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Abstract

We study linear response theory in the general framework of algefuaintum statistical mechanics and
prove the Green-Kubo formula and the Onsager reciprocity relatianisefat fluxes generated by temperature
differentials. Our derivation is axiomatic and the key assumptions coregodic properties of non-equilibrium
steady states.
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1 Introduction

This is the first in a series of papers dealing with linear oesg theory in non-equilibrium quantum statistical
mechanics. The three pillars of linear response theornhar&teen-Kubo formula (GKF), the Onsager reciprocity
relations (ORR), and the Central Limit Theorem. This papet its sequels [JOP1, JOP2] deal with the first two.
An introduction to linear response theory in the algebrarafalism of quantum statistical mechanics can be found
in the recent lecture notes [AJPP1]. We emphasize that ogram is concerned with purely thermodynamical (i.e.
"non-mechanical) driving forces such as deviations offierature and chemical potential from their equilibrium
values.

The main result of this paper is an abstract derivation of3K& and the ORR for heat fluxes. Various gener-
alizations of our model and results (and in particular, tktersion of GKF and ORR to heahdcharge fluxes) are
discussed in [JOP1]. Our abstract derivation directly i@spio open quantum systems with free fermionic reser-
voirs previously studied in [Da, LeSp, BM, AM, JP2, FMU]. Beeapplications are discussed in [JOP2, JOPP].

The mathematical theory of non-equilibrium quantum stigas mechanics has developed rapidly over the
last several years. The key notions of non-equilibriumdytestates (NESS) and entropy production have been
introduced in [Rul, Ru2, Ru3, JP1, JP2, JP3]. The generahthes been complemented with the development
of concrete techniques for the study of non-equilibriunadtestates [Rul, JP2, FMU] and at the moment there are
several classes of non-trivial models whose non-equilibrihermodynamics is reasonably well-understood. The
development of linear response theory is the natural neptistthis program.

The GKF for mechanical perturbations has been studied irympkates in the literature (see [BGKS, GVV1]
for references and additional information). Mathemabljcagorous results for thermodynamical perturbations
are much more scarce. Our research has been partly motivatib@ work of Lebowitz and Spohn [LeSp] who
studied linear response theory for quantum Markovian serajgs describing dynamics of open quantum systems
in the van Hove weak coupling limit. The ORR for directly ctegbfermionic reservoirs have been discussed in
[FMU] in first order of perturbation theory. The mean field ahg aspects of ORR are discussed in [GVV2]. A
fluctuation theorem related to linear response theory cdiolred in [TM]. Needless to say, physical aspects of
linear response theory are discussed in many places inténatlire, and in particular in the classical references
[DGM, KTH]. An exposition in spirit close to our approach cha found in [Br, Zu, ZMR1, ZMR2]. Linear
response theory in classical non-equilibrium statisticathanics has been reviewed in [Ru4, RB].

Our model can be schematically described as follows. Cengigo infinitely extended quantum systems
which for convenience we will call the left;, and the rightR, system. The systenisandR may have additional
structure (for example, in the case of open quantum sysiems consists of a "small” (finite level) systeis
coupled to several reservoirs aRdwill be another reservoir coupled to the small system, sgarEil).

Assume that initially the systein is in thermal equilibrium at a fixed (reference or equililnjuinverse tem-
peratured;, = 3, and that the systefR is in thermal equilibrium at inverse temperatykg. The thermodynamical
force X is equal to the deviation of the inverse temperature of tijiet System from the equilibrium valug

X =4~ .

Assume that the systenisandR are brought into contact. One expects that under normalitonsl the joint
systemL + R will rapidly settle into a steady statex . If X = 0, thenwy+ = wg is the joint thermal
equilibrium state ol + R characterized by the Kubo-Martin-Schwinger (KMS) coratiti If X # 0, thenwy +
is a non-equilibrium steady state (NESS) characterizeddoyvanishing entropy production

Ep(wx +) = Xwx +(®) > 0,

where® is the observable describing the heat flux ouRofFor additional information about this setup we refer
the reader to [Rul, Ru2, Ru3, JP1, JP2, JP3].

