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Abstract

Given a scattering metric on the Euclidean space. We consider the
Schrödinger equation corresponding to the metric, and study the propa-
gation of singularities for the solution in terms of the homogeneous wave-

front set. We also prove that the notion of the homogeneous wavefront
set is essentially equivalent to that of the quadratic scattering wavefront
set introduced by J. Wunsch [21]. One of the main results in [21] follows
on the Euclidean space with a weaker, almost optimal condition on the
potential.

1 Introduction

We embed the Euclidean space R
n into the half sphere Sn

+ using the stereo-
graphic projection following Melrose [13]:

SP : R
n → Sn

+ =
{

w ∈ R
n+1 | |w| = 1, wn ≥ 0

}

, z 7→ 1
√

1 + |z|2
(z, 1) .

X = Sn
+ is regarded as the Euclidean space with boundary Sn−1 at infinity, and

x = z−1 for z ∈ R
n \ {0} defines a boundary defining function of X near ∂X .

Consider a scattering metric g on X . Scattering metric is a Riemannian metric
in the interior X◦ that has, near the boundary, an expression

g =
dx2

x4
+

h

x2
.

Here h is a 2-cotensor on X and, when restricted to ∂X , defines a Riemannian
metric on ∂X . Under these setting we have the Schrödinger operator

H = − 1

2
√
g

n
∑

i,j=1

∂ig
ij√g∂j + V,
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where V is a potential function,
(

gij
)

is an inverse matrix to g = (gij) and
g = det g (an abuse of notation). We assume that V is a smooth real-valued
function on X◦ = R

n with the following growth property. Take some ν < 2.
Then, for any coordinates (x, y) of X near ∂X with y the coordinates of U ⊂ ∂X
and any compact set K ⊂ U , we have the estimates

∣

∣∂j
xV (z)

∣

∣ ≤ CKj0〈z〉ν+j ,
∣

∣∂j
x∂

α
y V (z)

∣

∣ ≤ CKjα〈z〉ν+j−1 for |α| ≥ 1

uniformly in z ∈ R
n with y(z) ∈ K. The condition above allows the potential to

grow in any subquadratic rate in the radial direction. When differentiated in the
spherical components, the growth at infinity gets to be weaker, which implies
that the variation in the spherical components is slightly weakened. This is a
modification of the symbol class S

(

〈z〉ν , 〈z〉−2dz2
)

with ν < 2 in Hörmander’s
notation [8]. Using the formulae compiled in appendix A, one can easily see that
the set of functions satisfying the above condition contains S

(

〈z〉ν−1, 〈z〉−2dz2
)

and is contained in S
(

〈z〉ν , 〈z〉−2dz2
)

. We have to write the condition in the
coordinates (x, y), the polar coordinates to exploit the information from the
scattering metric g that is characterized in the polar coordinates.

H is essentially self-adjoint on C∞
0 (Rn) with respect to the inner product

(u, v)
L2(Rn,

√
gdz) =

∫

Rn

u(z)v(z)
√

g(z)dz.

Here note that
√
g in the standard coordinates is bounded from above and below

by positive constants, and thus there is a natural isomorphism L2
(

R
n,
√
gdz
) ∼=

L2 (Rn), which will be seen later. Hence for any initial state u0 ∈ L2
(

R
n,
√
gdx

)

we have the solution ut = e−itHu to the time-dependent Schrödinger equation

i
d

dt
ut = Hut.

We want to characterize the wavefront set for ut0 in terms of homogeneous
wavefront set for u0:

Definition 1.1 Let u ∈ S′ (Rn) and (z0, ζ0) ∈ T ∗
R

n ∼= R
2n. We denote

(z0, ζ0) /∈ WF(u),

if ζ0 6= 0 and there exists ϕ ∈ C∞
0

(

R
2n
)

such that ϕ(z0, ζ0) 6= 0 and that

‖ϕw(z, hDz)u(z)‖L2 = O (h∞) . (1.1)

(1.1) is the same as
∥

∥

∥

∥

∫

ei(z−w)ξϕ

(

z + w

2
, hζ

)

u(w)dwd̄ζ

∥

∥

∥

∥

L2

= O
(

hN
)

for any N > 0

with d̄ζ := (2π)−ndζ. The wavefront set WF(u) ⊂ R
2n of u is the complement

of the set of such (z0, ζ0)’s.
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We also denote
(z0, ζ0) /∈ HWF(u),

if (z0, ζ0) 6= (0, 0) and there exists ϕ ∈ C∞
0

(

R
2n
)

such that ϕ(z0, ζ0) 6= 0 and
that

‖ϕw(hz, hDz)u(z)‖L2 = O (h∞) .

The homogeneous wavefront set HWF(u) ⊂ R
2n of u is the complement of the

set of such (z0, ζ0)’s.

We also consider the Hamilton equation

ż(t; z0, ζ0) =
∂p

∂ζ
(z(t; z0, ζ0), ζ(t; z0, ζ0)),

ζ̇(t; z0, ζ0) = −∂p
∂z

(z(t; z0, ζ0), ζ(t; z0, ζ0))

(1.2)

with the initial value (z(0; z0, ζ0), ζ(0; z0, ζ0)) = (z0, ζ0) ∈ T ∗X◦, where the
Hamiltonian p is the free kinetic energy:

p(z, ζ) =
1

2

n
∑

i,j=1

gij(z)ζiζj .

Definition 1.2 We say (z0, ζ0) is forward (respectively, backward) non-trapping
if the solution (z(t; z0, ζ0), ζ(t; z0, ζ0)) to the Hamilton equation (1.2) satisfies

lim
t→+∞

|x(z(t; z0, ζ0))| = 0 (respectively, lim
t→−∞

|x(z(t; z0, ζ0))| = 0 ),

where x is a boundary defining function.

If (z0, ζ0) is forward (respectively, backward) non-trapping, then the trajectory
has a forward (respectively, backward) limit direction

ω± = ω±(z0, ζ0) := ± lim
t→±∞

z(t; z0, ζ0)

|z(t; z0, ζ0)|
(respectively).

The sign is adopted to indicate the direction of the momentum, not of the
position.

Theorem 1.3 Let u0 ∈ L2 (Rn), and assume that (z0, ζ0) ∈ T ∗
R

n is backward
non-trapping. If there exists a t0 > 0 such that (−t0ω−, ω−) /∈ HWF(u0), then
(z0, ζ0) /∈ WF(ut0).

The next proposition is from [15].

Proposition 1.4 If u ∈ S′ (Rn) decays rapidly in a conic neighborhood of z0 ∈
R

n \ {0}, then (z0, ζ0) 6∈ HWF(u) for any ζ0 ∈ R
n.

Theorem 1.3 and Proposition 1.4 result in
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Corollary 1.5 Let u0 ∈ L2 (Rn) and (z0, ζ0) ∈ T ∗
R

n be backward non-trapping.
If u0 decays rapidly in a conic neighborhood of −ω−, then (z0, ζ0) /∈ WF (ut)
for any t > 0.

If the metric g is asymptotically flat, this corollary is known as microlocal
smoothing property of Craig-Kappeler-Strauss for the Schrödinger equation [1].

Wunsch [21] introduced the notion of the quadratic scattering (qsc) wave-
front set WFqsc(u) after Melrose [13] to study the propagation of singularities.
WFqsc(u) is a subset of

CqscX = ∂
(

qscT̄ ∗X
) ∼=

(

R
n × Sn−1

)

∪
(

Sn−1 × Sn−1
)

∪
(

Sn−1 × R
n
)

,

if X = Sn
+ ⊃ R

n. The intersection WFqsc(u) ∩
(

R
n × Sn−1

)

corresponds to

WF(u), and WFqsc(u)∩
(

Sn−1 × R
n
)

is regarded as a blow-up of the scattering
(sc) wavefront set in its corner, where the information on the wavefront sets of
u and Fu is mixed up. The next theorem implies that WFqsc(u)∩

(

Sn−1 × R
n
)

is essentially equivalent to HWF(u).

Theorem 1.6 Define Ψ : R
n \ {0} → GL(n; R) by

Ψ(z) =

(

δij +
zizj

|z|2
)

ij

.

Then the equality
{

(z,Ψ(z)ζ) ∈ R
2n
∣

∣ (z, ζ) ∈ HWF(u) \ ({0} × R
n)
}

=
{

(tz, tζ) ∈ R
2n
∣

∣(z, ζ) ∈ WFqsc(u) ∩
(

Sn−1 × R
n
)

, t > 0
}

holds.

We can also interpret that the homogeneous wavefront set is a blow-down of the
qsc wavefront set in its wavefront set part WFqsc(u) ∩

(

R
n × Sn−1

)

.
If we note that for t > 0

(−tω−, ω−) ∈ HWF(ut) ⇐⇒
(

−ω−,
ω−
2t

)

∈ WFqsc (ut) ,

then one of the main results in [21] follows from Theorem 1.3 under a weaker
condition on the potential on the Euclidean space.

We refer to the papers [6], [7] by Hassel and Wunsch for the sophisticated
results on the Schrödinger propagator on scattering manifolds. In particular [7]
is very useful as an introductory paper to [6].

The homogeneous wavefront set was originally adopted by Nakamura [15]
for characterizing the singularity and the growth property simultaneously. The-
orem 1.3 generalizes one of the results in [15] to the scattering metric. Though
the proof of the theorem is based on Nakamura’s argument, the class of the
pseudodifferential operators gets to be even worse and we have to use the polar
coordinates for more precise estimates. We also have to prepare the pseudodif-
ferential calculus suitable for our purpose. The proof of Theorem 1.6 is just a
straightforward application of this calculus.
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The microlocal smoothing property has been studied also in the analytic
category [12], [17], [18], [19]. Robbiano and Zuily [17], [18], [19] used the analytic
quadratic wavefront set, an FBI-transform-based analogue to the qsc wavefront
set. On the other hand, Martinez, Nakamura and Sordoni [12] succeeded to
generalize the results in [17], [18] using the analytic homogeneous wavefront set.

In this article the potential has the subquadratic growth in radial direction
and is dealt with as a perturbation to the free Laplacian. The potential with
the quadratic growth is not just a perturbation any more, which would be seen
from the proof of Theorem 1.3. The case of potential with a quadratic growth
are studied in [5], [22], [23], [24]. Microlocal smoothing property is completely
different under the existence of the quadratic potential term. Hence our setting
is almost optimal.

See works by Doi [2],[3], [4] in the case that the trajectory is trapped .
In Section 2 we study the free classical trajectories on general scattering

manifolds. We will show the existence of the global solution to the Hamilton
equation. In particular the non-trapped trajectory asymptotically approaches
the straight line near the infinity, the boundary ∂X , and collide with a point on
∂X . The methods applied here are rather elementary.

We adjust the theory of the pseudodifferential operators for our purpose
in Section 3. We consider two kinds of parameters, t, the time, and h, the
semiclassical parameter. The class SΩ (m) is defined as the set of symbols such
that

∣

∣

∣∂α
z ∂

β
ζ a(z, ζ; t, h)

∣

∣

∣ ≤ Cαβm(z, ζ; t, h)

uniformly in t ∈ Ω and t ∈ (0, 1]. The theory of the semiclassical analysis
would demand the operators of the form a(z, hDz; t, h), however, then the cor-
responding class in our argument would be S[−t0,0]

(

1, 〈z〉−2dz2 + 〈z〉2dζ
)

or

S[−t0,0]

(

1,
〈

h−1t
〉−2

dz2 +
〈

h−1t
〉2
dζ2
)

and the theory doesn’t work. We also

need the operators of such form as a(hz, hDz; t, h) and their compositions with
other classes. In this point of view we give up the composition formula from
the general theory and check each time if the calculus work, that is, we do not
present the asymptotic expansion formula for the composition in strict classes,
but demonstrate a simple method to check the asymptotic expansion in rather
loose classes. We also give the inequality of G̊arding type.

In Section 4 we give the proof of Theorem 1.3. Observing the equality

〈F (0, h)ut0 , ut0〉L2(Rn,
√

gdz)

= 〈F (−t0, h)u0, u0〉L2(Rn,
√

gdz) +

∫ 0

−t0

〈δF (t, h)ut, ut〉L2(Rn,
√

gdz) dt,
(1.3)

where

δF (t, h) =
∂

∂t
F (t, h) + i [H,F (t, h)] ,

we will construct the symbol ϕ(z, ζ; t, h) of F (t, h) with appropriate properties.
The support suppϕ(·, ·; t, h) as h → 0 moves towards some direction in (z, ζ)-
space, so that the left-hand side and the fist term of right-hand side in (1.3)
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get to be of the form in Definition 1.1. We also require that the Heisenberg
derivative δF is almost non-positive in semiclassical sense, which corresponds
to that the Lagrange derivative D

Dt
ϕ is non-positive.

Theorem 1.6 is proved in Section 5. Here the calculus in Section 3 works
well.

We often use the coordinate change between the standard coordinates z and
the polar coodinates (x, y) on the Euclidean space in Section 4. We gather the
formulae in Appendix A.

Acknowledgement The author would like to sincerely thank Professor Shu
Nakamura for much of advice in writing this paper. He thanks Professor Shu
Nakamura also for reading the manuscript and making useful comments.

