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Abstract

A new relativistic mean-�eld model of neutron star matter is developed. It is
a generalization of the Zimanyi-Moszkowski (ZM) model based on the constituent
quark picture of baryons. The renormalized meson-hyperon coupling constants in
medium are uniquely determined in contrast to the naive extention of ZM model
and so the application of the model to high-density neutron star (NS) matter is
possible. Our results of the particle composition and the mass-radius relation of NSs
agree well with those obtained from the phenomenologically-determined realistic
equation-of-state.

1 Introduction

The successes of the relativistic models [1] have covered a wide range of diverse phenom-
ena of nuclear structure and scatterings. Although it is now established that the nuclear

physics in low-density region is well controlled by the relativistic dynamics, this is some-

what odd because the relativistic e¤ects are expected to become more crucial at high
densities. One of the objects to be appropriate for investigating nuclear physics at high

density is the high-energy heavy-ion collision. However the realistic description of the re-

action dynamics involves serious problems regardless of the relativistic or nonrelativistic
model.

Another object to be suitable for high-density nuclear physics is the neutron star

(NS) matter. Since Glendenning [2] has �rst applied the relativistic mean-�eld (RMF)
model to it, many e¤orts have been done until now. Recent the most re�ned and detailed

investigations using the nonlinear (NLW) self-coupling model are the works of Refs. [3]

and [4]. It is however noted that many parameters in the NLW model are adjusted to
normal nuclear matter and �nite nuclei. Therefore the NLW model is really valid at low

densities but there are no guarantees that it is useful at high densities. In this respect,

the models embodying explicit or implicit density-dependence are desired. Although
the Dirac-Brueckner-Hartree-Fock (DBHF) theory [5] is such an e¤ort to be the most

elaborate, it is known that the DBHF theory spoils thermodynamic consistency [6]. This

problem can be avoided by reducing the DBHF to the mean-�eld approximation, that

¤This paper is the revised version of CDS ext-2004-010. Some texts and mistypes have been corrected.
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is, the density-dependent hadron �eld (DDRH) theory. It has been also applied to the

NS matter in Ref. [7]. However, in contrast to the nonrelativistic Brueckner-Hartree-
Fock (NRBHF) theory [8,9], there are no realistic DBHF calculations of baryon matter

including hyperons at present. As a result, the density dependence of the meson-hyperon

vertices in the DDRH model cannot be well determined.
Therefore the other RMF models, which exhibit density dependence but are indepen-

dent of the DBHF theory, are desired. Zimanyi and Moszkowski (ZM) [10] developed one

of such models. It has the renormalized  coupling constant,

¤ = (
¤
)  (1)

where  is the nucleon mass and ¤
 is its e¤ective mass in nuclear matter. In the

extended version of the ZM model, the  coupling constant is also renormalized as

¤ = (
¤
)  (2)

These renormalized coupling constants are density-dependent through the e¤ective
mass. It is important that they are determined self-consistently as well as the e¤ective

mass in the nuclear matter. This feature is also realized in the DBHF theory but not in

the DDRH model. However the ZM model cannot reproduce the saturation properties of
nuclear matter. Moreover, its extension to hyperons is obscure. Nevertheless, applications

to the ZM model to NS have been attempted in Refs. [11] and [12].

Here we recall another model, which also exhibits density dependence but is inde-
pendent of the DBHF theory, the quark-meson coupling (QMC) model [13]. This model

also has the  coupling constant to depend on the scalar mean-�eld. Although the

original QMC model fails to reproduce nuclear matter saturation properties, its modi�ed
version works well and has been applied to NS matter in Ref. [14]. Because the QMC

model is based on the bag model of nucleons, it can be extended to hyperons in an unam-

biguous way. It is valuable to note that the original version of the QMC model predicts
the similar saturation properties of nuclear mater to the ZM model. This suggests that

the ZM model has its theoretical origin in nucleon structure.

