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Abstract

We present an analytical study of the Fermi–Pasta–Ulam (FPU) α–
model with periodic boundary conditions. We analyze the dynamics cor-
responding to initial data with some low frequency Fourier modes excited.
We show that, correspondignly, a pair of KdV equations constitute the
resonant normal form of the system. We also use such a normal form
in order to prove the existence of a metastability phenomenon. More
precisely, we show that the time average of the modal energy spectrum
rapidly attains a well defined distribution corresponding to a packet of
low frequencies modes. Subsequently, the distribution remains unchanged
up to the time scales of validity of our approximation. The phenomenon
is controlled by the specific energy.

1 Introduction

In this paper we present an analytical study of the Fermi–Pasta–Ulam (FPU)
α–model with periodic boundary conditions for initial data with some low fre-
quency Fourier modes excited. We give some rigorous results concerning the
relaxation to a metastable state, in which energy sharing takes place among low
frequency modes only.

The FPU model consists of a long chain of particles interacting with their
nearest neighbours through nonlinear springs. It was first introduced and stud-
ied numerically by FPU [FPU65] in order to determine the time of approach to
equilibrium of the system. In the FPU original experiment all the energy was
initially given to a single low frequency Fourier mode and the energies of the
Fourier modes were plotted vs. time. The result was surprising: energy shar-
ing occurred only among a few low frequency modes and an almost recurrent
behaviour of the solution were observed. On the contrary, a fast approach to a
state characterized by equipartition of all modal energies was expected.

The chain numerically integrated by FPU was composed by a relatively small
number of particles; a problem that naturally arises is that of understanding
whether the unexpected lack of equipartition persists when the number of par-
ticles grows. Actually a huge number of numerical computations have been
performed [BGG05, BKL03, LPRV85, PL90], but the situation is not yet clear.
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From the theoretical point of view, in the FPU problem there were ini-
tially two lines of research. The first one originated from the paper [ZK65] by
Zabusky and Kruskal, who numerically studied the dynamics of the Kortweg de
Vries equation (KdV) which was heuristically known to describe the long wave
solutions of the FPU. The authors observed a recurrent behaviour in the KdV
and interpreted it as a possible explanation of the FPU recurrence. The paper
by Zabusky and Kruskal constituted the starting point of the theory of Lax–
integrable partial differential equations, but, as far as we know, the relevance
of the KdV equation for the FPU relaxation problem was never completely
clarified.

A second line of research was initiated by Izrailev and Chirikov [IC66] and
is based on the Kolmogorov Arnold Moser (KAM) theorem, or more generally
on the application of canonical perturbation theory to the study of FPU. The
idea of Izrailev and Chirikov is that an energy threshold exists, below which
KAM theory is (in principle) applicable (actually the applicability of KAM
theory to FPU is a delicate question, since one has to verify the validity of the
KAM nondegeneracy condition, which was accomplished only recently in the
paper [Rin01]). The main point is the dependence of such a threshold on the
number of degrees of freedom. The thesis by Izrailev and Chirikov is that, if the
mode initially excited has high frequency, then the threshold goes to zero as the
number of degrees of freedom increases, so that the region of recurrent motions
becomes irrelevant. Afterwards, many heuristic arguments have been developed
in order to support and refine Chirikov’s thesis. In particular, Shepeliansky gave
some heuristic arguments according to which Chirikov’s thesis should hold also
for low frequency initial excitations [She97]. Anyway, up to now no rigorous
result is available.

It has to be noticed that the thesis of Izrailev–Chirikov–Shepeliansky is
hardly compatible with the result of Zabusky–Kruskal: according to the former
authors the FPU phenomenon disappears when the number of degrees of free-
dom is large, while the latter explain the FPU recurrence by making use of a
PDE, which requires a large number of degrees of freedom.

Finally a new theoretical scenario, which we call the metastability scenario,
was proposed for the FPU problem in the paper [FMM+82] (see also [LPRV85]).
The thesis is that the FPU system approaches, in a relatively short time, a first
state whose modal energy spectrum displays a plateau of equipartition among
low frequency modes, followed by an exponentially decreasing tail in the region
of high frequencies. Complete equipartition is eventually reached on a second
very long time–scale. In [FMM+82] the presence of the exponential tail in the
energy spectrum of the metastable state was explicitly referred to as “similar to
Wien’s law for black–body radiation”. Actually such an analogy was previously
pointed out by Galgani and Scotti [GS72], who fitted the FPU energy spectrum
to a Planck–like distribution. A new emphasis to such a metastability scenario
was given in the papers [CG99, CG01, CGG05].
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2 Main ideas

In the present paper we consider low frequency initial data and, following the
line sketched in [PB05b], we unify the first two approaches presented above, in
the sense that we show that canonical perturbation theory leads to the Zabusky–
Kruskal result. More precisely, we show that a pair of KdV equations constitute
the resonant normal form of FPU in the standard sense of canonical perturba-
tion theory. We also use such a normal form in order to give a first rigorous
result on energy sharing among the modes. In doing this, we show that the
result of Zabusky–Kruskal is controlled by specific energy, so that the stability
phenomenon should persist in the thermodynamic limit, against the thesis of
Izrailev–Chirikov–Shepeliansky. On the other hand, we make a bridge with the
metastability scenario of [FMM+82], because we point out the relevance of the
time scales over which different qualitative descriptions of the dynamics holds.

More precisely, we consider a very long chain with periodic boundary con-
ditions, and focus on initial data in which only one Fourier mode with very
small index (i.e. with low frequency) and its higher harmonics are initially
excited. It is useful to describe the system using an interpolating function,
namely a function whose values at integers are the displacements of the par-
ticles from equilibrium. It turns out that such an interpolating function has
to fulfil a differential-difference equation which is well approximated (for long
wavelengths) by a partial differential equation coinciding, at first order, with the
linear string equation. More precisely, the Hamiltonian of the system describing
the interpolating function has the structure

H0 + P +R1 , (2.1)

where H0 is the Hamiltonian of the linear wave equation, P contains the lowest
order (nonlinear and dispersive) corrections, and R1 contains higher order cor-
rections. In order to take into account the corrections to the dynamics due to
P we use the methods of Hamiltonian perturbation theory. In particular we ap-
ply the Galerkin averaging method of [Bam05]. Thus we construct a canonical
transformation conjugating the original system to a system with Hamiltonian

H0 + 〈P 〉+R

where 〈P 〉 is the average of P with respect to the flow of H0 (which coincides
with the normal form of the system), and R is a remainder whose size is here
rigorously estimated (uniformly with respect to the length of the chain) for
states with small specific energy (but large total energy).