2 Classical Flows

In this section we study properties of classical trajectories on general scattering
manifolds. Let X be a compact manifold with boundary and x a boundary
defining function. Given a scattering metric g, we can write near the boundary
∂X

g =
dx2

x4
+
h(x, y, dx, dy)

x2

=
dx2

x4
+

1

x2



h0dx
2 +

n−1
∑

i=1

hi

(

dxdyi + dyidx
)

+

n−1
∑

i,j=1

hijdy
idyj





with y local coordinates of the boundary ∂X and hi, hij depending smoothly
on (x, y). Since the inverse matrix to

(gij) =
1

x2

(

x−2 + h0
t (hi)i≥1

(hi)i≥1 (hij)

)

(2.1)

is given using the Cramer’s formula by

x2

(

x2 + x4ϕ t
(

x2ϕi
)

(

x2ϕi
) (

hij + x2ϕij
)

)

, (2.2)

where ϕ, ϕi, ϕij depend smoothly on (x, y) and
(

hij
)

= (hij)
−1

, we can write
the Hamiltonian function p on T ∗X◦ in the form

p(x, y, ξ, η)

=
1

2





(

x4 + x6ϕ
)

ξ2 + 2x4ξ

n−1
∑

i=1

ϕiηi +

n−1
∑

i,j=1

(

x2hij + x4ϕij
)

ηiηj



 .
(2.3)
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Then the Hamilton equation (1.2) near the boundary is

ẋ =
(

x4 + x6ϕ
)

ξ + x4
n−1
∑

i=1

ϕiηi, (2.4)

ẏi =x4ξϕi +

n−1
∑

j=1

(

x2hij + x4ϕij
)

ηj , (2.5)

ξ̇ = − 1

2

(

4x3 + 6x5 + x6 ∂ϕ

∂x

)

ξ2 − x3ξ

n−1
∑

i=1

(

4ϕi + x
∂ϕ

∂x

)

ηi

− 1

2
x

n−1
∑

i,j=1

(

2hij + x
∂hij

∂x
+ 4x2ϕij + x3 ∂ϕ

ij

∂x

)

ηiηj ,

(2.6)

η̇i = − 1

2
x6 ∂ϕ

∂yi
ξ2 − x4ξ

n−1
∑

j=1

∂ϕj

∂yi
ηj −

1

2

n−1
∑

j,k=1

(

x2 ∂h
jk

∂yi
+ x4 ∂ϕ

jk

∂yi

)

ηjηk. (2.7)

Here the variables are omitted, that is, x = x(t), hij = hij(x(t), y(t)) and etc.
Take the initial value in T ∗X◦, then we can show that the solution exists globally
for t ∈ R. The existence of the local solution and its uniqueness is clear from
the general theory of the differential equations. Before going to the proof of
the existence of the global solution, we prepare a lemma, which is valid for any
metric on an open manifold.

One notes that the Hamiltonian preserves along the flow:

p(z(t), ζ(t)) = p(x(t), y(t), ξ(t), η(t)) ≡ p0 = const.

Lemma 2.1 Let (z(t), ζ(t)) be a solution to (1.2) which is defined on an interval
(α, β) ⊂ R and does not extend out of this interval any more. If (α, β) 6= R,
then the trajectory escapes from any compact sets in X◦ in finite time, i.e., for
any compact set K ⊂ X◦ there exists c ∈ (α, β) such that

z(t) /∈ K, c < ∀t < β or a < ∀t < c,

when β < +∞ or α > −∞ respectively.

Proof. If (z(t), ζ(t)) satisfies (1.2), so does (z(−t),−ζ(−t)), and thus the situ-
ation reduces to the case β < +∞. Note that the trajectory is bound to the
equienergy surface

Sp0 := {(z, ζ) ∈ T ∗X◦ | p(z, ζ) = p0} .

Thus the Hamilton vector field

Hp :=
∂p

∂ζ

∂

∂x
− ∂p

∂x

∂

∂ζ
∈ Γ (T ∗X◦;T (T ∗X◦)) ,

is tangent to Sp0 , which implies that Hp is regarded as a flow on Sp0 .
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Assume the opposite of the conclusion, that is, there exists a compact set
K ⊂ X◦ and a sequence {tn} ⊂ (α, β) such that

z(tn) ∈ K and lim
n→∞

tn = β.

Consider a compact set

Sp0

∣

∣

K
= {(z, ζ) ∈ Sp0 | z ∈ K} ,

a restriction of a sphere bundle on X◦ to K. Using the compactness, we can
cover Sp0

∣

∣

K
with a finite covering

U =
{(

Uj, {ϕj(t, ·)}|t|<εj

)}N

j=1
, Sp0

∣

∣

K
⊂

N
⋃

j=1

Uj,

where U is so-called a local 1-parameter group of local transformations. In other
words, for each |t| < εj,

ϕj(t, ·) : Uj → Sp0

is a diffeomorphism from Uj ⊂ Sp0 into Sp0 , and, for each z ∈ Uj ,

ϕj(·, z) : (−εj , εj) → Sp0

is a curve along Hp with ϕj(0, z) = z. Then, putting ε = minj εj > 0, for any
(z, ζ) ∈ Sp0

∣

∣

K
, we can solve the Hamilton equation with an initial value (z, ζ),

at least, for time t ∈ (−ε, ε). Now take tn such that β − tn < ε/2, then the
trajectory can be extended out of (α, β), which contradicts the assumption. �

Proposition 2.2 Let X be a scattering manifold and (z0, ζ0) ∈ T ∗X◦. Then
the Hamilton equation (1.2) has a unique solution (z(t; z0, ζ0), ζ(t; z0, ζ0)) de-
fined for all t ∈ (−∞,+∞).

Proof. We assume that the solution (z(t), ζ(t)) is defined on (α, β) ⊂ R with
β < +∞ and does not extend out of this interval. We derive a contradiction by
computing

L = lim
ε↓0

∫ β−ε

0

√

g (ż(t), ż(t))dt,

the length of the trajectory in two ways. We can assume that the solution is
written in the form (x(t), y(t), ξ(t), η(t)) by translating t and exchanging the ini-
tial value. (The coordinates (x, y) might not be defined far from the boundary.)
Then in view of Lemma 2.1 x(t) satisfies

lim
t↑β

x(t) = 0.

8



Since

2p0 =
(

1 − x+ x2ϕ
)

x4ξ2 +

n−1
∑

i,j=1

(

hij − xϕiϕj + x2ϕij
)

x2ηiηj

+ x3

(

xξ +

n−1
∑

i=1

ϕiηi

)2

≥
(

1 − x+ x2ϕ
)

x4ξ2 +

n−1
∑

i,j=1

(

hij − xϕiϕj + x2ϕij
)

x2ηiηj ,

(2.8)

considering orders of x, we obtain the estimates

∣

∣x(t)2ξ(t)
∣

∣ < C, |x(t)η(t)| < C (2.9)

for t ∈ [0, β) with a large constant C. Here we used the facts that ϕ’s are
smooth for x ≥ 0 and that hij is positive definite near the boundary. We also
refer to that, though the coordinates y might not remain the same for all t, the
estimate is valid since we can cover the boundary with a finite number of charts.
This kind of argument will be used below without mentioned. Then it follows
from (2.4) and (2.5) that

|ẋ| < Cx2,
∣

∣ẏi
∣

∣ < Cx,

and we have

√

g (ż(t), ż(t)) =





ẋ2

x4
+

1

x2



h0ẋ
2 +

n−1
∑

i=1

hi

(

ẋẏi + ẏiẋ
)

+
n−1
∑

i,j=1

hij ẏ
iẏj









1
2

≥ |ẋ|
x2

− 1

x

∣

∣

∣

∣

∣

∣

h0ẋ
2 +

n−1
∑

i=1

hi

(

ẋẏi + ẏiẋ
)

+

n−1
∑

i,j=1

hij ẏ
iẏj

∣

∣

∣

∣

∣

∣

1
2

≥ |ẋ|
x2

− C′.

Then

L ≥ lim
ε↓0

∣

∣

∣

∣

∣

∫ β−ε

0

ẋ

x2
dt

∣

∣

∣

∣

∣

− C′β

= lim
ε↓0

∣

∣

∣

∣

∣

∫ x(β−ε)

x(0)

1

x2
dx

∣

∣

∣

∣

∣

− C′β

= lim
ε↓0

1

x(β − ε)
− 1

x(0)
− C′β

= +∞.
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On the other hand, since

g (ż(t), ż(t)) =
∑

i,j

gij(z(t))ż
i(t)żj(t)

=
∑

i,j

gij(z(t))
∑

k

gik(z(t))ζk(t)
∑

l

gjl(z(t))ζl(t)

= 2p0,

we have

L =
√

2p0β.

These are the contradiction and the proof is completed. �

Provided that the initial value is non-trapping, the more information about
the trajectory can be extracted. It suffices to study the only forward non-
trapping case, since, if (z0, ζ0) is backward non-trapping, then (z0,−ζ0) is for-
ward non-trapping. Thus we assume (z0, ζ0) is forward non-trapping. Taking
T0 > 0 large enough, the equations (2.4-2.7) with respect to the coordinates
(x, y) are valid for t ≥ T0.We obtain from (2.8) the estimates (2.9) for t ≥ 0. It
follows from the equations (2.4), (2.6), (2.7) and the estimates (2.9) that

ẋ =x4ξ +O
(

x3
)

,

ẍ =
[

4x3ẋ+ 6x5ẋϕ+ x6 (ẋ∂xϕ+ ẏ∂yϕ)
]

ξ +
(

x4 + x6ϕ
)

ξ̇

+ 4x3ẋ
∑

ϕiηi + x4
∑

[(

ẋ∂xϕ
i + ẏ∂yϕ

i
)

ηi + ϕiη̇i

]

=
[

4x3
(

x4ξ +O
(

x3
))

+ 6x5O
(

x2
)

ϕ+ x6
(

O
(

x2
)

∂xϕ+O (x) ∂yϕ
)]

ξ

+
(

x4 + x6ϕ
)

[

−2x3ξ2 − x
∑

hijηiηj +O (1)
]

+ 4x3O
(

x2
)

∑

ϕiηi + x4
∑

[(

O
(

x2
)

∂xϕ+O (x) ∂yϕ
)

ηi + ϕiO(1)
]

=2x7ξ2 − x5
∑

hijηiηj +O
(

x4
)

,

where O
(

xN
)

is a C∞ function in t ∈ R whose absolute value is estimated from
above by some constant times xN when t ≥ 0. Hence

d2

dt2

(

1

x2

)

= 6
ẋ2

x4
− 2

ẍ

x3

= 2x4ξ2 + 2x2
∑

hijηiηj +O(x)

= 4p0 +O(x).

(2.10)

Taking T0 larger if necessary, we have

3p0 ≤ d2

dt2

(

1

x2

)

≤ 5p0 for t ≥ T0

10



and so,

3

2
p0 (t− T0)

2 ≤ 1

x2
+ Ct+ C′ ≤ 5

2
p0 (t− T0)

2
.

Therefore, by taking T0 larger if necessary, there is some C > 0 such that

C−1t2 ≤ 1

x2
≤ Ct2 for t ≥ T0

and thus

C−1t−2 ≤ x2 ≤ Ct−2 for t ≥ T0.

Considering this estimate, (2.10) becomes

d2

dt2

(

1

x2

)

= 4p0 +O
(

t−1
)

,

where O
(

t−1
)

is a C∞ function in t ∈ R and its absolute value is estimated
from above by a constant times t−1 for t ≥ T0. Thus we have

1

x2
= 2p0t

2 +O (t log t) .

Moreover, using (2.3), (2.4) and (2.6), we have

d

dt
(xξ) = −x4ξ2 − x2

∑

hijηiηj +O(x)

= −2p0 +O
(

t−1
)

,

and thus

ξ =
1

x
(−2p0t+O(log t))

= − (2p0)
3
2 t2 +O(t log t).

We obtain

x2ξ = −
√

2p0 +O

(

log t

t

)

.

Combining this with the inequality (2.8), we have

xη = O

(

log t

t

)

, (2.11)

and then, from (2.5) and (2.7) the estimates

ẏi = O

(

log t

t2

)

, η̇i = O

(

(

log t

t

)2
)

11



are obtained. In particular, with an appropriate choice of the coordinates y, the
limits

yi
+ = lim

t→∞
yi(t), ηi

+ = lim
t→∞

ηi(t)

exist. Note that we can improve the estimates, for example, (2.11) is improved
to be

xη = O
(

t−1
)

by the fact that η is bounded. We don’t do so, however, since we won’t need it
later.

Proposition 2.3 If (z0, ζ0) ∈ T ∗X◦ is forward non-trapping,

x(t; z0, ζ0) =
(

2p0t
2 +O (t log t)

)− 1
2 ,

ξ(t; z0, ζ0) = − (2p0)
3
2 t2 + O(t log t)

as t→ +∞. Moreover

z+(z0, ζ0) := lim
t→+∞

z(t; z0, ζ0) ∈ ∂X

exists, and, with an appropriate choice of coordinates y of the boundary,

y+(z0, ζ0) := lim
t→+∞

y(t; z0, ζ0), η+(z0, ζ0) := lim
t→+∞

η(t; z0, ζ0)

exist.

