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Abstract

Given a scattering metric on the Euclidean space. We consider the
Schrodinger equation corresponding to the metric, and study the propa-
gation of singularities for the solution in terms of the homogeneous wave-
front set. We also prove that the notion of the homogeneous wavefront
set is essentially equivalent to that of the quadratic scattering wavefront
set introduced by J. Wunsch [21]. One of the main results in [21] follows
on the Euclidean space with a weaker, almost optimal condition on the
potential.

1 Introduction

We embed the Euclidean space R™ into the half sphere S using the stereo-
graphic projection following Melrose [13]:
1
SP:R" — St = {w e R"" ||w| =1,w, >0}, z+— ——=1(z,1).

B V14 |z]?

X = S% is regarded as the Euclidean space with boundary S "= at infinity, and
x = 2"t for 2 € R"\ {0} defines a boundary defining function of X near 9X.
Consider a scattering metric g on X. Scattering metric is a Riemannian metric
in the interior X° that has, near the boundary, an expression

dz? h
_+_

Here h is a 2-cotensor on X and, when restricted to 90X, defines a Riemannian
metric on X . Under these setting we have the Schrédinger operator

n

1 ..
H=——"5" 0,49./30, + V.
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where V' is a potential function, (gij ) is an inverse matrix to g = (g;;) and
g = detg (an abuse of notation). We assume that V is a smooth real-valued
function on X° = R" with the following growth property. Take some v < 2.
Then, for any coordinates (x,y) of X near 9X with y the coordinates of U C 90X
and any compact set K C U, we have the estimates

|02V (2)] < Crjol2)"*,
10102V (2)| < Cicja(2)*+571 for Ja] > 1

uniformly in z € R™ with y(z) € K. The condition above allows the potential to
grow in any subquadratic rate in the radial direction. When differentiated in the
spherical components, the growth at infinity gets to be weaker, which implies
that the variation in the spherical components is slightly weakened. This is a
modification of the symbol class S ((z), (z) "2dz?) with v < 2 in Hérmander’s
notation [8]. Using the formulae compiled in appendix A, one can easily see that
the set of functions satisfying the above condition contains S ((z)*~!, (z) "2dz?)
and is contained in S (<z>”, (z)*2d22). We have to write the condition in the
coordinates (z,y), the polar coordinates to exploit the information from the
scattering metric g that is characterized in the polar coordinates.
H is essentially self-adjoint on C§° (R™) with respect to the inner product

(1) (o) = [ VA

Here note that ,/g in the standard coordinates is bounded from above and below
by positive constants, and thus there is a natural isomorphism L? (R", ,/gdz) =
L? (R™), which will be seen later. Hence for any initial state ug € L? (R™, \/gdx)
we have the solution u; = e *Hu to the time-dependent Schrédinger equation

.d
Z&Ut = H?,I,t.

We want to characterize the wavefront set for u;, in terms of homogeneous
wavefront set for ug:

Definition 1.1 Let u € 8’ (R") and (29,(o) € T*R™ = R?". We denote
(20,C0) ¢ WF(u),
if Co # 0 and there exists ¢ € Cg° (R*™) such that ¢(zo, (o) # 0 and that
l* (2, AD-)u(2)| L2 = O (h*) . (1.1)

(1.1) is the same as
H/ei(z_w)gcp <Z _; w,h() u(w)dwd(

with d¢ := (27)~"d(. The wavefront set WF(u) C R*"™ of u is the complement
of the set of such (z0,(o)’s.

:O(hN) for any N >0
L2




We also denote

(20, Co) ¢ HWF (u),

if (20,C0) # (0,0) and there ezists ¢ € C5° (R*™) such that ¢(zp, (o) # 0 and
that

[l (hz, hDz)u(z)|| 2 = O (R™).
The homogeneous wavefront set HWF (u) C R?"™ of u is the complement of the
set of such (zo,Co)’s.
We also consider the Hamilton equation
. Op
Z(t7 20, CO) = 8_<(z(t7 20, CO)a C(t7 20, CO));
P (1.2)

$(t:20, Go) = =5 (=(t: 20, o), € (8 20, o)

with the initial value (z(0;zo,Co),<(0; 20,¢0)) = (%0,C0) € T*X°, where the
Hamiltonian p is the free kinetic energy:

n

Definition 1.2 We say (20, (o) is forward (respectively, backward) non-trapping
if the solution (z(t; 20, o), C(t; 20, o)) to the Hamilton equation (1.2) satisfies

, ligrn |z(2(t; 20,0))| = 0 (respectively, . lim |2(2(% 20, C0))| = 0 ),

where x is a boundary defining function.

If (20, (p) is forward (respectively, backward) non-trapping, then the trajectory
has a forward (respectively, backward) limit direction

t.
wt = wx(20,¢0) := % lim 2(t: 20, o)

im —————— (respectively).
P Tz, Go)] :

The sign is adopted to indicate the direction of the momentum, not of the
position.

Theorem 1.3 Let ug € L? (R™), and assume that (29,Co) € T*R™ is backward
non-trapping. If there exists a to > 0 such that (—tow_,w_) ¢ HWF (ug), then

(20, o) & WF (us ).
The next proposition is from [15].

Proposition 1.4 Ifu € &' (R™) decays rapidly in a conic neighborhood of zy €
R™\ {0}, then (29, Co) € HWF(u) for any o € R™.

Theorem 1.3 and Proposition 1.4 result in



Corollary 1.5 Letug € L? (R") and (20, o) € T*R™ be backward non-trapping.
If ug decays rapidly in a conic neighborhood of —w_, then (zo,(o) ¢ WF (uy)
for any t > 0.

If the metric ¢g is asymptotically flat, this corollary is known as microlocal
smoothing property of Craig-Kappeler-Strauss for the Schrédinger equation [1].

Wunsch [21] introduced the notion of the quadratic scattering (qsc) wave-
front set WF s (u) after Melrose [13] to study the propagation of singularities.
WF s (u) is a subset of

CyseX = 8 (P°T*X) 2 (R™ x S™ 1) U (S77 1 x §* 1) U (S" 1 x R™),

if X = S% D R™. The intersection WFqq(u) N (R™ x S™~1) corresponds to
WF(u), and WFqg(u) N (S™~! x R™) is regarded as a blow-up of the scattering
(sc) wavefront set in its corner, where the information on the wavefront sets of
u and Fu is mixed up. The next theorem implies that WFqe(u) N (5™~ x R™)
is essentially equivalent to HWF(u).

Theorem 1.6 Define U : R™\ {0} — GL(n;R) by

2z
\I/(Z) = <5ij + —2> .
2] ij
Then the equality

{(2,0(2)¢) € R*"[ (2,¢) € HWF(u) \ ({0} x R")}
={(tz,t() € Rgn‘(z,é) € WFgse(u) N (S™ ' x R™) ¢t >0}

holds.

We can also interpret that the homogeneous wavefront set is a blow-down of the
gsc wavefront set in its wavefront set part WFgec(u) N (R™ x S"71).
If we note that for ¢t > 0
(—tw_,w_) € HWF (u;) <> (—w,, “;—;) € WFese (),
then one of the main results in [21] follows from Theorem 1.3 under a weaker
condition on the potential on the Euclidean space.

We refer to the papers [6], [7] by Hassel and Wunsch for the sophisticated
results on the Schrédinger propagator on scattering manifolds. In particular [7]
is very useful as an introductory paper to [6].

The homogeneous wavefront set was originally adopted by Nakamura [15]
for characterizing the singularity and the growth property simultaneously. The-
orem 1.3 generalizes one of the results in [15] to the scattering metric. Though
the proof of the theorem is based on Nakamura’s argument, the class of the
pseudodifferential operators gets to be even worse and we have to use the polar
coordinates for more precise estimates. We also have to prepare the pseudodif-
ferential calculus suitable for our purpose. The proof of Theorem 1.6 is just a
straightforward application of this calculus.



The microlocal smoothing property has been studied also in the analytic
category [12], [17], [18], [19]. Robbiano and Zuily [17], [18], [19] used the analytic
quadratic wavefront set, an FBI-transform-based analogue to the gsc wavefront
set. On the other hand, Martinez, Nakamura and Sordoni [12] succeeded to
generalize the results in [17], [18] using the analytic homogeneous wavefront set.

In this article the potential has the subquadratic growth in radial direction
and is dealt with as a perturbation to the free Laplacian. The potential with
the quadratic growth is not just a perturbation any more, which would be seen
from the proof of Theorem 1.3. The case of potential with a quadratic growth
are studied in [5], [22], [23], [24]. Microlocal smoothing property is completely
different under the existence of the quadratic potential term. Hence our setting
is almost optimal.

See works by Doi [2],[3], [4] in the case that the trajectory is trapped .

In Section 2 we study the free classical trajectories on general scattering
manifolds. We will show the existence of the global solution to the Hamilton
equation. In particular the non-trapped trajectory asymptotically approaches
the straight line near the infinity, the boundary 90X, and collide with a point on
0X. The methods applied here are rather elementary.

We adjust the theory of the pseudodifferential operators for our purpose
in Section 3. We consider two kinds of parameters, ¢, the time, and h, the
semiclassical parameter. The class Sq (m) is defined as the set of symbols such
that

3?3?a(z,g;t,h)‘ < Capm(z, Gt h)

uniformly in ¢ € Q and ¢t € (0,1]. The theory of the semiclassical analysis
would demand the operators of the form a(z, hD,;t, h), however, then the cor-
responding class in our argument would be S|_¢, o) (1, (z) "2d2? + (2)%d() or

S1_to,0] (1, <h’1t>72 dz% + <h’1t>2 d@) and the theory doesn’t work. We also

need the operators of such form as a(hz, hD,;t,h) and their compositions with
other classes. In this point of view we give up the composition formula from
the general theory and check each time if the calculus work, that is, we do not
present the asymptotic expansion formula for the composition in strict classes,
but demonstrate a simple method to check the asymptotic expansion in rather
loose classes. We also give the inequality of Garding type.

