21
16 − 1

2
3
16 0 0

11
16

1
2 − 3

16 0 0
21
32

13
32 − 5

32
3
32 0

11
32

19
32

5
32 − 3

32 0
21
64

17
32

1
8 − 1

32
3
64

 ,

with eigenvalues 1, 9/16, ±1/4 and 3/64. Then det(I − zLlog r), has a zero at z = 16/9.
By Theorem 1.2 we again recover the Sobolev regularity of ψDaub

3 : s2(ψDaub
3 ) = 1 −

(log(9/16)/(2 log 2) = 1.41504 . . . .
By varying the parameters α and β, and always checking that expression (4.2) is positive

and satisfies the Cohen condition, one can search for wavelets having maximal Lp−Sobolev
regularity, and, in particular, having greater regularity than the Daubechies wavelet. The
two required conditions make this a difficult constrained optimization problem, which is
even difficult numerically. In contrast with Example 1, there appears to be no simple
algebraic expression for the eigenvalues for the matrix corresponding to Llog r; one must
resort to empirical searches using different choices of α and β.
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However, it is more illuminating to implement this computation using determinants.

(B) The determinant approach
If one computes the determinant det(1− zLlog |m|2Daub

) associated with the Daubechies
wavelet ψDaub

3 using our determinant algorithm, one obtains the power series expansion

det(1− zLlog |m|2Daub
) = 1− 2 z + 1.31904 z2 − 0.35310 z3 + 0.03319 z4

+ 0.00120 z5 − 0.000351 z6 + · · · .

We observe that:
(1) There are “trivial” zeros for det(1− zLlog |m|2Daub

) at the values z = 1, 2, 4, 8;
(2) There is a zero at z = 7.07337 . . . ., which by Proposition 2.3 corresponds to a zero

of det(1 − zLlog rDaub) at 7.07337/26 = 0.111 . . . . This agrees with our previous
calculation in Section 3.

By Theorem 1.2, if we change the filter |m|2 to decrease the pressure, then the Sobolev
regularity of the associated wavelet increases.

One can easily check that if one replaces a = 75/128 by 75/128 − 0.00068, say, and
b = −25/256 by −25/256+0.00002, say, then the associated filter |m(ξ)2| remains positive,
and by Theorems 1.2 and 2.1, the zero of the determinant increases from 7.1111 to 8.51989.
This reflects an increase in the L2-Sobolev regularity from 1.415 to 1.545.

Thus, this two-parameter family contains wavelets having the same support as ψDaub
3

with greater L2-Sobolev regularity. The same idea can be applied for other N .

Remarks: Other approaches.

(a) Daubechies [Da1, p.242] considered the one-parameter family of filters

|m(ξ)|2 = cos2(N−1)(ξ/2)(PN−1(sin2(ξ/2)) + a cos2N (ξ/2)) cos(ξ),

where a ∈ R. For definiteness, we discuss the case N = 3. For different values of the
parameter a we calculate the first zero of the determinant, and thus the Sobolev regularity
of the associated wavelet using Theorem 2.2. The following table shows that this zero is
monotone increasing as a increases to 3. The zero of the determinant is 0.40344 . . . when
a = 3, which corresponds to L2 Sobolev regularity 1.34443 . . . . It is not necessary to study
the case a > 3 since the expansion for |m|2 is no longer positive. To see this, we can
expand in terms of ξ − π as

|m(ξ)|2 = cos4(ξ/2)(P2(sin2(ξ/2)) + a cos4(ξ/2)) cos(ξ)

= cos4(ξ/2− π/2)(1 + 2 sin2(ξ/2− π/2) + a sin6(ξ/2− π/2) cos(ξ − π))

= sin4(ξ/2)(1 + 2 cos2(ξ/2)− a cos6(ξ/2) cos(ξ))

= 1 + 2(1− (ξ/2)2 + . . . )2 − a(1− (ξ/2)2 + . . . )6(1− ξ2 + . . . )

= (3− a)− (1 + 5a/2)ξ2 + . . . .
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It is clear this expression is negative values for a > 3.
We see that the parameter value a = 3 corresponding to the maximally regular wavelet

lies on the boundary of an allowable parameter interval, and thus could not be detected
using variational methods.

