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Abstract

A new relativistic mean-�eld model of baryon matter is developed. It is con-
structed by modifying the Zimanyi-Moszkowski model based on the constituent
quark picture of baryons and is further extended so as to take into account the
(hidden) strange mesons. The model is applied to dense strange hadronic matter
using three sets of hyperon-hyperon interactions. The �rst one is characterized by
strong ¤¤ attraction, the second has weak ¤¤ but strong §§ attraction and in the
third set both the interactions are weak. There have been found in all the sets the
most stable forms of baryon matter with the deeper binding-energies than the sat-
uration energy of normal nuclear matter and the strangeness fractions being larger
than 1. Their properties are dominated by the abundance of ¤, § and ¥ hyperons
respectively for each set of interactions. In the comparisons with the nonlinear
Walecka and the modi�ed quark-meson coupling model, we have con�rmed that
it is important to take precisely into account the medium dependences of e¤ective
meson-baryon coupling constants in dense baryon matter.

1 Introduction

One of the greatest interests in recent nuclear physics is the dense hadronic matter with

large strangeness fraction. Such an object may be realized in the high-energy heavy-ion

collisions on the terrestrial laboratory or in the core region of neutron stars. In theoretical
aspect it has therefore become an important subject to develop the reasonable models of

dense hadronic matter. We generally expect that the baryons in dense medium overlap

with each other and lose partially their identities and then the phase transition to quark
matter occurs above some critical density. Ones expect that the density has relatively low

value, a few times of the nuclear saturation density, but we have no reliable information

on it. Inversely speaking the reasonable description of dense hadronic matter in a picture
of baryons and mesons is crucial to decide the precise value of the critical density.

Although there are a great variety of the models for dense baryonic matter, the rel-

ativistic mean-�eld (RMF) theories based on or inspired by the Walecka model [1] are
most promising. Nevertheless we still have several variants even in this sphere. The most

¤This paper is the revised version of CDS ext-2004-071 in which there has been found a bug in
numerical code. Although the revisions of the results in �gures are not substantial, the analyses in
section 3 have been re�ned to some extent. I have also corrected several unclear contexts and mistypes.
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widely used model is an extension of the Walecka model to include the nonlinear meson

self-coupling terms [2], hereafter called the NLW model. It is however noted that many
parameters in the model are adjusted to reproduce the properties of normal nuclear mat-

ter and �nite nuclei. Consequently, the NLW model is really valid around the nuclear

saturation density, but there are no guarantees that it is meaningful at high densities.
In this respect the models embodying the density-dependence are desired. One of such

e¤orts is the density-dependent hadron �eld (DDRH) theory [3]. It is however based on

the Dirac-Brueckner-Hartree-Fock (DBHF) theory [4] and we have no realistic DBHF
calculations of baryonic matter including hyperons at present in contrast to the non-

relativistic Brueckner-Hartree-Fock (NRBHF) calculations [5,6]. As a result the density

dependence of meson-hyperon vertices in the DDRH model cannot be well determined.
We therefore arrive at a conclusion that the RMF models, which have implicit density

dependence through the e¤ective masses of baryons in the medium but are independent

of the DBHF theory, are more desired. One of such models is the quark-meson coupling
(QMC) model [7]. It is based on the bag model of baryons and the �rst attempt to unify

the RMF model of baryonic matter and baryon structure. The density dependence in the

QMC model indeed results from baryon structure in the medium.
Within an extension of the Walecka model, Zimanyi and Moszkowski (ZM) [8] de-

veloped another model embodying implicit density-dependence. It employs the e¤ective

renormalized  coupling constant ¤ = (¤
)  where ¤

 is the e¤ec-
tive mass of a nucleon in nuclear medium. The ZM model however has the defect that

it cannot reproduce the strong spin-orbit potentials because of its larger e¤ective mass

¤
 ' 086 than the reasonable empirical value ¤

 ' 06 . In addition, its
extension to hyperons cannot be determined in unique way [9,10].

Here it is noted that the ZM model predicted the similar saturation properties of

nuclear matter to the QMC model. Both the models have e¤ectively density-dependent
 coupling constant. This suggests that the ZM model has its theoretical foundation

on the nucleon structure. In fact it has been shown [11] that the relativistic SU(6) model

of a nucleon gives the similar coupling to the ZM model. Reference [12] investigated
the renormalization of wave function in the Walecka model so as to take into account the

nucleon structure in terms of the meson cloud in nuclear medium. We have obtained the

improved ZM model, which includes e¤ectively density-dependent  coupling as well
as  coupling. The predicted nuclear matter saturation properties are comparable to

the DBHF calculation.