In Section 4 we give the proof of Theorem 1.3. Observing the equality

(F(0, h)uy,, Uto>L2(R",\/§dZ)

0 (1.3)
= (F(—to, h)uo, uO>L2(Rn,\/§dZ) + / (0F(t, h)uy, ut>L2(R"7\/§dz) dt,
—to
where 9
SF(t,h) = aF(t, h)+i[H, F(t,h)],

we will construct the symbol ¢(z, (;t, h) of F(t,h) with appropriate properties.
The support supp ¢(-,-;t,h) as h — 0 moves towards some direction in (z, ()-
space, so that the left-hand side and the fist term of right-hand side in (1.3)



get to be of the form in Definition 1.1. We also require that the Heisenberg
derivative §F is almost non-positive in semiclassical sense, which corresponds
to that the Lagrange derivative %@ is non-positive.

Theorem 1.6 is proved in Section 5. Here the calculus in Section 3 works
well.

We often use the coordinate change between the standard coordinates z and
the polar coodinates (z,y) on the Euclidean space in Section 4. We gather the
formulae in Appendix A.

Acknowledgement The author would like to sincerely thank Professor Shu
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Nakamura also for reading the manuscript and making useful comments.

2 Classical Flows

In this section we study properties of classical trajectories on general scattering
manifolds. Let X be a compact manifold with boundary and x a boundary
defining function. Given a scattering metric g, we can write near the boundary

0X
B dx? n h(zx,y,dz, dy)

9= e 2
dx2 1 , n—1 ) ) n—l . .
=T += hodx? + Z hi (dzedy’ + dy'dx) + Z hijdy*dy’

i=1 ij=1

with y local coordinates of the boundary 0.X and h;, h;; depending smoothly
on (z,y). Since the inverse matrix to

1 72+ ho t (hi)»>1 )
i) = — [ 2.1
(9:0) = 3 ( (hi)i>1  (hij) @1)
is given using the Cramer’s formula by
2, .4 t (2,50
of T+ T (x cp)
: . g 2.2
x ( (xQQDZ) (hm +CE2Q0”) > ’ ( )
where ¢, ¢*, ¢* depend smoothly on (z,y) and (h¥) = (hij)fl, we can write
the Hamiltonian function p on 7% X° in the form
p(@,y,&m)
(2.3)

n—1 n—1
($4 + CEGQD) 52 + 2x4€ Z @1777, + Z (x2hlj + x4g0ij) 01,
i=1 i,j=1

N~



Then the Hamilton equation (1.2) near the boundary is

n—1
&= (a* + %)+t ol (2.4)
i=1
‘ ‘ n—1 3 y
g =atte’ + ) (@R + 2oV (2.5)
j=1

1 3 5 690\ 2 ?,n_1 i dp\
&= 2<4m + 6x° + o £ 335; 4o —l—xax i

1] 2 O 9" (20)
ij ij i
— 3% E <2hj+x 3 + 422%™ 4 23 3 >nmj,

T €T

n—1 ; n—1 ; i
. 1 609 o 4 el 1 25}”;C 4590]k
;= — a2 - E N, — = E — 4+ - k. (2.7
" 2x 32/Zg ’ 5j:1 dy* " 2]'1@:1 ) Ay’ ! oy* nimk- (%)

Here the variables are omitted, that is, z = 2(t), h% = h¥(x(t),y(t)) and etc.
Take the initial value in 7% X °, then we can show that the solution exists globally
for t € R. The existence of the local solution and its uniqueness is clear from
the general theory of the differential equations. Before going to the proof of
the existence of the global solution, we prepare a lemma, which is valid for any
metric on an open manifold.

One notes that the Hamiltonian preserves along the flow:

p(2(1), C(1)) = p(2(t),y(t), £(1),n(t)) = po = const.

Lemma 2.1 Let (2(t),{(t)) be a solution to (1.2) which is defined on an interval
(o, B) C R and does not extend out of this interval any more. If (o, ) # R,
then the trajectory escapes from any compact sets in X° in finite time, i.e., for
any compact set K C X° there ezists c € («, 3) such that

zt) ¢ K, c<Vt<p or a<Vt<eg,

when B < +00 or a > —o0 respectively.

Proof. If (2(t),¢(t)) satisfies (1.2), so does (z(—t), —¢(—t)), and thus the situ-
ation reduces to the case § < 4+o00. Note that the trajectory is bound to the
equienergy surface

Spo = 1{(2,Q) € T"X°[p(z,¢) = po}.
Thus the Hamilton vector field

op 0 Op 0
=———-——€cl' ("X T(T"X"°
P = gcor awac <L T ASTITXY),

is tangent to S, which implies that H,, is regarded as a flow on S, .



Assume the opposite of the conclusion, that is, there exists a compact set
K C X° and a sequence {t,} C («,3) such that

z(tp) € K and lim t, = .

n—oo

Consider a compact set

S;D0|K:{(27C) ESp0|Z€K},

a restriction of a sphere bundle on X° to K. Using the compactness, we can

cover Sp, | x With a finite covering

N
R Sp0|KCUUj’

j=1

U= {(Uj, {2, ')}\t|<sj) }N

j=1

where 4 is so-called a local 1-parameter group of local transformations. In other
words, for each |t| < ¢,
p;j(t,-) : Uj — Sp

is a diffeomorphism from U; C Sp, into S),, and, for each z € Uj,

©i(-,2) : (—€5,€5) = Spo

is a curve along H, with ¢;(0,z) = z. Then, putting ¢ = min; e; > 0, for any
(2,¢) € Spo| x» We can solve the Hamilton equation with an initial value (2, (),
at least, for time t € (—¢,¢). Now take ¢,, such that § — ¢, < /2, then the
trajectory can be extended out of («, 3), which contradicts the assumption. O

Proposition 2.2 Let X be a scattering manifold and (z0,¢p) € T*X°. Then
the Hamilton equation (1.2) has a unique solution (z(t; z0,Co), ((t; 20, o)) de-
fined for all t € (—o0, +00).

Proof. We assume that the solution (z(t),((t)) is defined on (o, 5) C R with
8 < 400 and does not extend out of this interval. We derive a contradiction by

computing
B—e

L =lim Vo (G0), 2(0)dt,

€0 Jo

the length of the trajectory in two ways. We can assume that the solution is
written in the form (x(t), y(¢), £(t), n(t)) by translating ¢ and exchanging the ini-
tial value. (The coordinates (z,y) might not be defined far from the boundary.)
Then in view of Lemma 2.1 z(t) satisfies

limz(¢t) = 0.
1B ()



Since

n—1

2po = (1w +a2p) '€+ | (W —ap'e? +a2p") aPmin
ij=1
n—1 2
+a <x€ +> soim) (2.8)
i=1
n—1
> (1—a+a2%p) ¢ + Z (R — zp' ! + ") mimy,
ij=1

considering orders of x, we obtain the estimates
lz(6)*€(t)] < O, Ja(t)n(t)] < C (2.9)

for t € [0,5) with a large constant C. Here we used the facts that ¢’s are
smooth for x > 0 and that k¥ is positive definite near the boundary. We also
refer to that, though the coordinates y might not remain the same for all ¢, the
estimate is valid since we can cover the boundary with a finite number of charts.
This kind of argument will be used below without mentioned. Then it follows
from (2.4) and (2.5) that

l&| < Ca®,  |§'] < Ca,

and we have

=

N N f,t2 ]. -9 ! . . .7 . = .7 .9
G0 20) = | T+ =5 | hod? + ; hi (49 + ') + ”21 hijy'y’
1
|$| 1 n—1 n—1 2
2 = ho —l—;hi (& —|—yx)+ijz::1hijy IV
ki
> P .
Then
B-e 4
L > lim / —dt -C'B
|0 0 x
32(576) 1
|0 z(0) x
1 1
_ 1 - O/
WrG-o w0 7
= +o00.



On the other hand, since
g (£(t),2(t)) = Zgij(Z(t))Z'i(t)ij(t)
= Z 9i5(2(1) > g™ (2())Gk (1) Y g7 (2(1) ()

k 1
= 2po,
we have
L = /2pob.
These are the contradiction and the proof is completed. O

Provided that the initial value is non-trapping, the more information about
the trajectory can be extracted. It suffices to study the only forward non-
trapping case, since, if (20, (p) is backward non-trapping, then (z, —(p) is for-
ward non-trapping. Thus we assume (zp, (o) is forward non-trapping. Taking
To > 0 large enough, the equations (2.4-2.7) with respect to the coordinates
(x,y) are valid for t > Tp.We obtain from (2.8) the estimates (2.9) for t > 0. It
follows from the equations (2.4), (2.6), (2.7) and the estimates (2.9) that

&=zt +0 (xB) ,
i = [42%3 + 62° 30 + 2% (20,0 + 9Oyp)] € + (2% + 259) €
+ 423k Z o' + o Z [(20.0" + 90y ") mi + ']
= [42® (z*¢ 4+ O (2%)) + 62°0 (2*) ¢ + 2° (O (2%) O + O (x) Dy)] &
+ (x4 + xﬁgp) [—296352 -z Z hijnmj +0 (1)}
+42°0 (2?) Z o' + ! Z [(O (2?) Oup + O (2) Oyp) mi + ' O(1)]
=227¢% — 2° Z hijnmj +0 (x4) ,

where O (xN ) is a C*° function in ¢ € R whose absolute value is estimated from
above by some constant times 2" when ¢ > 0. Hence

2 .2 ..
L R D
dt? \ x? 4 3

= 22%¢% + 222 Z h¥nn; + O(x)
= 4dpo + O(z).

(2.10)

Taking Ty larger if necessary, we have

2 1
3po < a2 (F) <bpy for t>1Tp

10



and so,

3 1
—po(t—T0)2g§+Ct+c'g

t—Tp)2.
5 Do ( 0)

| Ot

Therefore, by taking Ty larger if necessary, there is some C > 0 such that
o < % <Ot for t>T,
and thus
CM2<2?<0t™? for t>Tp.