We now apply the above results to the backward non-trapped trajectory
on the Euclidean space R

n ⊂ X = Sn
+ with a scattering metric. If (z0, ζ0) is

backward non-trapping, then (z0,−ζ0) is forward non-trapping and

(z (t; z0, ζ0) , ζ (t; z0, ζ0)) = (z(−t; z0,−ζ),−ζ (−t; z0,−ζ0))

hold. Since

z−(z0, ζ0) := lim
t→−∞

z (t; z0, ζ0) = z+(z0,−ζ)

exists as a point on ∂X , taking T0 large enough and exchanging the standard
coordinate axes if necessary, we can assume zn(t; z0, ζ0) ≥ ε > 0 for all t < −T0.
This in particular allow us to take the coordinates (x, y(+n)), which is defined
in Appendix A, near the trajectory for t < −T0. This choice of the coordinates
will be used in Section 4. As

y−(z0, ζ0) := lim
t→−∞

y(t; z0, ζ0), η−(z0, ζ0) := lim
t→−∞

η(t; z0, ζ0)

12



exists, ω−(z0, ζ0) exists. Moreover, since we have

x(t; z0, ζ0) =
(

2p0t
2 +O (|t| log |t|)

)− 1
2 ,

ξ(t; z0, ζ0) = (2p0)
3
2 t2 +O (|t| log |t|)

as t→ −∞, it follows, using the formula (A.7), that

ζ−(z0, ζ0) := lim
t→−∞

ζ(t; z0, ζ0) =
√

2p0ω−(z0, ζ0).

Thus (−t0ω−, ω−) in Theorem 1.3 can be replaced by (−t0ζ−, ζ−).

3 Pseudodifferential Calculus

For the proof of Theorem 1.3 and 1.6 we need the pseudodifferential calculus.
The symbol classes we consider here are SΩ(m) following Martinez [11], and
SΩ (m̃, g̃) following Hörmander [8], both added the parameters t ∈ Ω and h ∈
(0, 1]. We use the class SΩ(m) as theoretical foundation.

Definition 3.1 Let Ω be the set of ordinary parameters. Here ‘ordinary’ means
that we also consider the distinguished parameter h ∈ (0, 1], what is called semi-
classical parameter other than t ∈ Ω. A positive measurable function m(·, ·; t, h)
on R

2n parameterized by (t, h) ∈ Ω × (0, 1] is an order function if there are
constants N0 ∈ R and C0 > 0 such that

m(z, ζ; t, h) ≤ C0 〈z − z1; ζ − ζ1〉N0 m(z1, ζ1; t, h) (3.1)

uniformly in (z, ζ), (z1, ζ1) ∈ R
2n and (t, h) ∈ Ω × (0, 1], where

〈z; ζ〉 :=
(

1 + |z|2 + |ζ|2
)

1
2 .

A C∞ function a(·, ·; t, h) on R
2n parameterized by (t, h) ∈ Ω × (0, 1] is in

the symbol class SΩ(m) if and only if for any α, β ∈ Z
n
+ there exists a constant

Cαβ such that
∣

∣

∣∂α
z ∂

β
ζ a(z, ζ; t, h)

∣

∣

∣ ≤ Cαβm(z, ζ; t, h)

uniformly in (z, ζ, t, h) ∈ R
2n × Ω × (0, 1].

The semiclassical parameter h is important when it is small, and so the symbol
may not be defined for h near 1.

The class SΩ (m̃, g̃) is defined following Hörmander, where the weight func-
tion m̃ and the metric g̃ depend on parameters with the uniformity in them
assumed. We use SΩ (m̃, g̃) just for the notational simplification and the precise
definition is not needed.

There will often appear the class S[−t0,0] (m, g̃1), where m does not depend
on (z, ζ) ∈ R

2n and g̃1 is given by

g̃1 =
〈

h−1t
〉−2

dz2 + h2
〈

h−1t
〉2
dζ2.

13



Note that, since h
〈

h−1t
〉

≤ 〈t0〉, we have S[−t0,0] (m, g̃1) ⊂ S[−t0,0] (m).
If a, aj ∈ SΩ(m), j = 0, 1, . . . , satisfies

a−
N
∑

j=0

aj ∈ SΩ

(

hkN+1m
)

for N = 0, 1, . . .

with
lim

N→∞
kN = +∞,

we write

a ∼
∞
∑

j=0

aj .

If one defines
SΩ (h∞m) =

⋂

N≥0

SΩ

(

hNm
)

,

it is easy to verify the asymptotic sum determines a modulo SΩ (h∞m), that is,
if a′, aj ∈ SΩ(m), j = 0, 1, . . . , satisfies the same condition as above, then

a− a′ ∈ SΩ (h∞m) .

Let a ∈ SΩ(m) and Kt,h ⊂ R
2n. If there is an a′ ∈ SΩ(m) such that

supp a′ (·, ·; t, h) ⊂ Kt,h and a− a′ ∈ SΩ (h∞m) ,

we say a is supported in Kt,h modulo SΩ (h∞m).

Proposition 3.2 Suppose aj ∈ SΩ

(

hkjm
)

, j = 0, 1, 2, . . . , and kj → +∞ as
j → +∞, then there exists a ∈ SΩ (m) such that

a ∼
∞
∑

j=0

aj .

In particular, if all aj (·, ·; t, h) are supported in Kt,h ⊂ R
2n, we can choose

a (·, ·; t, h) with the support in Kt,h.

Proof. Replacing aj by

a′j =
∑

j≤kl<j+1

al ∈ SΩ

(

hjm
)

,

we can assume kj = j. Take a cut-off function χ ∈ C∞
0 (R) with

χ(λ) =

{

1, if |λ| ≤ 1,
0, if |λ| ≥ 2,

14



and increasing constants Cj such that

sup
|α|+|β|≤j

(z,ζ,t,h)∈R2n×Ω×(0,1]

h−jm(z, ζ; t, h)−1
∣

∣

∣∂α
z ∂

β
ζ aj(z, ζ; t, h)

∣

∣

∣ ≤ Cj

and

lim
j→∞

Cj = +∞.

Then for |α| + |β| ≤ j and (z, ζ, t, h) ∈ R
2n × Ω × (0, 1], we have

h

(

1 − χ

(

1

Cjh

))

∣

∣

∣∂α
z ∂

β
ζ aj(z, ζ; t, h)

∣

∣

∣ ≤ 1

Cj

Cjh
jm(z, ζ; t, h)

≤ hjm(z, ζ; t, h),

from which it follows that
(

1 − χ

(

1

Cjh

))

∣

∣

∣∂α
z ∂

β
ζ aj(z, ζ; t, h)

∣

∣

∣ ≤ hj−1m(z, ζ; t, h).

We now define

a(z, ζ; t, h) =

∞
∑

j=0

(

1 − χ

(

1

Cjh

))

aj(z, ζ; t, h),

and check this a has the properties of the proposition.
First note that the series converges and a(·, ·; t, h) is in C∞(R2n) since for

each h ∈ (0, 1] the sum is the finite sum. In particular, if all aj (·, ·; t, h) are
supported in Kt,h, so is a (·, ·; t, h). For any α, β ∈ Z

n
+, if we take j0 = |α|+ |β|,

we have

∣

∣

∣∂α
z ∂

β
ζ a(z, ζ; t, h)

∣

∣

∣ ≤

∣

∣

∣

∣

∣

∣

j0−1
∑

j=0

(

1 − χ

(

1

Cjh

))

∂α
z ∂

β
ζ aj(z, ζ; t, h)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∞
∑

j=j0

(

1 − χ

(

1

Cjh

))

∂α
z ∂

β
ζ aj(z, ζ; t, h)

∣

∣

∣

∣

∣

∣

≤
j0−1
∑

j=0

∣

∣

∣∂α
z ∂

β
ζ aj(z, ζ; t, h)

∣

∣

∣+

∞
∑

j=j0

hj−1m(z, ζ; t, h)

uniformly in (z, ζ, t, h) ∈ R
2n × Ω × (0, 1]. Therefore a ∈ SΩ (m).
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Take any k ≥ 0 and α, β ∈ Z
n
+ and set j0 = max{k + 1, |α| + |β|}. Then

∣

∣

∣

∣

∣

∣

∂α
z ∂

β
ζ



a(z, ζ; t, h) −
k
∑

j=0

aj(z, ζ; t, h)





∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

k
∑

j=0

χ

(

1

Cjh

)

∂α
z ∂

β
ζ aj(z, ζ; t, h)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

j0
∑

j=k+1

(

1 − χ

(

1

Cjh

))

∂α
z ∂

β
ζ aj(z, ζ; t, h)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∞
∑

j=j0+1

(

1 − χ

(

1

Cjh

))

∂α
z ∂

β
ζ aj(z, ζ; t, h)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

k
∑

j=0

χ

(

1

Cjh

)

∂α
z ∂

β
ζ aj(z, ζ; t, h)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

j0
∑

j=k+1

(

1 − χ

(

1

Cjh

))

∂α
z ∂

β
ζ aj(z, ζ; t, h)

∣

∣

∣

∣

∣

∣

+
∞
∑

j=j0+1

hj−1m(z, ζ; t, h).

In the last formula the first term is zero for small h, and the second and the
third terms are estimated from above by a constant times hk+1m(z, ζ; t, h). The
proof is completed. �

Let g be a scattering metric on X = Sn
+ ⊃ R

n and denote det g by g.

Definition 3.3 Let a ∈ SΩ(m) and u ∈ S(Rn). We define the pseudodifferen-
tial operators

aw(z,Dz; t, h)u(z) =

∫

ei(z−w)ζa

(

z + w

2
, ζ; t, h

)

u(w)dwd̄ζ, (3.2)

agw(z,Dz; t, h)u(z) =
1

4
√

g(z)
aw (z,Dz; t, h)

4
√

g(z)u(z). (3.3)

If an operator A(t, h) with parameters (t, h) ∈ Ω × (0, 1] can be written in the
form (3.2) with some a ∈ SΩ(m), we say a is the Weyl symbol of A(t, h) and
denote it by σw(A). Similarly if A(t, h) is of the form (3.3), we say a is the
g-Weyl symbol of A(t, h) and denote it by σgw(A).

Proposition 3.4 Let a ∈ SΩ(m). agw(z,Dz; t, h) defines a continuous operator

agw(z,Dz; t, h) : S (Rn) → S (Rn)

for each (t, h) ∈ Ω × (0, 1].
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Proof. First we prove the multiplications by 4
√
g and 1

4
√

g
define continuous

operators S (Rn) → S (Rn). It is sufficient to show that the derivatives of g are
bounded, and that g is estimated from below by a positive constant . Using the
expression (2.1) we can write

√

g(z)|dz| =
1

xn+1

√

det (hij (x, y)) + xr1 (x, y)|dxdy|

with r1 depending smoothly on (x, y). Thus we have from the formulae (A.5)
and (A.6)

g(z) =
[

det (hij (x, y)) + xr1 (x, y)
]

r2 (y)

=

[

det

(

hij

(

1

|z| ,
z

|z|

))

+
1

|z|r1
(

1

|z| ,
z

|z|

)]

r2

(

z

|z|

)

,
(3.4)

where r2 is smooth in y. Then we easily see the properties we want. Now we
have only to see the continuity of aw(z,Dz; t, h). We denote the seminorms on
S (Rn) by

|u|k := sup
z∈Rn,

l+|α|≤k

∣

∣〈z〉l∂α
z u(z)

∣

∣ .

For any l ≥ 0 and α ∈ Z
n
+, we have

∣

∣〈z〉l∂α
z a

w(z,Dz; t, h)u(z)
∣

∣

=

∣

∣

∣

∣

〈z〉l∂α
z

∫

ei(z−w)ζ〈ζ〉−N 〈Dw〉N
[

a

(

z + w

2
, ζ; t, h

)

u(w)

]

dwd̄ζ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

ei(z−w)ζ〈Dζ〉l∂α
w〈Dw〉N

[

〈ζ〉−Na

(

z + w

2
, ζ; t, h

)

u(w)

]

dwd̄ζ

∣

∣

∣

∣

≤ C |u|N+|α|+N0+n+1

∫

〈ζ〉−Nm

(

z + w

2
, ζ; t, h

)

〈w〉−N0−n−1dwd̄ζ

≤ C |u|N+|α|+N0+n+1m (0, 0; t, h) 〈z〉N0

∫

〈ζ〉N0−N 〈w〉−n−1dwd̄ζ

≤ Cm (0, 0; t, h) |u|N+|α|+N0+n+1 〈z〉
N0 ,

where N is any number larger than n + N0, and C, which might be different
from line to line, is a constant depending only on l, α and N . Then we have

∣

∣〈z〉l−N0∂α
z a

w(z,Dz; t, h)u(z)
∣

∣ ≤ Cm (0, 0; t, h) |u|N+|α|+N0+n+1

for any l ≥ 0 and α ∈ Z
n
+, which concludes the proof. �

Proposition 3.5 The formal adjoint operator to agw(z,Dz; t, h) on S (Rn) with
respect to the inner product (·, ·)

L2(Rn,
√

gdz) is given by āgw(z,Dz; t, h), that is,

〈agw(z,Dz; t, h)u(z), v(z)〉L2(Rn,
√

gdz) = 〈u(z), āw(z,Dz; t, h)v(z)〉L2(Rn,
√

gdz)

for all u, v ∈ S (Rn), where ā(z, ζ; t, h) = a(z, ζ; t, h). In particular, if a is
real-valued, then agw(z,Dz; t, h) is formally self-adjoint.
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Proof. Obvious. �

Proposition 3.6 Let a ∈ SΩ (m) and b ∈ SΩ (m′). Then the composite opera-
tor

agw(z,Dz; t, h) ◦ bgw(z,Dz; t, h)

is written in the form

cgw(z,Dz; t, h) = agw(z,Dz; t, h) ◦ bgw(z,Dz; t, h)

with the symbol c ∈ SΩ (mm′) given by

c(z, ζ; t, h) = e
i
2 (DzDζ1

−DζDz1)a(z, ζ; t, h)b (z1, ζ1; t, h)
∣

∣

∣

z1=z,ζ1=ζ
, (3.5)

which would be denoted by a♯b(z, ζ; t, h). We can also write

a♯b(z, ζ; t, h) =
N−1
∑

j=0

1

j!