Then, we explicitly compute the averaged Hamiltonian H0 + 〈P 〉, and show
that its equations of motions consist of a pair of uncoupled KdV equations with
periodic boundary conditions on a ring of length 2 (independently of the number
of particles).

As a third step we use these KdV’s to construct approximate solutions of the
FPU chain and we estimate the error with respect to a true solution. We point
out that, denoting by µ the wave number of the initially excited mode, which
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we assume to have specific energy E ≡ E/N ∼ µ4 (where N is the number of
particles and E the total energy), the dynamics of the KdV equations gives rise
to finite size effects over a time–scale µ−3. In order to get an estimate of the
error valid over such a time–scale we use a technique by Schneider and Wayne
[SW00]. It turns out that, having fixed an arbitrarily long time Tf , the KdV’s
describe the solutions of the FPU up to a time Tfµ

−3.
Finally we use known results on the KdV dynamics with periodic boundary

conditions in order to compute the energy per mode along an approximate
solution of the FPU system. In particular, denoting by Ek the energy in the
k-th mode and by Ek := Ek/N the corresponding specific energy, we prove that,
for the considered initial data, Ek decreases as exp(−σκ/µ), with κ = k/N and
σ > 0, at least for times such that the approximation is valid. Moreover, if we
consider the time average of Ek, we prove that it quickly relaxes to a certain
energy distribution, and then remains unchanged up to the times accessible
within our approximation.

Notice that the time–scale µ−3 ∼ E−3/4 for the formation of the packet and
the width µ ∼ E1/4 display the same dependence on the specific energy E as
numerically observed in [BGG05] and [BKL03], and heuristically predicted in
[PB05b, Pon03, Pon05, PB05a]. As far as we now, this is the first rigorous
result on a large FPU chain with finite specific energy. Moreover, this is a first
rigorous description of the fast formation of a metastable packet of modes of
the type of that observed by FPU.

The main limitation of our result concerns the choice of the initial data:
one would like to consider initial data involving e.g. a small packet of nearby
modes as in most numerical computations. The reason of our limitation is that
the manifold consisting of states with only one mode and its higher harmonics
excited is invariant and we exploit such a property. The fact that the result
involves specific energy and is in agreement with numerical results suggested
that this limitation could be just a technical one.

From the technical point of view, the core of our paper consists in the proof
that a pair of KdV’s is the normal form of the FPU problem and in an estimation
of the error. We point out that a previous result on the justification of KdV
as a modulation equation for FPU was obtained by Schneider and Wayne in
[SW00]. In their paper the attention was restricted to the case of solutions fast
decreasing in space, whereas we deal here with space–periodic ones. The fact
that a pair of uncoupled KdV equations describes well the FPU dynamics when
the initial datum is space periodic is quite surprising. Indeed, the two waves
travelling in the chain and described by the KdV equations continue to interact
forever and one might expect some constructive interference to occur. This is
not the case, essentially due to the structure of the FPU nonlinearity. This is
in sharp contrast with the typical behaviour for short waves; see [PW95].

We also mention the papers [?] where a remarkable connection between the
FPU and the KdV has been obtained. However, also this series of papers referrs
to initial data that decay fast in space and thus is not directly connected with
the problem of thermalization.
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3 Main Result

Consider the Hamiltonian system

H(q, p) =
N−1∑

j=−N

p2
j

2
+ U(qj+1 − qj) , (3.1)

U(x) =
x2

2
+

x3

3
, (3.2)

qj+2N = qj , pj+2N = pj , (3.3)

describing a chain composed by 2N particles interacting through nonlinear
springs. The canonical variables are q = (q−N , . . . , qN−1), p = (p−N , . . . , pN−1).
The Hamiltonian (3.1) is known as the Fermi, Pasta and Ulam (FPU) α-model
(with α = 1). Remark that, due to the periodic boundary conditions (3.3), the
total linear momentum of the system is preserved. So one can restrict oneself
to the case

∑
j pj =

∑
j qj = 0.

Introduce the Fourier coefficients by

pj =
1√
2N

N−1∑
k=−N

p̂kei jkπ
N (3.4)

and similarly for qj . We denote by

Ek :=
|p̂k|2 + ω2

k|q̂k|2

2
, k = −N...., N − 1 (3.5)

the energy of the k-th mode, where ωk := 2| sin
(

kπ
2N

)
|.

Remark 3.1. For real states one has Ek = E−k for all k, thus we will consider
only positive indexes.

It is convenient to state our main result in terms of “specific quantities”,
thus we will label the modes with the index

κ :=
k

N
;

correspondingly we denote by

Eκ :=
Ek

N
(3.6)

the specific energy in the mode with index κ, and by

〈Eκ〉 (t) :=
1
t

∫ t

0

Eκ(s)ds (3.7)

its time average.
In the following a small but finite index k0

N ≡ κ0 ≡ µ� 1 will appear.
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Theorem 3.2. Fix a constant C0 and a positive (large) time Tf ; then there
exist positive constants µ∗, C1, C2, dependent only on C0 and on Tf , so that
the following holds. Consider an initial datum with

Eκ(0) ≡ Eκ(t)
∣∣
t=0

= 0 , ∀κ 6= nκ0 , n ∈ N , Eκ0(0) = C0µ
4 , (3.8)

and
Eκ(0) ≤ µ4C0e−ρκ/µ , ∀κ = nκ0 , n ∈ N , ρ > 0 , (3.9)

where µ < µ∗. Then, there exists σ = σ(ρ) > 0 such that, along the correspond-
ing solution, for all κ one has

(i)

Eκ(t) ≤ µ4C1e−σκ/µ + C2µ
5 , for |t| ≤ Tf

µ3
(3.10)

(ii) There exists a sequence {F̄n}n∈N such that, defining the specific energy
distribution

Ēnκ0 = µ4Fn , Eκ = 0 if κ 6= nκ0

for any δ small enough, there exists a time T0, independent of µ and of
Tf , such that, for any κ > 0 one has

∣∣〈Eκ〉 (t)− Ēκ

∣∣ ≤ C1µ
4δ + C2µ

5 ,
T0

µ3
≤ |t| ≤ Tf

µ3
. (3.11)

Remark 3.3. One can give heuristic arguments to show that the (rescaled) limit
distribution Fn is the same for all initial data in a set of full measure. Moreover
such a limit distribution was computed explicitly in [Pon03] obtaining a result
in very good agreement with the numerical observations by [BGG05]. However,
we were unable to transform the heuristic argument into a rigorous one.