Considering this estimate, (2.10) becomes

d? 1 _

where O (t’l) is a C* function in ¢t € R and its absolute value is estimated
from above by a constant times ¢! for ¢t > Ty. Thus we have

1
ol 2pot® + O (tlogt).

Moreover, using (2.3), (2.4) and (2.6), we have

% (z€) = —2t¢% — 22 Z hnn; + O(x)
=—2po+O0(t7"),
and thus
€= (~2pot + Ol1og1))
= — (2po)? 12 + O(tlogt).
We obtain

logt
226 = —\/2py + O (—tg ) .
Combining this with the inequality (2.8), we have

xn =0 <lngt) , (2.11)

and then, from (2.5) and (2.7) the estimates
; logt ; logt 2
Z/:O<t—2>a 7]=O<<T)>

11



are obtained. In particular, with an appropriate choice of the coordinates y, the
limits
i i i i
yh = Jim y*(8),  my = lim 9'(7)

exist. Note that we can improve the estimates, for example, (2.11) is improved
to be

xn =0 (til)

by the fact that 7 is bounded. We don’t do so, however, since we won’t need it
later.

Proposition 2.3 If (20,() € T*X® is forward non-trapping,

1
2

(t; 20, C0) = (2pot® + O (tlogt)) ?,
§(t; 70, Co) = = (2p0)* 2 + O(tlog)
as t — 4o00. Moreover
z4(20,C0) = tligrnooz(t; 20,C0) € 0X
exists, and, with an appropriate choice of coordinates y of the boundary,
Y+ (20, Co) :== tEIJPooy(t; 20,C0), 1+ (20,C0) = t_1§+moo77(t; 20, Co)

exist.

We now apply the above results to the backward non-trapped trajectory
on the Euclidean space R" C X = S? with a scattering metric. If (z9,(p) is
backward non-trapping, then (zp, —(p) is forward non-trapping and

(Z (t7 20, CO) 3 C (t7 20, CO)) = (Z(_t7 20, _C)a _C (_t7 20, _CO))
hold. Since
2 (20, o) 7= lim 2z (¢ 20, Co) = 2z4(20, =C)

exists as a point on 90X, taking Ty large enough and exchanging the standard
coordinate axes if necessary, we can assume z"(t; 2o, (o) > € > 0 for all t < —Tj.
This in particular allow us to take the coordinates (x,¥(4.,)), which is defined
in Appendix A, near the trajectory for t < —Ty. This choice of the coordinates
will be used in Section 4. As

Y- (207 CO) = tl}gloo y(t7 20, CO); - (207 CO) = t—l‘}rfnoo n(t> 20, CO)

12



exists, w_(zo, (o) exists. Moreover, since we have

_1
2

z(t; 20, ¢0) = (2pot® + O (|t|1og [t])) %,
£(t; 20, C0) = (2p0) 2 + O ([t] log [¢])

as t — —oo, it follows, using the formula (A.7), that
(~(20,C0) = lim ¢(t; 20, Co) = v/2pow— (20, Co)-

Thus (—tow—,w_) in Theorem 1.3 can be replaced by (—to(—,¢_).

3 Pseudodifferential Calculus

For the proof of Theorem 1.3 and 1.6 we need the pseudodifferential calculus.
The symbol classes we consider here are So(m) following Martinez [11], and
Sq (m, g) following Hormander [8], both added the parameters ¢ € Q and h €
(0,1]. We use the class Sq(m) as theoretical foundation.

Definition 3.1 Let ) be the set of ordinary parameters. Here ‘ordinary’ means
that we also consider the distinguished parameter h € (0,1], what is called semi-
classical parameter other than t € Q. A positive measurable function m(-,-;t, h)
on R?" parameterized by (t,h) € Q x (0,1] is an order function if there are
constants Ng € R and Cy > 0 such that

m(z, (it h) < Co (2 — 215¢ — 1)V m(z1, Cist, h) (3.1)

uniformly in (z,¢), (z1,¢1) € R*™ and (t,h) € Q x (0,1], where

(2:0) = (1422 +1¢) 2 .

A C*= function a(-,-;t,h) on R?" parameterized by (t,h) € Q x (0,1] is in
the symbol class So(m) if and only if for any o, B € Z7} there exists a constant
Cop such that

3?3?a(z,g;t,h)‘ < Cagm(z, Gt h)
uniformly in (z,(,t,h) € R?™ x Q x (0, 1].

The semiclassical parameter h is important when it is small, and so the symbol
may not be defined for A near 1.

The class Sq (7, §) is defined following Hérmander, where the weight func-
tion m and the metric § depend on parameters with the uniformity in them
assumed. We use Sq (M, ) just for the notational simplification and the precise
definition is not needed.

There will often appear the class S;_, o) (m, 1), where m does not depend
on (z,¢) € R?" and §; is given by

g1 = (W) 2 dz2 + h% (W) dc.

13



Note that, since h (h='t) < (to), we have S{_¢, o) (m, 1) C S|_¢,,0) ().
If a,a; € Sa(m), j =0,1,..., satisfies

N
a—ZajESQ (hkN“m) for N=0,1,...
j=0

with
lim kxy = 400,
N—o0

we write

o0
a ~ E CLj.
=0

If one defines
Sa (h>m) = ) Sa (h¥m),

N>0

it is easy to verify the asymptotic sum determines ¢ modulo Sq (h*°m), that is,
if a’,a; € Sa(m), j =0,1,..., satisfies the same condition as above, then

a—a € Sq(h*m).
Let a € Sq(m) and Ky C R*". If there is an a’ € Sq(m) such that
suppa’ (+,5t,h) C Ky, and a—a’ € Sq (h®m),
we say a is supported in Ky, modulo Sq (h*°m).

Proposition 3.2 Suppose a; € Sq (hkfm), j=20,1,2,..., and k; — +oc as
Jj — +oo, then there exists a € Sq (m) such that

o0
a ~ Z CLj.
§=0
In particular, if all a;(-,-;t,h) are supported in K, C R*, we can choose

a (-, -;t, h) with the support in Ky,

Proof. Replacing a; by

a;: Z aleSQ(hjm),

J<ky<j+1
we can assume k; = j. Take a cut-off function x € C§°(R) with

N )
X(A)—{o, it [A] > 2,
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and increasing constants C; such that

s hIm(z, Gt h) T |0200ay (2 G| < €
(Zvaty)l?‘Eg‘Qi‘fglx(O,l]

and

lim Cj = +o0.

J—00

Then for |a| + 8] < j and (z,(,t,h) € R?™ x Q x (0, 1], we have
1
h{1—y(—
(-x(ax))

from which it follows that

(-x(aw))

We now define

1 _
0200a; (2, Gt )| < - Colma, Gt )

< h'm(z, (it h),

020 a;(z, Gt h)’ < W tm(z, Gt h).

a(z, (5t h) = i (1 - X (ﬁ)) aj(z, G, h),

Jj=0

and check this a has the properties of the proposition.

First note that the series converges and a(-,-;t, h) is in C*°(R?") since for
each h € (0,1] the sum is the finite sum. In particular, if all a; (-,;¢, h) are
supported in Ky p,, so is a (-, ;t,h). For any o, 3 € Z1}, if we take jo = |a|+ |0,
we have

Jo—1

1
oofalz. it h)| <[ (1 —x (m)) 0207 a;(2, ¢;1,h)

Jj=0

- 1 anf .

+ Z (1 - X (@)) 970¢ a;(z, it h)
J=Jo

Jo—1

<>
§=0

uniformly in (z,(,t,h) € R?" x Q x (0, 1]. Therefore a € Sq (m).

0200 a;(=, G, )| + 30 W m(z, Gt )

J=jo

15



Take any k > 0 and «, 3 € Z} and set jo = max{k + 1, |a| + |G]}. Then

k
0297 | a(z, ¢t h) = > aj(z,Gt, h)
§=0

IN

k
1
X (= ) 0200a;(2, ¢t  h)
ZO <th> <

j=

Jo

X (1-x(gz) ) eetaitecinn
j=k+1 J

2 (1-x(gg) ) oot cinm

Jj=jo+1

1
< Zx(@)asa?aﬂz,c;t, )
=0

Jo
+1> (1—X<Clh>)aaaﬁaj LGty h) Z K= m(z, Gt h).

j=k+1 Jj=Jjo+1

In the last formula the first term is zero for small h, and the second and the
third terms are estimated from above by a constant times h**1m(z, (;t, h). The
proof is completed. O

Let g be a scattering metric on X = S} D R™ and denote det g by g.

Definition 3.3 Let a € Sq(m) and u € S(R™). We define the pseudodifferen-
tial operators

aw(z,Dz;t,h)u(z):/ei('z*w)ca <Z+w,g t h) w(w)dwdc, (3.2)

a9 (z, Dt h)u(z) = #(z)aw (2, Dzt h) v/ g(2)u(z). (3.3)

If an operator A(t,h) with parameters (t,h) € Q x (0,1] can be written in the

form (3.2) with some a € Sq(m), we say a is the Weyl symbol of A(t,h) and

denote it by o™ (A). Similarly if A(t,h) is of the form (3.3), we say a is the

g-Weyl symbol of A(t,h) and denote it by o9*(A).

Proposition 3.4 Leta € Sq(m). a9%(z,D;t, h) defines a continuous operator
a?(z,D,;t,h): S(R") —» S (R")

for each (t,h) € Q x (0,1].