a Zero of determinant Sobolev regularity
-1.0 0.230 0.939
-0.5 0.239 0.967
0.0 0.250 1.000
0.5 0.262 1.030
1.0 0.276 1.071
1.5 0.294 1.116
2.0 0.317 1.710
2.5 0.350 1.242
2.7 0.367 1.276
2.8 0.377 1.296
2.9 0.389 1.318
3.0 0.403 1.344

(b) Daubechies [Da3] also considered the one-parameter family of functions

m(ξ) =
(

1 + eiξ

2

)2

Q(ξ),

where |Q(ξ)|2 = P (cos ξ) and P (x) = 2−x+ a
4 (1−x)2, with the parameter a ichosen such

that P (x) > 0 for 0 ≤ x < 1. The value a = 3 corresponds to ψDaub
2 , and the associated

polynomial has a zero at x = −1. She reparameterizes this wavelet family using the zero
at x = −1 + δ, and obtains, numerically, a wavelet having the same support as ψDaub

2 but
with higher regularity.

5. Perturbation theory and variational formulae

In this section we observe that the analyticity of pressure implies that the Lp Sobolev
regularity depends smoothly on the wavelet. It thus seems natural to search for critical
points (maximally smooth wavelets) in parametrized families of wavelets by explicitly
calculating the derivative of the Sobolev regularity functional. We caution that the example
in the previous section shows that maximally regular wavelets can lie on the boundary of
allowable parameter intervals.

We now restrict |m(ξ)|2 to the subset of analytic functions B satisfying conditions (1)−
(3) and let ∆r0 be a tangent vector to this space. It follows from remarks in Section 1
that ∆r0 is represented by an analytic function of the form

∆r0 =
1
2

+
∞∑

n=0

d2n+1 cos((2n+ 1)ξ), such that
∞∑

n=0

dn =
1
2
.

We have the following result.
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Proposition 5.1.
(1) For every p ≥ 1, the regularity mapping K → R defined by |m(ξ)|2 7→ sp(φ) is

analytic;
(2) Let

|mλ(ξ)|2 = cos2M (ξ/2) (r0(ξ) + λ∆r0(ξ) + . . . )

be a smooth parametrized family of filters. Then the change in the Sobolev regularity
is given by

sp(φλ) = sp(φ0) +
(

1
p log 2

∫
∆r0
r0

dµ

)
λ+ . . . ,

where µ is the unique equilibrium state for p log r0.

Proof. The analyticity of the Sobolev regularity follows from Proposition 2.1(2), the analyt-
icity of the pressure, and the implicit function theorem. Since log rλ = log(r0+∆r0+. . . ) =
log r0 + ∆r0

r0
λ+ . . . and DgP (·) =

∫
·dµg, this follows from the chain rule. �

If we restrict to finite dimensional spaces we can consider formulae for the second (and
higher) derivatives of the pressure, which translate into formulae for the next term in the
expansion of sp(φλ).

Also observe that we can estimate the derivatives of the Sobolev exponent of a family
sp(φλ) using the series for dp(φλ, z). More precisely, by the implicit function theorem

dsp(φλ)
dλ

=
d(det(φλ, z))

dλ

/
d(det(φλ, z))

dz
=
d(det(φλ, z))

dλ

/
d(det(φλ, z))

dz
+O(2−n2

)

which is possible to compute for periodic orbit data. We can similarly compute the higher
derivatives

dksp(φλ)
dλk

∣∣∣∣
λ=λ0

, for k ≥ 1

using Mathematica, say. We can then expand the power series for the Sobolev function:

sp(φλ) = sp(φλ0) + (λ− λ0)
dsp(φλ)
dλ

∣∣∣∣
λ=λ0

+
(λ− λ0)2

2
d2sp(φλ)
dλ2

∣∣∣∣
λ=λ0

+ . . . .

6. Asymptotic Sobolev regularity

The use of the variational principle to characterize pressure (and thus the Sobolev
regularity) leads one naturally to the idea of maximizing measures. More precisely, one
can associate to g:

Q(g) = sup
{∫ 2π

0

g dµ, µ an E2-invariant Borel probability measure
}

Unlike pressure, which has analytic dependence on the function, the quantity Q(g) is less
regular, but we have the following trivial bound.
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Lemma 6.1. For any continuous function g: [0, 2π) → R,

Q(g) ≤ P (g) ≤ Q(g) + log 2.