Remark 3.4. There exist numerical results showing that the time Te of approach
to equipartition in FPU systems is a stretched exponential of the inverse of the
specific energy E : Te ∼ exp[(1/E)a] [PL90] [BGP04]. The existence of such a
time–scale a la Nekhoroshev was first conjectured in [FMM+82] making use of
probabilistic arguments. It is not yet clear whether the metastable state with
energy distribution Eκ may survive on such a time–scale. The only rigorous
result in this direction was obtained in [BN98] (see also [PBC01]), where the
exponential stability of the fundamental mode of a nonlinear string was proved.

Remark 3.5. We expect theorem 3.2 to hold also in the β–FPU, model (the
time scale should be substituted by µ−4). Indeed, the theory of sections 4, 5
can be trivially generalized to the β model, the only difference being that the
KdV equation has to be substituted by the modified KdV equation (mKdV).
However, the study of the modified KdV, is less developed then the study of
the KdV equation, so, even if the results of section 6 are expected to hold also
in the case of the mKdV, there are not ready to use theorems available.
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Remark 3.6. One could study the dynamics corresponding to states in which
there is no relation between the specific energy and the index of the excited
modes. As shown in [PB05b] this would involve the study of the zero dispersion
limit of the KdV [Ven87]. Up to now we were not able to obtain a satisfactory
(rigorous) theory for the connection between FPU and KdV in such a limit (for
a partial result in this direction see [PB05b]).

Remark 3.7. With an extension of our theory we would (probably) be able
to prove stability of the solutions constructed in theorem 3.2 with respect to
excitation involving a small packet of modes, but only on a time–scale of order
µ−2. Over such a time–scale the effects of the nonlinearity are not visible, so
this extension has to be considered not satisfactory.

On the time–scale µ−3, at present, we are only able to prove stability of the
solutions we constructed for perturbations of the initial data that decay fast in
space (i.e. with vanishing specific energy). Thus the energy spectrum of the
initial data that we can control has the shape of a sequence of peaks of height
proportional to N , but decreasing exponentially with κ, each with superimposed
a bump of modes of small height. Work is in progress in order to deal with more
general initial data.

4 Normal Form

In this section we compute the normal form of the FPU and we give a rigorous
estimate of the remainder.

From now on, instead of the “specific index κ” we will use integers to label
the modes and the energy per mode Ek instead of the specific energy per mode.

As above, corresponding to an integer index 1 ≤ k0 ≤ N we define the
parameter

µ :=
k0

N
. (4.1)

Rewrite the FPU system in terms of new rescaled variables rj defined by

µ2rj := qj − qj−1 . (4.2)

Imposing the constraint of zero average
∑

j rj = 0, one has that the change of
variables q → r is well defined and invertible. Introducing also the operator of
second difference ∆1 by

(∆1r)j := rj+1 + rj−1 − 2rj , (4.3)

the FPU equations take the form

r̈j = (∆1(r + µ2r2))j . (4.4)

Remark 4.1. Introducing also the momenta sj defined by

pj = µ2 (sj − sj+1) (4.5)
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and by the zero average condition, one gets that the transformation (p, q) →
(s, r) is canonical. Moreover, it is easy to verify that in these variables one has

Ek = µ4 |r̂k|
2 + ω2

k |ŝk|2

2
(4.6)

with r̂k and ŝk the Fourier coefficients of r and s, respectively.
We introduce now an interpolating function r = r(x, t) for the sequence rj ,

namely a (smooth) function with the property that the sequence

rj(t) ≡ r(j, t) (4.7)

fulfils the FPU equations (4.4). Moreover we will assume that the function r(x)
is 2/µ periodic and has zero average, namely that

r(x+ 2/µ, t) = r(x, t) (4.8)

for any (x, t). Thus we postulate that the function r fulfils

r̈ = ∆1(r + µ2r2) . (4.9)

with an obvious extension of the definition of ∆1 to smooth functions. It is easy
to verify that this system is Hamiltonian with Hamiltonian function

H(r, s) :=
∫ 1/µ

−1/µ

(
−s∆1s+ r2

2
+ µ2 r

3

3

)
dx (4.10)

and with s a periodic function with zero average, playing the role of the mo-
mentum conjugated to the function r(x). The momentum s(x) is actually an
interpolating function for the momentum introduced in remark 4.1. Actually
one has sj(t) = s(j, t).

It is now convenient to rescale the length of the annulus and the size of the
momentum s, by introducing as new phase variables two function (u, v) periodic
of period 2, defined by

v(µx) = µs(x) , u(µx) = r(x) . (4.11)

In the following we will denote by y the rescaled space variable, namely
y = µx.

The coordinate transformation (4.11) is not canonical, but it turns out that
the equations for the variables (u, v) are still Hamiltonian with the original
symplectic structure, and with Hamiltonian function

H(u, v) = µK(u, v) (4.12)

with

K(u, v) =
∫ 1

−1

(
−v∆µv

2µ2
+
u2

2
+
µ2u3

3

)
dy (4.13)

where we introduced the difference operator

(∆µv)(y) := v(y + µ) + v(y − µ)− 2v(y) . (4.14)
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Remark 4.2. From now on we will study the system (4.13). This clearly amounts
to introducing a new time τ ≡ µt. More precisely, denote by u(τ), v(τ) a solution
of the equations of motion of K, namely of

du

dτ
=
δK

δv
,

dv

dτ
= −δK

δu
(4.15)

with δK
δv denoting the L2 gradient of K with respect to v and similarly for δK

δu .
Then u(µt), v(µt) is a solution of the equations of motion of H.

The formal expansion of the operator ∆µ, defined in (4.14), gives

∆µ

µ2
= ∂2

y +
µ2∂4

y

12
+O(µ4) , (4.16)

so that one has
K = H0 + P +R1 , (4.17)

with

H0(u, v) :=
∫ 1

−1

[
v(−∂2

yv) + u2

2

]
dy , (4.18)

P (u, v) :=
∫ 1

−1

[
−µ2

v∂4
yv

24
+
µ2u3

3

]
dy , (4.19)

R1 being the remainder of the expansion.