16



Proof. First we prove the multiplications by g and 4%/5 define continuous

operators S (R") — S (R™). It is sufficient to show that the derivatives of g are
bounded, and that g is estimated from below by a positive constant . Using the
expression (2.1) we can write

VITINE] = — et (s (2,)) + 71 (2 dndy|

with r; depending smoothly on (x,y). Thus we have from the formulae (A.5)
and (A.6)

9(2) = [det (hi; (@,)) + a1 (2.9)]r2 (9)

z z 2 (3.4)
O () i (@)

where 75 is smooth in y. Then we easily see the properties we want. Now we
have only to see the continuity of a*(z, D,;t, h). We denote the seminorms on
S (R™) by

For any [ > 0 and o € Z7}, we have

} (2)'0%a™ (2, D,;t, h)u(2) |

ez [0 80N o (52 ) utw)| dud]

- \ [ eemngon ) [0 Na (S5 Gt utw)| dwdc\

zZ4+w

< Clulyyjaj+Notnt1 /<C>_Nm< 5 7C;t7h> (w) =N dwd(

< Clula oo 0052, () [(0)%0 )~ dwa

N
<Cm(0,0;t,h) |u|N+|a\+N0+n+1 (2)7°,

where N is any number larger than n 4+ Ny, and C, which might be different
from line to line, is a constant depending only on [, @ and N. Then we have

|<z>l_N°6§‘aw(z, D.;t, h)u(z)| < Cm(0,0;t,h) |u|]\,er'Jr]\,OJrnJrl

for any [ > 0 and o € Z, which concludes the proof. O

Proposition 3.5 The formal adjoint operator to a9%(z, D,;t, h) on S (R™) with
respect to the inner product (-, -)LQ(W Vadz) is given by a?%(z,D,;t, h), that is,

(a9 (z, D t, h)u(z),v(z)hz(wyﬁdz) = (u(z),a"(z, D.;t, h)v(z)>L2(Rn7\/§dz)

for all u,v € S(R™), where a(z,(;t,h) = a(z,(;t,h). In particular, if a is
real-valued, then a9%(z, D.;t, h) is formally self-adjoint.

17



Proof. Obvious. O

Proposition 3.6 Let a € Sq (m) and b € Sq (m'). Then the composite opera-
tor
a?(z,D,;t,h) 0 b9 (z,D,;t, h)

s written in the form
9 (z,D 5t h) = a(z,D,;t,h) 0o b9 (z, Dy t, h)

with the symbol ¢ € Sq (mm') given by

C(zac;ta h) = e%(DZDgl_DCDﬂ)a(Z)C;ta h)b (Z17<1§ta h) ¢ C’ (35)
z21=z,(1=
which would be denoted by afb(z,(;t, h). We can also write
N- J
1
et =3 4 {5000 - 000} et Gt b e
= J! s1=2,61=¢
+ RNQ(Z,C,t,h)b(Zl,Cl,t,h) (36)
z21=2,01=¢
with
1 N—1 . N
o (1—7) i7(D.D¢, —D¢ D, ?
RN _/0 WQQ ( €1 ¢ l)dT 5 (828<1 — 8C821) .
If there is a sequence ko, ki, ... such that
]‘1’ch()|21:2’<1:C € S (hmm') and jlg{.lo kj = o0
aflb can be expanded into the asymptotic sum
ath~ Y — { (8.0¢, — acazl)} ab , (3.7)
= ! -

where we omitted writing variables. This convention would be the same in the
following.

Proof. Since

agw(z, D.;t, h) © bgw(zv D.;t, h)

1
= oa"(z,D,;t,h) ob” (2, Dt h) o v/g(2),

V()

the formula (3.5) follows from the composition formula in, e.g., [11]. We now
prove (3.6). First consider the case where a,b € S (R*") for each (¢, h). Then

18



using the Taylor expansion

P I J
L(2*¢r—C*2)) D I V=
e?2 1 1 _;]'{2(2 Cl CZl)}

. N 1 N-1
P A—7)" " irrg—can)
tsea-on} [ G ar

and partial integration, it is easy to verify (3.6). Since all terms in the right-
hand side of (3.6) are continuous in (a,b) € &' x &', we have (3.6) for any
a € Sq (m) and b € S (m'). The rest part of the proposition is obvious. O

We represented the remainder terms using the operator R; followed by the
restriction of the variables. This is because the restriction means the loss of
information. We want to exploit from R;ab as much information as possible
before the restriction. It is shown below that R; preserves the symbol class
Sq (mm'), but, before that, we give a corollary to Proposition 3.6.

Corollary 3.7 Let a € Sq (m) and b € Sq (m'), then we have

afb — bfa = %{a, b} + Rs3 (ab — ba) |

21=2,(1=C"

where {-,-} is the Poisson bracket defined by

000 _ 90

0C 0z 0z0¢

In particular, if there are k;’s for afb and bja as in Proposition 3.6, then we
have

{a,b} =

1
atb — bia — ;{a, b} € S (K*mm’).
Proof. From Proposition 3.6, it follows
1
afb =ab + % (—0.a0¢b + 0¢:ad,b)

1
) (9:0¢, — 6C6z1)2 ab‘zlzz7<1:< + RBGb‘

z21=2,(1=¢’

bfa =ba + 2% (—0.b0¢a + 0:b0a)

— é (0:0¢, = 0c0:,)"ba|  __ .+ Raba|  __ . _..
One observes that
(0:0¢, = 0c0-,)? a(z, G t, h)b(z1, Gis t, )|
= (8.,0¢ — 0.,0.)°

= (0:0¢, — 0¢0,

21=2,(1=(

b(zlv <17 ta h)a(z) C? t? h)‘
2 b(Z, C, t, h)a(zh Clv ta h)‘

) 21=2,01=¢
) z1=2,(1=C"

Then the corollary follows. O
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Lemma 3.8 Let a € Sq(m) and p € C* (Rgn), Suppose that, for any o, €
7%, there exist constants Cog > 0 and neg such that

0207p(2,0)| < Cag (5:0)"" (3.8)
Then p (D,,D¢) a € Sq (m).

Proof. Set Z = (z,(). One has to check the estimate for 9§p (Dz) a, but, since
0% and p (Dz) commutes, it suffices to check the estimate only for p (Dz)a. By
the definition we have

p(D)a(Z:t,h) = / 2-2)2" (7 a (251, h) dZ'aZ*

:/ei(zfz’)z* <DZ*>NP(Z*)
(z)"

M Cl(Z/;t,h)

/ *
Z- ZI>NdZ az*.

(Dz')
One applies the inequalities (3.1) and (3.8) to the above and obtains
Ip(Dz)a(Z;t,h)| < Cnym (Z;t,h) / (zym Mg g NN azaze.

Taking N > Ny + 2n and M > ny + 2n, and changing the variable 2/ — Z" =
7' — Z, the integral in the right-hand side converges to a constant independent
of Z. O

The operators of the form p(D,, D) often appear, for instance, in compositions
and changes of the quantization. Proposition 3.6 guarantees the composition for
the symbols in So(m) and Sq (m'), however, this doesn’t guarantee the asymp-
totic expansion. We use Lemma 3.8 to check the expansion. We demonstrate
the procedure in the proof of the following proposition, which implies that the
subclass S[_¢,0 (M, g1) C Sa (m) makes an algebra. Recall that g; is given by

G = (W) 2 d2? + b2 (h ) ¢
Proposition 3.9 Let a € S|4, ) (m,§1) and b € Si_y, o (m', §1). Since
Sit0,0 (M, §1) C S{—to,00 (M) and  Si_¢, 0 (M, G1) C Sj—ty,0 (M),

Proposition 3.6 can be applied to a and b, and we can consider the composite
symbol afb € Si_y, 0] (mm'). Then afib € Si_4, o (mm’, g1) and the asymptotic
expansion (3.7) is valid.

Proof. Note that

/NG

(z,21)

(ﬂc)cl)a’(zv Ca t7 h)b(zlv Cla t7 h) € S[7t070] (hW' <h_1t>7|a‘+lﬁ‘ mm/)

as a function of (2, z1,(, 1, ¢, h). Then, apply Lemma 3.8 with p(2*, 27, (*, (7) =
ez(Z"G=C"#1) and we see

8&,7;1)8 %(DzDCI_DCDH)ab c S[fto,o] (hW\ <h71t>*\0¢|+\ﬁ| mm/) :

B8
(¢.¢)€
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which implies, through the restriction of variables, afb € Si_, o) (mm/, g1). To
see the asymptotic expansion we estimate the remainder term. Since

i N
{5 ((928@ - 8§8zl)} ab
€ Spigop (WY mm!, (h71) 77 (d22 + dz) + 12 (0 7 (dC + dc?) )

we can check similarly to the above argument with

* * * * 1 ! _ Aor(*¢F—(C* 2™
p(Z az17< aCl):mA (1—7‘)N 162( Cl C 1)d7.

that

RNab‘z1 € S1_10,0 (thm’,gl) cS (thm’) )

=z,01=¢C
Then the asymptotic expansion follows. O

We will often use this argument in Section 4 to see what class the composite
symbol belongs to, when we composite the symbols in Sq (m, §) and Sq (m/, §’)
with different § and ¢’. Then Lemma 3.8 will be very useful for estimating the
remainder terms.

Theorem 3.10 Let a € Sq (m) with an order function m = m(t, h) which is
independent of (z,(). Then a9%(z,D.;t,h) extends to a bounded operator on
L? (]R", \/Edz), and there exist constants Cy, and M, depending only on n such
that

a2, Dot )l g pan, ygasy) < Cn - D [0 alsto)

Loo R2n
ol <M, ()

for each (t,h) € Q x (0,1].
For the proof of the theorem, see any textbook for pseudodifferential operators,
e.g., [11].