Proof. Since 0 ≤ h(µ) ≤ log 2, this follows from the definitions. �

Proposition 6.2. Let φn, n ∈ N be a family of wavelets with filters

|m(ξ)|2 = cos2Mn(ξ/2)rn(ξ),

where Mn ≥ 0. Then the asymptotic Lp-Sobolev regularity of the family is given by

lim
n→∞

sp(φn)
n

= lim
n→∞

Mn

n
− lim

n→∞

Q(log rn)
n log 2

.

Proof. Using Theorem 1.2, Lemma 6.1, and (1.1), one can easily show

Q(p log rn) ≤ p log 2(Mn − sp(φn)) ≤ Q(p log rn) + log 2.

The proposition immediately follows after dividing by n and taking the limit as n→∞. �

We now apply Proposition 6.2 to compute the Lp-Sobolev regularity of the Daubechies
family of wavelets for arbitrary p ≥ 2. Cohen and Conze [CC1] first proved this result for
p = 2.

Proposition 6.3. Let p ≥ 2. The asymptotic Lp-Sobolev regularity of the Daubechies
family is given by

lim
N→∞

sp(ψDaub
N )
N

= 1− log 3
2 log 2

.

Proof. If one applies Proposition 6.2 to the Daubechies filter coefficients (see Section I),
one immediately obtains

lim
N→∞

sp(φDaub
N )
N

= 1−

(
lim

N→∞

Q(logPN (sin2 (y
2 )))

N log 2

)
.

Cohen and Conze [CC1, p. 362] show that

Q(log2 PN (sin2 (
y

2
))) =

logPN (3/4)
2 log 2

,

and the sup is attained for the period two periodic orbit {1/3, 2/3}. Thus

lim
N→∞

sp(φDaub
N )
N

= 1− 1
2 log 2

lim
N→∞

logPN (3/4)
N

.
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The exponentially dominant term in PN (3/4) is easily seen to be
(
2N−1
N−1

)
( 3
4 )N−1, and a

routine application of Stirling’s formula yields

lim
N→∞

logPN (3/4)
N

= log 3.

The proposition immediately follows. �

Remark. As briefly discussed in Section 3.2, the Butterworth filter family ψButt
N , N ∈ N is

the family of non-compactly supported wavelets defined by the filter

|m(ξ)|2 =
cos2N (ξ/2)

sin2N (ξ/2) + cos2N (ξ/2)
.

Fan and Sun [FS1] computed the asymptotic regularity for this wavelet family; they
showed that

lim
N→+∞

sp(ψButt
N )
N

=
log 3
log 2

.

This asymptotic linear growth of regularity is similar to that for the Daubechies wavelet
family.

7. Higher dimensions

The dilation equation (0.1) has a natural generalization to d-dimensions of the form:

φ(x) = det(D)
∑
k∈Zd

ckφ(Dx− k), (7.1)

where D ∈ GL(d,Z) is a d× d matrix with all eigenvalues having modulus strictly greater
than 1. We are interested in solutions φ ∈ L2(Rd). We consider the expanding map
T : [0, 2π)d → [0, 2π)d by T (x) = Dx (mod 1). By taking d-dimensional Fourier transfor-
mations, (7.1) gives rise to the equation

φ̂(ξ) = m(D−1ξ)φ̂(D−1ξ), where m(ξ) =
∑
k∈Zd

cke
−i〈k,ξ〉.

Thus by iterating this identity we can write φ̂(ξ) =
∏∞

n=1m(D−nξ).
For g ∈ Cβ([0, 2π)d), one can define a transfer operator Lg : Cβ([0, 2π)d) → Cβ([0, 2π)d)

by
Lgk(x) =

∑
Ty=x

exp
(
g(y)

)
k(y),

where the sum is over the det(D) preimages of x.
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We can consider a Banach space of periodic analytic functions A in a uniform neigh-
bourhood of the torus [0, π)d and the associated Bergman space of functions. We have
that for g ∈ A the operator Lg : A → A and its iterates Lk

g are trace class operators for
each k ≥ 1. We can compute

tr(Lk
g) =

∑
T nx=x

|det(D)|n exp(Sng(x))
|det(Dn − I)|

,

where Sng(x) = g(x) + g(Tx) + · · ·+ g(Tn−1x).