{

i

2
(∂z∂ζ1 − ∂ζ∂z1)

}j

a(z, ζ; t, h)b(z1, ζ1; t, h)

∣

∣

∣

∣

z1=z,ζ1=ζ

+RNa(z, ζ; t, h)b(z1, ζ1; t, h)

∣

∣

∣

∣

z1=z,ζ1=ζ

(3.6)

with

RN =

∫ 1

0

(1 − τ)N−1

(N − 1)!
e

i
2 τ(DzDζ1

−DζDz1)dτ

{

i

2
(∂z∂ζ1 − ∂ζ∂z1)

}N

.

If there is a sequence k0, k1, . . . such that

Rjab
∣

∣

z1=z,ζ1=ζ
∈ S

(

hkjmm′) and lim
j→∞

kj = ∞,

a♯b can be expanded into the asymptotic sum

a♯b ∼
∞
∑

j=0

1

j!

{

i

2
(∂z∂ζ1 − ∂ζ∂z1)

}j

ab

∣

∣

∣

∣

z1=z,ζ1=ζ

, (3.7)

where we omitted writing variables. This convention would be the same in the
following.

Proof. Since

agw(z,Dz; t, h) ◦ bgw(z,Dz; t, h)

=
1

4
√

g(z)
◦ aw(z,Dz; t, h) ◦ bw(z,Dz; t, h) ◦ 4

√

g(z),

the formula (3.5) follows from the composition formula in, e.g., [11]. We now
prove (3.6). First consider the case where a, b ∈ S

(

R
2n
)

for each (t, h). Then
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using the Taylor expansion

e
i
2 (z∗ζ∗

1−ζ∗z∗
1 ) =

N−1
∑

j=0

1

j!

{

i

2
(z∗ζ∗1 − ζ∗z∗1)

}j

+

{

i

2
(z∗ζ∗1 − ζ∗z∗1)

}N ∫ 1

0

(1 − τ)N−1

(N − 1)!
e

i
2 τ(z∗ζ∗

1−ζ∗z∗
1 )dτ

and partial integration, it is easy to verify (3.6). Since all terms in the right-
hand side of (3.6) are continuous in (a, b) ∈ S′ × S′, we have (3.6) for any
a ∈ SΩ (m) and b ∈ SΩ (m′). The rest part of the proposition is obvious. �

We represented the remainder terms using the operator Rj followed by the
restriction of the variables. This is because the restriction means the loss of
information. We want to exploit from Rjab as much information as possible
before the restriction. It is shown below that Rj preserves the symbol class
SΩ (mm′), but, before that, we give a corollary to Proposition 3.6.

Corollary 3.7 Let a ∈ SΩ (m) and b ∈ SΩ (m′), then we have

a♯b− b♯a =
1

i
{a, b} +R3 (ab− ba)

∣

∣

z1=z,ζ1=ζ
,

where {·, ·} is the Poisson bracket defined by

{a, b} :=
∂a

∂ζ

∂b

∂z
− ∂a

∂z

∂b

∂ζ
.

In particular, if there are kj’s for a♯b and b♯a as in Proposition 3.6, then we
have

a♯b− b♯a− 1

i
{a, b} ∈ SΩ

(

hk3mm′) .

Proof. From Proposition 3.6, it follows

a♯b =ab+
1

2i
(−∂za∂ζb+ ∂ζa∂zb)

− 1

8
(∂z∂ζ1 − ∂ζ∂z1)

2
ab
∣

∣

z1=z,ζ1=ζ
+R3ab

∣

∣

z1=z,ζ1=ζ
,

b♯a =ba+
1

2i
(−∂zb∂ζa+ ∂ζb∂za)

− 1

8
(∂z∂ζ1 − ∂ζ∂z1)

2
ba
∣

∣

z1=z,ζ1=ζ
+R3ba

∣

∣

z1=z,ζ1=ζ
.

One observes that

(∂z∂ζ1 − ∂ζ∂z1)
2
a(z, ζ; t, h)b(z1, ζ1; t, h)

∣

∣

z1=z,ζ1=ζ

= (∂z1∂ζ − ∂ζ1∂z)
2
b(z1, ζ1; t, h)a(z, ζ; t, h)

∣

∣

z1=z,ζ1=ζ

= (∂z∂ζ1 − ∂ζ∂z1)
2
b(z, ζ; t, h)a(z1, ζ1; t, h)

∣

∣

z1=z,ζ1=ζ
.

Then the corollary follows. �
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Lemma 3.8 Let a ∈ SΩ(m) and p ∈ C∞ (
R

2n
)

. Suppose that, for any α, β ∈
Z

n
+, there exist constants Cαβ > 0 and nαβ such that

∣

∣

∣∂α
z ∂

β
ζ p(z, ζ)

∣

∣

∣ ≤ Cαβ 〈z; ζ〉nαβ . (3.8)

Then p (Dz, Dζ) a ∈ SΩ (m).

Proof. Set Z = (z, ζ). One has to check the estimate for ∂α
Zp (DZ) a, but, since

∂α
Z and p (DZ) commutes, it suffices to check the estimate only for p (DZ) a. By

the definition we have

p(DZ)a(Z; t, h) =

∫

ei(Z−Z′)Z∗

p (Z∗) a (Z ′; t, h) dZ ′d̄Z∗

=

∫

ei(Z−Z′)Z∗ 〈DZ∗〉N p (Z∗)

〈Z∗〉M
〈DZ′〉M a (Z ′; t, h)

〈Z − Z ′〉N
dZ ′d̄Z∗.

One applies the inequalities (3.1) and (3.8) to the above and obtains

|p(DZ)a(Z; t, h)| ≤ CNMm (Z; t, h)

∫

〈Z∗〉nN−M 〈Z − Z ′〉N0−N
dZ ′d̄Z∗.

Taking N > N0 + 2n and M > nN + 2n, and changing the variable Z ′ → Z ′′ =
Z ′ −Z, the integral in the right-hand side converges to a constant independent
of Z. �

The operators of the form p(Dz, Dζ) often appear, for instance, in compositions
and changes of the quantization. Proposition 3.6 guarantees the composition for
the symbols in SΩ(m) and SΩ (m′), however, this doesn’t guarantee the asymp-
totic expansion. We use Lemma 3.8 to check the expansion. We demonstrate
the procedure in the proof of the following proposition, which implies that the
subclass S[−t0,0] (m, g̃1) ⊂ SΩ (m) makes an algebra. Recall that g̃1 is given by

g̃1 =
〈

h−1t
〉−2

dz2 + h2
〈

h−1t
〉2
dζ2.

Proposition 3.9 Let a ∈ S[−t0,0] (m, g̃1) and b ∈ S[−t0,0] (m
′, g̃1). Since

S[−t0,0] (m, g̃1) ⊂ S[−t0,0] (m) and S[−t0,0] (m
′, g̃1) ⊂ S[−t0,0] (m

′) ,

Proposition 3.6 can be applied to a and b, and we can consider the composite
symbol a♯b ∈ S[−t0,0] (mm

′). Then a♯b ∈ S[−t0,0] (mm
′, g̃1) and the asymptotic

expansion (3.7) is valid.

Proof. Note that

∂α
(z,z1)

∂β

(ζ,ζ1)a(z, ζ; t, h)b(z1, ζ1; t, h) ∈ S[−t0,0]

(

h|β|
〈

h−1t
〉−|α|+|β|

mm′
)

as a function of (z, z1, ζ, ζ1, t, h). Then, apply Lemma 3.8 with p(z∗, z∗1 , ζ
∗, ζ∗1 ) =

e
i
2 (z∗ζ∗

1−ζ∗z∗
1), and we see

∂α
(z,z1)

∂β

(ζ,ζ1)
e

i
2 (DzDζ1

−DζDz1)ab ∈ S[−t0,0]

(

h|β|
〈

h−1t
〉−|α|+|β|

mm′
)

,
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which implies, through the restriction of variables, a♯b ∈ S[−t0,0] (mm
′, g̃1). To

see the asymptotic expansion we estimate the remainder term. Since

{

i

2
(∂z∂ζ1 − ∂ζ∂z1)

}N

ab

∈ S[−t0,0]

(

hNmm′,
〈

h−1t
〉−2 (

dz2 + dz2
1

)

+ h2
〈

h−1t
〉−2 (

dζ2 + dζ2
1

)

)

,

we can check similarly to the above argument with

p(z∗, z∗1 , ζ
∗, ζ∗1 ) =

1

(N − 1)!

∫ 1

0

(1 − τ)N−1e
i
2 τ(z∗ζ∗

1−ζ∗z∗
1 )dτ

that
RNab

∣

∣

z1=z,ζ1=ζ
∈ S[−t0,0]

(

hNmm′, g̃1
)

⊂ S
(

hNmm′) .

Then the asymptotic expansion follows. �

We will often use this argument in Section 4 to see what class the composite
symbol belongs to, when we composite the symbols in SΩ (m, g̃) and SΩ (m′, g̃′)
with different g̃ and g̃′. Then Lemma 3.8 will be very useful for estimating the
remainder terms.

Theorem 3.10 Let a ∈ SΩ (m) with an order function m = m(t, h) which is
independent of (z, ζ). Then agw(z,Dz; t, h) extends to a bounded operator on
L2
(

R
n,
√
gdz
)

, and there exist constants Cn and Mn depending only on n such
that

‖agw(z,Dz; t, h)‖L(L2(Rn,
√

gdz)) ≤ Cn

∑

|α|≤Mn

∥

∥

∥∂α
(z,ζ)a(·, ·; t, h)

∥

∥

∥

L∞(R2n)

for each (t, h) ∈ Ω × (0, 1].

For the proof of the theorem, see any textbook for pseudodifferential operators,
e.g., [11].

The next theorem is the sharp G̊arding inequality revised for our purpose:

Theorem 3.11 Suppose that a ∈ S[−t0,0] (m, g̃1) with m independent of (z, ζ)
satisfies

a(z, ζ; t, h) ≥ 0

for all (z, ζ, t, h) ∈ R
2n × [−t0, 0]× (0, 1]. Then there exists r ∈ S[−t0,0] (hm, g̃1)

such that
agw(z,Dz; t, h) ≥ −rgw(z,Dz; t, h),

that is, we have for any u ∈ S (Rn)

〈agw(z,Dz; t, h)u, u〉L2(Rn,
√

gdz) ≥ −〈rgw(z,Dz; t, h)u, u〉L2(Rn,
√

gdz).

Moreover, for any N > 0, there exists r̃N ∈ S[−t0,0] (hm, g̃1) such that

supp r̃N (·, ·; t, h) ⊂ supp a(·, ·; t, h) ∀(t, h) ∈ [−t0, 0] × (0, 1]
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and
r − r̃N ∈ S[−t0,0]

(

h
N
2 m, g̃1

)

.

This implies in particular that r is supported in supp a(·, ·; t, h) modulo S (h∞m).

Proof. Put

ã(z, ζ; t, h) =
1

πn

∫

e−z2
1−ζ2

1a (z + pz1, ζ + qζ1; t, h) dz1dζ1

=
1

πn

∫

e−q2(z1−z)2−p2(ζ1−ζ)2a (z1, ζ1; t, h)dz1dζ1,

where p = h
1
2

〈

h−1t
〉

and q = h−
1
2

〈

h−1t
〉−1

. By the Taylor expansion,

a (z + pz1, ζ + qζ1; t, h) =a(z, ζ; t, h)

+ p

n
∑

j=1

∫ 1

0

zj
1∂zja (z + τpz1, ζ + τqζ1; t, h) dτ

+ q

n
∑

j=1

∫ 1

0

(ζ1)j∂ζj
a (z + τpz1, ζ + τqζ1; t, h)dτ.

Then, using partial integration, we have

ã(z, ζ; t, h) = a(z, ζ; t, h) + r(z, ζ; t, h)

with

r(z, ζ; t, h) =
1

2
p2

∫∫ 1

0

e−z2
1−ζ2

1 τ△za (z + τpz1, ζ + τqζ1; t, h) dτdz1dζ1

+
1

2
q2
∫∫ 1

0

e−z2
1−ζ2

1 τ△ζa (z + τpz1, ζ + τqζ1; t, h)dτdz1dζ1.

One can easily see that r ∈ S[−t0,0] (hm, g̃1).
We show the positivity of ãgw(z,Dz; t, h) as an operator. Since we have for

u ∈ C∞
0 (Rn)

〈ãgw(z,Dz; t, h)u, u〉L2(Rn,
√

gdz) = 〈ãw(z,Dz; t, h) 4
√
gu, 4

√
gu〉

L2(Rn,dz) ,

by replacing u with 1
4
√

g
v, it suffices to prove the positivity of ãw(z,Dz; t, h) with

respect to the inner product 〈·, ·〉L2(Rn,dz). For u ∈ C∞
0 (Rn)

πn 〈ãw(z,Dz; t, h)u, u〉L2(Rn,dz)

=

∫ [∫

ei(z−w)ζ

{∫

e−q2(z1− z+w
2 )2−p2(ζ1−ζ)2

a (z1, ζ1; t, h) dz1dζ1

}

u(w)dwd̄ζ

]

u(z)dz

=

∫ {∫

ei(z−w)ζe−q2(z1− z+w
2 )

2−p2(ζ1−ζ)2

a (z1, ζ1; t, h)u(w)u(z)dwd̄ζdz

}

dz1dζ1,
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where the change of the order of integrals is verified, for example, by that, using
partial integration, the both of the above integrals are equal to the absolutely
convergent integral
∫

ei(z−w)ζ〈ζ〉−N 〈Dw〉N
[

e−q2(z1− z+w
2 )

2−p2(ζ1−ζ)2u(w)
]

a (z1, ζ1; t, h)u(z)dz1dζ1dwd̄ζdz.