The next theorem is the sharp Garding inequality revised for our purpose:
Theorem 3.11 Suppose that a € S|_, o] (M, §1) with m independent of (2, ()

satisfies
a(z,Ct,h) >0

for all (z,(,t,h) € R?™ x [—to,0] x (0,1]. Then there exists r € S(—to,0 (hm, §1)
such that
a?(z,D,;t,h) > —r9%(z, D, t, h),

that is, we have for any u € S (R™)

<a9w (Zv DZ7 ta h)uv U’>L2 (R",\/_(_]dz

) > _<,rgw(z, Dz; tv h)u’a u>L2(]R”,\/§dz)'
Moreover, for any N > 0, there exists T € Si_y,,0) (hm, g1) such that

supp 7y (-, -;t,h) C suppa(-,5t,h) V(t, h) € [—to,0] x (0,1]
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and

T —TN € S[_t,,0] (h%m,gl) .
This implies in particular that r is supported in supp a(-, -; t, h) modulo S (h*°m).
Proof. Put

1
iz, Cit.h) = — [ e Va (z 4 pa1, (4 gt h) dadGy
1
= = [ e CED P OO g (2, (13t h) deadC,
s

where p = h2 <h*1t> and ¢ = h—z <h*1t>71. By the Taylor expansion,
a(z+p21,(+qGist, h) =a(z, Gt h)

+pZ/ azja Z"'TleaC"’T(ICl,t h)

+qZ/ (€1)j0¢;a (2 + Tpz1,{ 4 TqC1;t, h) dr.
j=1"0

Then, using partial integration, we have
a(z, ¢t h) = alz, Gt h) +1(2, (58, )
with

1 1
r(z, ¢t h) =§p2 // e T ALa (2 + Tz, €+ TqCrit, h) drdz Gy
0

1 Lo
+ §q2 // e G TAca(z 4+ Tpz1,( + 7l t, h) drdzidé.
0

One can easily see that r € Sj_, o ( , 01
We show the positivity of a9%(z, D.;t,
u € C§°(R™)

(a9 (z, D,; t, h)u,u>L2(Rn7\/§dz) = (a"(z,D,;t, h)Vqu, {‘/ﬁu)Lg(Rn’dz),

by replacing u with %ﬁv, it suffices to prove the positivity of a*(z, D,; t, h) with

)-
h) as an operator. Since we have for

respect to the inner product (-,-) 2(rn 42). For u € Cg°(R™)
an <&w (Z, D.:t, h)u, U>L2(]R",dz)

:/Uei(z_w)g{/e“‘z(zl—#)z—p%cl—oz

a(z1, (st h) dzdCy }u(w)dwd(] u(z)dz

_ /{/ei(zw)ce‘f( e ) g2 (G -0)?

a(z1,C5t, h) u(w)@dwdgdz}dzldgl,
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where the change of the order of integrals is verified, for example, by that, using

partial integration, the both of the above integrals are equal to the absolutely
convergent integral

/ei(z—w)€<<>—N<Dw>N e—q2(21—zé"’)2—P2(C1—C)2u(w)

a(z1,C1;t, h) u(z)dz1d¢ dwdldz.
By the change of variables ( — (2 = (1 — (,

L2(R",dz)

7" {(a" (z, D,;t, h)u,u)

{/emw)czeﬂzd@}eq2(zlz;”)2+¢<zw><1

a(z1,C1; t, h)u(w)u(z)dwdzdz déy
g / o A0 ()= (21~ ) i)

Il
3

a(z1,C1; t, h)u(w)u(z)dwdzdz déy

2
> 0.

Thus we have

e_q%fa(zl, Ci3t, h)dz1dCy

>0

(@9 (z, D, t, h)u,u>L2(Rn7\/§dz) >

for any u € S (R™). Then

(agw(z,Dz;t,h)u,u>L2(Rn’\/§dZ)

— ((a—a)™ (ZaDZ;t7h)u7u>L2(]R",\/§dz) + (aHW(z,Dz;t,h)u,u>L2(Rn,ﬁdz)

> (19%(2, D, t, h)u,u}Lg(Rn’\@dz) :

The required r is obtained.
Now let us prove the second part of the theorem. By the Taylor expansion

a(z+pz1,(+qCiit, h)

|l =181

p a o

= § e zlgfaz(??a(z,g;t,h)
laf+IBl<N

Nplel=18] 1

oD 7];.5. Z?Cf/ (1= 7)N1020 a (2 + Tpz1, ¢ + Tquit, h) dr,
le|+18|=N . 0

and then, corresponding to this, r is expanded to be

N-1

r(z, Gt h) =Y (2, Gt h) + Py (2, Gt h)

Jj=1
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with

lee|—|B]
p Oz 2_ 2 a
Gtk = ) amotdfalz Gt h)/ AT dzd(,
la|+]8l=3 o
) Nplal=18] ~
N (z, Gt h) = Zia'ﬁ' // )NVl )
Ia\+|ﬂ\ N

8?8?(1 (z + 7pz1, ¢ + 7qC1;t, h) dTdz1d .

One can easily check that this 7 satisfies the properties of the theorem. Hence

929’a / e G2 P dzdey.
lal+18]>1

Each term in the right-hand side is supported in suppa (-, -;t, h), and so, by
Proposition 3.2, we can choose 7' € S|_, o] (hm) such that

plol=18]
mn lﬁl

r' o~

lol+[B]21

929 a / e G 0Bz de

and suppr’ (+,+;t,h) C suppa (-, -;t,h). From the uniqueness of the asymptotic

sum it follows that r — 7/ € S (h°m), which shows that r is supported in

suppa (-, -;t, h) modulo S (h*>°m). O
We give the g-Weyl symbol of Hy:

Proposition 3.12 The g- Weyl symbol of

_ LN~ s
Hy = 2\/_ pa lalg V90;
s giwen by
09" (Hy)(z,¢) = e 3PPk (2, ),
where k(z, () is equal to the polynomial
1 jk ok 1 jk 3 ik ik
3 Jzk: [gj GGk — 10597 + 1 (93 0j0kg — 79" 93909 + 059 3k9)] :

Then it follows

09 (Ho) € S (0% (=) 2 dz +(Q) 2 dc?) (3.9)
o™ (Ho) — 5 3 9™ €5 (10 ()7 022+ (0 72a?) . (3.10)
3.k
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Proof. By an easy computation

1
VgoHoo— =k(zD.),
)
and then the g-Weyl symbol o9 (Hy) is given by the formula for the change
of the quantization, i.e., 09%(Hp)(2,¢) = e~ 2P=Pck(2,¢). See, e.g., [11]. If we
prove

kesS (<<>2 ()2 d2? 4 () d<2) , (3.11)

then, using Lemma 3.8, we obtain (3.9) and (3.10) similarly to the proof of
Proposition 3.9. We write down det g and g*’s with respect to the coordinates
z. The expression of det ¢ in z has already been seen in (3.4). For the expression
of g% we use (2.2). Substituting (A.2) and (A.3) into the equality

n

n—1
D 979(2)0. @ 0 = (2" +2°9) 0, @ 0p +2* Y @' (02 @ Oy + 0y ® Oy

i,j=1 i=1
n—1

+a? Y (WY +2%07) 0 @ 0y,
ij=1

we see that g/ (z) is a C function in (z,y). Then it follows
detg, g% € S (1, (z)72 sz) ,

which implies (3.11). O

4 Proof of Theorem 1.3

Let ug € L? (R™), (20,{p) € T*R™ and to > 0 as in Theorem 1.3. We often use
the notation

Af = f(2,¢) = f(2(t; 20, C0), C(t; 20, C0))s

where f is any function on T*R"™. Take large Ty > 0 as in Section 2 so that
)T S a(tiz0,G) Set)Th V< Ty

for some ¢ > 0. Given small § > 0 and large C' > 0, take any §y with 0 < 4§y < 4.
We fix large T3 > 0 such that

Ty > max {TQ, g,to} + 1.
0

Choosing a C*° function x on [0, +00) such that
[, ifa<d, d
x(\) = {0, A>T and ax()\) <0 VA>0,
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we define ¢_1 : (—oo0,—T1 + 1] x T*R™ — R by

_(1AETY)] Ay A (7€) |An|
¢‘1(t’z’o_x< — 430t X<6O+Ct1>X 5o+ Ct 1 X<50+Ct1)

= X1X2X3X4

where each y; is the corresponding factor. Here we note that in general the
subtractions such as An = n — n(¢; 20, (o) are senseless since points in the base
space are different and trivializations might be different. But, as noted right
after Proposition 2.3, z(t; z0, (o) has the limit z_ (29, o) € 0X as t — —oo, and
thus, by exchanging coordinate axes and taking Ty larger if necessary, we can
assume only the local coordinates (x,y(4.,)) are being taken when defining 1.
Then the well-definedness of 1/_; follows by the zero-extension. We modify ¢_;
to be defined for all ¢ < 0 by solving the transport equation

Toto(t,2,0) = alt) (4,5 0), (11)

with the initial condition

¢0(_T17 Z, C) = d]*l(_Tla Z, C)a

where a is in C*°((—o0, 0]) and satisfies

o= [L T,
=0, ift>-Ty+1.

Here - is the Lagrange derivative defined by

D0 w0 o

Dt ot 0C0z 0z0C
where p is the Hamiltonian. The transport equation is easily solved using clas-
sical trajectories. Indeed, substituting any trajectory, i.e., (2(¢; z,¢), ((¢; 2, C))
to (4.1), we see that the equation gets to be

(t, (62, 0),Glt52,0)) = alt) 316 2(652,€), 665, ),

and so
t

Yo(t, z(t; 2, €), ((t; 2,0)) :/ a(s)%@/},l(s, 2(s;2,¢),C(s;2,())ds

T (4.2)
+-1(=T1,2(=T1; 2,¢), (= T1; 2, ().
If we use the partial integration, this is rewritten by
1 da
1/)0(t,2(t,2,<),<(t,2,<)) :[ E(S)L/)—l(saZ(S;Zvc)ac(s;zac))ds (43)

+a(t)p-1(t, 2(t 2,0), C(t 2, ).
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Since, by Proposition 2.2, for any point (z,{) € T*R"™ and any ¢ € R, there is a
trajectory that hits (z, () at the time ¢, 1o is defined on all of R_ x T*R"™ and
in the class of C*°. One notes that, for ¢t < —T7,

’QZJQ(t,Z,C) = wfl(th?C) (44)
follows. We now clarify properties of 1g:
Lemma 4.1 1) satisfies the following:

1. We have
Yo(t,z,() >0 forall (t,z,{) € R xT*R",

and
Yo (t, z(t; 20, C0), C(t; 20,C0)) =1 for all ¢ <0.