Furthermore it has been recently found [13] that 1) the ZM model can be interpreted
from the constituent quark picture of nucleons, 2) the renormalized  coupling results

from the e¤ect of scalar potential on the quarks and 3) a slight modi�cation of the ZM

model reproduces almost the same result as Ref. [12]. Because this modi�ed ZM (MZM)
model can be extended to meson-hyperons couplings unambiguously, it has readily applied

to the strange hadronic matter (SHM).
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Although the MZM model has been further applied to the asymmetric nuclear matter

[14], the neutron star matter [15] and the s-wave antikaon condensations in neutron stars
[16], they take into account only the interactions between nonstrange quarks. This is

because we have little information on the interactions between hyperons. However the

precise description of YY interactions really requires the interactions between  quarks.
The purpose of the present work is to extend the investigation of Ref. [13] by including

the (hidden) strange mesons according to Refs. [17,18].

In the next section we �rst develop the e¤ective renormalized meson-baryon coupling
constants in the mean-�elds by scalar  and strange scalar ¤ mesons and then the RMF

description of SHM. In section 3 the properties of SHM are calculated and our results

are compared with the most re�ned NLW model [18] and the modi�ed QMC model [19].
Finally we summarize our investigations and draw conclusions in section 4.

2 Formalism

In this work we investigate charge-symmetric baryon matter and so take into account

only the isoscalar  and  mesons and their strange counterparts ¤ and  mesons. Their

masses are  = 550MeV,  = 783MeV, ¤ = 975MeV and  = 1020MeV.
The masses of baryons are assumed to be = 9389MeV, ¤ = 11156MeV, § =

119305MeV and¥ = 13181MeV.

2.1 E¤ective renormalized coupling constants

In order to clarify the basic concept of our model, we �rst review the e¤ective meson-
nucleon coupling constants derived in Ref. [13]. In the constituent quark model (QCM)

of a nucleon, the free  or  coupling used in the Walecka model is depicted by

+

q q q

+

q q q q q q

or the coupling constant is expressed by

() = 3 
()
() (1)

Here only one quark  =  or  in a nucleon couples to the mesons (the wavy lines)
but the other two quarks are spectators. However for a nucleon in medium all the three

quarks are embedded in meson mean-�elds. This e¤ect should be taken into account so
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as to go beyond the Walecka model. The QMC model [7] was inspired by the same idea,

in which the mean-�elds ful�ll a nucleon bag.
Then we have considered the following �rst-order medium correction:

q q q

+

q q q

+

q q q

(N)
qS (N)

qS(N)
qS

where ¹() ´ ()  =  (3) is the e¤ect by scalar potential on a quark in

nucleon. Hereafter we use the symbols , () and () for the scalar potentials of

baryon , its constituent  or  quark and its  quark. Adding these contributions to
Eq. (1), we have the e¤ective () coupling constant

¤() = () + 3 ¹
()
 

()
() =

µ
1 +

1

3




¶
() = [(1¡ ) + ¤

 ] ()

(2)

where ¤
 = ¤

 = ( +  )  and  = 13. If ¹() in the above �gure
is replaced by () , where  = (13) is the mass of a constituent quark, the

original ZM model ( = 1) is recovered. In Ref. [13] we �rst interpreted the ZM model

from the QCM of nucleons and then modi�ed it as in Eq. (2).

It is straightforward to extend the above consideration of meson-nucleon coupling to
meson-hyperons couplings including the contributions of strange mesons. The free ¤¤

or ¤¤ coupling in the QCM is depicted by

q q sq q s

+

or the coupling constant is expressed by

¤¤() = 2
(¤)
() (3)

This is corrected by the medium contributions,

q q s

( )
qS Λ

+

q q s

( )
sS Λ
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where ¹(¤) ´ (¤) ¤ and ¹(¤) ´ (¤) ¤ are the e¤ects of scalar potentials on the

constituent  or  and  quark in ¤. Consequently, we have the e¤ective ¤¤() coupling

constant

¤¤¤() = ¤¤() +
¡
¹(¤) + ¹(¤)

¢
(¤)() =

·
1 +

1

2

¡
¹(¤) + ¹(¤)

¢¸
¤¤() (4)

If ¹(¤) is neglected, Eq. (6) in Ref. [13] is recovered.