The Green-Kubo linear response formula asserts that ifdim gystem is time-reversal invariant and the
observabled is odd under time-reversal, then

1 o0
anX,+(A)|X:0 = 5/ wﬁ(Aq)t)dta (11)
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Figure 1: An open quantum system representeld #sR.

wheret — ®; is the dynamics in the Heisenberg picture. This celebraiadila relates the linear response to the
equilibrium correlations and is a mathematical expressioiine fluctuation-dissipation mechanism in statistical
mechanics.

The ORR are direct consequences of the GKF. Consider thetersgA, B, C, which are respectively in
thermal equilibrium at inverse temperatures- Y, 5, and3 — X. Assume that the systems are brought into
contact by interactions which coupfewith B andB with C. Letwx y,+ be the non-equilibrium steady state of
the joint system an@,, ¢ the observable which describe the heat flow oubp€ (see Figure 2). If the system
is time-reversal invariant, theh, and®c are odd under time-reversal.

Assume that the functionsx y 1 (®c) andwx v+ (®4) are differentiable atX = Y = 0. The kinetic
transport coefficients are defined by

Lp = Oxwx,y,4+(Pa) ’X:YZO’

Lc = 3wa,Y,+((I)C)|X:Y:O'

In words, even ifA andB are at the same temperature, the temperature differeetialenB andC may cause
a heat flux out ofA equal toX Ly + o(X) for X small. Lc has the same interpretation. If the GKF in the form
(1.1) holds for. = A + B, R = CandA = ®,, then

1 o0
LA = 5/ WQ((ﬁA(Qc)t)dt.

Similarly, if the GKF holds fol. = B+ C, R = A andA = ®¢, then

Le = %/00 wg(Pc(Pa))dt = %/OC wp((P0):®a)dt.

— 00 — 00
Hence, the GKF and the relation

| wnti@c)@aar o

o0

which is a well-known consequence of the KMS condition, ¢itle Onsager reciprocity relations
La = Lc. (1.2)

In this paper we give a rigorous axiomatic proof of the GKFLJland the ORR (1.2) in the abstract setting of
algebraic quantum statistical mechanics.

The main idea of our proof can be illustrated by the followsimple computation. Assume thhtand R
are finite dimensional systems, i.e., that they are destiyefinite dimensional Hilbert spacé¢;,, Hr and
HamiltoniansHy,, Hg. The Hilbert space of the joint system7is = Hy, ® Hg. LetV be a self-adjoint operator
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Figure 2: The joint systemA + B + C.

on H describing the interaction df andR. The Hamiltonian of the joint system § = Hi, + Hg + V and
A, = el Ae~tH The heat flux observable is

d ; .
P = —ae‘tHHRe_ltH’t:O =i[HRg,V]. (1.3)

A common choice for the reference (initial) state of the f@iystem is the product statg.r with density matrix

L o-BHL~(9-X)Hr

VA

whereZ is a normalization constant. As we shall see, in the studinefl response theory a more natural choice
is the statevx described by the density matrix

lefﬁH+XHR .
Z
Let A be an operator ofif andt > 0. Note that

wx (4y) = wy (e—it(H—XHR/ﬁ)eitHAe—itHeit(H—XHR/ﬁ)) 7

and so .
wX(At) wa(A) = %A wX(i[HR,AS])dS. (14)

If the system is time-reversal invariant adds odd under the time-reversal operation, thep(4) = 0 for all X
(and in particularwg(A;) = wo(A) = 0 for all ¢). Hence, (1.4) yields

Tt
8XwX(At)’X:U = B/ wg(i[Hr, As])ds.
0
Another elementary computation yields

. i _ i _ _
W5(1[HR,AS]) = ZTI"(AS[G 'GH,HR]) = ZTI“ (As[e ﬁHHReﬁH — HR]e ’GH)

B
= / wp(Age™ " H de" M) du,
0

and so . 5
1
3wa(At)|X:0 = B/o ds/O duwg(AsPiy). (1.5)