By the change of variables ζ → ζ2 = ζ1 − ζ,

πn 〈ãw(z,Dz; t, h)u, u〉
L2(Rn,dz)

=

∫ {∫

e−i(z−w)ζ2e−p2ζ2
2 d̄ζ2

}

e−q2(z1− z+w
2 )2

+i(z−w)ζ1

a(z1, ζ1; t, h)u(w)u(z)dwdzdz1dζ1

= π
n
2 qn

∫

e−
1
4 q2(z−w)2−q2(z1− z+w

2 )2
+i(z−w)ζ1

a(z1, ζ1; t, h)u(w)u(z)dwdzdz1dζ1

= π
n
2 qn

∫
∣

∣

∣

∣

∫

e−
1
2 q2w2+q2z1w−iwζ1u(w)dw

∣

∣

∣

∣

2

e−q2z2
1a(z1, ζ1; t, h)dz1d̄ζ1

≥ 0.

Thus we have
〈ãgw(z,Dz; t, h)u, u〉L2(Rn,

√
gdz) ≥ 0

for any u ∈ S (Rn). Then

〈agw(z,Dz; t, h)u, u〉L2(Rn,
√

gdz)

= 〈(a− ã)
gw

(z,Dz; t, h)u, u〉L2(Rn,
√

gdz) + 〈ãgw(z,Dz; t, h)u, u〉L2(Rn,
√

gdz)

≥ −〈rgw(z,Dz; t, h)u, u〉L2(Rn,
√

gdz) .

The required r is obtained.
Now let us prove the second part of the theorem. By the Taylor expansion

a (z + pz1, ζ + qζ1; t, h)

=
∑

|α|+|β|<N

p|α|−|β|

α!β!
zα
1 ζ

β
1 ∂

α
z ∂

β
ζ a(z, ζ; t, h)

+
∑

|α|+|β|=N

Np|α|−|β|

α!β!
zα
1 ζ

β
1

∫ 1

0

(1 − τ)N−1∂α
z ∂

β
ζ a (z + τpz1, ζ + τqζ1; t, h) dτ,

and then, corresponding to this, r is expanded to be

r(z, ζ; t, h) =

N−1
∑

j=1

rj(z, ζ; t, h) + r̃N (z, ζ; t, h)
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with

rj(z, ζ; t, h) =
∑

|α|+|β|=j

p|α|−|β|

πnα!β!
∂α

z ∂
β
ζ a(z, ζ; t, h)

∫

e−z2
1−ζ2

1 zα
1 ζ

β
1 dz1dζ1,

r̃N (z, ζ; t, h) =
∑

|α|+|β|=N

Np|α|−|β|

πnα!β!

∫∫ 1

0

(1 − τ)N−1e−z2
1−ζ2

1 zα
1 ζ

β
1

∂α
z ∂

β
ζ a (z + τpz1, ζ + τqζ1; t, h) dτdz1dζ1.

One can easily check that this r̃N satisfies the properties of the theorem. Hence

r ∼
∑

|α|+|β|≥1

p|α|−|β|

πnα!β!
∂α

z ∂
β
ζ a

∫

e−z2
1−ζ2

1 zα
1 ζ

β
1 dz1dζ1.

Each term in the right-hand side is supported in supp a (·, ·; t, h), and so, by
Proposition 3.2, we can choose r′ ∈ S[−t0,0] (hm) such that

r′ ∼
∑

|α|+|β|≥1

p|α|−|β|

πnα!β!
∂α

z ∂
β
ζ a

∫

e−z2
1−ζ2

1 zα
1 ζ

β
1 dz1dζ1

and supp r′ (·, ·; t, h) ⊂ supp a (·, ·; t, h). From the uniqueness of the asymptotic
sum it follows that r − r′ ∈ S (h∞m), which shows that r is supported in
supp a (·, ·; t, h) modulo S (h∞m). �

We give the g-Weyl symbol of H0:

Proposition 3.12 The g-Weyl symbol of

H0 = − 1

2
√
g

n
∑

i,j=1

∂ig
ij√g∂j

is given by

σgw(H0)(z, ζ) = e−
i
2DzDζk(z, ζ),

where k(z, ζ) is equal to the polynomial

1

2

∑

j,k

[

gjkζjζk − i∂jg
jkζk +

1

4g

(

gjk∂j∂kg −
3

4
gjk∂jg∂kg + ∂jg

jk∂kg

)]

.

Then it follows

σgw(H0) ∈ S
(

〈ζ〉2 , 〈z〉−2 dz2 + 〈ζ〉−2 dζ2
)

, (3.9)

σgw(H0) −
1

2

∑

j,k

gjkζjζk ∈ S
(

〈ζ〉 〈x〉−1
, 〈z〉−2

dz2 + 〈ζ〉−2
dζ2
)

. (3.10)
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Proof. By an easy computation

4
√
g ◦H0 ◦

1
4
√
g

= k(z,Dz),

and then the g-Weyl symbol σgw(H0) is given by the formula for the change

of the quantization, i.e., σgw(H0)(z, ζ) = e−
i
2DzDζk(z, ζ). See, e.g., [11]. If we

prove

k ∈ S
(

〈ζ〉2 , 〈z〉−2
dz2 + 〈ζ〉−2

dζ2
)

, (3.11)

then, using Lemma 3.8, we obtain (3.9) and (3.10) similarly to the proof of
Proposition 3.9. We write down det g and gij ’s with respect to the coordinates
z. The expression of det g in z has already been seen in (3.4). For the expression
of gij we use (2.2). Substituting (A.2) and (A.3) into the equality

n
∑

i,j=1

gij(z)∂zi ⊗ ∂zj =
(

x4 + x6ϕ
)

∂x ⊗ ∂x + x4
n−1
∑

i=1

ϕi
(

∂x ⊗ ∂yi + ∂yi ⊗ ∂x

)

+ x2
n−1
∑

i,j=1

(

hij + x2ϕij
)

∂yi ⊗ ∂yj ,

we see that gij(z) is a C∞ function in (x, y). Then it follows

det g, gij ∈ S
(

1, 〈z〉−2
dz2
)

,

which implies (3.11). �

4 Proof of Theorem 1.3

Let u0 ∈ L2 (Rn), (z0, ζ0) ∈ T ∗
R

n and t0 > 0 as in Theorem 1.3. We often use
the notation

∆f = f(z, ζ) − f(z(t; z0, ζ0), ζ(t; z0, ζ0)),

where f is any function on T ∗
R

n. Take large T0 > 0 as in Section 2 so that

c−1〈t〉−1 ≤ x(t; z0, ζ0) ≤ c〈t〉−1 ∀t ≤ −T0

for some c > 0. Given small δ > 0 and large C > 0, take any δ0 with 0 < 4δ0 < δ.
We fix large T1 > 0 such that

T1 > max

{

T0,
C

δ0
, t0

}

+ 1.

Choosing a C∞ function χ on [0,+∞) such that

χ(λ) =

{

1, if λ < 1
2 ,

0, if λ > 1,
and

d

dλ
χ(λ) ≤ 0 ∀λ ≥ 0,
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we define ψ−1 : (−∞,−T1 + 1] × T ∗
R

n → R by

ψ−1(t, z, ζ) = χ

(
∣

∣∆
(

x−1
)∣

∣

−4δ0t

)

χ

( |∆y|
δ0 + Ct−1

)

χ

(
∣

∣∆
(

x2ξ
)∣

∣

δ0 + Ct−1

)

χ

( |∆η|
δ0 + Ct−1

)

= χ1χ2χ3χ4,

where each χi is the corresponding factor. Here we note that in general the
subtractions such as ∆η = η − η(t; z0, ζ0) are senseless since points in the base
space are different and trivializations might be different. But, as noted right
after Proposition 2.3, z(t; z0, ζ0) has the limit z−(z0, ζ0) ∈ ∂X as t→ −∞, and
thus, by exchanging coordinate axes and taking T0 larger if necessary, we can
assume only the local coordinates (x, y(+n)) are being taken when defining ψ−1.
Then the well-definedness of ψ−1 follows by the zero-extension. We modify ψ−1

to be defined for all t ≤ 0 by solving the transport equation

D

Dt
ψ0(t, z, ζ) = α(t)

D

Dt
ψ−1(t, z, ζ), (4.1)

with the initial condition

ψ0(−T1, z, ζ) = ψ−1(−T1, z, ζ),

where α is in C∞((−∞, 0]) and satisfies

α(t) =

{

1, if t ≤ −T1,
0, if t ≥ −T1 + 1.

Here D
Dt

is the Lagrange derivative defined by

D

Dt
:=

∂

∂t
+
∂p

∂ζ

∂

∂z
− ∂p

∂z

∂

∂ζ
,

where p is the Hamiltonian. The transport equation is easily solved using clas-
sical trajectories. Indeed, substituting any trajectory, i.e., (z(t; z, ζ), ζ(t; z, ζ))
to (4.1), we see that the equation gets to be

d

dt
ψ0(t, z(t; z, ζ), ζ(t; z, ζ)) = α(t)

d

dt
ψ−1(t, z(t; z, ζ), ζ(t; z, ζ)),

and so

ψ0(t, z(t; z, ζ), ζ(t; z, ζ)) =

∫ t

−T1

α(s)
d

ds
ψ−1(s, z(s; z, ζ), ζ(s; z, ζ))ds

+ ψ−1(−T1, z(−T1; z, ζ), ζ(−T1; z, ζ)).

(4.2)

If we use the partial integration, this is rewritten by

ψ0(t, z(t; z, ζ), ζ(t; z, ζ)) =

∫ −T1

t

dα

ds
(s)ψ−1(s, z(s; z, ζ), ζ(s; z, ζ))ds

+ α(t)ψ−1(t, z(t; z, ζ), ζ(t; z, ζ)).

(4.3)
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Since, by Proposition 2.2, for any point (z, ζ) ∈ T ∗
R

n and any t ∈ R, there is a
trajectory that hits (z, ζ) at the time t, ψ0 is defined on all of R− × T ∗

R
n and

in the class of C∞. One notes that, for t ≤ −T1,

ψ0(t, z, ζ) = ψ−1(t, z, ζ) (4.4)

follows. We now clarify properties of ψ0:

Lemma 4.1 ψ0 satisfies the following:

1. We have
ψ0(t, z, ζ) ≥ 0 for all (t, z, ζ) ∈ R− × T ∗

R
n,

and
ψ0(t, z(t; z0, ζ0), ζ(t; z0, ζ0)) = 1 for all t ≤ 0.

2. For t ≤ −T1, ψ0(t, ·, ·) is supported in

{

(z, ζ) ∈ T ∗
R

n
∣

∣

∣

∣

∣∆x−1
∣

∣ < −4δ0t, |∆y| < δ0,
∣

∣∆x2ξ
∣

∣ < δ0, |∆η| < δ0

}

.

3. If one takes sufficiently small δ > 0 and large C > 0 in the construction
of ψ0, the inequality

D

Dt
ψ0(t, z, ζ) ≤ 0 for all (t, z, ζ) ∈ R− × T ∗

R
n

holds.

4. ψ0(t, z, ζ) satisfies the estimates

∣

∣

∣∂α
z ∂

β
ζ ∂

n
t ψ0(t, z, ζ)

∣

∣

∣ ≤ Cαβn 〈t〉−|α|+|β|−n
,

that is, ∂n
t ψ0 ∈ SR−

(

〈t〉−n
, 〈t〉−2

dz2 + 〈t〉2 dζ2
)

.

Proof. 1. The positivity for t ≤ −T1 follows from (4.4). See (4.3) for t ≥
−T1. ψ0(t, z(t; z0, ζ0), ζ(t; z0, ζ0)) = 1 is also easy to be seen by substituting the
trajectory (z(t; z0, ζ0), ζ(t; z0, ζ0)) to (4.2) and (4.3).

2. Obvious from (4.4) and the construction of ψ−1.

3. Note that

D

Dt
=

∂

∂t
+
∂p

∂ζ

∂

∂z
− ∂p

∂z

∂

∂ζ
=

∂

∂t
+
∂p

∂ξ

∂

∂x
+
∂p

∂η

∂

∂y
− ∂p

∂x

∂

∂ξ
− ∂p

∂y

∂

∂η
,

and that

D

Dt
ψ0 = α

D

Dt
ψ−1

= α

(

Dχ1

Dt
χ2χ3χ4 + χ1

Dχ2

Dt
χ3χ4 + χ1χ2

Dχ3

Dt
χ4 + χ1χ2χ3

Dχ4

Dt

)

.
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Let us compute the differentiations concretely. We first get

Dχ1

Dt
=

1

4δ0t

[
∣

∣∆x−1
∣

∣

t
+

∆x−1

|∆x−1|∆
(

1

x2

∂p

∂ξ

)

]

χ′
(
∣

∣∆x−1
∣

∣

−4δ0t

)

.

