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Abstract

We have investigated both the K� and �K0 condensations in �-equilibrated
neutron star (NS) matter using the relativistic mean-�eld model with the renor-
malized meson-baryon coupling constants. Adopting the antikaon optical potential
of �120MeV, our model predicts the K� condensation as the second-order phase
transition inside the neutron star of maximum mass, while the deeper potential than
�160MeV is ruled out. This is in contrast to the result of the density-dependent
hadron �eld theory. Our model also predicts remarkable softening of the equation
of state by the �K0 condensation at high densities. Although this is contrasted with
the result of the nonlinear Walecka model, only the K� condensation can be formed
in NSs.

1 Introduction

There recently is a considerable interest in the antikaon condensation that might be

formed in dense nuclear medium as realized in high-energy heavy-ion collisions or in NSs.

The relativistic mean-�eld (RMF) theory [1] has now been widely admitted to be suitable

for describing such dense hadron matter [2]. Then the antikaon condensation in NSs has

been investigated [3-7] by the so-called NLWmodels that include additional nonlinear self-

coupling terms of mesons in theWalecka model. It is however noted that many parameters

in the NLW model are adjusted to reproduce the properties of normal nuclear matter and

�nite nuclei. Therefore the NLW model is really valid at low densities, but there are no

guarantees that it is useful at high densities where the antikaon condensation is expected

to appear. In this respect the models embodying explicit or implicit density-dependence

are desired. One of such e¤orts has been done in Ref. [8] using the density-dependent

hadron �eld (DDRH) theory. However the DDRHmodel is based on the Dirac-Brueckner-

Hartree-Fock (DBHF) theory [9], and there are no realistic DBHF calculations of baryon

matter including hyperons at present in contrast to the nonrelativistic Brueckner-Hartree-

Fock (NRBHF) theory [10,11]. As a result the density dependence of the meson-hyperon

vertices in the DDRH model cannot be well determined.

Therefore the other RMF models, which exhibit density dependence but are indepen-

dent of the DBHF theory, are desired. Zimanyi and Moszkowski (ZM) [12] developed
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one of such models. This model has the e¤ective renormalized NN� coupling constant

g�NN� = (M
�
N=MN) gNN� where M

�
N is the e¤ective mass of a nucleon in nuclear medium.

It has been applied in Ref. [13] toK� condensation in protoneutron stars. The ZMmodel

however has the defect that it cannot reproduce the strong spin-orbit potentials because

of its larger e¤ective mass M�
N ' 0:86MN than the reasonable value M

�
N ' 0:6MN . Fur-

thermore its extension to hyperons is ambiguous. Although Ref. [13] takes into account

only nucleons as baryons, the realistic description of cold neutrino-free NS matter [14]

requires all the baryon octets.

Recently, Ref. [15] has developed the model that is the generalization of the ZMmodel

and can reproduce the nuclear matter saturation properties as well as the DBHF theory.

Because it is based on the constituent quark picture of baryons, the e¤ective renormalized

meson-hyperon coupling constants are determined unambiguously. It has been applied

to NS matter in Ref. [16]. The results of the particle composition and the mass-radius

relation of NSs agree well with those obtained using the phenomenological but realistic

e¤ective equation-of-state (EOS) in Ref. [14]. The purpose of the present work is to

extend the investigation of Ref. [16] by including the s-wave antikaon condensation.

The characteristic feature of our model is that the e¤ective renormalized meson-baryon

coupling constants are determined self-consistently with the e¤ective mass in the nuclear

medium. This feature is also realized in the DBHF theory but not in the DDRH model.

It is therefore worthwhile to compare our results with Ref. [8].

The detailed formulation of our model is essentially the same as Refs. [15] and [16]

except for the antikaon contributions in antikaon condensed phase. Therefore we brie�y

summarize our formalism in the next section. In section 3 we �rst discuss the choices

of the meson-baryon coupling constants and the antikaon optical potential, and then

calculate the composition and the EOS of �-stable NS matter and the properties of NSs.

Finally, the present study is summarized in the section 4.

2 Formalism

Our mean-�eld model Lagrangian for the baryons and leptons is the same as Ref. [16].