Needless to say, only infinitely extended systems have rgattthermodynamics. The central point of our
argument is that the relation (1.5) can be proven even ifybtemsl andR areinfinitely extendednd Hamiltoni-
ans are not defined any more. We shall show that the relatiBhifla general consequence of the KMS-condition
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and holds in the abstract setting of algebraic quantunssitatl mechanics under very mild technical conditions.
Our argument then continues as follows. Assume that thésésex statevx + on O such that for any observable
A1

lim wx(A;) =wx, +(A). (1.6)

t——+o0

The statevux . is the non-equilibrium steady state (NESS) of the systeR and is the central object of non-
equilibrium statistical mechanics. Let be an observable for which (1.5) holds. Assume in additiat the
function

X —wx +(4), a.7)

is differentiable atX = 0 and that the limit and the derivative in the expression

tl}Hloo axwx(At>‘X:0, (18)
can beinterchangedThen,
1> P
Oxwx,+(A)| x_o = —/ dt/ duwg(ArPiu), (1.9)
B Jo 0
and this relation is the Green-Kubo formula.
If in addition the joint thermal equilibrium states is mixing, namely if for all4, B € O,
lim wg(r'(A)B) = ws(A)ws(B), (1.10)

[t]—o0

then it is not difficult to show that the KMS condition and tiraé-reversal invariance imply that (1.9) is equivalent
to (1.1).

The above derivation requires a comment. The initial stateraonly used in the literature is the decoupled
product stateu,¢. In this paper we prove the GKF for the NES& ; associated to the initial statex. On
physical grounds, one expects that under normal conditithssatesnormal w.r.t.wx evolve towx 4 ast — +oo
(see [JP3, AJPP1]). Since in particulax andw,.s are mutually normal they are physically equivalent initial
states.

The three key assumptions of our derivation are the existefithe NESS (1.6), the differentiability of the
function (1.7), and the interchange of the limit and the\g#ive in (1.8). Verification of each of them in physically
interesting models is a difficult task.

In the literature two distinct techniques have been usedusimfthe study of NESS. The first is the scattering
approach, initiated by Robinson [Ro1], and further devetbim [BM, AM, Rul, FMU]. The second is the spectral
approach developed in [JP2]. In the continuation of thisgpdpOP2, JOPP] we will show how the spectral and
the scattering approach can be used to verify our abstragtrgstions and we will illustrate the general theory on
well-known examples of open quantum systems with free fenioireservoirs studied in [Da, LeSp, BM, AM,
JP2, FMUL.

Acknowledgment. The research of the first author was partly supported by NSER@ of this work was done
during the visit of the first and the third author to ESI in Mien V.J. and C.-A.P. are grateful to J. Defeskii,
G.-M. Graf and J. Yngvason for invitation to the workshop &duantum Systems" and for their hospitality. A
part of this work has been done during the visit of the firshauto CPT-CNRS. Y.O. is supported by the Japan
Society for the Promotion of Science. This work has been ahming the stay of Y.O. to CPT-CNRS, partly
supported by the Canon Foundation in Europe and JSPS.
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2 The model and the results

2.1 Basic concepts

In this subsection we briefly review for notational purpoadew basic notions of algebraic quantum statistical
mechanics. This topic is discussed in many places in thafitee and we will freely use the results described in
the classical references [BR1, BR2]. An exposition of tligehfaic formalism suited to non-equilibrium quantum
statistical mechanics can be found in the reviews [Ru3, ABBP1].

A C*-dynamical system is a paj©, 7), whereO is aC*-algebra with identityl and7?, t € R, is a strongly
continuous group ofk-automorphisms o). In the context of quantum statistical mechanics, the ehsnef
O describe observables of a physical system and the grodgscribes their time evolution in the Heisenberg
picture. The physical states are described by the staté am., positive normalized linear functionals@. A
quantum dynamical system is a trigl®, 7, w), wherew is a given reference state. The physical states of thermal
equilibrium at inverse temperatuye are described byr, 5)-KMS states inO*. We shall assume thgt > 0
although all our results also apply o< 0. We recall thatv is a (7, 3)-KMS state if for allA, B € O there exists
afunctionF4 g(z), analytic in the stri) < Im z < 3, bounded and continuous on its closure, and satisfying the
KMS-boundary condition

Fa p(t) = w(ATY(B)), Fap(t+iB) = w(r'(B)A).