Remark 4.3. The equations of motion of the Hamiltonian H0 are

uτ = −∂2
yv , vτ = −u (4.20)

and thus they are equivalent to the linear wave equation. Its flow will be denoted
Ψτ (v, u) and is periodic in time with period 2.

Following [Bam05] we are going to use a Galerkin averaging method in order
to compute the corrections to the dynamics due to the presence of P and to
estimate the effect of R1.

To this end we first have to introduce a topology in the phase space. This
is conveniently done in terms of Fourier coefficients.

Definition 4.4. Having fixed two positive constants s, σ consider the Hilbert
space `2σ,s of the complex sequences v ≡ {vK}K∈Z−{0} such that

‖v‖2σ,s :=
∑
K

|vK |2|K|2se2σ|K| <∞ . (4.21)

We will identify a 2 periodic function v with its Fourier coefficients v̂K defined
by

v(y) =
1√
2

∑
K∈Z

v̂KeiπKy ,
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and we will say that v ∈ `2σ,s if its Fourier coefficients have this property. More-
over in what follows the coefficient σ will be kept fixed. We will study the
system K(u, v) in the phase spaces Ps defined by

Ps := `2σ,s+1 × `2σ,s 3 (v, u) , (4.22)

endowed by the norm

‖(v, u)‖2s := ‖v‖2σ,s+1 + ‖u‖2σ,s . (4.23)

A phase point (v, u) will also be denoted by z, and the ball of radius R centered
at the origin of Ps will be denoted by Bs(R).

It is easy to see that the flow Ψτ of the system H0 is unitary in all the spaces
Ps.

Theorem 4.5. For any r ≥ 5 there exists a constant µ∗ ≡ µ∗r, such that, if

µ < µ∗

then there exists an analytic canonical transformation T : Br(1) → Br(2) which
averages K, namely such that

K ◦ T = H0 + 〈P 〉+R (4.24)

where

〈P 〉(z) :=
1
2

∫ 2

0

P (Ψτ (z))dτ (4.25)

and the vector field XR of the remainder is analytic in a complex ball of radius
1 and fulfils the estimate

sup
‖z‖r≤1

‖XR(z)‖0 ≤ Crµ
4− 12

6+r . (4.26)

Moreover for any 1 ≤ r1 ≤ r the transformation T maps Br1 into Pr1 and fulfils

sup
‖z‖r1

≤1

‖z − T (z)‖r1
≤ Cµ2− 6

6+r . (4.27)

The proof is an application of the techniques of [Bam05] and, for the sake
of completeness, it will be given in appendix A.

Remark 4.6. We recall that a heuristic discussion on the possibility of putting
the FPU system in normal form corresponding to initial data with low frequency
was given in [She97]. The above theorem rigorously proves such a possibility.
Below we give the explicit expression of the normal form, which is integrable!
As a consequence we think that some of the conclusions of the paper [She97],
which are based on the heuristic argument that resonances enforce chaos, could
be incorrect.
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In the rest of this section we will perform the explicit computation of the
averaged equations showing that they coincide with two uncoupled KdV equa-
tions.

To obtain the result it is useful to introduce new variables in which the
unperturbed flow Ψτ assumes a simpler form. To this end we introduce the non
canonical transformation

ξ :=
u+ vy√

2
, η :=

u− vy√
2

. (4.28)

Since the transformation is not canonical one has to modify the Poisson tensor
in order to deduce the equations of motion from the Hamiltonian.

Lemma 4.7. In terms of the variables ξ, η the Poisson tensor takes the form

J =
(
−1 0
0 1

)
∂y , (4.29)

i.e. the Hamilton equations associated to a Hamiltonian function H take the
form

dz

dτ
= J ∇H(z) , ⇐⇒

(
ξτ = −∂y

δH

δξ
, ητ = ∂y

δH

δη

)
, (4.30)

where ∇H denotes the L2 gradient and z = (ξ, η).

In the variables (ξ, η) the various parts of the Hamiltonian take the form

H0(ξ, η) =
∫ 1

−1

ξ2 + η2

2
dy (4.31)

P (ξ, η) =
∫ 1

−1

[
−µ2 [∂y(ξ − η)]2

48
+ µ2 (ξ + η)3

6
√

2

]
dy , (4.32)

and in particular the equations of motion of H0 assume the simple form

[ξτ = −ξy , ητ = ηy] ⇐⇒ [ξ(y, τ) = ξ0(y − τ) , η(y, τ) = η0(y + τ)] .
(4.33)

It is now easy to obtain the following

Proposition 4.8. In the variables ξ, η the average of the perturbation is given
by

〈P 〉(ξ, η) =
∫ 1

−1

[
−µ2

ξ2y + η2
y

48
+ µ2 (ξ3 + η3)

6
√

2

]
dy , (4.34)

and the equations of motion of H0 + 〈P 〉 are given by

ξτ = −ξy − µ2 1
24

ξyyy − µ2 1
2
√

2
ξξy , (4.35)

ητ = ηy + µ2 1
24

ηyyy + µ2 1
2
√

2
ηηy , (4.36)
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i.e. two uncoupled KdV equations in translating frames, which therefore consti-
tute the resonant normal form of FPU in the region of the phase space corre-
sponding to long wavelength excitations.

Proof. One has to compute the average of the different terms composing equa-
tion (4.32). As an example we deal explicitly with the term proportional to∫ 1

−1
dyξyηy. One has〈∫ 1

−1

dyξyηy

〉
=
∫ 2

0

ds

∫ 1

−1

dyξy(y − s)ηy(y + s) =
1
4

∫ 2

−2

dα

∫ 4

0

dβξy(α)ηy(β)

(4.37)
which is zero due to the fact that ξy has zero average. Performing the same
computation over all the terms one gets the result.

Since we are interested in the energy per mode we give now the relation of
Ek with the Fourier coefficients of ξ and η, which in turn are defined by

ξ(y) =
1√
2

∑
K∈Z

ξ̂KeiKyπ (4.38)

and similarly for η.

Proposition 4.9. Let ξ(y), η(y) be a pair of functions belonging to P0; denote
by Ek the energy in the k− th mode as defined by (3.5) in terms of the original
variables. Then, for µ small enough, one has∣∣∣∣Ek

N
− µ4 |ξK |2 + |ηK |2

2

∣∣∣∣ ≤ Cµ
11
2 ‖(ξ, η)‖20 (4.39)

for all k such that k
N = µK with |K| ≤ | ln µ|

2σ ;

|Ek|
N

≤ µ
11
2 ‖(ξ, η)‖20 (4.40)

for all k such that k
N = µK and |K| > | ln µ|

2σ , and Ek = 0 otherwise.