We consider the contributions of the isovector scalar meson � [a0(980)] and isovector

vector meson � as well as the isoscalar scalar meson � and isoscalar vector meson !. The

(hidden) strange mesons considered in Ref. [7] are not taken into account because the

interactions between hyperons are not well known. For antikaons both the K� and �K0 of

the isospin doublet are taken into account. The model Lagrangian for them is the same

as Ref. [8] in which the free meson-kaon coupling constants have been used.

The formal expression of the energy density and pressure are common to every RMF

models. (The DDRH model has additional rearrangement terms.)
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where �B and � l are the vector densities of the baryons and leptons in NS matter. E
�
BF

and ElF are their Fermi energies, and �BS and �lS are their scalar densities. The e¤ective

masses and density of the condensed antikaons [8] are m�
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where I3B = f 1, �1, 0, 1, 0, �1, 1, �1 g for B = f p, n, �, �+, �0, ��, �0, ��g and
I3 �K = f 1, �1 g for �K =

�
�K0, K�	.

The renormalized coupling constants of the nucleons are [17]
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where m�
B =M

�
B=MB. The renormalized coupling constants of � are [15]

g����(!) = [(1� ��) + ��m�
� ] g���(!): (11)

Similarly, for the ��s we have [16]

g��+�+� = [(1� ��) + ��m�
�+ ] g���; (12)

g��0�0� = [(1� ��) + ��m�
�0 ] g���; (13)

g������ = [(1� ��) + ��m�
�� ] g���; (14)

where � = �, !, � and � but g�0�0�(�) = 0. Although the meson-� coupling constants are

not renormalized in the present model [15] because of the absence of strange mesons, we

formally introduce

g���� = [(1� ��) + ��m�
� ] g���: (15)

The renormalization constant �B is summarized by
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(16)

where S is the strangeness of each baryon.
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�
p(n). They
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where fB and f �K are the ratios of each baryon and antikaon densities to the total baryon

density �T . Various quantities in Eqs. (17) and (18) were given in Ref. [16] except for

antikaon contributions:
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where rK�(�) = gKK�(�)=gNN�(�).

3 Numerical analyses

For numerical calculations of NS matter, we �rst determine the free meson-baryon cou-

pling constants. The NN� and NN! coupling constants are �xed [15] to reproduce the

nuclear matter saturation properties. We assume the saturation energy of �15:75MeV at
the saturation density 0:16 fm�3. The values of (gNN�=m�)

2 = 16:9 fm2 and (gNN!=m!)
2 =

12:5 fm2 are obtained. The e¤ective nucleon mass and the incompressibility of saturated

nuclear matter are m�
N = 0:605 and K = 302MeV respectively. The Y Y ! coupling

constants are �xed from the SU(6) symmetry:

1

3
gNN! =

1

2
g��! =

1

2
g��! = g��!: (21)

The Y Y � coupling constants are determined to give the hyperon potentials U (N)Y in

saturated nuclear matter for which we take the same values as Ref. [8]:

U
(N)
� = �30MeV, U

(N)
� = 30MeV and U

(N)
� = �18MeV: (22)
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In our model they are given by

U
(N)
Y = � g�Y Y � h�iNM + g�Y Y ! h!0iNM ; (23)

where h�iNM and h!0iNM are the mean-�elds in saturated nuclear matter.

Although the calculated symmetry energy of nuclear matter becomes smaller

(24:6MeV) than the empirical value 30 � 4MeV, we employ the values of the Bonn
A potential in Ref. [9], (gNN�=m�)

2 = 0:39 fm2 and (gNN�=m�)
2 = 0:82 fm2 for NN� and

NN� coupling constants. The reason of such choices was discussed in Ref. [16]. The

Y Y � and Y Y � coupling constants are also �xed from the SU(6) symmetry:

gNN� =
1

2
g��� = g��� and g��� = 0; (24)

gNN� =
1

2
g��� = g��� and g��� = 0: (25)

Finally, we have to determine the meson-(anti)kaon coupling constants. The isoscalar

vector coupling is derived from quark model as

gKK! =
1

3
gNN!: (26)

Similarly, the isovector meson couplings are

gKK� = gNN� and gKK� = gNN�: (27)