The three-line theorem yields that
|Fa.s(2)| < [[AllllBIl;

for 0 <Imz < 3. For notational convenience we shall writeA7*(B)) = F4 p(z).
An anti-linear involutivex-automorphisn® : O — O is called time-reversal dfO, 7) if

Oort=7"100,

for all t € R. A statew is called time-reversal invariantdf(0(A)) = w(A*) forall A € O.

2.2 The setup

We shall consider two quantum dynamical systédis, 1., wr,) and(Og, r, wr ), Which we shall call the leff,,
and the rightR, system. We denote the generatorsipndrg by 6, anddg, i.e.,7f = et andr = e,

If the systemL andR are brought into contact, then the algebra of observabldlseojoint system i =
Or, ® Og (our results do not depend on the choice of the cross-normidgfihis tensor product). Its decoupled
dynamicsr, = 71, ® TR is generated by(®) = &;, + 0g.

Notation. If £ is an operator oi®;,, then we will denote by the same letter the oper@oy I on O, ® Og.
Hence, we writedy, for ér, ® I, etc. We will use the same convention in the cas@®gf

Let V € O be a self-adjoint perturbation describing the interacttbh. andR. The C*-dynamical system
describing the interacting systdot- R is (O, 7), where the interacting dynamiess generated by

6 =00 iV, .

In what follows 3 > 0 is a fixed reference inverse temperature aned 0 is a small number such that> e.
We setl. = (—e,e). We make the following assumptions concerning the referestates of. andR and the
interactionV/.

(A1) wy, is the uniquér,, 3)-KMS state onOy,. The possible reference statesbofire parametrized b € I,
andwg, x is the uniqugTg, 3 — X)-KMS state onOg. We shall writewg ¢ = wg.
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(A2) V € Dom (0R).
If (A2) holds, then the observable describing the heat fluodR is (recall (1.3))
o = ir(V).
Consider the family of states
w&?) = WL ®WR,X-
Let aﬁ?) ando x be theC*-dynamics or©O generated by

5&?) = 5(0) - %51:{)

x =0 +ilV, .
wﬁ?) is the unique(agg)ﬁ)—KMS state on®. The Araki perturbation theory implies that there existsnigue

(ox,8)-KMS statewy on O. The statesx andwﬁ?) are mutually normal. Note thaty = 7 and thaty, is the
unique(r, 5)-KMS state on0. We denotevg = wy.
Our next assumption deals with time-reversal invariance.

(A3) There exists a time-revers@al of (O, 7p) such that
Qorf=7'00, Ooth=713"00, OV)=V.

One easily shows th#& is also a time-reversal @0, ), (O, aﬁ?)) and(O,ox). If in addition (A1) holds, then

the states;ﬁ?) andwy are time-reversal invariant.
In essence, our main result is:

Theorem 2.1 Suppose that Assumptio(s1)-(A3) hold. LetA € Dom (Jr) be a self-adjoint observable such
that®(A) = —A. Then, for allt € R, the function

X — wx(TH(A)),
is differentiable atX = 0, and

t B .
Ixwx (T'(A))] y_o = %/0 ds/o duwg(7°(A)T(P)). (2.11)

Remark 1. Assume in addition that the quantum dynamical systéths, 7r,wr, x) are ergodic fofX| < e.
Then,{wx } is a family of mutually singular states (see [JP3, AJPP1} te differentiability of the function
X — wx(rt(A4)) at X = 0 is far from obvious. The somewhat surprising generality bédrem 2.1 critically
depends on the time-reversal assumption which ensuresthat) = 0 for all | X| < e. For a related technical
point in classical non-equilibrium statistical mechaniesrefer the reader to [Ru5].

Remark 2. Letwg, ) denote thes-KMS state for theC*-dynamics generated dy— A\[=,, - ] where

t
EtE/ T77%(®)ds.

0
Then, by Araki’s perturbation theory one has

1
BaAwﬁ,A(A”)\:o = 8XWX(Tt(A))‘X:O'

Hence, the finite time linear response to the thermodynamical fofeis equal, up to a factor of, to the
equilibrium linear response to the mechanical perturbatio For additional information concerning this point
we refer the reader to [Zu, TM].
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2.3 The Green-Kubo formula

Our next assumption postulates the existence of a NESS tha.initial statevx.