2. Fort < —T1, vo(t,-,-) is supported in

{(z,g) € T*R™| |Az~| < —46ot, | Ay| < b0, | Aa>E| < 6o, |An| < 50}.

3. If one takes sufficiently small 6 > 0 and large C' > 0 in the construction
of Yo, the inequality

D
E@bo(t,z,g) <0 forall (t,z,{) e R_xT"R"

holds.

4. o(t, z,C) satisfies the estimates

2000 o (t, 2,Q)| < Copn (1) 1T

that is, O € Sa_ ((t)‘" ()72 d22 + (1) d<2).

Proof. 1. The positivity for ¢ < —Tj follows from (4.4). See (4.3) for t >
—T1. ¥ol(t, z(t; 20, Co), C(t; 20, o)) = 1 is also easy to be seen by substituting the
trajectory (2(t; 20, <o), C(¢; 20, Co)) to (4.2) and (4.3).

2. Obvious from (4.4) and the construction of 9_;.

3. Note that

D 0 oOpd 9Opod 0 0Opd Op0d OIpd Opd

Dt ot 9Co: 0:0¢ ot  ocow ondy 0xdE  yon
and that

D D
D—t%bo—aD—twﬂ
_o(Px 2 o Dxs Dxa
Dt X2X3X4 T X1 Dt X3X4 T X1X2 Di X4 T X1X2X3 Dt )
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Let us compute the differentiations concretely. We first get

Dy, 1 [ |Az7t  Az? 1 0p [ |AzT
— = + —AlS= ]| x .
Dt 450t t |A33 1| 332 85 —450t

We have on supp « %th X2X3X4

1 |Ax*1|
s<—-<1
2 —460t
and
1 0p i
2 (ae)| = laatel [ (st + o o)

Thus, taking C' > 0 larger if necessary, which makes T3 larger, we obtain

<o+ 0 (t7?).

Dy a(t) _ Azt
a Dtl X2X3Xa < 200t (=260 + 00+ O (t72)) X <|—460t| X2Xx3X4 < 0.

Similarly, by an easy computation,

Dy 1 [ o Ay +Ay Aap} ,< |Ay| )

Dt~ 6o+ Ct1 So+Ct=1 " [Ay| " an S+ Ct1

Dxs 1 9 |A332§| Ax?¢ Ip 2 0p
T er= AL sy P Tl e T

(1A
dg+ Ct—1

Dy 1 oA dnp0)(1a )

Dt~ &g+ Ct1 So+Ct=1  |An|” dy 6o+ Ct—1

Considering the supports, we have

Dxa o ., N |Ay|
[ S — R . N
X1 XaXa = 5T |9 ot )_ XX 5+ o1 ) X
Dy a c o] Az
< —t2-0(t B el
aX1X2 Dt X4 > 5o + Ct—1 2 ( ) X1X2X 5o+ Ct1 X4,
Dxa o c ., o] , |An]
< “t2_0(t =0 ),
XXX = 5y 1 T (2 o )_ XXX 5 o1

Thus, taking C' large enough, the nonpositivity of the Lagrange derivative of g
follows.

4. Since ¢y is C* in (¢, 2,{) € R_ x T*R™ and, for each t € R_, ¢¢(¢,-,-) has
compact support, one can find constants Cogy, as in the lemma for (¢, z,() €
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[-T1,0] x T*R™. For t < —T} one can differentiate the function on the right-
hand side of (4.4) concretely using formulae (A.1) and (A.10). Then, noting
that on the support of ¥y there exists a constant ¢ such that

Tyt <a<ey!

for t < =Ty, we can easily find constants C,gy, of the lemma. O
Put ~
’lr/)O (Zv Ca tv h) = L/)O (hilta 2, hc) )

and restrict ¢ € R_ to [—to,0]. Then by Lemma 4.1 ¢ € Si—te,0 (1,91)-
We consider the operator

Fo(t,h) = 3% (2, D.;t, h) o 93" (2, D2t h).
By Proposition 3.9 we can write
FO(tvh) = (pgw(zaDZatvh)

with o € Sj_4,,0] (1,91). Note that Fy(t, h) extends to be a bounded operator
on L? (R”, \/gdz) with operator norm uniformly bounded in (¢,h). Also note
that Fy(t,h), as an operator on L? (R”, \/gdz), is differentiable in t € [—t, 0],
because, by Theorem 3.10, for fixed (¢, h) € [—to, 0] x (0, 1],

Hé [ (K~ (t + &), 2,hD.) — " (h™'t, 2, hD.)]

gw
—h! (%) (h='t,z,hD,)

£(L2 (R, vgdz))
Uz <§ [Yo(h™H(t +€), - h) = tho(h™ "¢, )]

<CnZ‘

|| <M,
_hl%(hlt’.,h.o
ot e
1 2

<Cueh? Y a;;o/o (1—T)aazﬁo(hfl(tjuw),-,h-)m

la| <M, L=
< Cueh™ > Ca,

|| <M,

and this means the differentiability of ¢)§" (h~'t,z,hD.) in t € [—to,0]. More-
over we see, from this inequality, that % 9%(z,D,;t, h) is also a pseudodiffer-

ential operator with the symbol given by

o ) _ =1
%(z,(;t,h):h 1%@ ', 2,h¢) € S|_1.0] (h L) 1,91).
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>max{7l7u72} ~

Lemma 4.2 There erists 1o € S|_y, 0] (<h*1t ,gl) such that

%F@(t,h) + Z[H, Fo(t, h)] < T‘Q(Z,DZ;t, h),

and that ro has the support in supp vy modulo S[—te,0 (K*°).

Proof. We compute the principal g-Weyl symbol of %Fg(f, h) +i[H, Fy| and
apply the sharp Garding inequality. Divide the operator into three parts:

0 0
EFO(t’ h) +i[H, Fo(t,h)] = EFO(t’ h) +i[Ho, Fo(t,h)] + i [V, Fo(t, h)] .
Step 1. From Proposition 3.9 it follows that
0 Mo, ~ L - Iy
gw [ £ _ 7% Yo _ 7o
o (6tFO> o fo + ot o 20 5 T

where the remainder term 79,1 € S|_¢, ] (<h_1t>_1 ,gl). Note that

suppro,1 C suppdy mod Si_y, g (A*°)

since each term in the asymptotic expansion of ¢9% (2 F,) is supported in

supp o.
Step 2. Next we compute the symbol of i [Hy, Fy]. We write

i [Ho, Fo] = i [Ho, ~gw} B+ i [HO, Ng“’} .

We use Proposition 3.6 to composite the operators Ho and 1J", but Proposition
3.9 cannot be applied directly to estimate the remainder term, since Hy does not
belong to the class S[_¢,,0 (m,g1). We have to repeat the modified procedure
of the proof of Proposition 3.9 to estimate the remainder term. Using Corollary
3.7,

o (1[0 8 — {0} 4
with

ro2 = R3Ugw(Ho)1zo} ¢ RB"/NJOUQM(HOH

21=2,(1= z21=2,01=¢"
We claim that 792 € S[_¢,,0] (h,§1). We prove the claim only for the first term
Rg(fgw (H0)1b0|

to estimate

= 88 the claim for the other follows similarly. It suffices

-1t ;
0202 000! Rao™ (Ho)bo = 3 / (1= 7)237(P=Pe=DeDs ) gr
*JO

. 3
0205005 {000 - 00,0 (i)
(4.5)
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Since 09" (Hp) is a polynomial in ¢ of degree 2, the derivations in (4.5) with
respect to ¢ act on 09% (Hy) at most twice, so we have

. 3
ocos Lo {% (0:0;, - 34321)} o (Ho)ho

—lo| = —R—= — — 3—2k — |
€ D Sira (&)1 (IR g1y SRR
k+|B|<2

as a function of (z,z1,(,(1,t, k). On the support of the left-hand side there is
¢ > 0 such that

1< (h¢1) <e¢, ¢! <h*1t> <(z1) < c<h*1t>,

SO we can rewrite

. 3
002,0003: {§ 0:06, ~0c0.) | o™ (o)

€ @ St_to.0) ((%)kali’» <<<:é>>>2kg|

k+|pl<2

pLFIBI+[61] <h71t>*k+\ﬁl|*\0¢|*|0¢1 > .

Then the application of Lemma 3.8 followed by the substitution z; = 2,{; = ¢
means that

020219202 Ryo ™™ (Ho )y |

z Yz

€ S_ty,0] (h1+\5|+|ﬁ1| <h_1t>\61\7|a\4a1|) ’

z1=2,(1=(

from which it follows Rzo9% (H, o)%/;o‘
the claim.
Hence we obtain

o (i [Ho, Fy]) = {I% 1/;0} tbo + Yol {p, 1&0} + {Ugw(Ho) -, 1/;0} o
+ o {Ugw(Ho) -p, 1/;0} + 70,28%0 + Yottro,o-

¢ € Si—t0,0] (I, §1). Therefore we see

z1=2,(1=

The support of '@[;0 and Proposition 3.12 taken into consideration, we have
w 7 — -1
{Ug (Ho) — p; 1/)0} € S1—10,0] (<h 't) 791) :

Similarly we have {p,@o} € Si_to,00 (A1, G1), however, this estimate is not

sufficient. To improve it we compute {p, 1;0} in the coordinates (z,y), that is,
we use the representation

{1;}:@3_@0 Op 0o _ Op Dy _ Op 0o
PoS = 5¢Tor T o 0y or 0 dy on
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Then {p, 1&0} € S[—10,0] (hfl <h*1t>71 ,gl) follows. (cf. Proof of Lemma 4.1.)