The elementary proof is based on the exponential decay of the Fourier coef-
ficients of a function in `2σ,0. It is deferred to appendix B.

5 Estimate of the error

Here we use the normal form to construct approximate solutions of FPU and
we estimate their difference from true solutions. First we construct explicitly
the approximate solutions.

Consider the following pair of KdV equations

ξτ1 = − 1
24

ξyyy −
1

2
√

2
ξξy , (5.1)

ητ1 =
1
24

ηyyy +
1

2
√

2
ηηy , (5.2)
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obtained by rescaling time to τ1 = µ2τ . Let ξa(y, τ1), ηa(y, τ1) be a solution
of such a pair of equations with the property that it belongs to Pr for all
times τ1, with a given r. Correspondingly, we define an approximate solutions
za ≡ (ra, sa) of the FPU by

ra(x, t) :=
ξa(µ(x− t), µ3t) + ηa(µ(x+ t), µ3t)√

2
(5.3)

sa
x(x, t) :=

ξa(µ(x− t), µ3t)− ηa(µ(x+ t), µ3t)√
2

(5.4)

The main result of this section is a theorem comparing the approximate solu-
tion with a corresponding true solution. Precisely, consider an initial datum
(r0,j , s0,j) and the corresponding Fourier coefficients (r̂0,k, ŝ0,k) as defined by
eq.(3.4). We assume that they are different from zero only if k/N = µK and
that there exist two positive constants C and ρ such that

|r̂0,k|2 + ω2
k|ŝ0,k|2

N
≤ Ce−2ρ| k

µN | .

Finally, we define uniquely a corresponding interpolating function for the initial
datum by

r0(y) :=
1√
2N

∑
K

r̂0,keiπµKy

where the sum runs over the integers K such that |K|µ = |k|/N ≤ 1, and in the
formula one has to intend k = µKN . We will consider a similar interpolating
function for s0,j and corresponding initial data for the KdV equations.

Theorem 5.1. Consider an initial datum for the FPU system with the above
properties and denote by (rj(t), sj(t)) the corresponding solution. Consider the
approximate solution ξa(y, t), ηa(y, t) with the corresponding initial datum just
constructed. Assume that for all times t the approximate solution is such that
(ξa, ηa) ∈ P78 with some σ > 0, and fix an arbitrary Tf > 0. Then there exists
µ∗ depending on Tf and on

∥∥(ξa(t), ηa(t)
)∥∥

78
only, such that, if µ < µ∗ then

for all times t fulfilling

|t| ≤ Tf

µ3
(5.5)

one has
sup

j
(|rj(t)− ra(j, t)|+ |sj(t)− sa(j, t)|) ≤ Cµ , (5.6)

where ra, sa are given by (5.3), (5.4); moreover∣∣∣∣Ek(t)
N

− µ4 |ξa
K(t)|2 + |ηa

K(t)|2

2

∣∣∣∣ ≤ Cµ5 (5.7)

for all k such that k
N = µK with |K| ≤ | ln µ|

2σ , and

|Ek(t)| ≤ µ5 (5.8)

for all k such that k
N = µK with |K| > | ln µ|

2σ , whereas Ek(t) = 0 otherwise.
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The proof of the theorem, which follows closely the strategy of [SW00], is
deferred to Appendix C.

6 Dynamics of KdV and conclusion of the proof

In this section we recall some known facts on the dynamics of the KdV equation
with periodic boundary conditions and we use them to prove the results of sect.
3.

Consider the KdV equation (5.1), namely

ξτ1 = − 1
24

ξyyy −
1

2
√

2
ξξy

It is a well known consequence of the Lax pair formulation that the spectrum
of the Sturm Liouville operator

Lξ := −∂yy + 6
√

2ξ(y, τ1) (6.1)

with periodic boundary conditions on [0, 4] is invariant under the KdV evolution,
i.e. it is independent of τ1.

The spectrum of Lξ with periodic boundary conditions on [0, 4], will be
simply called periodic spectrum of ξ.

Such a periodic spectrum is pure point and consists of a sequence of eigen-
values

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < ... , (6.2)

where equality may occur only in place of a sign ‘≤’. The quantities

γn := λ2n − λ2n−1 (6.3)

are called the gaps of the spectrum. From standard asymptotic properties of
the spectrum one has γn ∈ `2 for any L2 potential ξ. Moreover, it has been
proved by Garnett and Trubowitz that the sequence of the γn entirely determine
the periodic spectrum of ξ.

A further, very important, feature of the above Sturm Liouville problem is
the relation between the sequence of the gaps and the regularity of the corre-
sponding potential ξ. Indeed, up to a certain extent the correspondence between
the regularity of ξ and the property of the sequence γn is the same existing be-
tween the regularity of a function and its Fourier coefficients (see [Mar86]).
Precisely, the following theorem (from [Pös04]) holds:

Theorem 6.1. Suppose ξ ∈ L2 then ξ ∈ `0,s if and only if its gap lengths satisfy∑
n≥1

n2s |γn|2 <∞ . (6.4)

Moreover, if ξ ∈ `σ,s then ∑
n≥1

n2se2σn |γn|2 <∞ (6.5)

14



conversely, if (6.5) holds, then ξ ∈ `σ′,0 with some σ′ > 0.

From a Hamiltonian point of view the KdV is an integrable infinite dimen-
sional system. It has been shown that it admits global action angle coordinates,
the actions being exactly the quantities

In := γ2
n .

More precisely, the following result holds

Theorem 6.2. [Kappeler-Pöschel [KP03]] There exists a diffeomorphism Ω :
L2 → `20,1/2 × `20,1/2 with the following properties1:

i) Ω is one-to-one, onto, bianalytic, and canonical.

ii) For each s ≥ 0, the restriction of Ω to `20,s is a map

Ω : `20,s → `20,s+1/2 × `20,s+1/2

which is one-to-one, onto, and bianalytic as well.

iii) the coordinates (x, y) ∈ `20,3/2×`
2
0,3/2 are Birkhoff coordinates for the KdV

equation. That is to say, in terms of the coordinates (x, y) the Hamiltonian
HKdV of the KdV depends only on In := (x2

n + y2
n)/2, n ≥ 1, with (x, y)

canonically conjugated coordinates.