We have on suppαDχ1

Dt
χ2χ3χ4

1

2
≤
∣

∣∆x−1
∣

∣

−4δ0t
≤ 1

and
∣

∣

∣

∣

∆

(

1

x2

∂p

∂ξ

)∣

∣

∣

∣

≤
∣

∣∆x2ξ
∣

∣+
∣

∣

∣∆
(

x4ξϕ+ x2
∑

ϕiηi

)∣

∣

∣ ≤ δ0 +O
(

t−2
)

.

Thus, taking C > 0 larger if necessary, which makes T1 larger, we obtain

α
Dχ1

Dt
χ2χ3χ4 ≤ α(t)

2δ0t

(

−2δ0 + δ0 +O
(

t−2
))

χ′
(
∣

∣∆x−1
∣

∣

−4δ0t

)

χ2χ3χ4 ≤ 0.

Similarly, by an easy computation,

Dχ2

Dt
=

1

δ0 + Ct−1

[

Ct−2 |∆y|
δ0 + Ct−1

+
∆y

|∆y|∆
∂p

∂η

]

χ′
( |∆y|
δ0 + Ct−1

)

Dχ3

Dt
=

1

δ0 + Ct−1

[

Ct−2

∣

∣∆x2ξ
∣

∣

δ0 + Ct−1
+

∆x2ξ

|∆x2ξ|∆
(

2xξ
∂p

∂ξ
− x2 ∂p

∂x

)

]

· χ′
(
∣

∣∆x2ξ
∣

∣

δ0 + Ct−1

)

Dχ4

Dt
=

1

δ0 + Ct−1

[

Ct−2 |∆η|
δ0 + Ct−1

− ∆η

|∆η|∆
∂p

∂y

]

χ′
( |∆η|
δ0 + Ct−1

)

.

Considering the supports, we have

αχ1
Dχ2

Dt
χ3χ4 ≤ α

δ0 + Ct−1

[

C

2
t−2 −O

(

t−2
)

]

χ1χ
′
( |∆y|
δ0 + Ct−1

)

χ3χ4,

αχ1χ2
Dχ3

Dt
χ4 ≤ α

δ0 + Ct−1

[

C

2
t−2 −O

(

t−2
)

]

χ1χ2χ
′
(
∣

∣∆x2ξ
∣

∣

δ0 + Ct−1

)

χ4,

αχ1χ2χ3
Dχ4

Dt
≤ α

δ0 + Ct−1

[

C

2
t−2 −O

(

t−2
)

]

χ1χ2χ3χ
′
( |∆η|
δ0 + Ct−1

)

.

Thus, taking C large enough, the nonpositivity of the Lagrange derivative of ψ0

follows.

4. Since ψ0 is C∞ in (t, z, ζ) ∈ R− × T ∗
R

n and, for each t ∈ R−, ψ0(t, ·, ·) has
compact support, one can find constants Cαβn as in the lemma for (t, z, ζ) ∈

28



[−T1, 0] × T ∗
R

n. For t ≤ −T1 one can differentiate the function on the right-
hand side of (4.4) concretely using formulae (A.1) and (A.10). Then, noting
that on the support of ψ0 there exists a constant c̃ such that

c̃−1 〈t〉−1 ≤ x ≤ c̃ 〈t〉−1

for t ≤ −T1, we can easily find constants Cαβn of the lemma. �

Put
ψ̃0 (z, ζ; t, h) = ψ0

(

h−1t, z, hζ
)

,

and restrict t ∈ R− to [−t0, 0]. Then by Lemma 4.1 ψ̃0 ∈ S[−t0,0] (1, g̃1).
We consider the operator

F0(t, h) = ψ̃gw
0 (z,Dz; t, h) ◦ ψ̃gw

0 (z,Dz; t, h).

By Proposition 3.9 we can write

F0(t, h) = ϕgw
0 (z,Dz; t, h)

with ϕ0 ∈ S[−t0,0] (1, g̃1). Note that F0(t, h) extends to be a bounded operator

on L2
(

R
n,
√
gdz
)

with operator norm uniformly bounded in (t, h). Also note

that F0(t, h), as an operator on L2
(

R
n,
√
gdz
)

, is differentiable in t ∈ [−t0, 0],
because, by Theorem 3.10, for fixed (t, h) ∈ [−t0, 0] × (0, 1],

∥

∥

∥

∥

1

ε

[

ψgw
0 (h−1(t+ ε), z, hDz) − ψgw

0 (h−1t, z, hDz)
]

− h−1

(

∂ψ0

∂t

)gw

(h−1t, z, hDz)

∥

∥

∥

∥

L(L2(Rn,
√

gdz))

≤ Cn

∑

|α|≤Mn

∥

∥

∥

∥

∂α
(z,ζ)

(

1

ε

[

ψ0(h
−1(t+ ε), ·, h·) − ψ0(h

−1t, ·, h·)
]

−h−1 ∂ψ0

∂t
(h−1t, ·, h·)

)∥

∥

∥

∥

L∞

≤ Cnεh
−2

∑

|α|≤Mn

∥

∥

∥

∥

∂α
(z,ζ)

∫ 1

0

(1 − τ)
∂2ψ0

∂t2
(h−1(t+ ετ), ·, h·)dτ

∥

∥

∥

∥

L∞

≤ Cnεh
−2

∑

|α|≤Mn

Cα,

and this means the differentiability of ψgw
0 (h−1t, z, hDz) in t ∈ [−t0, 0]. More-

over we see, from this inequality, that ∂
∂t
ψ̃gw

0 (z,Dz; t, h) is also a pseudodiffer-
ential operator with the symbol given by

∂ψ̃0

∂t
(z, ζ; t, h) = h−1 ∂ψ0

∂t
(h−1t, z, hζ) ∈ S[−t0,0]

(

h−1
〈

h−1t
〉−1

, g̃1

)

.
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Lemma 4.2 There exists r0 ∈ S[−t0,0]

(

〈

h−1t
〉max{−1,ν−2}

, g̃1

)

such that

∂

∂t
F0(t, h) + i[H,F0(t, h)] ≤ r0(z,Dz; t, h),

and that r0 has the support in supp ψ̃0 modulo S[−t0,0] (h
∞).

Proof. We compute the principal g-Weyl symbol of ∂
∂t
F0(t, h) + i [H,F0] and

apply the sharp G̊arding inequality. Divide the operator into three parts:

∂

∂t
F0(t, h) + i [H,F0(t, h)] =

∂

∂t
F0(t, h) + i [H0, F0(t, h)] + i [V, F0(t, h)] .

Step 1. From Proposition 3.9 it follows that

σgw

(

∂

∂t
F0

)

=
∂ψ̃0

∂t
♯ψ̃0 + ψ̃0♯

∂ψ̃0

∂t
= 2ψ̃0

∂ψ̃0

∂t
+ r0,1,

where the remainder term r0,1 ∈ S[−t0,0]

(

〈

h−1t
〉−1

, g̃1

)

. Note that

supp r0,1 ⊂ supp ψ̃0 mod S[−t0,0] (h
∞) ,

since each term in the asymptotic expansion of σgw
(

∂
∂t
F0

)

is supported in

supp ψ̃0.

Step 2. Next we compute the symbol of i [H0, F0]. We write

i [H0, F0] = i
[

H0, ψ̃
gw
0

]

ψ̃gw
0 + iψ̃gw

0

[

H0, ψ̃
gw
0

]

.

We use Proposition 3.6 to composite the operatorsH0 and ψ̃gw
0 , but Proposition

3.9 cannot be applied directly to estimate the remainder term, since H0 does not
belong to the class S[−t0,0] (m, g̃1). We have to repeat the modified procedure
of the proof of Proposition 3.9 to estimate the remainder term. Using Corollary
3.7,

σgw
(

i
[

H0, ψ̃
gw
0

])

=
{

σgw(H0), ψ̃0

}

+ r0,2

with

r0,2 = R3σ
gw(H0)ψ̃0

∣

∣

z1=z,ζ1=ζ
−R3ψ̃0σ

gw(H0)
∣

∣

z1=z,ζ1=ζ
.

We claim that r0,2 ∈ S[−t0,0] (h, g̃1). We prove the claim only for the first term

R3σ
gw(H0)ψ̃0

∣

∣

z1=z,ζ1=ζ
, as the claim for the other follows similarly. It suffices

to estimate

∂α
z ∂

α1
z1
∂β

ζ ∂
β1

ζ1
R3σ

gw(H0)ψ̃0 =
1

2!

∫ 1

0

(1 − τ)2e
i
2 τ(DzDζ1

−DζDz1)dτ

· ∂α
z ∂

α1
z1
∂β

ζ ∂
β1

ζ1

{

i

2
(∂z∂ζ1 − ∂ζ∂z1)

}3

σgw(H0)ψ̃0.

(4.5)
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Since σgw (H0) is a polynomial in ζ of degree 2, the derivations in (4.5) with
respect to ζ act on σgw (H0) at most twice, so we have

∂α
z ∂

α1
z1
∂β

ζ ∂
β1

ζ1

{

i

2
(∂z∂ζ1 − ∂ζ∂z1)

}3

σgw(H0)ψ̃0

∈
⊕

k+|β|≤2

S[−t0,0]

(

〈z〉k−|α|−3 〈ζ〉2−k−|β| h3−k+|β1| 〈h−1t
〉3−2k+|β1|−|α1|

)

as a function of (z, z1, ζ, ζ1, t, h). On the support of the left-hand side there is
c > 0 such that

1 ≤ 〈hζ1〉 ≤ c, c−1
〈

h−1t
〉

≤ 〈z1〉 ≤ c
〈

h−1t
〉

,

so we can rewrite

∂α
z ∂

α1
z1
∂β

ζ ∂
β1

ζ1

{

i

2
(∂z∂ζ1 − ∂ζ∂z1)

}3

σgw(H0)ψ̃0

∈
⊕

k+|β|≤2

S[−t0,0]

(

( 〈z〉
〈z1〉

)k−|α|−3( 〈hζ〉
〈hζ1〉

)2−k−|β|

h1+|β|+|β1| 〈h−1t
〉−k+|β1|−|α|−|α1|

)

.

Then the application of Lemma 3.8 followed by the substitution z1 = z, ζ1 = ζ
means that

∂α
z ∂

α1
z1
∂β

ζ ∂
β1

ζ1
R3σ

gw(H0)ψ̃0

∣

∣

z1=z,ζ1=ζ
∈ S[−t0,0]

(

h1+|β|+|β1| 〈h−1t
〉|β1|−|α|−|α1|

)

,

from which it follows R3σ
gw(H0)ψ̃0

∣

∣

z1=z,ζ1=ζ
∈ S[−t0,0] (h, g̃1). Therefore we see

the claim.
Hence we obtain

σgw (i [H0, F0]) =
{

p, ψ̃0

}

♯ψ̃0 + ψ̃0♯
{

p, ψ̃0

}

+
{

σgw(H0) − p, ψ̃0

}

♯ψ̃0

+ ψ̃0♯
{

σgw(H0) − p, ψ̃0

}

+ r0,2♯ψ̃0 + ψ̃0♯r0,2.

The support of ψ̃0 and Proposition 3.12 taken into consideration, we have
{

σgw(H0) − p, ψ̃0

}

∈ S[−t0,0]

(

〈

h−1t
〉−1

, g̃1

)

.

Similarly we have
{

p, ψ̃0

}

∈ S[−t0,0]

(

h−1, g̃1
)

, however, this estimate is not

sufficient. To improve it we compute
{

p, ψ̃0

}

in the coordinates (x, y), that is,

we use the representation

{

p, ψ̃0

}

=
∂p

∂ξ

∂ψ̃0

∂x
+
∂p

∂η

∂ψ̃0

∂y
− ∂p

∂x

∂ψ̃0

∂ξ
− ∂p

∂y

∂ψ̃0

∂η
.
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Then
{

p, ψ̃0

}

∈ S[−t0,0]

(

h−1
〈

h−1t
〉−1

, g̃1

)

follows. (cf. Proof of Lemma 4.1.)

Now that all the symbols are in the class with metric g̃1, Proposition 3.9 can
be applied. We have

σgw (i [H0, F0]) = 2ψ̃0

{

p, ψ̃0

}

+ r0,3

with r0,3 ∈ S[−t0,0]

(〈

h−1t
〉

, g̃1
)

satisfying

supp r0,3 ⊂ supp ψ̃0 mod S[−t0,0] (h
∞) .