The e¤ective ¤¤¤ or ¤¤ coupling in the mean-�elds is obviously given by

q q s

+

q q s

( )
qS Λ

or the renormalized coupling constant is expressed by

¤¤¤¤() =
¡
1 + ¹(¤)

¢
¤¤¤() (5)

Because there are no isovector mean-�elds in the present work, the renormalized

meson-§ coupling constants have the same forms as ¤:

¤§§() =

·
1 +

1

2

¡
¹(§) + ¹(§)

¢¸
§§() (6)

¤§§¤() =
¡
1 + ¹(§)

¢
§§¤() (7)

The most prominent di¤erence between the MZM model in Ref. [13] without the

strange mesons and the present extended version including them is apparent in the meson-

¥ couplings. Only taking into account the strange mesons is able to renormalize the
coupling constants because ¥�s contain only one  or  quark. In fact the e¤ective ¥¥

or ¥¥ coupling in the mean-�elds is given by

q ss

+

q ss

( )
sS Ξ

or the renormalized coupling constant is expressed by

¤¥¥() =
¡
1 + ¹(¥)

¢
¥¥() (8)

where ¹(¥) ´ (¥) ¥ is the e¤ect of scalar potential on the -quark in ¥�s.
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Next, the free ¥¥¤ or ¥¥ coupling in the QCM is depicted by

q ss

+

q ss

or the coupling constant is given by

¥¥¤() = 2 
(¥)
¤() (9)

The medium correction to this is depicted by

q ss

( )
qS Ξ

+

q ss

( )
sS Ξ

where ¹(¥) ´ (¥) ¥ is the e¤ect of scalar potential on the constituent  or  quark in

¥0 or ¥¡. Consequently, we have the renormalized ¥¥¤() coupling constant

¤¥¥¤() = ¥¥¤() +
¡
¹(¥) + ¹(¥)

¢
(¥)¤() =

·
1 +

1

2

¡
¹(¥) + ¹(¥)

¢¸
¥¥¤() (10)

Although we have derived the e¤ective renormalized meson-baryon coupling constants

in the intuitive schematic methods, their stringent derivations based on the relativistic
SU(6) model of baryons will be presented in a future work including the contributions by

isovector mesons.

2.2 The relativistic mean-�eld model of SHM

The relativistic mean-�eld Lagrangian of baryon matter is generally given by

L =
X

=¤§¥

¹

³
 ¡¤

 ¡ 0 
´
 ¡ 1

2
2
 hi2 ¡ 1

2
2
¤ h¤i2

+
1

2
2
 h0i2 +

1

2
2
 h0i2  (11)

where ¤
 =+ and  are the e¤ective mass and vector potential of each baryon:

 = ¡ ¤ hi ¡ ¤¤ h¤i  (12)

 = 
¤
 h0i + ¤ h0i  (13)
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The energy density is given by

E =
X

=¤§¥

(h¤i + )  +
1

2
2
 hi2 + 1

2
2
¤ h¤i2 ¡ 1

2
2
 h0i2 ¡ 1

2
2
 h0i2 

(14)

where h¤i is the average kinetic energy and  is the density of each baryon. Inverting

Eq. (13) we can express the vector mean-�elds h0i and h0i by the vector potentials
 and ¤, and so § and ¥ are also expressed by them. Therefore the energy density

contains only  and ¤. Then, extremizing the energy E  = E ¤ = 0, we

have the general expression of vector potential

 =
¤


X

0

¤00


0 +
¤


X



¤  


  (15)

and vector mean-�elds

2
 h0i =

X

=¤§¥

¤  (16)

2
 h0i =

X

 =¤§¥

¤     (17)

Substituting Eqs. (15)-(17) into (14), the energy density becomes

E =
X



h¤i +
1

2
2
 hi2 + 1

2
2
¤ h¤i2 + 1

2

ÃX



¤
 



!2

+
1

2

ÃX



¤  
 



!2



(18)

This equation is a function of the e¤ective masses of  and ¤ as shown below.