The remaining �-meson coupling is usually determined [3-7] from the given K� optical

potential at saturated nuclear matter density:

U �K(�0) = � gKK� h�iNM � gKK! h!0iNM : (28)

We further need to �x the value of U �K(�0) in Eq. (28). Recently, many e¤orts to

derive this value have been done. Reference [18] has determined gKK�(!) by matching

the relativistic mean-�eld potential in nuclear interior to the phenomenological density-

dependent potential �tted to K� atomic data in nuclear surface, and then the rather

deep potential U �K(�0) � �180MeV is obtained. However the U �K(�0) at nuclear center

cannot be uniquely determined from K� atomic data even with high precision because

K� atomic data give information only on the far outer region of the potential. Therefore

the direct theoretical calculations of U �K(�0) are expected. In fact the coupled-channel

Lippmann-Shwinger calculations [19-21] based on the e¤ective chiral model have been

done and yielded shallower potentials U �K(�0) = �100MeV� �120MeV. Furthermore,
more re�ned self-consistent calculations [22,23], in which the K� optical potential should

be incorporated in the in-medium K� propagator, generate much shallower potentials
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U �K(�0) = �55MeV� �66MeV.
Here we should note the two points: The �rst is that the K� condensation in �-

stable NS matter appears at much higher density than the normal nuclear matter density

�0. This indicates that a relevant quantity to the �K condensations is U �K(�) at higher

density rather than U �K(�0). Because our e¤ective meson-baryon coupling constants are

renormalized, it is proper to introduce the renormalized (or implicitly density-dependent)

meson-kaon coupling constants. If they have strong density-dependences, the U �K(�0)

cannot give us precise information on the optical potential of condensed kaons. In our

model the renormalized meson-kaon coupling constants can be introduced by taking into

account the mean-�elds of the (hidden) strange mesons and will be studied in future

works. The second is that the coupled-channel calculations are not consistent with the

RMF models of nuclear matter. The most important di¤erence is the largely reduced

masses of the baryons in the RMF models that are not incorporated in the investigations

of Refs. [19-23]. This suggests that the above values of U �K(�0) cannot be used in the

RMF models without any modi�cations. These problems might be resolved by the DBHF

calculation containing full meson-baryon channels, but that is not feasible at present.

In spite of the above problems, we have three classes of the antikaon optical potential

in any way, the shallowest one U �K(�0) ' �60MeV, the deepest one U �K(�0) ' �180MeV
and the middle value U �K(�0) ' �120MeV between the two. If the shallowest potential
is in fact, the antikaon condensation cannot be expected in the NS matter. We therefore

choose the medium value U �K(�0) = �120MeV for the �rst time. In this case the KK�
coupling constant gKK�=gNN� = 1:4� 10�2 derived from Eq. (28) is negligibly small and
so the KK interaction is the vector current interaction. This is consistent to the coupled

channel calculations [20] of the antikaon optical potential. The same result is also found

in the DDRH model [8] using the Groningen potential whereas the NLW model using the

GM parameter set [7] have non-negligible scalar interaction.

Figure 1 shows the particle compositions of the cold �-stable NS matter as functions

of the total baryon density, which are obtained by solving the �-equilibrium condition,

the baryon number conservation and the charge neutrality condition as well as Eqs. (17)

and (18) in a self-consistent way. At low densities the matter consists of nucleons and

leptons. The �� appears near the saturation density �T = 0:169 fm�3. The � appears

above �T = 0:373 fm
�3 and the �� stands immediately after � at �T = 0:421 fm

�3. As

soon as the �� increases, the fractions of the leptons are depleted because of the charge

neutrality condition and the fraction of neutron begins to decrease gently. The K�

condensation is formed above �T = 0:653 fm
�3 and so the �� turns to decrease because

of the charge neutrality. The �0 appears above �T = 0:880 fm
�3 and as a result the ��

decreases more rapidly because of the baryon number conservation.

After the �K0 condensation is formed at �T = 1:038 fm
�3, the �� turns to increase again

whereas the increases of K� and �0 become gentle. Consequently, the baryon fraction

becomes nearly isospin symmetric as has been explained in Ref. [6]. When the electron
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vanishes at �T = 1:315 fm
�3, the �-equilibrium conditions containing the electrochemical

potential lose their proper meanings. (The �� has already vanished at �T = 0:842 fm
�3.)