Step 3. Let us go to the third part σgw (i [V, F0]). Since

i [V, F0] = i
[

V, ψ̃gw
0

]

ψ̃gw
0 + iψ̃gw

0

[

V, ψ̃gw
0

]

,

we first compute σgw
(

i
[

V, ψ̃gw
0

])

. As V ∈ S
(

〈z〉ν , 〈z〉−2dz2
)

, Proposition 3.6

is applicable and we have

σgw
(

i
[

V, ψ̃gw
0

])

=
{

V, ψ̃0

}

+ r0,4

with

r0,4 = R3V ψ̃0

∣

∣

z1=z,ζ1=ζ
−R3ψ̃0V

∣

∣

z1=z,ζ1=ζ

Exactly the same way as in the step 2 shows that

r0,4 ∈ S[−t0,0]

(

h3
〈

h−1t
〉ν
, g̃1

)

Also as in the step 2, we have

{

V, ψ̃0

}

= −∂V
∂x

∂ψ̃0

∂ξ
− ∂V

∂y

∂ψ̃0

∂η
,

and, if we combine this with the assumption on V , we get
{

V, ψ̃0

}

∈ S[−t0,0]

(

h
〈

h−1t
〉ν−1

, g̃1

)

,

where the support of ψ̃0 is considered. Now that

σgw (i [V, F0]) =
{

V, ψ̃0

}

♯ψ̃0 + ψ̃0♯
{

V, ψ̃0

}

+ r0,4♯ψ̃0 + ψ̃0♯r0,4

and Proposition 3.9 can be applied, we obtain

σgw (i [V, F0]) = 2ψ̃0

{

V, ψ̃0

}

+ r0,5

with r0,5 ∈ S[−t0,0]

(

h2
〈

h−1t
〉ν−1

, g̃1

)

satisfying

supp r0,5 ⊂ supp ψ̃0 mod S[−t0,0] (h
∞) .
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Step 4. Summing up the steps 1-3, we can write

σgw

(

∂

∂t
F0(t, h) + i [H,F0]

)

= 2ψ̃0
D

Dt
ψ̃0 + 2ψ̃0

[

V, ψ̃0

]

+ r0,1 + r0,3 + r0,5,

with 2ψ̃0
D
Dt
ψ̃0 ∈ S[−t0,0]

(

h−1
〈

h−1t
〉−1

, g̃1

)

. Then, since 2ψ̃0
D
Dt
ψ̃0 is nonpos-

itive, a symbol r0,6 ∈ S[−t0,0]

(

〈

h−1t
〉−1

, g̃1

)

is found by the sharp G̊arding

inequality such that

2

(

ψ̃0
D

Dt
ψ̃0

)gw

(z,Dz; t, h) ≤ rgw
0,6(z,Dz; t, h),

and thus combining 2ψ̃0

[

V, ψ̃0

]

and r0,j ’s, we obtain r0 that is wanted. �

Let t0, T0, C, δ, δ0 and T1 be as so far, and take an increasing sequence

0 < δ0 < δ1 < δ2 < · · · < δ

4
.

Using these δj , C and T1, we construct ψj similarly to ψ0, that is, we put

ψ−1(t, z, ζ) = χ

(
∣

∣∆
(

x−1
)∣

∣

−4δjt

)

χ

( |∆y|
δj + Ct−1

)

χ

(
∣

∣∆
(

x2ξ
)∣

∣

δj + Ct−1

)

χ

( |∆η|
δj + Ct−1

)

,

and solve the equation

D

Dt
ψj(t, z, ζ) = α(t)

D

Dt
ψ−1(t, z, ζ).

Then we define
ψ̃j(z, ζ; t, h) = ψj

(

h−1t, z, hζ
)

.

ψ̃1 is bounded from below by a positive constant on supp ψ̃0. Indeed, when
t ≤ −T1, we have an expression using χi’s, and when t ≥ −T1, we have only
to observe the construction of the solution to the transport equation. Then
it follows that supp ψ̃1 is in the interior of supp ψ̃0. Thus, if we decompose
r0 = r′0 + r′′0 with

supp r′0 ⊂ supp ψ̃0, r′′0 ∈ S[−t0,0] (h
∞) ,

we have for large C1 > 0

r′0 (z, ζ; t, h) ≤ C1ψ̃1 (z, ζ; t, h) .

Put

F1(t, h) = ϕgw
1 (z,Dz; t, h),

ϕ1 = −C1tψ̃1 ∈ S[−t0,0] (t, g̃1) .

33



Let us consider the operator ∂
∂t
F1 + i [H,F1] and iterate the argument similar

to, or even easier than, the proof of Lemma 4.2. Each part is to be

σgw

(

∂

∂t
F1

)

= −C1ψ̃1 − +C1t
∂ψ̃1

∂t
,

σgw (i [H0, F1]) = −C1t
{

p, ψ̃1

}

− C1tr1,2,

σgw (i [V, F1]) = −C1t
{

V, ψ̃1

}

− C1tr1,4,

where r1,2 and r1,4 correspond to r0,2 and r0,4 in the proof of Lemma 4.2,
respectively. To sum up, we can write

σgw

(

∂

∂t
F1 + i [H,F1]

)

= −C1t
Dψ̃1

Dt
− C1ψ̃1 + r′0 − r0 + r′′0 − C1t

({

V, ψ̃1

}

+ r1,2 + r1,4

)

.

Since

−C1t
Dψ̃1

Dt
− C1ψ̃1 + r′0 ∈ S[−t0,0] (1, g̃1)

and

−C1t
Dψ̃1

Dt
− C1ψ̃1 + r′0 ≤ 0,

we can find by the sharp G̊arding inequality r1,7 ∈ S[−t0,0] (h, g̃1) with the

support in supp ψ̃1 modulo S[−t0,0] (h
∞) such that

[

−C1t
Dψ̃1

Dt
− C1ψ̃1 + r′0

]gw

(z,Dz; t, h) ≤ rgw
1,7(z,Dz; t, h).

Noting

r′′0 − C1t
({

V, ψ̃1

}

+ r1,2 + r1,4

)

∈ S[−t0,0]

(

hmin{1,2−ν}, g̃1
)

,

r1,7 with it makes a symbol r1 ∈ S[−t0,0]

(

hmin{1,2−ν}, g̃1
)

that has the support

in supp ψ̃1 modulo S[−t0,0] (h
∞) and satisfies

∂

∂t
F1(t, h) + i [H,F1(t, h)] ≤ rgw

1 (z,Dz; t, h) − rgw
0 (z,Dz; t, h).

Thus

∂

∂t
(F0(t, h) + F1(t, h)) + i [H,F0(t, h) + F1(t, h)] ≤ rgw

1 (z,Dz; t, h).
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We repeat this procedure to get Fj(t, h) = ϕgw
j (z,Dz; t, h) for j = 1, 2, . . . .

Suppose ϕ1, . . . , ϕk is given such that

∂

∂t

k
∑

j=0

Fj(t, h) + i



H,

k
∑

j=0

Fj(t, h)



 ≤ rgw
k (z,Dz; t, h), (4.6)

where rk ∈ S[−t0,0]

(

hk min{1,2−ν}, g̃1
)

has a decomposition rk = r′k + r′′k such
that

supp r′k ⊂ supp ψ̃k, r′′k ∈ S[−t0,0] (h
∞) .

Then one finds Ck+1 > 0 such that

r′k(z, ζ; t, h) ≤ Ck+1h
k min{1,2−ν}ψ̃k+1(h

−1t, x, hζ).

Put

Fk+1(t, h) = ϕgw(z,Dz; t, h), ϕk+1(z, ζ; t, h) = −Ck+1h
k min{1,2−ν}tψ̃k+1.

There exists rk+1 ∈ S[−t0,0]

(

h(k+1) min{1,2−ν}, g̃1
)

with the support contained in

supp ψ̃k+1 modulo S[−t0,0] (h
∞) satisfying

∂

∂t
Fk+1 + i [H,Fk+1] ≤ rgw

k+1(z,Dz; t, h) − rgw
k (z,Dz; t, h),

so that

∂

∂t

k+1
∑

j=0

Fj(t, h) + i



H,
k+1
∑

j=0

Fj(t, h)



 ≤ rgw
k+1(z,Dz; t, h).

ϕk+1 is constructed.

Lemma 4.3 There exists a pseudodifferential operator F (t, h) with the symbol
ϕ ∈ S[−t0,0](1) such that

1. F (t, h) is differentiable in t ∈ [−t0, 0] and

F (0, h) = F0(0, h) = ψgw
0 (0, z, hDz)

2. (4.7)

2. For any ε > 0, choose small δ > 0, then the support of ϕ(z, ζ;−t0, h) is
contained in

{

(z, ζ) ∈ T ∗
R

n
∣

∣

∣

∣z + ζ−h
−1t0

∣

∣ < εh−1t0, |ζ − h−1ζ−| < εh−1
}

,

modulo S (h∞).

3. The Heisenberg derivative of F (t, h) satisfies

δF (t, h) :=
∂

∂t
F (t, h) + i [H,F (t, h)] ≤ R(t),

where R(t) is an L2-bounded operator with sup−t0≤t≤0 ‖R(t)‖ = O(h∞).
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Proof. Since ϕj ∈ S[−t0,0]

(

h(j−1) min{1,2−ν}) for j = 0, 1, 2, . . . , the asymptotic
sum

ϕ ∼ ϕ0 +

∞
∑

j=1

ϕj

exists by Proposition 3.2. Here, in the definition of ϕ, we take the asymptotic
sum

∑∞
j=1 ϕj according to the proof of Proposition 3.2, and define ϕ by ϕ0

added to the sum. Set

F (t, h) = ϕgw(z,Dz; t, h).

1. ϕ is defined by the locally finite sum with respect to h > 0. Then F (t, h)
is differentiable in t for each h from the argument right before the Lemma 4.2.
(4.7) is a consequence of the definition of ϕ.

2. Since by a formula in Appendix A
∣

∣z + ζ−h
−1t0

∣

∣ ≤
∣

∣z − z
(

−h−1t0; z0, ζ0
)∣

∣+
∣

∣z
(

−h−1t0; z0, ζ0
)

+ ζ−h
−1t0

∣

∣

≤
∣

∣

∣

∣

1

x
− 1

x(−h−1t0; z0, ζ0)

∣

∣

∣

∣

|y| +
∣

∣y − y(−h−1t0; z0, ζ0)
∣

∣

x(−h−1t0; z0, ζ0)

+
∣

∣z
(

−h−1t0; z0, ζ0
)

+ ζ−h
−1t0

∣

∣ ,

taking δ > 0 small enough, we have the bound εh−1t0 from above for the right-
hand side on the support of ϕ (z, ζ; t0, h). The second inequality is similarly
obtained.

3. The conclusion follows from (4.6) and Theorem 3.10. �

Proof of Theorem 1.3. We have

〈F (0, h)ut0 , ut0〉L2(Rn,
√

gdz)

= 〈F (−t0, h)u0, u0〉L2(Rn,
√

gdz) +

∫ 0

−t0

〈δF (t, h)ut, ut〉L2(Rn,
√

gdz) dt

≤ 〈F (−t0, h)u0, u0〉L2(Rn,
√

gdz) + t0 sup
0≤t≤t0

‖R(t, h)‖ .

The second term in the last formula is O(h∞). Thus we have only to check
‖F (−t0, h)u0‖L2(Rn,

√
gdz) = O(h∞). By the assumption, there exists a com-

pactly supported C∞ function ϕ̃ on R
2n such that ϕ̃ = 1 near (−t0ζ−, ζ−)

and
∥

∥

∥

4
√

g (z)ϕ̃gw (hz, hDz)u0

∥

∥

∥

L2(Rn)
= O (h∞) .

For, if

‖ϕ̃w (hz, hDz)u0‖ = O (h∞) ,

then, in the right-hand side of

ϕ̃gw (hz, hDz)u0 =ϕ̃gw (hz, hDz) ϕ̃
w (hz, hDz)u0

+
1

4
√

g(z)
ϕ̃w (hz, hDz)

4
√

g(z) (1 − ϕ̃w (hz, hDz)) u0,
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the first term is O (h∞) from the assumption, and the second term is also O (h∞)
from the variation of Proposition 3.9 for S

(

m, dz2 + h2dζ2
)

, which can be seen
easily. By Lemma 4.3 2, choosing ε > 0 small, we suppose that

suppϕ(·, ·; t0, h) ∩ supp (1 − ϕ̃(h·, h·)) = ∅

when h > 0 is small. Then

F (−t0, h)u0 =ϕgw(z,Dz;−t0, h)u0(x)

=ϕgw(z,Dz;−t0, h) ◦ ϕ̃gw(hz, hDz)u0(z)

+ ϕgw(z,Dz;−t0, h) ◦ (1 − ϕ̃gw(hz, hDz))u0(z).

The first term is O(h∞) by the assumption, and the second term is also O(h∞).
For we can apply Proposition 3.9 to ϕw(z,Dz; t0, h) ◦ (1 − ϕ̃w(hz, hDz)), since
ϕ̃ (h·, h·) ∈ S (1, g̃1), and all terms in its asymptotic expansion vanish. Thus the
theorem is proved. �

5 Proof of Theorem 1.6

Let X = qX = Sn
+ and defined the mapping q : X → qX by

q = q(z) =
(

2 + |z|2
)

1
2

z.

q gives a bijection between X and qX with the inverse

z = (1 + 〈q〉)−
1
2 q.

Since 〈q〉−1 = 〈z〉−2, qX is thought to be X whose C∞ structure near the

boundary is generated by new boundary defining function 〈z〉−2
. q is C∞ map-

ping, but q−1 is not. However, q∗ : Ċ∞ (qX) → Ċ∞(X) is bijective and extends
to C−∞ (qX) → C−∞(X) bijectively.

Let u ∈ S′ (Rn) = C−∞(X), and we first assume

(z0, ζ0) ∈
(

Sn−1 × R
n
)

\ WFqsc(u),

which is equivalent to

(z0, ζ0) ∈
(

Sn−1 × R
n
)

\ WFsc

(

(q∗)−1
u
)

.

Then there exists ϕ ∈ C∞
0

(

R
2n
)

such that ϕ (z0, ζ0) 6= 0 and

∥

∥

∥ϕ (hq,Dq) (q∗)−1
u
∥

∥

∥ = O (h∞) , (5.1)

where ϕ (hq,Dq) is the standard [left] quantization of ϕ (hq, τ).
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If we introduce the variables q = q(z) =
(

2 + |z|2
)

1
2

z and p = q(w) =
(

2 + |w|2
)

1
2

w in the right-hand side of (5.1), we get

∥

∥

∥ϕ (hq,Dq) (q∗)−1
u
∥

∥

∥

2

=8

∫
∣

∣

∣

∣

∫

ei(q(z)−q(w))τ 〈z〉
(

2 + |z|2
)

n−2
4

· 〈w〉2
(

2 + |w|2
)

n−2
2

ϕ (hq(z), τ)u(w)dwd̄τ

∣

∣

∣

∣

2

dz.