First, because the scalar potential of nucleon is

 = ¡¤ hi = ¡ [(1¡ ) +  ¤
 ]  hi  (19)

the  mean-�eld is expressed by the e¤ective mass of nucleon as

hi = 



1¡¤


(1¡ ) +  ¤


 (20)

Next, the scalar potential of ¤ is given by

¤ = 2
(¤)
 + (¤)  (21)

where

2(¤) = ¡ ¤¤¤ hi = ¡
·
1 +

1

2

¡
¹(¤) + ¹(¤)

¢¸
¤¤ hi  (22)
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(¤) = ¡ ¤¤¤¤ h¤i = ¡
¡
1 + ¹(¤)

¢
¤¤¤ h¤i  (23)

From Eqs. (22) and (23) the scalar potentials for the constituent quarks of ¤ are expressed

by

¹(¤) = ¡ 1¡ 1
2 ¹

¤
¤

¤
¹¤ (24)

¹(¤) = ¡ 2¡ 1
2 ¹¤
¤

¹¤¤ (25)

where we have introduced the reduced scalar mean-�elds for each baryon,

¹ ´ 


hi  ¹¤ ´   ¤


h¤i  (26)

and

¤ = 2 +
1

2
(1¡ ¹¤¤) ¹¤ (27)

Therefore the renormalized ¤¤() and ¤¤¤() coupling constants are determined

by

1 +
1

2

¡
¹(¤) + ¹(¤)

¢
=
2¡ ¹¤¤
¤

 (28)

1 + ¹(¤) =
2¡ 1

2 ¹¤
¤

 (29)

Substituting Eqs. (24) and (25) into Eq. (21), we have

1¡¤
¤ =

2
¡
1¡1

2 ¹
¤
¤

¢
¹¤ +

¡
2¡1

2 ¹¤
¢
¹¤¤

¤
 (30)

Consequently,

¹¤¤ =
2 (1¡¤

¤)¡
£
2¡ 1

2 (1¡¤
¤)

¤
¹¤

2¡ 1
2 (2 +

¤
¤) ¹¤

 (31)

As seen from Eqs. (20) and (26), the ¹¤ is a function of ¤
 and so the ¹¤¤ depends on

both of ¤
 and ¤

¤.

On the analogies of Eqs. (28) and (29), the renormalized §§() and §§¤()
coupling constants are determined by

1 +
1

2

¡
¹(§) + ¹(§)

¢
=
2¡ ¹¤§
§

 (32)

1 + ¹(§) =
2¡ 1

2
¹§

§
 (33)

where

§ = 2 +
1

2
(1¡ ¹¤§) ¹§ (34)
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In addition, on the analogy of Eq. (30), the e¤ective mass of § becomes

¤
§ =

2¡ 3
2
¹§ ¡ 2 ¹¤§ + ¹§ ¹¤§

§
 (35)

Because ¹¤§ is expressed by ¹¤¤, Eqs. (32)-(35) are the functions of ¤
 and ¤

¤.

Similarly the renormalized ¥¥() and ¥¥¤() coupling constants are determined

by

1 + ¹(¥) =
2¡ 1

2 ¹
¤
¥

¥
 (36)

1 +
1

2

¡
¹(¥) + ¹(¥)

¢
=
2¡ ¹¥
¥

 (37)

and the e¤ective mass of ¥ becomes

¤
¥ =

2¡ 2 ¹¥ ¡ 3
2 ¹

¤
¥ + ¹¥ ¹

¤
¥

¥
 (38)

where

¥ = 2 +
1

2
(1¡ ¹¥) ¹

¤
¥ (39)

Because ¹¤¥ is also expressed by ¹¤¤, Eqs. (36)-(39) are also the functions of ¤
 and ¤

¤.
Consequently, the scalar mean-�elds, the e¤ective masses and the renormalized cou-

pling constants of baryons in Eq. (18) depend only on ¤
 and ¤

¤. Therefore the

properties of SHM are determined by these two values, which are the solutions of the
self-consistency equations obtained by extremizing Eq. (18):



 ¤


µ E


¶
=

X



 ¤


¤





+
2
 hi

 

 hi
 ¤



+
2
¤ h¤i
 

 h¤i
 ¤



+


 2


ÃX



 
¤


!ÃX




 ¤
¤



!

+


 2


ÃX



 
¤
  

!ÃX




 ¤  
 ¤



!
= 0 (40)



 ¤
¤

µ E


¶
=

X



 ¤


 ¤
¤




+
2
¤ h¤i
¤ 

 h¤i
 ¤

¤

+


¤2


ÃX



 
¤


!ÃX




 ¤  
¤

¤

!

+


¤2


ÃX



 
¤
  

!ÃX




 ¤  
¤

¤

!
= 0 (41)

where  =
P
 is the total baryon density and  =  is the fraction of each
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baryon and  is the scalar density. The solutions of Eqs. (40) and (41) must sat-

isfy the energy minimization conditions 2E¤2
  0 and (2E¤2

 )(
2E¤2

¤ ) ¡
(2E¤


¤
¤)
2  0. Because it is tedious but straightforward task to calculate the

derivatives in Eqs. (40) and (41), we will not present their expressions explicitly.