Alternatively, the NS matter is constrained by the isospin-saturated symmetry of the

baryon and antikaon fractions. This phenomenon has been also seen in Ref. [8]. Above

�T = 1:315 fm�3 the electrochemical potential becomes negative, that is, the positrons

appear in place of electrons. Because the positron is scarce �e+ < 1:0�10�4 fm�3, it is not

shown in Fig. 1. However it is apparent in the fact that above �T = 1:315 fm
�3 the fraction

of �� becomes slightly larger than �0 because of the charge neutrality. We stopped the

calculation when the e¤ective mass of the neutron becomes negative at �T = 1:393 fm
�3.

The � hyperons never appear in Fig. 1 because of their repulsive optical potential in

Eq. (22). The proton distribution has two apparent kinks over the range of �T , which

correspond to the appearances of �� and K� because the proton is only one particle with

positive charge. On the other hand, the neutral baryon � increases smoothly as the total

baryon density grows.

The solid curve in Fig. 2 shows the EOS corresponding to Fig. 1. The dashed

and dotted curves are the results with only K� and no �K condensations. In this case

the antikaon condensations are formed as the second-order phase transitions. The solid

curve shows three kinks: The �rst one corresponds to the appearance of � hyperons.

The second and third ones correspond to the phase transition to K� and �K0 condensed

phases. As is well known, the antikaon condensations soften the EOS. The e¤ect of the
�K0 condensation is much stronger than the K� condensation. This is also seen in the

DDRH model of Ref. [8] but not in the NLW models of Ref. [7]. We therefore see

that the remarkable softening of the EOS by the �K0 condensation is characteristic to the

RMF models containing the explicit (DDRH) or implicit (ours) density-dependences of

the meson-baryon coupling constants.

We next choose the deeper antikaon optical potential U �K(�0) = �155MeV for which
the KK� coupling constant is still small gKK�=gNN� = 9:6 � 10�2. The EOS is shown
in Fig. 3. The dashed and dotted curves are the results with only K� and no �K

condensations. In this case the antikaon condensations appear as the �rst-order phase

transitions. We employ the Maxwell construction to determine the equilibrium state

or the mixed phase of two phases, the pure baryon and K�-condensed phases, or the

K� and �K0 condensed phases. The pressure at the phase transition is determined by

seeking a point of intersection in the correlation between the pressure P and the Gibbs

free energy per baryon �G. As a result of the �rst-order phase transition, @ �G=@P is

discontinuous at the transition point. Recently, another construction of the equilibrium

state between the pure baryon and the K� condensed phases, which requires that the

pressure, baryochemical �n and electrochemical �e potentials are the same in the two

phases but relaxes the constraint of the local charge neutrality in each of the two phases

to the global neutrality of the mixed phase, is proposed in Ref. [5] and has been used

in Refs. [7] and [13]. We have however used the Maxwell construction because our
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calculation includes both �K0 and K� condensations simultaneously [6] and because the

breaking of local charge neutrality induces additional structure in the medium that is

essentially beyond the mean-�eld theory. The red dotted lines in Fig. 3 show the mixed

phases due to the Maxwell construction. It is seen again that the �K0 condensation softens

the EOS remarkably.

For the deeper antikaon optical potentials of jU �K(�0) j � 160MeV, the Maxwell con-
struction cannot be applied to the �K0 condensation because the e¤ective mass of the

neutron becomes negative before we arrive at a point of intersection in the correlation

between P and �G. Namely, the deepest antikaon optical potential U �K(�0) � �180MeV
mentioned above is not allowed in our model. This feature of our model is again con-

trasted to the NLW models [7] that do not exclude the deepest potential.