(A4) For eachX € I, there exists a statex 4 such that for alld € O,

lim wx(7(A4)) = wx, +(A).

t——+o0
Note thatuy y = wg is the uniqugr, 3)-KMS state orO.

Finally, we shall assume that our coupled system is mixirepatlibrium.

(A5) ForallA, B € O,
lim wg(r"(A)B) = ws(A)wg(B).

|t]—o0

The observables for which we will establish the Green-Kudyonfula are characterized by
Definition 2.2 Assume thafAl) and(A4) hold. LetA € O be an observable such that for althe function
X = wy(r'(A)),
is differentiable atX = 0. We call such an observable regular if the function
X — wx 4 (A4), (2.12)
is differentiable atX = 0 and

tliinoo axwx(Tt(A))|X:0 = anX*+(A)|X:O' (213)

A consequence of Theorem 2.1 and the definition of regulagrebble is the Green-Kubo formula.

Theorem 2.3 Suppose that Assumptiof#sl)-(A4) hold. LetA € Dom (dr ) be a regular self-adjoint observable
such thato(A) = —A. Then

1o P ,
O (W= 5 [t [ duwy( () (@), @14)
If in addition (A5) holds, then

6wa,+(A)|X:0 = %/jO dtwg(ATH(®)). (2.15)

Remark 1.1n (2.15), [ = limp_o [7 .
Remark 2. It follows from our proof that linear response to the theryramical forceX can be computed without
time-reversal assumption. Assume that (A1), (A2), (Adphenid thatd € Dom (dR) is a regular observable. Then

1 > g t iu
Oxwxt ()] oy = Oxex ()] oy + 5 /0 at /0 duws (7 (A) 7™ (D)),

This formula will be discussed in more detail in [JOP1].
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In applications to concrete models the key assumptions éclchre (A4), (A5) and that physically relevant
observables are regular. The assumptions (A4) and (A5) bese verified for open quantum systems with free
Fermi gas reservoirs in [BM, AM, JP2, FMU]. In these works JAglestablished in the stronger form, i.e. for any
normal w.r.t.wgg) and allA € O, lim;_, 1 (7% (A)) = wx + (A). In the continuation of this paper [JOP2, JOPP]
we will prove that in these models the observables desgib@at fluxes withirl, are regular.

A simple class of models to which Theorem 2.3 directly appéiee quasi-free open systems studied in [AH,
AJPP1, AJPP2, AP]. These models are also exactly solvabl¢henGKF and the ORR can be checked by direct
computation.

2.4 Onsager reciprocity relations
Consider thre€'*-dynamical system&0;, 7;), J = A, B, C. The generator of; is denoted by ;. We set

OZ@OJ, TOZ@T.], 6(0):%:5'].

LetV € O be a self-adjoint perturbation describing the interactibthe joint system and let be the dynamics
generated by = §(9) 4 i[V;-]. We shall assume that has the form

V =Vap + Ve,

whereVap € Op ® O andVic € O ® Oc¢. If Vap € Dom (d4) andVic € Dom (d¢), then the observables
describing the heat flow out of andC are

PA =0a(Vas), Oc = 6c(Vae),

see Figure 2. Note that in this ca&g(®a) = Ja(Pc) = 0.

We assume that (A3) holds in the following form: there existane-reversa® of (O, ) such that} 0 © =
©o T;t for all J and©(Vap) = Vag, ©(Vsc) = Vse. Then® is a time-reversal of the coupled systé@, )
andG)(<I>A) = —®,, @(‘bc) = —&¢.

We shall also consider the joint systetds+ B andB + C. In the first case the algebra of observables is
Oa ® Ogp and the dynamics is generated &y + o + i[Vag,:]. The systenB + C is defined in a similar way.
Let 5 > 0 be the fixed inverse temperature.

Considerl. = A + B as the left system anid = C as the right system. Suppose that Assumptions (Al), (A2),
(A4), (A5) hold (we have already assumed the time-reversalriance) and that the observalilg is regular. Let
wa+B,c,x,+ be the NESS in the Assumption (A4). Then the kinetic transpaefficient

La = OxwayB,o.x,+(Pa)| o
is well-defined and the Green-Kubo formula holds,
1 oo
La=s / (ATt (Be))dt,

wherewg is the(, 3)-KMS state onO.