Such a speculation has �rst been investigated in Ref. [15], which exhibits that the
relativistic SU(6) model of meson-nucleon couplings reproduces the similar coupling

to the ZM model. If the structure of a nucleon is e¤ective on nuclear matter properties, we

expect that the contribution of the so-called Z-graph, which is an essential ingredient of
the relativistic models, should be suppressed. This expectation has also been investigated

in Ref. [16]. We have found another model that has the e¤ective renormalized coupling

constants to depend on both the scalar and vector mean-�elds and reproduces the similar
saturation properties of nuclear matter to the DBHF calculation. Furthermore Ref. [17]

has investigated the e¤ect of the meson cloud of nucleons in nuclear medium. It has been

found that the wave-function renormalization of nuclear nucleons leads to the e¤ective
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 and  coupling constants, which become the generalization of the ZM model

and reproduce the similar results to the DBHF calculation.
Unfortunately, it is not easy to extend the above works to isospin asymmetric matter

including hyperons. Then the author reanalyzed [18] the ZM model from a picture of

the constituent quark model (CQM) and found a modi�ed ZM model to reproduce the
similar result to Ref. [17]. Because the model is based on the CQM, it can be extended

to include isovector mean-�elds and hyperons in an unambiguous way in contrast to the

naive extention of ZM model. Therefore it has been readily applied to strange hadronic
matter in Ref. [18] and then to charge asymmetric nuclear matter in Ref. [19].

The purpose of the present work is to extend the model in Refs. [18] and [19] to NS

matter including all baryon octets. In the next section, we �rst introduce the e¤ective
renormalized meson-baryon coupling constants, and then employ them in the RMF ap-

proximation. In section 3 the model is applied to non-rotating cold -stable NSs and

the numerical results are discussed. Finally we summarize our investigation and draw
conclusions in section 4.

2 Formalism

In this work, we consider the contributions of the isoscalar scalar meson , isoscalar

vector meson , isovector vector meson  and isovector scalar meson  [0(980)]. The

(hidden) strange meson considered in Ref. [3] is not taken into account because the
interactions between hyperons are not well known. The masses of baryons are assumed

to be  = 9389MeV, ¤ = 11156MeV, § = 119305MeV and ¥ = 13181MeV.

2.1 Renormalized coupling constants.

The renormalized meson(¦)-nucleon() coupling constants ¤¦ have already been de-
rived in Ref. [19]. They are related to the free coupling constant ¦ as

¤() =
£
( 1 ¡ ) + ¤



¤
() (3)

¤() = [( 1¡ ) + ¤
 ] () (4)

¤() =
£
( 1¡ ) + 

¡
2¤

 ¡¤


¢¤
() (5)

¤() =
£
( 1¡ ) + 

¡
2¤

 ¡¤


¢¤
() (6)

where the renormalization constant  is

 = 13 (7)

The quantities ¤
 () is the ratio of the e¤ective nucleon mass  ¤

() in medium to the
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free mass:

¤
 () =

¤
 () =

¡
 + ()

¢
  (8)

where  () is the scalar potential of proton (neutron).  ¤
 and ¤

 are di¤erent from
each other owing to the isovector scalar mean-�eld by  [0(980)] meson. Because the

renormalized coupling constants depend on the e¤ective masses, they are determined

self-consistently in nuclear medium.
Although we have applied the above model to the RMF calculation of neutron star

in Ref. [19], the e¤ects of hyperons have not been considered. It is known [20] that the

hyperons play crucial role in high-density region in NSs. Therefore we have to extend
our model to hyperons. The special case of the isospin symmetric strange hadronic

matter has been investigated in Ref. [18]. The extension to isospin asymmetric matter is

straightforward. For the �rst example, the §0 hyperon is considered. In the QCM, the
free §0§0 or §0§0 coupling is schematically written by

s

+

u d u ds

or expressed by

§0§0() = §§() = 2
§
() (9)

The wavy lines denote  or  mesons and  is  or  quark. Although one of the 

and  quarks is the spectator in the above diagram, both the quarks in the §0 hyperon
embedded in baryon matter feel the mean-�eld. In the RMF model of baryon matter, the

mass of §0 hyperon in the medium must be reduced by the scalar mean-�eld as the mass

of nucleons in nuclear matter. In the QCM this means that both the masses of  and 
quarks are also reduced by the scalar potential. Therefore we can consider the following

medium correction to §0§0():

u

+

ud s d s

1
2

×

0

dS Σ 0

uS Σ

The dashed lines are the e¤ects of the mean-�elds on quarks de�ned by

¹§
0

() = 
§0

()§0 (10)
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where §
0

 and §
0

 are the scalar potentials of  and  quarks in the §0 hyperon.