3 Numerical analyses

Here we calculate the properties of charge symmetric SHM consisting of baryon octet.

The system is in chemical equilibrium under the conservations of the total baryon density
(number) and the strangeness fraction (number) [18]. The chemical potentials  of each

baryon with strangeness  can be related to the baryon and the strangeness chemical

potentials,  and  as

 =  +   (42)

In the RMF model the  is given by

 =
£
 2 + (

¤
)
2¤ 12 +   (43)

where  is the Fermi momentum of each baryon and  is given by Eq. (15). Because

the r.h.s. of Eq. (43) contains the e¤ective mass of each baryon, a set of equations
(40)-(43) have to be solved self-consistently.

Before performing actual calculations, we have to specify the free (un-renormalized)

meson-baryon coupling constants. The  and  coupling constants were deter-
mined to reproduce the nuclear matter saturation properties in Ref. [13]. The nucleon-

hyperon (NY) and hyperon-hyperon (YY) interactions however are not well known at

present. We �rst determine them according to Ref. [18]. The    coupling constants
are �xed by the SU(6) relations:

1

3
 =

1

2
¤¤ =

1

2
§§ = ¥¥ (44)

On the other hand, the    coupling constants are chosen to reproduce reasonable
hyperon potentials in saturated nuclear matter:

 ()¤ () = ¡28MeV,  ()§ () = 30MeV and  ()¥ () = ¡18MeV, (45)

where the potential  () is given by a simple summation of the scalar  and vector 
potentials and  = 016 fm¡3 is the saturation density. The obtained values are

¤¤


= 0604
§§


= 0461 and
¥¥


= 0309 (46)
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The    coupling constants are also �xed by the SU(6) relations:

2 ¤¤ = 2 §§ = ¥¥ = ¡2
p
2

3
 (47)

Of course  = 0. The remaining   ¤ coupling constants are adjusted so that the
potential of a single hyperon, embedded in a bath of ¥ matter at , becomes

 (¥)¥ () = 
(¥)
¤ () = ¡40MeV. (48)

The obtained values are

¤¤¤


=
§§¤


= 0690 and

¥¥¤


= 122 (49)

where §§¤ = ¤¤¤ is assumed according to SU(6) symmetry. These values predict the

following potential of a single hyperon embedded in a ¤ bath at :

 (¤)¤ () ¼  (¤)¥ () ¼ ¡20MeV. (50)

It is seen that the ¤¤ interaction is rather attractive. Hereafter we call the model

developed in the present work with strange mesons as extended ZM (EZM) model so as

to distinguish it from the MZM model in Ref. [13] without strange mesons. The EZM
model using the coupling constants determined above is especially called as EZM1.

Then we present the properties of SHM calculated by EZM1. Figure 1 shows the

binding energies per baryon




=



¡

X

=¤§¥

  (51)

as functions of the total baryon density  for several �xed strangeness fractions:

 = ¤ + § + 2¥ (52)

The results suggest that the SHM with  ¼ 1 becomes the most stable form of baryon

matter at  ¼ 04 fm¡3. In order to examine it in detail, Fig. 2 calculates the lowest
binding energies per baryon as functions of the strangeness fraction. The result of EZM1

is shown by the solid curve. We have found that the SHM with  = 114 is the most

stable state of  = ¡182MeV The NLW model [18] predicts the maximum binding
energy 24.6 MeV at  = 13 while the QMC model [19] predicts lower energy 19 MeV at

less strangeness fraction  = 12. Our result generally agrees with the QMC model rather

than the NLW model, but predicts the even lower binding energy at even lower strangeness
fraction than the QMC. This indicates the importance of the medium dependences of

meson-baryon coupling constants.
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The dip of  = ¡162MeV at  = 0095 is the most stable state of the SHM

consisting of  and ¤ only. So as to make this clear, the result of  +¤ matter is shown
by the dashed curve. The  +¤ system becomes less stable than  +¤+§+¥ system

as the strangeness fraction increases and eventually becomes unbound at  = 072. The

dotted curve shows the result by MZM taking into account all the baryon octets. In this
case the most stable state is  + ¤ matter that has the energy  = ¡161MeV at

 = 0077. The absence of attractive interaction between  quarks predicts less stable

state than EZM1 at higher strangeness fraction and then leads to unbound state above
 = 1450.