Using the EOS obtained above, we calculate the mass sequences and the mass-radius

relations of non-rotating NSs in Figs. 4 and 5 by integrating the Tolman-Oppenheimer-

Volkov equation [24]. For the outer region of NSs, we use the EOS by Feynman-

Metropolis-Teller, Baym-Pethick-Sutherland and Negele-Vautherin from Ref. [25]. The

dotted curves are the results with no �K condensations. The maximum mass is 1:736M�,

1:524M� and 1:749M� for U �K(�0) = �120MeV, U �K(�0) = �155MeV and no �K respec-

tively. The corresponding radius is 12:51 km, 13:19 km and 12:14 km respectively. The

di¤erence between the results with U �K(�0) = �120MeV and no �K is small because the
�K condensations suppress the abundances of � hyperons as seen in Fig. 1. The central

density of the maximum mass star for U �K(�0) = �120MeV is �T � 0:81 fm�3. From

Fig. 1 we can therefore see that there are no �K0 condensations in neutron stars. For

U �K(�0) = �155MeV the plateaus on the both sides of the maximum in Fig. 4 corre-

spond to the mixed state due to K� and �K0 condensations by the Maxwell construction.

Again there are no �K0 condensations in NSs. The �K0 condensation is also ruled out in

the DDRH model of Ref. [8]. In the NLW model [7] it is able to appear in the third

family of compact stars. In the DDRH model [8] the K� condensation is formed inside

the maximum mass stars only for jU �K(�0) j � 160MeV while in our model such deep

antikaon optical potentials are ruled out and the K� condensation already appears for

U �K(�0) = �120MeV. This is the striking di¤erence between our and the DDRH model.
We here note that our meson-� coupling constants are not renormalized as seen in Eq.

(16). The (hidden) strange mesons have to be taken into account to renormalize the

meson-� coupling constants in our model. However, so far as the DDRH model also has

no e¤ects by the strange mesons, the comparison between the two models is meaningful.

4 Summary

We have investigated both the K� and �K0 condensations in �-equilibrated NS matter

using the RMF model with the renormalized meson-baryon coupling constants. Our

model is the generalization of the ZM model based on the constituent quark picture of
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baryons. For the antikaon optical potential U �K(�0) = �120MeV the condensations are
the second-order phase transitions while for the deeper potential U �K(�0) = �155MeV
they become the �rst-order transitions in which we have used the Maxwell construction for

the mixed phases. Although the �K0 condensation softens the EOS remarkably, only the

K� condensation is formed in the NS of maximum mass. This is unfortunate because the

marked softening of EOS by the �K0 condensation is intrinsic to the models embodying

explicit (DDRH) or implicit (ours) density-dependent coupling constants. The much

deeper potentials of jU �K(�0) j � 160MeV are not allowed in our model because the

Maxwell construction cannot be applied. This is in sharp contrast to the result of the

DDRH model in which the K� condensation is formed in NSs only using jU �K(�0) j �
160MeV.

The existence of the antikaon condensation essentially depends on the depth of the

antikaon optical potential. At present we have no reliable information on it. One of the

serious theoretical problems is the density-dependence of the potential strength because

the antikaon condensations occur in NSs at much higher density than the saturation

density of normal nuclear matter. So as to investigate this problem, the future work

will take into account the e¤ects by the (hidden) strange mesons that introduce the

renormalized meson-K as well as meson-� coupling constants.
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Figure 1: The particle compositions of the cold �-stable NS matter using the K� optical
potential U �K(�0) = �120MeV as functions of the total baryon density.
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Figure 2: The equation of state (EOS) of the cold �-stable NS matter using the K�

optical potential U �K(�0) = �120MeV. The dashed and dotted curves are the EOS�s with
only K� and no �K condensations.
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Figure 3: The equation of state (EOS) of the cold �-stable NS matter using the K�

optical potential U �K(�0) = �155MeV. The dashed and dotted curves are the EOS�s with
only K� and no �K condensations. The red dotted lines are the equilibrium states or the
mixed phases of the two phases, the pure baryon and the K� condensed phases, and the
K� and �K0 condensed phases, respectively.
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Figure 4: The mass sequences of the cold �-stable non-rotating NSs for the K� optical
potentials U �K(�0) = �120MeV and �155MeV. The dotted curve is the result with no
antikaon condensations.
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Figure 5: The mass-radius relations of the cold �-stable non-rotating neutron stars for
the K� optical potentials U �K(�0) = �120MeV and �155MeV. The dotted curve is the
result with no antikaon condensations.
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