Now that all the symbols are in the class with metric g;, Proposition 3.9 can
be applied. We have

a9 (i [Ho, Fo]) = 2¢0 {p, 1&0} + 70,3
with ro.3 € S{_¢,,0 ((h7't) , g1) satisfying
supp 79,3 C supp o mod Si—to,0) (h™).
Step 3. Let us go to the third part o9 (i [V, Fp]). Since
(V. Rl = [Viag® | 05 + i (Vo]

we first compute 9% (z [V, ﬂng. As V € S ((2)", (z)~2dz?), Proposition 3.6

is applicable and we have
a? (Z |:V7 &gw}) = {Va 1;0} + 70,4
with

ro,4 = R3Vo| — RythoV|

z1=2,01=(C 21=2,01=(C

Exactly the same way as in the step 2 shows that
70,4 € S[_t,,0] (h3 (h1e)” 791)
Also as in the step 2, we have

oV Oy OV vy

Vol =598 oy o

and, if we combine this with the assumption on V', we get
~ _ v—1 _
{Va ¢0} € S[7t070] (h <h 1t> agl) )
where the support of 1/;0 is considered. Now that

a9 (i [V, Fy]) = {V7 1/N)o} o + ol {V7 1/N)o} + ro,attho + otro.4

and Proposition 3.9 can be applied, we obtain
o9 (i [V, Fo]) = 24 {V7 1/;0} + 70,5
with 79,5 € S[_y,,0] (h2 <h’1t>yfl ,gl) satisfying
suppros C suppdiy  mod S[_¢y0) (™).
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Step 4. Summing up the steps 1-3, we can write
w [0 ) - D - ~ ~
et EFO(ta h) +i[H,Fy] ) = 2%@% + 2 [V, %] + 70,1+ 70,3+ 70,5,

with 2150%150 € S[—10,0] (h’l <h’1t>71 ,gl). Then, since 2@[?0%#;0 is nonpos-

itive, a symbol rog € S[_y,0] (<h’1t>71 ,§1) is found by the sharp Garding
inequality such that

- D -\9%
2 (¢OE¢O> (Zszatvh) Srg,wlﬁ(Zsz;ta h)7

and thus combining 21&0 [V, 1@0} and 79 ;’s, we obtain 7y that is wanted. O

Let to, To, C, 9, g and T7 be as so far, and take an increasing sequence

1)
0<50<51<52<~~<Z.

Using these ¢;, C and 17, we construct v; similarly to 1, that is, we put

_(1AGETY)] Ay A (22¢)| |Ag|
¢1(t,z,4)—x< 15,0 x(5j+0t_1)x e x(5j+0t_1),

and solve the equation

Toi(t,5,0) = alt) 5 (1,2, 0).

Then we define )
b (2, ¢t h) = 5 (h™, 2, hC) -

Y1 is bounded from below by a positive constant on supp Y. Indeed, when
t < =Ty, we have an expression using x;’s, and when ¢t > —T7, we have only
to observe the construction of the solution to the transport equation. Then
it follows that supp; is in the interior of suppto. Thus, if we decompose
ro = 1) + rg with

supprl C supp o, rH € S(—te,0 (R*),
we have for large C7 > 0
v (Gt h) < Ciada (2,G . h).
Put

Fi(t,h) = ¢{"(2, Dxit, ),
p1=—C1t1 € S[_¢y0) (£, 1) -
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Let us consider the operator %Fl + i [H, F1] and iterate the argument similar
to, or even easier than, the proof of Lemma 4.2. Each part is to be

9
ot’

o9 (i [Ho, F1]) = —Cit {P,%/;l} — Citry 0,
O,gw (Z [V, Fl]) = —Olt {V, 1,7)1} — Cltr1,4,

0 -
oIv ((%Fl) = —Ciyy — +C1t——

where r12 and r; 4 correspond to rp2 and 7¢4 in the proof of Lemma 4.2,
respectively. To sum up, we can write

9w <§F1 +1 [H, F1]>

D ~ -
= —Clt ¢1 — Chy + 7“6 — 7o+ ’I“g — Cit ({V, 1/)1} +ris+ 7‘1’4) .
Since
D ~ -
_Clt wl —_ 011/)1 =+ 7"6 c S[7t070] (l,gl)
and
~Cit—~ wl — Cypy + 14 <0,

we can find by the sharp Gardmg inequality 717 € Sj_4,,0 (h,g1) with the
support in supp ¥; modulo S[—ty,0 (h°°) such that

quw

D
[ C'lt ¢1 - Cl'@[]l +r0 (ZaDz;ta h) < Tf%('szzﬂLah)'

Noting
- Cht ({Va %/;1} +rie+ 7“174) € S—t0,0] (hmin{l727u},§1) ,

r1,7 with it makes a symbol 11 € S[_, o] (h™1127} §;) that has the support
in supp ¢ modulo S[—te,0 (h°°) and satisfies

%Fl(t, h) +i[H, Fi(t,h)] <r{“(z,D,;t,h) —r"(z, D, t, h).
Thus
%(Fo(t,h)+F1(t,h))+l[H,F0(t,h)+F1(t,h)] Sr{w(z,Dz;t,h).
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We repeat this procedure to get Fj(t,h) = ¢7" (2, D5t h) for j = 1,2,....
Suppose @1, ..., @k is given such that

gz (t,h) + iHZFth <7"(2,Dy;t, h), (4.6)

where 1, € S[_y,,0 (RF™ME277} 51) has a decomposition 1y = 7}, + r} such
that ~

suppry, C supp ¥k, 14 € S|_¢y,0) (A).
Then one finds Ck41 > 0 such that

(2, Gty h) < Chrpg hFL2=vy 0 (B2, 2, he).
Put
Frya(t,h) = @7 (2, Dt h), iy (2,6t h) = =Cropr P52 gy
There exists 711 € S[_y,,0) (RFFD mn{12=} 5, ) with the support contained in

supp Yx+1 modulo Si—t,,0) (h*°) satisfying

0
—Fy1 + i [H, Fi] < rk+1(z D.;t,h) —r{"(z, D.;t, h),

ot
so that
) k+1 k+1
o S Fi(t,h)+i |HY Fi(th) | < iy (2, Dzt h).
j=0 3=0

©Yk+1 is constructed.

Lemma 4.3 There ezists a pseudodifferential operator F(t,h) with the symbol
@ € S[—ty,0/(1) such that

1. F(t,h) is differentiable in t € [—to,0] and
F(0,h) = Fy(0,h) = 43" (0,2, hD,)>. (4.7)

2. For any € > 0, choose small § > 0, then the support of ¢(z,(; —to, h) is
contained in

{(2,Q) e T*R™| |z + (—h ™ "to| < eh™Mto,|¢ — ™' ¢_| <eh™'},
modulo S (h°).
3. The Heisenberg derivative of F(t,h) satisfies

SF(t,h) = %F(t,h) +i[H,F(t,h)] < R(¢),

where R(t) is an L?-bounded operator with sup_; <.« [|[R(t)]] = O(h>®).
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Proof. Since p; € S|_¢; 0 (h(j’l)min{l’%”}) for j =0,1,2,..., the asymptotic
sum

o
o~ot Y @
j=1

exists by Proposition 3.2. Here, in the definition of ¢, we take the asymptotic
sum Z;’;l ¢, according to the proof of Proposition 3.2, and define ¢ by ¢q
added to the sum. Set

F(t,h) = o™ (2, D.it, h).

1. ¢ is defined by the locally finite sum with respect to h > 0. Then F'(t,h)
is differentiable in ¢ for each h from the argument right before the Lemma 4.2.
(4.7) is a consequence of the definition of (.

2. Since by a formula in Appendix A
|z 4+ (Ch o] <]z — 2 (=R s 20, Co) | + |2 (=R o5 20, o) + (=R o
- 1 _ 1 iyl + ly — y(—ihflb‘o;Zo,Co”
x  z(—=h"'to; 20, Co) x(—h~t0; 20, Co)
+ |z (—h_lto; zo,Co) +(_h7 Y,
taking d > 0 small enough, we have the bound eh ™!ty from above for the right-

hand side on the support of ¢ (z,(;tg, h). The second inequality is similarly
obtained.

3. The conclusion follows from (4.6) and Theorem 3.10. O
Proof of Theorem 1.3. We have

(F(0, h)utgs wo) 2 (g jgaz)
0
= <F(—t0, h)U07u0>L2(]R”,\/§dz) + /

_to

< <F(_t07 h)uo’uO>L2(R"7\/§dz) + o sup HR(t7h)|| .

0<t<to

<5F(t, h)ut, Ut>L2 (]R",\/Z;dz) dt

The second term in the last formula is O(h*). Thus we have only to check
||F(—t0,h)u’0||L2(Rn_\/§dz) = O(h®°). By the assumption, there exists a com-

pactly supported C*° function ¢ on R?" such that ¢ = 1 near (—to(_,(_)

and
Vg ()2 (hzhD.) uo|

Lo =0 (h*™).
For, if

16" (hz, hD-) uol| = O (h*),
then, in the right-hand side of

@9 (hz,hD.)ug =p9% (hz,hD,) ¢ (hz,hD,) ug
1

9(2)

@v (hz,hD,) v/g(z) (1 — @™ (hz,hD.)) ug,

4
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the first term is O (h*°) from the assumption, and the second term is also O (h™)
from the variation of Proposition 3.9 for S (m, dz? + h2d§2), which can be seen
easily. By Lemma 4.3 2, choosing € > 0 small, we suppose that

supp (-, -;to, h) Nsupp (1 — @(h-, b)) = &
when h > 0 is small. Then

F(_t07 h)U/O :gogw(za DZ7 _th h)uo(x)
=09%(z,D,; —to, h) o ¢9% (hz, hD,)up(z)
+ @9 (z, D5 —to, h) o (1 — @9 (hz,hD.)) uo(2).