In terms of the variables (x, y) the dynamics of the KdV is trivial. To
describe the latter, fix an initial datum (x0, y0), and define

νn(x0, y0) :=
∂HKdV

∂In
(x0, y0) ;

then the equations of motion take the form

ẋn = νnyn , ẏn = −νnxn , (6.6)

Thus, it is immediately seen that any solution is periodic, quasiperiodic or
almost periodic, depending on the number of gaps (actions) initially different
from zero.

With these tools at hand it is easy to obtain the
Proof of theorem 3.2. We begin by proving (i). Consider an initial datum as in
the statement of the theorem. This corresponds to initial data for ξ and η ana-
lytic in a strip of width ρ. By theorem 6.1 the corresponding sequence of gaps
decreases exponentially with coefficient ρ in the exponential. This property is
then conserved along the corresponding solution. Going back to Fourier coeffi-
cients one immediately deduces that the corresponding solution ξ(τ1) is analytic

1By abuse of notation, here `20,α is the space of the sequences {xn}n≥1 such that∑
n n2α|xn|2 < ∞.
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in the y variable in a complex strip of width σ(τ1). Taking the minimum of such
quantities one finds the coefficient σ of theorem 3.2. This is the result for the
solution of the KdV equations. Using theorem 5.1, eq. (5.7), one goes back to
the quantities Ek and obtains the desired result.

In order to prove statement (ii) we use the fact that any solution is almost
periodic in time. Denote the quantity

E
(1)
K :=

∣∣∣ξ̂K∣∣∣2 ;

then, since E
(1)
K (x(τ1), y(τ1)) is an almost periodic function its time average

exists (see e.g. [Fin74]). Thus we set

Ē
(1)
K := lim

T→∞
〈E(1)

K 〉(T ) := lim
T→∞

1
T

∫ T

0

E
(1)
K (x(τ1), y(τ1))dτ1 (6.7)

Define also
E

(2)
K := |η̂K |2

and Ē(2)
K in analogy to Ē(1)

K , then we define ĒK := (Ē(1)
K +Ē(2)

K )/2. Scaling back
to physical variables and using again theorem 5.1, eq. (5.7), one gets statement
(ii).

A Appendix: Proof of theorem 4.5

Since the Hamiltonian (and its vector field) is analytic, it is useful to complexify
the phase space. Thus, from now on we will think of the phase variable z as a
complex variable. The main reason is that, through Cauchy inequality the sup
norm of a function controls also the supremum of the derivatives of the function.

First we prove the following simple

Lemma A.1. For any s ≥ 0 one has

‖XR1(z)‖s ≤ 2µ4 , ∀z : ‖z‖s+5 ≤ 2 (A.1)

‖XP (z)‖s ≤ Cµ2 , ∀z : ‖z‖s+3 ≤ 2 (A.2)

Proof. The estimate of XP is an immediate consequence of the definition of
the norm and of the fact that `2σ,s is an algebra for s ≥ 1. Concerning XR1

just remark that the K–th Fourier coefficient of its u component is given (and
estimated) by

∣∣(XR1(u, v)
u)∧K

∣∣ = ∣∣∣∣[ 4
µ2

sin2(Kµπ)− π2K2 +
K4π4µ2

24

]
v̂K

∣∣∣∣ (A.3)

≤ π6

6!
K6µ4 |v̂K |

from which the thesis follows.
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Then we perform a Galerkin cutoff of P . Precisely, define the projector Πn

on the Fourier modes with index smaller then n, i.e.

Πn(û−∞...û−K ...ûK ...û∞) = (û−n...ûn)

define also Πn(u, v) := (Πnu,Πnv), and finally define

P (n)(z) := P (Πn(z)) . (A.4)

Following [Bam03] we have the following

Lemma A.2. For any s ≥ 1 there exists a constant C such that, for any r ≥ 0,
and any n ≥ 0, one has∥∥XP−P (n)(z)

∥∥
s
≤ µ2Cs

nr
, ∀z : ‖z‖s+r+3 ≤ 3/2 (A.5)

For the proof see [Bam03] proof of lemma 5.2.
Moreover it is easy to show that XP (n) is analytic as a map from Ps to itself

and that
‖XP (n)(z)‖s ≤ µ2Csn

3 ∀z : ‖z‖s ≤ 2 (A.6)

We now use Lie transform to construct a canonical transformation averaging
the Hamiltonian up to order µ4 (or more precisely, slightly less).

Thus consider an auxiliary Hamiltonian function χ (of order µ2), assume
that the corresponding Hamiltonian vector field is analytic as a map from Ps

to itself ∀s ≥ 1, and consider the corresponding Hamilton equations

ż = Xχ(z) . (A.7)

Denote by T τ the corresponding time τ flow and by T the time 1 flow. We use
such a T in order to transform our Hamiltonian system K. One has

K ◦ T = H0 + P (n) + {χ,H0}+R (A.8)

where

R = (P − P (n)) ◦ T +R1 ◦ T +
[
P (n) ◦ T − P (n)

]
+ [H0 ◦ T −H0 − {χ,H0}]

(A.9)
is the sum of the higher order terms (they will be estimated in a while).

First of all we choose χ in such a way that

P (n) + {χ,H0} =
〈
P (n)

〉
,

according to lemma 8.4 of [Bam99] (a simple computation) this is given by

χ(z) :=
1
2

∫ 2

0

τ
[
P (n)(Ψτ (z))− 〈P (n)〉(Ψτ (z))

]
dτ (A.10)

and its vector field is analytic and estimated by

‖Xχ(z)‖s ≤ µ2Csn
3 ∀z : ‖z‖s ≤ 2 (A.11)

It also follows that the transformation T exists and fulfils the estimates (4.27).
Moreover the various terms of (A.9) are estimated by
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Lemma A.3. The following estimates hold

∥∥X(P−P (n))◦T
∥∥

s
≤ µ2Cs

nr
, ∀z : ‖z‖s+r+3 ≤ 1 (A.12)

‖XR1◦T ‖s ≤ Cµ4 , ∀z : ‖z‖s+5 ≤ 1 (A.13)∥∥XP (n)◦T −P (n)

∥∥
s
≤ Cµ4n6 , ∀z : ‖z‖s ≤ 1 (A.14)∥∥XH0◦T −H0−{χ,H0}

∥∥
s
≤ Cµ4n6 , ∀z : ‖z‖s ≤ 1 (A.15)

Proof. All these estimates are a direct application of some lemmas already
proved in [Bam99]. In particular (A.12) and (A.13) follow from lemma 8.2
with R = 3/2 and δ = 1/2 the first one, and R = 2 and δ = 1 the second one.
Eq. (A.14) is a consequence of lemma 8.3 with R = 2 and δ = 1. Eq.(A.15) is
a consequence of lemma 8.5 with R = 2 and δ = 1.