Assume that we can write m(x) =
(

a(Dx)
|det(D)|a(x)

)M

r(x), where r(x) > 0.8 The Ruelle-
Fredholm determinant of Lp log r takes the form:

det(I − Lp log r) = exp

− ∞∑
n=1

zn

n

∑
T nx=x

|det(D)|n exp(pSn log r(x))
|det(Dn − I)|

 .

The statement of Theorem 1.2 has a partial generalization to d-dimensions. We define
the Lp-Sobolev regularity of p to be

sp(φ) := sup{s > 0 : |φ̂(ξ)|p(1 + ||ξ||p)s ∈  L1(Rd)}.

Proposition 7.1. The Lp-Sobolev regularity satisfies the inequality

sp(φ) ≥ Mdet(D)
log λ

− P (p log r)
p log λ

,

where λ > 1 is smallest modulus of an eigenvalue of D.

Proof. We can write |φ̂(ξ)| ≤ C|det(D)|Mn
∏n

i=0 r(D
−iξ), for some C > 0 and all ξ ∈

Dn([0, 2π)d). However, we can identify
∫

T nD

∏n
i=0 r(D

−iξ)pdξ =
∫

D
Ln

p log r1(ξ)dξ. More-
over, since Lp log r has maximal eigenvalue eP (p log r), we can bound this by C ′enP (p log r),
for some C ′ > 0. In particular,∫

Rd

|φ̂(ξ)|p(1 + ||ξ||p)sdξ ≤
∞∑

n=1

λpsn

∫
T nD−T n−1D

|φ̂(ξ)|pdξ

≤ CC ′
∞∑

n=1

λpsn|det(D)|MpnenP (p log r)

In particular, the right hand side converges if λps|det(D)|MpeP (p log r) < 1, from which the
result follows. �

8In particular, if T nx = x we have that
Qn−1

i=0 |m(T ix)|2 = 2−n
Qn−1

i=0 g(T ix).



HOW SMOOTH IS YOUR WAVELET? 19

In certain cases, for example if D has eigenvalues of the same modulus and some other
technical assumptions, then this inequality becomes an equality [CD1].

As in Section 2, a routine calculation gives that

dp(z) := det(I − zLp log r) = 1 +
∞∑

n=1

bnz
n, where

bn =
∑

n1+···+nk

(−1)k a
p
n1
· · · ap

n1

n1! · · ·nk!
and ap

n =
∑

T nx=x

|det(D)|n
∑

T nx=x (
∏n

i=0 r(x))p

|det(Dn − I)|
.

The simplest case is that of diagonal matrices, but this reduces easily to tensor products
Φ(x1, . . . , xd) = φ1(x1) · · ·φd(xd) of the one dimensional case. The next easiest example
illustrates the “non-separable” case:

Example. For d = 2 we let D =
(

1 1

1 −1

)
, which has eigenvalues λ = ±

√
2.

In the d-dimensional setting we have the following version of Theorem 2.2:

Theorem 7.2. Assume that log r ∈ A. Then
(1) The function dp(z) can be extended to an entire function of z and a real analytic

function of p;
(2) The exponential of pressure zp := exp(−P (p log r)) is the smallest zero for dp(z);
(3) The Taylor coefficients bn of dp(z) decay to zero at a super-exponential rate, i.e.,

there exists 0 < A < 1 such that bn = O(An1+1/d

);
(4) Let dp,N (z) =

∑N
n=1 bnz

n be the truncation of the Taylor series to N terms and
consider smallest zeros dp,N (zN

p ) = 0. Then zN
p → zp at a super-exponential rate,

i.e., there exists 0 < B < 1 such that |zp − zN
p | = O(BN1+1/d

).

Furthermore, we can choose A and B arbitrarily close to λ−1.

The main difference for d ≥ 2 is that the exponent N2 is replaced by N1+1/d in parts 3
and 4.