The black curves in Fig. 3 show the corresponding particle fractions  to the lowest

energy of the solid curve in Fig. 2 as functions of the strangeness fraction. The §�s are
absent owing to the repulsive potential adopted in Eq. (45). In the following there are

no contributions of § in the results of EZM1. The nucleons decrease monotonically as

 increases and disappear above  = 175. The ¥�s appear at  = 020 and increase
monotonically as  increases. At  = 10 the fractions of  and ¥ have the same values

 = ¥ = 038. The ¤�s always appear except for  = 00 and  = 20. Owing to the

strangeness conservation, the fraction of ¤ increases rapidly before the appearance of ¥�s
and then gradually up to its maximum value ¤ = 0249 at  = 1725. As soon as the

nucleons disappear, the ¥�s increase rapidly because of the baryon number conservation

and so the ¤�s turn to decrease because of the strangeness conservation. Consequently,
the disappearance of nucleons gives rise to the kink on the solid curve at  = 175 in

Fig. 2.

The solid and dashed-dotted curves in Fig. 4 show the total baryon densities corre-
sponding to the energies by EZM1 and MZM in Fig. 2. The strange mesons have e¤ect to

increase the density for each value of the strangeness fraction. As the strangeness grows,

both the densities increase up to their maximum values  = 043 fm¡3 at  = 141 and
 = 033 fm¡3 at  = 130 and then turn to decrease. The kink on the solid curve at

 = 175 re�ects the disappearance of nucleons again. It is seen that the most stable

state of +¤+¥ system with  = 114 appears at  = 039 fm¡3. Without the strange
mesons we cannot �nd the chemical-equilibrated state above  = 155.

The black curves in Fig. 5 calculate the potential  =  +  of each baryon

corresponding to the solid curve in Fig. 2. The solid, dashed and dotted curves are the
results for  , ¤ and ¥ respectively. The ¤ and ¥ are almost the same because they

are determined to satisfy Eq. (48). Below  = 14 the  is much deeper than ¤ and

¥ while above  = 16 it becomes shallower. The  becomes deepest around  = 10
while the ¤ and ¥ become deepest around  = 15. Consequently, the value of  , at

which the most stable SHM appears, shifts to the somewhat larger value than 1 as seen

above.
The properties of SHM have been determined by solving self-consistency equations

(40) and (41) for the e¤ective masses of  and ¤ under the chemical equilibrium (42)

12



constrained by the strangeness conservation. As a result, the e¤ective mass of each baryon

¤
 =

¤
 implicitly depends on the strangeness. The black curves in Fig. 6 show the

e¤ective masses corresponding to the solid curve in Fig. 2. The solid, dashed and dotted

curves are the results for  , ¤ and ¥ respectively. Below  = 15 the masses of the

baryons with lower strangeness are reduced more signi�cantly because of the dominance
of hi mean-�eld over h¤i. On the other hand, above  = 17 the masses of the baryons

with higher strangeness are reduced more signi�cantly because of the dominance of h¤i
over hi. It is noted that the minimum of ¤

 appears at  = 116 being almost the
same as  = 114. This indicates that the most stable SHM is still dominated by hi
mean-�eld.

The renormalized coupling constants also re�ect the strangeness. The black curves in
Figs. 7 and 8 calculate ¤()() and ¤  ¤()  () corresponding to the solid

curve in Fig. 2. Their essential behaviors are determined by the numerators in Eqs. (28),

(29), (36) and (37). Therefore the strangeness fractions on the minimums of ¤¤¤() and
¤¤¤¤() are almost the same as those of ¤

¥ and ¤
 respectively.

So far we have used the   ¤ coupling constants determined through Eq. (48).

However the recent discovery of 6
¤¤He in the KEK-E373 experiment [20] has presented a

question on the strong ¤¤ attraction in Eq. (50). In this respect we cannot regard the

values of Eq. (49) to be physically proper. At present there remain some ambiguities in

determining the   ¤ coupling constants. Therefore Refs. [18] and [19] investigated the
properties of SHM using the most recent SU(3)-extension NSC97f [21,22] of the Nijmegen

soft-core potential model as well. In fact the new result of 6
¤¤He was reproduced by the

calculation [23] based on the three-body Faddeev equation and the NSC97 potential.
Unfortunately it cannot be directly used in the RMF models and so was implemented

[18] by adjusting the   ¤ coupling constants to reproduce the hyperon binding energy

curves in Fig. 2 of Ref. [24]. This method of implementation still has problems. First the
quantitatively satisfactory agreements with the energies were not obtained [18,19] by any

adjustment of the   ¤ coupling constants in the RMF models. More seriously, Ref. [24]

employed the NRBHF model that is essentially di¤erent from the RMF models and so
was not able to reproduce the nuclear matter saturation properties. Therefore we cannot

say that the above implementation precisely takes into account the YY interactions of

NSC97f potential.
In spite of these problems, for completeness of the comparison between our EZM

model and the NLW and QMC models, we also calculate the properties of SHM using

the YY interactions of NSC97f potential implemented by the same way as Ref. [18] into
EZM model. Figure 9 shows the binding energy per baryon in its own baryonic matter.