The first term is O(h*°) by the assumption, and the second term is also O(h*°).
For we can apply Proposition 3.9 to ¢¥(z,D.;to,h) o (1 — ¢*(hz, hD,)), since

@ (h-,h-) € S(1,§1), and all terms in its asymptotic expansion vanish. Thus the
theorem is proved. O

5 Proof of Theorem 1.6

Let X =9X = S? and defined the mapping ¢ : X — ¢X by

1
2\ 2
a=q(z) = (2+]2F)" =
q gives a bijection between X and 79X with the inverse

z=(1+(q)

Since (¢)"' = (2)7 2, 9X is thought to be X whose C° structure near the
boundary is generated by new boundary defining function <z>72. q is C'*° map-
ping, but ¢~ is not. However, ¢* : C® (1X) — C°°(X) is bijective and extends
to C~* (1X) — C~>°(X) bijectively.

Let u € 8 (R") = C~°(X), and we first assume

[V

q.

(Z07<0) € (Sn_l X Rn) \WFqsc(u)a

which is equivalent to
(20,G0) € (8" x R") \ WFe ((¢") " u).
Then there exists ¢ € C§° (R?") such that ¢ (20, (o) # 0 and
|0 (ha. Do) (4" | = 0 (). (5.1)

where ¢ (hq, D,) is the standard [left] quantization of ¢ (hg, 7).
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1
If we introduce the variables ¢ = ¢(z) = (2 + |z|2) “zand p = q(w) =
1
(2 + |w|2) * w in the right-hand side of (5.1), we get

Hso(hq,D) (q") 71u —8/‘/ >(2+IZ|) ’

2

- (w)? (2 + |w|2)T o (hq(z),7) w(w)dwdr| dz.
(5.2)
We have
dmwt = (14 (g) T = (14 () 20 =Y Py(zw) (¢ — )
j=1
with
Cbij(z,w)
:517,/ dt l _1/1 W +tld =) W rtle =v)) ,
o (L+(p+tl@—p)? 2Jo (1+(p+tla—p))* p+ilg—p)

Since for 7 € R™ with |7] =1

Z D, (z, W)

ij=1

[V

:/1 dt _1/1 EL @t =)
o (L+p+t@—p)? 2Jo (L+p+ta—p))? p+ilg—p)
we have

n

1 [t dt ! dt
- T S @ij(z,w)rirj S T-
2/0 L+ (p+t(g—p))? Z /0 (L4 (p+t(g—p))?

1,j=1

This particularly means that ®(z,w) is nondegenerate, so that we can change
the variables 7 — ¢ = ®(z,w) 7 in (5.2). Then we have (5.2) rewritten by

o a2 @) =5 [ | [ 9060 yutw)

with
n—2

Bt =) (24 1:2) T @) (24 0f?) T detaz,u)

0 <h (2 + |z|2) ‘. @(z,w)g) :

We are going to find out the class to which @ belongs and apply the argument
established in Section 3. Our first observation is
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Lemma 5.1

~ <<z>3<w>” S )

‘P S S RN )
(Hw)" T (2)* (w)? ()
Proof. We first claim that there is C), > 0 such that

—n ! dt Z"LU_n
) S/O (p+t(g—p)? = Ol

for each positive odd integer n. Indeed the first inequality follows from

n
4

ptila-p) 2 (1 +max{lp|27|q|2})

> (141l +1aP)

wl3

> (14 ol +1217)

For the second inequality we consider the four cases:
6) la— vl < 3 lal. () lo—pl < 5 1ol
(i) g~ 7| > 7 (al + Ipl) > 1. (iv) 7 (1l +1pl) < 1.

In the case (i), noting

1 3
5|f1| Slp+tl@—p)l < 5|f1|,

we obtain

(p+t(@—p) * < (1 + i Iq|2)4

< (1 + % (Iql2 + Ip|2)>

n
2

w3

<c, (1 e+ |w|2)7

The case (ii) is dealt with in exactly the same way as the case (i). The case (iv)
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is a very obvious one, and so the case (iii) is left. By direct computation we get

01 <p+t(cét—p)>3 a 01 .
[

%
1+ (ol — tlg = p))?)

1 \P\ dt
Cla=pl S tgpl (14 12)5
1 zla—pl dt
< — =

|q_p| —%|q—p| (1+t2)4
Cn
< -
(q—p)?

With the condition (iii) this shows the claimed inequality. Thus the claim is
verified.
We then see

Dij(z,0) € 8 ((z3w0) 75 (z3w) 7 d2? + (z50) 7 d?)
and as a polynomial in ®;;(z,w) of degree n
det ®(z,w) € S ((z, w) " (zw) P d2? + (zw) T dw2) :
On the support of ¢ we have the estimates
CTh7% < |2l < Ch73, [¢] < Clziw).

Then the lemma follows. U
Put

)

$(z,Gh) = e~ PP ( NV 10,4;")
2 2 6=0

then
WU(Z, D; h) = (27 2/7 D; h) .

Lemma 5.1 in particular means
o(z+20.2—Lto.cn)esn?)
2 ) 2 ) ) )
and so with Lemma 3.8 it implies
—iDyD, ~ 1 1 _n
e o z—|—§9,z—§9,é;h ES(h 4).

Therefore we have ¢ € S (h™%). The more precise estimate for ¢ can be
obtained. Indeed, we have

Y€ S (h %, hd2® + hd(?),
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which is shown by the similar type of argument used in Step 2 of the proof
of Lemma 4.2, combined with Lemma 5.1 and 3.8. Also we can estimate the
remainder term:

Y(z,Gh) — @ (2,2,¢h) € S (W51 hdz? + hd(?) . (5.3)

U(z) = (5.- - ﬁ)_l = (5.- + ﬁ)
Y2 ij Yz ij.

We want to show the ellipticity of 1 (h_%z, h_%(; h) at (20, ¥(20)¢o). Note

Put for z £ 0

3n—6

@ (2,2, h) = (2)° (2 + |z|2) det ®(z, 2)p (h (2 + |z|2)% z,®(z, Z)C)

with

1
q)ij Z,Z :(5”‘ T — = 3
= (1+(g)> 2 ’

It is easy to see

3n—6

<h—%z0>3 <2+}h—%z0}2> et ®(hFz0,h }20) > Ch %

So we have to show the uniform positivity of

1 2 % 1 1 1 1
© (h (2—|— }h_fzg} ) h™229,®(h™2209,h"229)h™ 2V (20) C()) )

As h to 0,
1
1 2 2 1
h (2+ ‘h’fzo‘ ) hb 20 — 20
and
B(h™ 220, h " 220)h ™2 W (20) Co — Co.
Hence

@ (h a0, h 20,4 () s ) > O

uniformly in small & > 0. Thus, using (5.3), ¥ (h’%z,h’%g;h) is elliptic at
(20, ¥(20)Co). Since

[ (2, Dz; ) ul| = O (),
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it follows that

(20, ¥(20)C0) € HWF (u). (5.4)

Conversely suppose (5.4) with zp # 0. We can assume |zp| = 1. We just
reverse the procedure above. Choose ¢ € C§° (R™) with ¢(z0, (o) # 0, and put

n—2

3 (2w, Gh) =(2) (2+ |z|2)n% ) (2+ ) 7 det®(z,w)
L <h (2+|Z|2)%z,<13(z,w)g> :

(2, Gh) = e Pep (z +ghe %%h)

0=0

(2, ; h) has support in that of ¢ (z, 2, {; h) modulo S (h*), so that if we choose
¢ whose support is sufficiently small, we obtain

|0 (ha.Dg) (") | = 811w (2, Desyull = 0 ().

Then (29, o) € (5" x R™) \ WFysc(u) follows.

A Formulae for Coordinate Transformation

For a point z = (21,...,2") € R" C X, z # 0 we set

x:ﬁ, w:(wl,...,w”):

Since z # 0, there exists non-zero w*, and so, when +w* > 0, we can get rid

of w* to make local coordinates (x, y(ik)) = (x, y(lik), e ,y&:_kl)) of X(D R")

near the boundary respectively:

j _ Wi, for1 <j<k-1,
Yem = Y witl, fork<j<n-—1.

We denote y(+y) simply by y if there is no confusion. We introduce local coor-
dinates (z,¢) and (z,y,&,7n) of the cotangent bundle T*X corresponding to z
and (z,y) respectively. Now we write down formulae for the coordinate change
between the above coordinates that will be needed later. We consider only the
case where 2" > 0, i.e., ¥ = y(4.), which is enough for the purpose of this paper.
Introducing a notation

we have
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1 n n
_—E Y Oyi :—|Z| Zazi,
i=1 i=1

B

, é o, : :
dot = —Ldw + —dy’ = —|s|zda + |2ldy’ (=1,
X x

dx = - i |z|3d’zZ = _xQ Zyzdzz’

Then for the same point in 7 (R™ \ {0}) C T*X:

n—1

Zcz 2 —fdm+2mdy,

we obtain

1 ¢ 2t .
ni = _Ci___Cn |2|¢i — |Z|_nCn (i=1,...
x T yn z
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1 14 z .
O, E i — Ey—nazn = |Z|821 - |Z|Z—n(92n (Z = 1, AP

1
dy :Z <|_zj| - |Z|3>dz] :xZ(éj —ny) dz’.

,Tl—l),
7n)7
.n)
,n—1),



and on the tangent space to the cotangent bundle,

) {—;’—;8§+%8m = —|z|zi(9§—|—|z|8m, if i #£mn,
S " n— J n n—1 |z|z7 ip -
— 430 — Y50) 250y, = |20 - Y0 o, ifi=n,
(A.10)
n . n Zi
O =—aY y'og, =-)_ Wac“ (A.11)
i=1 i=1
n ; . n 55 ZiZj
am:xZ((si_yy)a{j:Z M_W O¢;- (A.12)
Jj=1 j=1
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