We choose now n in such a way that (A.12) and (A.14) are of the same order
of magnitude. This leads to the choice n = µ−

2
r+6 which gives the estimate

(4.26) for the remainder. Up to now we have shown that

K ◦ T = H0 +
〈
P (n)

〉
+R (A.16)

with R fulfilling the wonted estimate. To conclude the proof it is enough to
remark that∥∥X〈P 〉−〈P (n)〉(z)

∥∥
s
≤ µ2Cs

nr
≤ Cµ4− 12

6+r , ∀z : ‖z‖s+r+3 ≤ 3/2 (A.17)

and thus one can simply substitute 〈P 〉 in place of 〈P (n)〉 including the difference
in the remainder.

B Appendix: Proof of proposition 4.9.

Define the Fourier coefficients of the function u by

ûK :=
1√
2

∫ 1

−1

u(y)e−iπKydy (B.1)

and similarly for v, then

Lemma B.1. For a state of the FPU corresponding to a pair of functions (u, v)
one has

Ek

N
=
∑
L∈L

|ûK+L|2 + ω2
k

∣∣∣∣ v̂K+L

µ

∣∣∣∣2 , ∀k : µK =
k

N
, (B.2)

where
L := {L ∈ Z : Lµ = 2lwith l ∈ Z} (B.3)

and Ek = 0 otherwise.
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Proof. First introduce a 2N–periodic interpolating function for rj , namely a
smooth function rN (x) such that

rj = rN (j) , rN (x+ 2N) = rN (x) . (B.4)

Denote

r̂N
k :=

1√
2N

∫ N

−N

rN (x)e
−ikπx

N dx , (B.5)

then one has

rj = rN (j) =
1√
2N

∑
k∈Z

r̂N
k e

ikπj
N =

1√
2N

N−1∑
k=−N

[∑
l∈Z

r̂N
k+2Nl

]
e

ikπj
N

which implies
r̂k =

∑
l∈Z

r̂N
k+2Nl . (B.6)

Then the relation between r̂N
k and ûK is easily obtained remarking that

rN (j) = µ2u(µj) =
µ2

√
2

∑
K∈Z

ûKeiKµjπ =
1√
2N

∑
k∈Z

r̂N
k e

ikπj
N . (B.7)

Proof of proposition 4.9. We start from eq.(B.2), and as a first step we remark
that, for Kµ = k/N , one has∣∣∣∣ωk

µ

∣∣∣∣ = 2
µ

∣∣∣∣sin( kπ2N

)∣∣∣∣ = 2
µ

∣∣∣∣sin(µKπ2

)∣∣∣∣ ≤ π|K| , (B.8)

and that, for |K| ≥ 2| lnµ|/σ one has

|ûK |2 + π2K2|v̂K |2

2
≤ π2µ4 ‖(u, v)‖20 . (B.9)

Using the relation between (u, v) and (ξ, η) one gets∣∣∣ξ̂K∣∣∣2 + |η̂K |2

2
=
|ûK |2 + π2K2|v̂K |2

2
(B.10)

from which, using (B.8), eq. (4.40) immediately follows. Concerning (4.39) one
has, for |K| ≤ 2| lnµ|/σ,∣∣∣∣∣∣∣
Ek

µ4
−

∣∣∣ξ̂K∣∣∣2 + |η̂K |2

2

∣∣∣∣∣∣∣ ≤
∣∣∣∣ω2

k − (µK)2

µ2

∣∣∣∣ |v̂K |2 +
∑
L6=0
L∈L

1
2

[
|ûK+L|2 +

ω2
k

µ2
|v̂K+L|2

]

≤ (µK)4

µ2
|v̂K |2 +

∑
L6=0
L∈L

1
2

[
|ûK+L|2 + |K + L|2|v̂K+L|2

]
≤ µ2(2| lnµ|)2 ‖v‖2σ,1 +

∑
l 6=0

‖(v, u)‖20 e−2σ l
µ
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The logarithm of µ can obviously be estimated by µ−1/2, while the sum is
exponentially small with µ. Thus the thesis follows.

C Appendix: Proof of Theorem 5.1

It is useful to use also the variables (u, v), so define

ua(y, τ) :=
ξa(y − τ, µ2τ) + ηa(y + τ, µ2τ)√

2
(C.1)

va
y(y, τ) :=

ξa(y − τ, µ2τ)− ηa(y + τ, µ2τ)√
2

(C.2)

and denote za(y, τ) = (ua(y, τ), va(y, τ)). Then, in order to get a better ap-
proximation we define

(ũ, ṽ) ≡ z̃ = T (za) = za + ψa(za) (C.3)

where
‖ψa‖r ≤ Cµ2− 6

6+r (C.4)

and (ũ, ṽ) fulfils the equations

ṽt

µ
= −ũ− µ2π0ũ

2 +Rv (C.5)

ũt = −∆1
ṽ

µ
+ µRu (C.6)

where the operator ∆1 acts in terms of the x variables, the remainders are
functions of y, τ which fulfil

‖Rv‖σ,1 ≤ Cµ4− 12
6+r , ‖Ru‖σ,0 ≤ Cµ4− 12

6+r . (C.7)

and π0 is the projector on the space of the functions with zero average.
We restrict the space variable to integer values. If µ = l/n with l and

n relatively prime integers then all the quantities involved in equations (C.5),
(C.6) are periodic with period n. In what follows we will restrict to the case
l = 1; the case l 6= 1 can be dealt with by simple modifications.
Keeping this in mind we will allow the space variable j to vary in {−n, ...n−1}.
For a (finite) sequence r = {rj} we define the norm

‖r‖2`2(j) :=
n−1∑

j=−n

|rj |2 . (C.8)

For the quantities ũ, ṽ,Rv,Ru evaluated at the integers j we will retain the
same notation as for the original quantities. Moreover it is useful to introduce
the difference operator ∂ defined by