Adding the above correction to Eq. (9), we have the renormalized (or e¤ective)
§0§0() coupling constant ¤§0§0(),

¤§0§0() = §§() +
1

2

³
¹§

0

 + ¹§
0



´
§() =

·
1 +

1

4

³
¹§

0

 + ¹§
0



´¸
§§() (11)

Because the scalar potential of §0 hyperon is given by

§0 = 
§0

 + §
0

  (12)

Eq. (11) is rewritten as

¤§0§0() = [(1¡ §) + §¤
§0] §§() (13)

§ = 14 (14)

where the e¤ective mass of the §0 hyperon ¤
§0 = 

¤
§0§ is introduced by using

¹§0 = §0§ = ¹§
0

 + ¹§
0

 = ¤
§0 ¡ 1 (15)

Of course, the renormalized ¤¤() coupling constant ¤¤¤() is given by the similar
expression:

¤¤¤() = [(1¡ ¤) + ¤¤
¤] ¤¤() (16)

¤ = 14 (17)

The e¤ective mass ¤
 of ¤ and other hyperons is de�ned by the same way as ¤

§0 and

will be determined in section 2.2.
Next, the charged §�s are considered. The medium correction to §+§+¦ (¦ = , ,

 and ) coupling constant is given by the following graph:

su u

uS
+Σ

According to the same procedure as §0, the renormalized coupling constant ¤§+§+¦ is

readily obtained.

¤§+§+¦ = [(1¡ §) + §¤
§+] §§¦ (18)

Similarly, the medium correction to §¡§¡¦ coupling constant is depicted by
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sd d

dS
−Σ

The renormalized coupling constants ¤§¡§¡¦ is given by

¤§¡§¡¦ = [(1¡ §) + §¤
§¡] §§¦ (19)

The e¤ective masses of §+, §0 and §¡ are di¤erent from each other because of the

isovector scalar mean-�eld. Consequently, the renormalized coupling constants of the §
hyperons break the isospin symmetry.

Since the ¥ hyperons contain only one  or  quark, there are no medium corrections to

the ¥¥¦ couplings in our model. This indicates that our model is not fully consistent. We
have to take into account the contributions of the (hidden) strange mesons considered

in Ref. [3] to construct a fully consistent model in which the ¥¥¦ couplings are also

renormalized. Unfortunately, there is little reliable information about the interactions
between hyperons. Therefore we defer the investigation of the e¤ect by strange mesons

for future works. For later convenience, the renormalized ¥¥¦ coupling constants are

formally introduced in the same forms as the other hyperons:

¤¥0¥0¦ = [(1¡ ¥) + ¥¤
¥0 ] ¥¥¦ (20)

¤¥¡¥¡¦ = [(1¡ ¥) + ¥¤
¥¡ ] ¥¥¦ (21)

¥ = 0 (22)

In our model, the strangeness () of the baryons explicitly appears as the di¤erent value
of the renormalization constant  , that is  = 13 for  = 0,  = 14 for  = ¡1
and  = 0 for  = ¡2. The naïve extension of the ZM model to hyperons in Ref. [12]

corresponds to using  = 1 for all the hyperons.

2.2 The RMF model of NS matter

Using the renormalized meson-baryon coupling constants obtained above, our mean-�eld

model Lagrangian for NS matter becomes

L =
X

=¤§+
§0§¡ ¥0¥¡

¹
¡
¡¤

 ¡ 0 
¢
 +

X

=¡ ¡

¹
¡
¡

¢


¡ 1

2
2
 hi2 + 1

2
2
 h0i2 ¡ 1

2
2
 h3i2 +

1

2
2
 h03i2  (23)
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where  and  are the Dirac �elds of the baryons and the leptons, hi, h0i, h3i and

h03i are the mean-�elds,  is the mass of each lepton, and ,  ,  and  are the
masses of each meson. The e¤ective mass ¤

 of each baryon is

¤
 = +   (24)

The scalar potentials  is given by

 = ¡¤ hi ¡ ¤ h3i 3 (25)

where 3 = f 1, ¡1, 0, 1, 0, ¡1, 1, ¡1g for  = f , , ¤, §+, §0, §¡, ¥0, ¥¡g. The
vector potential  of each baryon is given by

 = 
¤
 h0i+ ¤ h03i 3  (26)