Consider nowL. = B + C as the left system anid = A as the right system. Suppose that Assumptions (Al),
(A2), (A4) and (A5) hold and that the observaldle is regular. Letugc a x,+ be the NESS in the Assumption
(A4). Then the kinetic transport coefficient

Lo = dxwp i x4+ (0| x_o»

is well-defined and the Green-Kubo formula holds,

Lo = 1/* wa(Per!(Pa))dt = 1/oc wp(T' (D) P4 )dt.

Ceo 2 /-
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Sincewg is mixing, by the well-known stability criterion (Theoren¥512 in [BR2]),
T

lim ws([TH(Pc), @a])dt = 0,
T—o0 _T

and so
La = Lc.

This is the Onsager reciprocity relations for heat fluxes.

3 Proofs

Throughout this subsection we assume that (A1) and (A2).hold
We start with:

Lemma 3.1 Assume thatA3) holds. Then:

(1) © is a time-reversal of th€'*-dynamical system&), 7) and (O, o x),
(2) The statesvx are time-reversal invariant.

(3)0(P) = —9.

Proof. (1) Recall that
TH(A) = Tyt (AT,
wherel'; € O is the family of unitary elements defined by

=1+ 3G / (VYo r S (Vs - - s,

n>1 0<s,<-:<s1<1

see Proposition 5.4.1. in [BR2]. Similarly,

77H(A) = Tyrg 1(A)T,

where

D=1+ Z(*it)"/ 70 (V) -y B (V)dsy - - - dsy,.

n>1 0<s5,<--<51<1

Since®(V) = V andO(I';) = I';, we have tha® o 7 = 71 0 O, i.e.,® is a time-reversal ofO, 7).

10

(3.16)

(3.17)

SinceO is also a time-reversal ¢f), 05?)), one proves in the same way titats a time-reversal ofO, o x).

(2) Set
Bx(A) = wx (O(A%)).

One easily checks thaty is a(ox, 3)-KMS state. Assumption (A1) and Araki's perturbation theonply that

wx is the uniqugox, 5)-KMS state on0. Hencepx = wx.
(3) is an immediate consequence of the relagidny; (V)) = 7 '(V) and the definition ofo. O

Lemma 3.2 The groupr preservedom (dr) and for A € Dom (dg ) the function
R >t 6r(T(A)),

iS norm continuous.
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Proof. SinceV € Dom (dgr), the formula (3.17) yields that; € Dom (dr) and that

Sr(ly) = it”/ 7S (V) -y (Br(V)) -+ - 788 (V) dsy - - - dsy.
r(I') n;() ogsngmgsﬁl; o " (V)17 (0r(V)) - - 7™ (V)dsy

The series on the right is uniformly convergent fan compact sets, and ®5> ¢ — ogr(I';) is a norm continuous
function. The formula (3.16) yields

Or(7"(A)) = or(T) 75 (A)TT + Ty (9r (A))T + Terg(A)dr(Te)",

and the statement follows]

In the remaining part of the proof we will need to approximdtandV” by analytic elements. For this reason
we briefly recall a few basic facts about such analytic apipnatons (see [Ar, BR2, DJP]). Far € O we set

Oj = \/%/RethTé(C)dt7 .] = 17 27 T (318)

Every C; is an analytic element for the group, i.e., the functiort — 7¢(C;) € O extends to an entire analytic
function onC. Moreover,
1C; 1 < 1| and lim |C; — C|| =0. (3.19)
J—00

Ifin addition C' € Dom (ér), then

and sodg (C;) is also an analytic element fof andlim;_.. ||[0r(C;) — 0r(C)|| = 0.

Lemma 3.3 For A € Dom (dR),

ol (A) — 7 (A) = —% /0 ol (Gr (7 (A)))ds. (3.20)

Proof. Assume first thal € Dom (§) N Dom (dr). Then,

ORI (A) = 0316 = 8x)(7'(4)) = T o3 (Bl (A)), (3.21)

and (3.20) holds.
Let now A € Dom (é6r) and let4; be given by (3.18). Clearlyd; € Dom (§) N Dom (dr) and (3.20) holds
for A;. The relations

Or(7"(4;)) = 0r(Terg(A4;)T7)
= 0r (L) (A;)T7 + Terg(Or(A)))T7 + Lo (A;)0r(Tr)",

yield thatlim;_,, or(7°(A4;)) = dr(7*(A)) uniformly for ¢ in compact sets, and the statement follo@s.