(∂r)j := rj − rj−1 (C.9)
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where r is an arbitrary sequence.
We consider the FPU model (4.9). We rewrite it in the form

ṡ = −r − µ2π0r
2 (C.10)

ṙ = −∆1s (C.11)

and we look for two sequences E ≡ {Ej} and F ≡ {Fj} such that

r = ũ+ µE , s =
ṽ

µ
+ µF (C.12)

fulfil the FPU equation in the form (C.10) and (C.11). Then E and F have to
fulfil

Ė = −∆1F −
µRu

µ
(C.13)

Ḟ = −E − µ22π0ũE − µ3π0E
2 − Rv

µ
(C.14)

Moreover, for (E,F ) we impose initial conditions such that (ũ, ṽ) has initial
data corresponding to those of the true initial datum, namely we assume

ũ(µj, 0) + µE0,j = r0,j = ua(µj, 0) ,
ṽ(µj, 0)

µ
+ µF0,j = s0,j =

va(µj, 0)
µ

(C.15)

Lemma C.1. One has

‖E0‖`2(j) ≤ Cµ
1
2−

6
6+r , ‖∂F0‖`2(j) ≤ Cµ

1
2−

6
6+r (C.16)

Proof. From (C.3), (C.4) one has

E0 =
ũ− ua

µ
=
ψu

µ
, F0 =

ṽ − va

µ2
≡ ψv

µ2

and
sup

y
|ũ(y)− ua(y)| ≤ Cµ2− 6

6+r ,

from which

‖E0‖2`2(j) ≤
n−1∑

j=−n

sup
j
|Ej |2 ≤ 2n

Cµ4− 12
6+r

µ2
= 2

µ4− 12
6+r

µ3

from which the estimate of E0 follows.
Concerning F we need an estimate of ∂ψv. Since ψv is a function of y, one

has

|(∂ψv)(j)| = |ψv(µj)− ψv(µj − µ)| ≤ µ sup
y
|∂yψ

v(y)| ≤ Cµ3− 6
6+r
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From which

‖∂ψv‖2`2(j) ≤
n−1∑

j=−n

(
|∂ψv(j)|
µ2

)2

≤ nµ6− 12
6+r

µ4
. (C.17)

We use now an idea of Wayne and Schneider to obtain the

Theorem C.2. Fix r = 78, and fix Tf and CF > 0, then provided µ is small
enough one has that

‖E‖2`2(j) + ‖(∂F )‖2`2(j) ≤ CF (C.18)

for all times t fulfilling

|t| ≤ Tf

µ3
(C.19)

Proof. Define the function

F(E,F ) :=
∑

j

(
E2

j + Fj(−∆1F )j

2
+

2µ2ũjE
2
j

2

)
(C.20)

and remark that

1
2
F(E,F ) ≤ ‖E‖2`2(j) + ‖(∂F )‖2`2(j) ≤ 2F(E,F )

Compute now the time derivative of F ; inserting the equations (C.13) and (C.14)
one gets

Ḟ =
∑

j

(∆1F )jµ
3E2

j +(∆1F )j

Rv
j

µ
−
EjµRu

j

µ
−

2µ3ũjRu
jEj

µ
+

2µ3E2
j

2
∂ũj

∂τ
(C.21)

In order to estimate the r.h.s. we need some preliminary estimates. The first
one is

sup
j
|(∆1F )j | = sup

j
|(∂F )j+1 − (∂F )j | ≤ 2 sup

j
|(∂F )j | ≤ 4

√
F

Next we will need an estimate of ‖Ru‖`2(j). This is given by

‖Ru‖2`2(j) ≤
∑

j

|Ru|2 ≤ 2n sup
y
|Ru(y)|2 ≤ Cnµ8− 24

6+r (C.22)

which gives
‖Ru‖`2(j) ≤ Cµ4− 1

2−
12

6+r (C.23)

Concerning Rv we need an estimate of ‖∂Rv‖`2(j). This is given by

‖∂Rv‖`2(j) ≤ Cµ4+ 1
2−

12
6+r (C.24)
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which is obtained by remarking that

|(∂Rv)j | = |Rv(µj)−Rv(µj − µ)| ≤ µ sup
y

∣∣∣∣∂Rv

∂y
(y)
∣∣∣∣

and proceeding as in the proof of (C.23).
Now, the first term of (C.21) is estimated by 4µ3F3/2. Concerning the second

term, first remark that it coincides with
∑

j(∂F )j(∂Rv)j/µ and therefore it is

estimated by CF1/2µ4+ 1
2−

12
6+r−1. The same estimate holds for the third term,

the forth term is estimated by CF1/2µ6+ 1
2−

12
6+r−1 and the last term is also easily

estimated remarking that the derivative of ũ with respect to τ is bounded and
therefore such a term is bounded by Cµ3F .

As far as F < 2CF one thus has∣∣∣Ḟ∣∣∣ ≤ C(µ3 + µ3)F + Cµ5+1/4−1. (C.25)

Such a differential inequality can be easily solved giving

F(t) ≤ F0eT0C + eT0CCT0µ
1+ 1

2−
12

6+r−1 (C.26)

which, inserting the value of r implies the thesis. Moreover the result on the
Fourier modes is an immediate consequence of proposition 4.9 and of the fact
that the error from a true solution is measured in the norm ‖ ‖`2(j) which controls
the Fourier coefficients.
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Birkhäuser, Basel, 1986.

24



[PB05a] A. Ponno and D. Bambusi, Energy cascade in Fermi–Pasta–Ulam
model, Symmetry and Perturbation Theory 2004, World Scientific,
2005, pp. 263–270.

[PB05b] , KdV equation and energy sharing in FPU, Chaos (to ap-
pear) (2005).

[PBC01] S. Paleari, D. Bambusi, and S. Cacciatori, Normal form and ex-
ponential stability for some nonlinear string equations, ZAMP 52
(2001), 1033–1052.

[PL90] M. Pettini and M. Landolfi, Relaxation properties and ergodicity
breaking in nonlinear Hamiltonian dynamics., Phys. Rev. A 41
(1990), 768–783.

[Pon03] A. Ponno, Soliton theory and the fermi-pasta-ulam problem in the
thermodynamic limit, Europhys. Lett. 64 (2003), 606–612.

[Pon05] , The Fermi–Pasta–Ulam problem in the thermodynamic
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