We have used the following   ¤ coupling constants in place of Eq. (49):

¤¤¤


= 052

§§¤


= 096 and

¥¥¤


= 128 (53)
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 ()§ () in Eq. (45) has been reduced to 20 MeV and we have §§ = 0485

so that the binding energy of pure § matter agrees with the result of Ref. [24] more

precisely than those in Refs. [18] and [19]. However the agreement with the pure ¥
matter cannot be improved by any reasonable adjustments of the relevant quantities.

This suggests again the essential di¤erence between NRBHF and RMF models. We call

the EZM model using the   ¤ coupling constants of Eq. (53) as EZM2.
Then Fig. 10 calculates the lowest binding energies per baryon as functions of the

strangeness fraction again. The solid curve is the result of EZM2. For the comparison

the result of EZM1 is also shown by the dotted curve. The di¤erence between the two
models is small below  = 10 while the energy by EZM2 becomes much larger above

 = 10. The deep bound state by the YY interactions of NSC97f potential has been

attributed [18] to the �rst-order phase transition from the SHM consisting of  +¤+¥
to the SHM with §-dominance. This has been also con�rmed in our model. The black

curves in Fig. 11 show the corresponding particle fractions to the solid curve in Fig.

10. As soon as the strangeness fraction crosses over 1.0, the §�s suddenly appear and
increase and so the other baryons rapidly decrease because of the baryon number and

strangeness conservations. The  and ¤ disappear above  = 12. Although the results

of EZM2 generally agree with Refs. [18] and [19], there are a few di¤erences that our
binding energy of the most stable state is deeper than the QMC model and that the

§-dominance in our calculation is more conspicuous than the NLW model. The dotted

curve in Fig. 4 shows the total baryon density corresponding to the solid curve in Fig.
10. We can see clearly the discontinuity of the density at  = 106 due to the �rst-order

phase transition.

The §§ interaction in NSC97f is strongly attractive. However it has been never
con�rmed experimentally at present. Therefore we consider another model EZM3 in

which §§¤ coupling constant is assumed to be the same as ¤¤¤, §§¤ = 052,

according to SU(6) symmetry and the §§ coupling constant is the same as Eq. (46).
The other coupling constants are the same as EZM2. The lowest binding energy per

baryon is shown by the dashed curve in Fig. 10 and the corresponding particle fractions

are shown by the blue curves in Fig. 11. For the comparison with EZM1, the particle
fractions are also shown by the blue curves in Fig. 3. There appear no §�s in the results

of EZM3, which are the same as EZM2 before the appearance of §�s in it at  = 106.

The EZM3 predicts the most stable state of SHM of  = ¡248MeV at  = 157.
The strangeness fraction is larger than EZM1 and EZM2 because the SHM by EZM3 is

dominated by ¥ hyperons. The fraction of ¥�s in Fig. 3 or 11 increases linearly as the

strangeness fraction becomes larger. The nucleons do not disappear below  = 20. The
¤ gradually decreases above  = 02 and disappears at  = 1875 because of much

weaker ¤¤ attraction than EZM1.

The di¤erences in the strength of ¤¤ attraction and ¥ abundance between EZM1
and EZM3 are clearly seen in the dashed and dotted curves of Fig. 5. The ¤ and ¥
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by EZM3 are much shallower and deeper respectively than those by EZM1 at higher

strangeness fraction. For the most stable SHM by EZM3, the ¥ becomes deeper than
 . The dashed curve in Fig. 4 shows the total baryon density corresponding to the

dashed curve in Fig. 10. Below  = 106 it is connected to the dotted curve. The

maximum density  = 045 fm¡3 appears at  = 151 being close to  = 157. The
e¤ective masses and renormalized coupling constants corresponding to the dashed curve

in Fig. 10 are shown by the blue curves in Figs. 6, 7 and 8. Their minimums shift

to larger strangeness fractions than the black curves by EZM1. These results are also
because the most stable SHM by EZM3 is dominated by ¥ abundance.