SinceDom () is dense inD, Lemma 3.3 yields that for alt € O,

Jim [l (4) = 7(4)| =0. (3.22)
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Lemma 3.4 Forall A € O,

)1(1210 wx (4) = ws(A4).

Proof. Let £ be the set of weak* limit points of the néby } asX — 0. The setC is non-empty since the unit
ball in O* is weak* compact. Relation (3.22) and Proposition 5.3.2[BiR2] yield that every element of is a
(7, 8)-KMS state. Assumption (A1) implies that; is the unique(r, 3)-KMS state onO and sof = {wg}. O

Lemma 3.5 Assume that (A3) holds. Let € Dom (dr) be a self-adjoint observable such thaf4) = —A.
Then for allt € R the function
X — wx(Th(A)),

is differentiable atX = 0 and

Dxwx (T1(A)] ¢ = % / wa (B (7 (A)))ds.

Proof. Sincewx is o x-invariant, Lemma 3.3 yields

wX(Tt(A)) —Wwx

~ (4) = %/0 wx (0r(7°(A)))ds.

By Lemma 3.1wx (A) = wx(©(A)) = —wx(A), and sawx (A) = 0. Similarly, sincewy, = wg is 7-invariant,
wo(Tt(A)) = wo(A) = 0 for all t. Hence,

wx (TH(A)) — wo(rt

(4) 1 [ s
X = B/O wx((SR(T (A)))ds

This relation, Lemmas 3.2, 3.4, and the dominated convermygield the statementl

Lemma 3.6 Assume thatl € Dom (dr). Then

B )
() = [ wplAr(@)ds.

Proof. We will freely use standard results of Araki’s theory of pebiation of KMS-states (see [Ar, BR2, DJP]).
Let V; be the analytic approximations &f given by (3.18). Sincd” € Dom (dr), ®; = or(V;) are analytic
approximations of the heat flux observalile= o (V). Note also that the function— T'; ;, where

Loy =1+ (it)" / e (Vi) - 18 (Vy)dsy - -~ ds,

1 0<s, < <s1 <1

extends to an entire analytfe-valued function

r.,= 11+Z(iz)"/ 55 (Vy) - 155 (Vy)dsy - - - dsy,.

n>1 0<sp<--<s1<1

The functionz — I’ ; is also entire analytic and for ad| I, ;I'; ; = 1.
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Let 7; be theC*-dynamics orO generated by(®) +i[V;, -], and letw; be the uniquér;, 3)-KMS state. Since
foranyC € O,
7;(C) =Ty ;7(C)L7 5, (3.23)

J

we conclude thatl;, V;, and®; are also analytic elements foy and thalim; . ||} — 7 = 0.
We shall prove first that for all,

3
w;(0r(A4;)) :/0 w; (A7} (®;))du. (3.24)

This formula combined with a limiting argumet— oo will yield the statement.
The following relations hold

d . .
arz,j =il ;75 (V)),
(3.25)
d * sz *
&Fz,j = 179 (Vj)FE,j'

One easily verifies that for all € C, I', ; € Dom (0r), I'

% ; € Dom (dr), that the functions: — dr(I. ;),
z — 0r(I'z ;) are entire analytic, and that

d . 2 : 2
(=) = R 5)76 (V) +i0% 576 (25),
(3.26)
d * 2 * (1 *
&511(1—‘2;') = —1Tg (q)j)rz,j — 17 (‘/j)(sR(FE,j)'
Relations (3.25) and (3.26) yield
d X . 2 « . .
ng,jéR(FE’j) = —IFZ’jTO ((I)j)FE,j = —1Tj (Q)j) (327)
Recall tha'wéo) = wy, ® wgr. By the basic identity of Araki's perturbation theory, fanyaC' € O,
w;(C) = wi’ (CTig5)
I W (Tis,)
0 iB,j
In particular,
(0)
wj (B (47)) = 20 :(;EFJ) )ﬁﬂ.
0 iB,j
Sincewéo) (0r(C)) = 0foranyC € Dom (égr), we have
w§ (Or(A))Tip ) = —wi (A;0r(Tip 1)) = —wf” (A30R(Tig ;)T 55,5]Ti5.5)-
Hence,
w;(0r(4;5)) = w;(A;[Tig;0r (T4 ;)])- (3.28)
Relation (3.27) implies
d * iu
@Fiuu‘éR(F—iu,j) =T; (®5),
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and so 5
Fiﬁ,jéR(Fiiﬁ’j) :/ leu(q)j)du (329)
0