(5.2)

We have

zi − wi = (1 + 〈q〉)−
1
2 qi − (1 + 〈p〉)−

1
2 pi =

n
∑

j=1

Φij(z, w)
(

qj − pj
)

with

Φij(z, w)

= δij

∫ 1

0

dt

(1 + 〈p+ t (q − p)〉)
1
2

− 1

2

∫ 1

0

(

pi + t
(

qi − pi
)) (

pj + t
(

qj − pj
))

(1 + 〈p+ t (q − p)〉)
3
2 〈p+ t (q − p)〉

dt.

Since for τ ∈ R
n with |τ | = 1

n
∑

i,j=1

Φij(z, w)τiτj

=

∫ 1

0

dt

(1 + 〈p+ t (q − p)〉)
1
2

− 1

2

∫ 1

0

[
∑n

i=1

(

pi + t
(

qi − pi
))

τi
]2

(1 + 〈p+ t (q − p)〉)
3
2 〈p+ t (q − p)〉

dt,

we have

1

2

∫ 1

0

dt

(1 + 〈p+ t (q − p)〉)
1
2

≤
n
∑

i,j=1

Φij(z, w)τiτj ≤
∫ 1

0

dt

(1 + 〈p+ t (q − p)〉)
1
2

.

This particularly means that Φ(z, w) is nondegenerate, so that we can change
the variables τ → ζ = Φ(z, w)−1τ in (5.2). Then we have (5.2) rewritten by

∥

∥

∥ϕ (hq,Dq) (q∗)−1 u
∥

∥

∥

2

= 8

∫
∣

∣

∣

∣

∫

ei(z−w)ζϕ̃(z, w, ζ;h)u(w)dwd̄ζ

∣

∣

∣

∣

2

dz

with

ϕ̃ (z, w, ζ;h) = 〈z〉
(

2 + |z|2
)

n−2
4 〈w〉2

(

2 + |w|2
)

n−2
2

detΦ(z, w)

· ϕ
(

h
(

2 + |z|2
)

1
2

z,Φ(z, w)ζ

)

.

We are going to find out the class to which ϕ̃ belongs and apply the argument
established in Section 3. Our first observation is
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Lemma 5.1

ϕ̃ ∈ S

(

〈z〉
n
2 〈w〉n

〈z;w〉n ,
dz2

〈z〉2
+
dw2

〈w〉2
+

dζ2

〈z;w〉2

)

.

Proof. We first claim that there is Cn > 0 such that

〈z;w〉−n ≤
∫ 1

0

dt

〈p+ t (q − p)〉
n
2
≤ Cn 〈z;w〉−n

for each positive odd integer n. Indeed the first inequality follows from

〈p+ t (q − p)〉−
n
2 ≥

(

1 + max
{

|p|2 , |q|2
})−n

4

≥
(

1 + |p|2 + |q|2
)−n

4

≥
(

1 + |w|2 + |z|2
)−n

2

.

For the second inequality we consider the four cases:

(i) |q − p| ≤ 1

2
|q| , (ii) |q − p| ≤ 1

2
|p| ,

(iii) |q − p| ≥ 1

4
(|q| + |p|) ≥ 1, (iv)

1

4
(|q| + |p|) ≤ 1.

In the case (i), noting

1

2
|q| ≤ |p+ t (q − p)| ≤ 3

2
|q| ,

we obtain

〈p+ t (q − p)〉−
n
2 ≤

(

1 +
1

4
|q|2
)−n

4

≤
(

1 +
1

13

(

|q|2 + |p|2
)

)−n
4

≤ Cn

(

1 + |z|2 + |w|2
)−n

2

.

The case (ii) is dealt with in exactly the same way as the case (i). The case (iv)
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is a very obvious one, and so the case (iii) is left. By direct computation we get

∫ 1

0

dt

〈p+ t (q − p)〉
n
2
≤
∫ 1

0

dt
(

1 + (|p| − t |q − p|)2
)

n
4

=
1

|q − p|

∫ |p|

|p|−|q−p|

dt

(1 + t2)
n
4

≤ 1

|q − p|

∫ 1
2 |q−p|

− 1
2 |q−p|

dt

(1 + t2)
n
4

≤ Cn

〈q − p〉
n
2
.

With the condition (iii) this shows the claimed inequality. Thus the claim is
verified.

We then see

Φij(z, w) ∈ S
(

〈z;w〉−1
; 〈z;w〉−2

dz2 + 〈z;w〉−2
dw2

)

,

and as a polynomial in Φij(z, w) of degree n

detΦ(z, w) ∈ S
(

〈z;w〉−n ; 〈z;w〉−2 dz2 + 〈z;w〉−2 dw2
)

.

On the support of ϕ̃ we have the estimates

C−1h−
1
2 ≤ |z| ≤ Ch−

1
2 , |ζ| ≤ C 〈z;w〉 .

Then the lemma follows. �

Put

ψ(z, ζ;h) = e−iDθDζ ϕ̃

(

z +
1

2
θ, z − 1

2
θ, ζ;h

)∣

∣

∣

∣

θ=0

,

then
ψw(z,Dz;h) = ϕ̃ (z, z′, Dz;h) .

Lemma 5.1 in particular means

ϕ̃

(

z +
1

2
θ, z − 1

2
θ, ζ;h

)

∈ S
(

h−
n
4

)

,

and so with Lemma 3.8 it implies

e−iDθDζ ϕ̃

(

z +
1

2
θ, z − 1

2
θ, ζ;h

)

∈ S
(

h−
n
4

)

.

Therefore we have ψ ∈ S
(

h−
n
4

)

. The more precise estimate for ψ can be
obtained. Indeed, we have

ψ ∈ S
(

h−
n
4 , hdz2 + hdζ2

)

,
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which is shown by the similar type of argument used in Step 2 of the proof
of Lemma 4.2, combined with Lemma 5.1 and 3.8. Also we can estimate the
remainder term:

ψ(z, ζ;h) − ϕ̃ (z, z, ζ;h) ∈ S
(

h−
n
4 +1, hdz2 + hdζ2

)

. (5.3)

Put for z 6= 0

Ψ(z) =

(

δij −
zizj

2|z|2
)−1

ij

=

(

δij +
zizj

|z|2
)

ij

.

We want to show the ellipticity of ψ
(

h−
1
2 z, h−

1
2 ζ;h

)

at (z0,Ψ(z0)ζ0). Note

ϕ̃ (z, z, ζ;h) = 〈z〉3
(

2 + |z|2
)

3n−6
4

detΦ(z, z)ϕ

(

h
(

2 + |z|2
)

1
2

z,Φ(z, z)ζ

)

with

Φij(z, z) = δij
1

(1 + 〈q〉)
1
2

− 1

2

qiqj

(1 + 〈q〉)
3
2 〈q〉

.

It is easy to see

〈

h−
1
2 z0

〉3
(

2 +
∣

∣

∣h−
1
2 z0

∣

∣

∣

2
)

3n−6
4

detΦ(h−
1
2 z0, h

− 1
2 z0) ≥ Ch−

n
4 .

So we have to show the uniform positivity of

ϕ

(

h

(

2 +
∣

∣

∣h−
1
2 z0

∣

∣

∣

2
)

1
2

h−
1
2 z0,Φ(h−

1
2 z0, h

− 1
2 z0)h

− 1
2 Ψ (z0) ζ0

)

.

As h to 0,

h

(

2 +
∣

∣

∣
h−

1
2 z0

∣

∣

∣

2
)

1
2

h−
1
2 z0 → z0

and

Φ(h−
1
2 z0, h

− 1
2 z0)h

− 1
2 Ψ (z0) ζ0 → ζ0.

Hence
ϕ̃
(

h−
1
2 z0, h

− 1
2 z0, h

− 1
2 Ψ (z0) ζ0;h

)

≥ Ch−
n
4

uniformly in small h > 0. Thus, using (5.3), ψ
(

h−
1
2 z, h−

1
2 ζ;h

)

is elliptic at

(z0,Ψ(z0)ζ0). Since

‖ψw (z,Dz;h)u‖ = O (h∞) ,
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it follows that

(z0,Ψ(z0)ζ0) /∈ HWF(u). (5.4)

Conversely suppose (5.4) with z0 6= 0. We can assume |z0| = 1. We just
reverse the procedure above. Choose ϕ ∈ C∞

0 (Rn) with ϕ(z0, ζ0) 6= 0, and put

ϕ̃ (z, w, ζ;h) = 〈z〉
(

2 + |z|2
)

n−2
4 〈w〉2

(

2 + |w|2
)

n−2
2

detΦ(z, w)

· ϕ
(

h
(

2 + |z|2
)

1
2

z,Φ (z, w) ζ

)

,

ψ(z, ζ;h) = e−iDθDζ ϕ̃

(

z +
1

2
θ, z − 1

2
θ, ζ;h

)∣

∣

∣

∣

θ=0

.

ψ(z, ζ;h) has support in that of ϕ̃ (z, z, ζ;h) modulo S (h∞), so that if we choose
ϕ whose support is sufficiently small, we obtain

∥

∥

∥
ϕ (hq,Dq) (q∗)−1 u

∥

∥

∥
= 8 ‖ψw(z,Dz;h)u‖ = O (h∞) .

Then (z0, ζ0) ∈
(

Sn−1 × R
n
)

\ WFqsc(u) follows.

A Formulae for Coordinate Transformation

For a point z = (z1, . . . , zn) ∈ R
n ⊂ X , z 6= 0 we set

x =
1

|z| , ω =
(

ω1, . . . , ωn
)

=
z

|z| .

Since z 6= 0, there exists non-zero ωk, and so, when ±ωk > 0, we can get rid

of ωk to make local coordinates
(

x, y(±k)

)

=
(

x, y1
(±k), . . . , y

n−1
(±k)

)

of X(⊃ R
n)

near the boundary respectively:

yj

(±k) =

{

ωj , for 1 ≤ j ≤ k − 1,
ωj+1, for k ≤ j ≤ n− 1.

We denote y(±k) simply by y if there is no confusion. We introduce local coor-
dinates (z, ζ) and (x, y, ξ, η) of the cotangent bundle T ∗X corresponding to z
and (x, y) respectively. Now we write down formulae for the coordinate change
between the above coordinates that will be needed later. We consider only the
case where xn > 0, i.e., y = y(+n), which is enough for the purpose of this paper.
Introducing a notation

yn =

√

1 − (y1)
2 − · · · − (yn−1)

2
,

we have

x =
1

|z| , yi =
zi

|z| (i = 1, . . . , n− 1); zi =
yi

x
(i = 1, . . . , n),
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and thus

∂zi = − zi

|z|3∂x +

n−1
∑

j=1

(

δj
i

|z| −
zizj

|z|3

)

∂yj

= −x2yi∂x + x

n−1
∑

j=1

(

δj
i − yiyj

)

∂yj (i = 1, . . . , n),

(A.1)

∂x = − 1

x2

n
∑

i=1

yi∂zi = −|z|
n
∑

i=1

zi∂zi , (A.2)

∂yi =
1

x
∂zi − 1

x

yi

yn
∂zn = |z|∂zi − |z| z

i

zn
∂zn (i = 1, . . . , n− 1), (A.3)

dzi = − yi

x2
dx+

1

x
dyi = −|z|zidx+ |z|dyi (i = 1, . . . , n), (A.4)

dx = −
n
∑

i=1

zi

|z|3 dz
i = −x2

n
∑

i=1

yidzi, (A.5)

dyi =
n
∑

j=1

(

δi
j

|z| −
zizj

|z|3

)

dzj = x
n
∑

j=1

(

δi
j − yiyj

)

dzj . (A.6)

Then for the same point in T ∗ (Rn \ {0}) ⊂ T ∗X :

n
∑

i=1

ζidz
i = ξdx +

n−1
∑

i=1

ηidy
i,

we obtain

ζi = − zi

|z|3 ξ +

n−1
∑

j=1

(

δj
i

|z| −
zizj

|z|3

)

ηj

= −x2yiξ + x
n−1
∑

j=1

(

δj
i − yiyj

)

ηj (i = 1, . . . , n)

(A.7)

ξ = − 1

x2

n
∑

i=1

yiζi = −|z|
n
∑

i=1

ziζi, (A.8)

ηi =
1

x
ζi −

1

x

yi

yn
ζn = |z|ζi − |z| z

i

zn
ζn (i = 1, . . . , n− 1), (A.9)
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and on the tangent space to the cotangent bundle,

∂ζi
=

{

− yi

x2 ∂ξ + 1
x
∂ηi

= −|z|zi∂ξ + |z|∂ηi
, if i 6= n,

− yn

x2 ∂ξ −
∑n−1

j=1
yj

xyn ∂ηj
= |z|zn∂ξ −

∑n−1
j=1

|z|zj

zn ∂ηj
, if i = n,

(A.10)

∂ξ = −x2
n
∑

i=1

yi∂ζi
= −

n
∑

i=1

zi

|z|3 ∂ζi
, (A.11)

∂ηi
= x

n
∑

j=1

(

δj
i − yiyj

)

∂ζj
=

n
∑

j=1

(

δj
i

|z| −
zizj

|z|3

)

∂ζj
. (A.12)
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