4 Summary

Introducing the (hidden) strange mesons into the modi�ed Zimanyi-Moszkowski model

developed previously in Ref. [13], we have extended it further so as to investigate dense

strange baryonic matter accurately. The model is based on the constituent quark picture
of baryons. Taking into account the e¤ect of scalar potential on the constituent quarks,

the medium corrections to meson-baryon couplings are derived. The resultant renormal-

ized coupling constants e¤ectively depend on the density through the e¤ective masses of
baryons in medium.

Because at present there is little reliable information on the hyperon-hyperon interac-

tions, the three possibilities have been investigated. The �rst one (EZM1) is designed so
that the   ¤ coupling constants are adjusted to reproduce the empirical potential of a

single hyperon embedded in a bath of ¥ matter at nuclear saturation density. We have

found the most stable form of baryonic matter, whose binding energy  = ¡182MeV
and strangeness fraction  = 114 are similar to those obtained by the QMC model but

are lower than the NLW model. This indicates the importance of medium-dependent

meson-baryon coupling constants in dense baryon matter.
The second model (EZM2) is designed to implement the Nijmegen soft-core poten-

tial model NSC97f. As well as the NLW and QMC models, we have found the phase

transition from the SHM consisting of  + ¤ + ¥ to that with §-dominance, when the
strangeness fraction becomes larger than  = 10. This is due to the strongly attractive

§§ interaction in NSC97f potential. The obtained binding energy of the most stable

SHM is deeper than the QMC model. This indicates the di¤erences between EZM and
QMC models in the medium dependences of meson-baryon e¤ective coupling constants.

Because the strong §§ interaction in NSC97f potential has not been con�rmed, the

third model (EZM3) reduces the §§¤ coupling constant in EZM2 to the same value as
¤¤¤ coupling. The resulting SHM is dominated by abundance of ¥ hyperons and so the

most stable state has larger strangeness fraction than EZM1 and EZM2.

In conclusion our new extended ZM model works well to describe the dense SHM
as well as the most re�ned NLW and the modi�ed QMC models. However we have
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found important non-negligible di¤erences between them. This indicates that the precise

consideration of the medium dependences of e¤ective meson-baryon coupling constants
is important to describe dense baryon matter as neutron star matter correctly. Although

at present there is no reliable empirical information on the medium dependence at high

densities, the EZM model with reasonable baryon-baryon interactions provides a useful
instrument to investigate dense baryon matter.
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Figure 1: The binding energies per baryon by EZM1 as functions of the total baryon
density for �xed strangeness fraction.
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Figure 2: The lowest binding energies per baryon for each value of the strangeness frac-
tion. The solid, dashed and dotted curves are the results using EZM1 including all the
baryon octets, EZM1 including  and ¤ only and MZM including all the baryons.
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Figure 3: The black curves show the fractions of each baryon corresponding to the solid
curve in Fig. 2. The blue curves show the results calculated by EZM3.
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Figure 4: The solid and dashed-dotted curves show the total baryon densities correspond-
ing to the solid and dotted curves in Fig. 2. The dotted and dashed curves show the
results calculated by EZM2 and EZM3 respectively.
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Figure 5: The black curves show the potential  = + of each baryon corresponding
to the solid curve in Fig. 2. The blue curves show the results calculated by EZM3.

23



M
B*  / 

M
B

Strageness Fraction

   (EZM1)
   (EZM1)
   (EZM1)
   (EZM3)
   (EZM3)
   (EZM3)

N
Λ
Ξ
N
Λ
Ξ

0 0.5 1 1.5 20.4

0.5

0.6

0.7

0.8

0.9

Figure 6: The black curves show the e¤ective masses of each baryon corresponding to the
solid curve in Fig. 2. The blue curves show the results calculated by EZM3.
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Figure 7: The black curves show the renormalized coupling constants ¤()()
corresponding to the solid curve in Fig. 2. The blue curves show the results calculated
by EZM3.
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Figure 8: The black curves show the renormalized coupling constants ¤  ¤()  ¤()
corresponding to the solid curve in Fig. 2. The blue curves show the results calculated
by EZM3.
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Figure 9: The binding energy per baryon in its own baryonic matter using   ¤ coupling
constants of EZM2.
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Figure 10: The lowest binding energies per baryon as functions of the strangeness fraction.
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Figure 11: The fractions of each baryon corresponding to the lowest binding energy of
EZM2 (black curves) and EZM3 (blue curves) in Fig. 10.
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