8: Generalizations to non real analytic filters m

We now consider the more general setting where the filter m is not analytic, and we
necessarily obtain weaker results. Recall that the filter m(ξ) = (1/

√
2)
∑

k cke
−ikξ, and

assume there exists β > 0 such that |cn| = O(|n|−β). In this case we can only expect that
the determinant algorithm for the Sobolev regularity converges with exponential speed.
Recall dp(z) = det(I − zLplogr) = 1 +

∑∞
n=1 bnz

n.

Theorem 8.1.

(1) Let 0 < β < 1. If |cn| = O
(

1
|n|β

)
, then bn = O(2−nβ(1−ε)) for any ε > 0;

(2) Let k ≥ 1. If |cn| = O
(

1
|n|k

)
, then bn = O(2−nk(1−ε)) for any ε > 0.
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This follows from a standard analysis of transfer operators, and in particular, studying
their essential spectral radii. The radius of convergence of dp(z) is the reciprocal of the
essential spectral radius of the operators. In the case that 0 < β < 1, this theorem follows
from the Hölder theory of transfer operators [PP1]. But for k > 1 this requires a slightly
different analysis [Ta1]. The necessary results are summerized in the following proposition.

Proposition 8.2.

(1) Assume cn = O(|n|−β). The transfer operator Lf has essential spectral radius
(1/2)αeP (f) (and the function d(z) in analytic in a disk |z| < 2β).

(2) Assume cn = O(|n|−k). The transfer operator Lf has essential spectral radius
(1/2)keP (f) (and the function d(z) in analytic in a disk |z| < 2k).

The first part is proved in [Po1], [PP2]. The second part is proved in [Ta1], [Ru2]9

As in Section 2, the speed of decay of the coefficients bn immediately translate into the
corresponding speed of convergence for the main algorithm.

Appendix I: Proof of Theorem 2.1.

Given a bounded linear operator L : H → H on a Hilbert space H, its ith approximation
number (or singular value)10 si(L) is defined as

si(L) = inf{||L−K|| : rank(K) ≤ i− 1},

where K is a bounded linear operator on H.
Let ∆r ⊂ C denote the open disk of radius r centered at the origin in the complex

plane. The phase space [0, 2π) for T = E2 is contained in ∆2π+ε for any ε > 0, and the
two inverse branches T1(x) = 1

2x and T2(x) = 1
2x + 1

2 have analytic extensions to ∆2π+ε

satisfying T1(∆2π+ε) ∪ T2(∆2π+ε) ⊂ ∆2π+ ε
2
. Thus T1 and T2 are strict contractions of

∆2π+ε onto ∆2π+ ε
2

with contraction ratio θ = (2π+ ε)/(2π+2ε) < 1. We can choose ε > 0
arbitrarily large (and thus θ arbitrarily close to 1/2).

Let A2(∆r) denote the Bergman Hilbert space of analytic functions on ∆r with inner
product 〈f, g〉 :=

∫
∆
f(z) g(z) dx dy [Ha1].

Lemma A.1. The approximation numbers of the transfer operator Lp log r : A2(∆2π) →
A2(∆2π) satisfy

sj(Lp log r) ≤
||Lp log r||A2(∆2π)

1− θ
θj ,

for all j ≥ 1. This implies that the operator Lp log r is of trace class.

Proof. Let g ∈ A2(∆2π+ε) and write Lp log rg =
∑∞

k=−∞ lk(g)pk, where pk(z) = zk. We

can easily check that ||pk||A2(∆2π) =
√

π
k+1 (2π)k+1 and ||pk||A2(∆2π+ε) =

√
π

k+1 (2π +

9At least when β ∈ N.
10We use these terms interchangably because one can show that sk(L) =

p
λk(L∗L).



HOW SMOOTH IS YOUR WAVELET? 21

ε)k+1. The functions {pk}k∈Z form a complete orthogonal family for A2(∆2π+ε), and so
〈Lp log rg, pk〉A2(∆2π+ε) = lk(g)||pk||2A2(∆2π+ε)

. The Cauchy-Schwarz inequality implies that

|lk(g)| ≤ ||Lp log rg||A2(∆2π+ε) ||pk||−1
A2(∆2π+ε)

.