Relations (3.28) and (3.29) yield (3.24).
It remains to show that

Tim w; (3n(47)) = ws(0m(4)), (3.30)
3 _ 3 _
lim wj(AjTJ‘-“(fI)j))du:/ wg(AT(®))du. (3.31)
7= Jo 0

By the properties of analytic approximations,

lim [lwj —wsl| =0 and  lim [|or(A4;) = r(A)|| =0,
J—00 J—00

and these relations yield (3.30). To prove (3.31) we arguelsvs.
Fort € R we set

J

8 _ & .
hit) = [ wAmtt@)de, b = [ wsar @)
0 0
Then
t t t )
| et mi@pan = [ wyam@nan= [ @)
B . B .
i / w3 (A7 (@) du — i / w; (A7 (@) du
0 0
=i(h;(0) — h;(2)).
In the first step we have used the KMS condition and in the skdbat the integral of the function —

wj(A;77(®;)) over the boundary of the rectangle with vertites, ¢t + if3, i3 is zero. Similarly,

/0 wa([A,7(®)])du = i(h(0) — ().

Since
Jim w;([A7, 7 (25)]) = wa([4, 7(D)]),
we derive that for alt € R
lim (h;(t) — h;(0)) = h(t) — h(0). (3.32)
J—00
Note that 5
/ e~ hy(t)dt = / du / dt e~ =i (A rH (@),
—00 0 —0o0
) R el 0o s
/ et h(t)dt:/ du/ dt e~ =17 o (ATH(D)).
—o0 0 —00
Since for allt,

lim w;(A7}(2;)) = wa(AT'(2)),

J—00
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we conclude that -
lim e (h;(t) — h(t))dt = 0. (3.33)
J—00 oo
Then (3.32) and (3.33) yield
lim £;(0) = h(0),
j—o0
and (3.31) followsO
Proof of Theorem 2.1.This theorem is an immediate consequence of Lemmas 3.5 &nd 3.
Proof of Theorem 2.3.Relation (2.14) follows from Theorem 2.1 and the definitibmegular observable.
To prove (2.15), we need to show that
iu _ 1 > t
ti@mg/ U (A)r (@))ds} du = 5/_00 Wy (AT (B))dt.
Time-reversal invariance yields that faru € R,
wp(7°(A)7"(®)) = wa(7°(B(A))T(0(®))) = ws(O(r*(A)7™*(®))) = wa(T~"(®)7"(A))
This identity and the KMS-condition imply
wa(T*(A)T(@)) = wa(r~*(A)T7 (D))
The analytic continuation yields that ferc R andu € [0, 3],
ws (T (A)T(®)) = ws (r~* (A) T 7(9)),
and so
oy R e : )
- w (T (A)T(P))ds du:—/ {/w @ds]du
iU s du= g [ [ nte
_ L/ / s+1u ))d d
= 25 A W[j S u.
The integral of the function
z — wp(AT(B)),
over the boundary of the rectangle with vertieces ¢, t + iu, —t + iu is zero. Hence,
t . t
/ (AT (D)) ds — / wy(AT(®))ds + R(t, ),
—t —t
where "
Rit.w) =i [ [oa(Ar' (@) - wy(Ar*(@))]
0
and we derive
1 /P ¢ . 1 rt
E/ |:/ wg(TS(A)Tlu(q)))dS] du = 5/ wﬁ(AT d5+ —/ R t, u (334)
0 0 —t
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Assumption (A5) implies that

lim wB(ATiH'iy(CI))) = wg(A)wg(P) = 0.

t——+oo

This fact and the dominated convergence theorem yield

lim sup |R(t,u)| =0,
=400 0<usp

and Relation (3.34) implies the statement.
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