We define the rank-j projection operator by L
(j)
p log r(g) =

∑j−1
k=0 lk(g)pk. For any g ∈

A2(∆θ) we can estimate

||
(
Lp log r − L

(j)
p log r

)
(g)||A2(∆2π) ≤ ||Lp log rg||A2(∆2π)

∞∑
k=j

θk+1.

It follows that

||Lp log r − L
(j)
p log r||A2(∆2π) ≤

||Lp log r||A2(∆2π)

1− θ
θj+1,

and so

sj+1(Lp log r) ≤
||Lp log r||A2(∆2π)

1− θ
θj+1,

and the result follows. �

We now show that the coefficients of the power series of the determinant decay to zero
with super-exponential speed.

Lemma A.2. If one writes det(I − zLp log r) = 1 +
∑∞

m=1 cmz
m, then

|cm| ≤ B

( |Lp log r||A2(∆2π)

1− θ

)m

θm(m+1)/2,

where B =
∏∞

m=1(1− θm)−1 <∞.

Proof. By [Si1, Lemma 3.3], the coefficients cn in the power series expansion of the de-
terminant have the form cm =

∑
i1<...<im

λi1 · · ·λim , the summation is over all m-tuples
(i1, . . . , im) of positive integers satisfying i1 < . . . < im. Since |λi| ≤ si we can bound

|cm| =

∣∣∣∣∣ ∑
i1<...<im

λi1 · · ·λim

∣∣∣∣∣ ≤ ∑
i1<...<im

si1(Lp log r) · · · sim
(Lp log r)

≤
( ||Lp log r||A2(∆2π)

1− θ

)m ∑
i1<...<im

θi1+...+im

=
( || Lp log r||A2(∆2π)

1− θ

)m
θm(m+1)/2

(1− θ)(1− θ2) · · · (1− θm)

≤ B

( ||lLp log r||A2(∆2π)

1− θ

)m

θm(m+1)/2,
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for some B > 0. �

We finish by showing that Theorem 2.1 follows from Lemma 2.2. The coefficients of
det(I − zLs) = 1 +

∑∞
n=1 bnz

n are given by Cauchy’s Theorem:

|bn| ≤
1
rn

sup
|z|=r

|det(I − zLs)|, for any r > 0.

Using Weyl’s inequality we can deduce that if |z| = r then

|det(I − zLs)| ≤
∞∏

j=1

(1 + |z|λj) ≤
∞∏

j=1

(1 + |z|sj)

≤

(
1 +B

∞∑
m=1

(rα)mθ
m(m+1)

2

)

where α = ||Ls||A2(∆2π). If we choose r = r(n) appropriately then we can get the bounds
given in the theorem.

Appendix II: Proof of Proposition 2.3

The periodic orbits of period n for E2 are precisely the sets {2π 2ik/(2n − 1) : i =
0, 1, . . . , n− 1}, where k = 0, . . . , 2n − 1. We can now consider the factorization (1.1) and
write

Zn :=
1

1− 2−n

∑
T nx=x

n−1∏
i=0

|m(2ix)|2

=
1

1− 2−n

2n−1∑
k=0

n−1∏
i=0

∣∣∣∣m(2π
2ik

2n − 1

)∣∣∣∣2

=
1

1− 2−n

2n−1∑
k=0

(
n−1∏
i=0

cosM

(
2π

2ik

2(2n − 1)

))(n−1∏
i=0

r

(
2π

2ik

2(2n − 1)

))
.

However, since cos θ = 1
2 sin(2θ)/ sin θ, we can write

n−1∏
i=0

cosM

(
2π

2ik

2(2n − 1)

)
=

n−1∏
i=0

cosM

(
2π

2ik

2(2n − 1)

)
=
{

2−Mn if k 6= 0
1 if k = 0

.

Thus we can write

Zn =
1

1− 2−n

(
2n−1∑
k=0

1
2nM

n−1∏
i=0

r

(
2π

2ik

2(2n − 1)

)
+ 1− 1

2nM

)
.
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Since (1− 2−nM )/(1− 2−n) =
∑M−1

j=0 2−jn, we can write

det(1− zLp log |m|2) = exp

 ∞∑
n=0

M−1∑
j=0

(z2−j)n

det
(

1− z

2M
Lp log r

)

=
M−1∏
j=0

(
1− z2−j

)
det
(

1− z

2M
Lp log r

)
.

�
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