From Eq. (25), the scalar mean-�elds are expressed by the e¤ective masses of the

nucleons.

hi = ¡ 



(0)

(0)
 (27)

h3i = ¡ 



(0)

(0)
 (28)

where

(0) = ¤
¡
¤
 ¡ 1

¢
+ ¤  (

¤
 ¡ 1)  (29)

(0) = ¤
¡
¤
 ¡ 1

¢
¡ ¤ (¤

 ¡ 1)  (30)

 (0) = ¤
¤
  + 

¤


¤
  (31)

and we have abbreviated Eqs. (3)-(6) as

¤ ()¦ = 
¤
 ()¦ ¦ (¦ = , ,  and )  (32)

Therefore the e¤ective masses of the hyperons ( ) can be expressed by the e¤ective

masses of the nucleons (). After some manipulations, we obtain

1¡¤
 =

·
  ¡ 



 (0)

 
(0) +  

(0)3

¸¡1
 (33)

where ¤
 = 

¤
  ,  () =   ()(). The vector potentials of hyperons are

also expressed by  and , and so the vector potentials of every baryon are uni�ed in
a single expression:
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 =
¤

¤
 + 3

¤


¤


¤
¤
 + 

¤


¤


 +
¤

¤
 ¡ 3¤¤ 

¤
¤
 + 

¤


¤


 (34)

Then the energy density of NS matter is written by

E =
X

=¤§+
§0§¡¥0 ¥¡

(h¤i + )  +
X

=¡ ¡

hi  

+
1

2
2


µ



¶2µ
(0)

(0)

¶2

+
1

2
2


µ



¶2 µ
(0)

(0)

¶2

¡ 1

2
2


µ
¤ + 

¤
 

¤ 
¤
 + 

¤
 

¤


¶2

¡ 1

2
2


µ
¤  ¡ ¤ 
¤  

¤
 + 

¤
 

¤


¶2

 (35)

where h¤i and hi are the average kinetic energies of the baryons and the leptons,

and  and   are their vector densities. The vector potentials  and  are determined
by E = 0 and E = 0. Consequently, we have a general expression of the

vector potentials:

 =
X

0

µ
¤

¤
00

2


+ 330
¤

¤
00

2


¶

0  (36)

Substituting Eq. (36) into Eq. (35), the energy density becomes

E =

ÃX



 h¤i

!
 +

X



hi   +
1

2
2


µ



¶2 µ
(0)

(0)

¶2

+
1

2
2


µ



¶2 µ
(0)

(0)

¶2

+
1

2

ÃX




¤


!2

2 +
1

2

ÃX



3
¤


!2

2 

(37)

where  is the total baryon density and  is the fraction of each baryon. The e¤ective
masses ¤

 and ¤
 are determined by solving the self-consistency equations E¤

 = 0

and E¤
 = 0 simultaneously. From Eq. (37) they are

X



¤


¤









+

µ



¶2 



(0)
³
(1)  (0) ¡(0)(1)

´

((0))3

+

µ



¶2




(0)
³
 (0) ¡(0) (1)

´

((0))
3 +

ÃX







¤


¤


!ÃX




¤


!



+

ÃX



3



 ~¤


¤


!ÃX



3
¤


!



= 0 (38)
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X



¤


¤









+

µ



¶2 



(0)
³
(1)  (0) ¡(0)(1)

´

((0))
3

¡
µ



¶2



(0)
³
(0) + (0) (1)

´

( (0))3
+

ÃX







¤


¤


!ÃX




¤


!



+

Ã
X



3



 ~¤


¤


!Ã
X



3
¤


!



= 0 (39)

where  is the scalar density of each baryon. The quantities (1) () and  (1)() are de�ned
by

(1) = (1¡  ) + 
¡
2¤

 ¡¤


¢
 (40)

 (1) = 
¤
 (41)

(1) = (1¡  ) + 
¡
2¤

 ¡¤


¢
 (42)

 (1) = 
¤
 (43)

with  ´ 2 . The e¤ective masses ~¤
 are de�ned by

~¤
 = 2

¤
 ¡¤

  (44)

~¤
 = 2

¤
 ¡¤

  (45)

~¤
 = ¤

  (46)

(See Eqs. (5) and (6).) Therefore  ~¤


¤
 = ¡1 etc. The derivatives of the e¤ective

masses of hyperons by the e¤ective masses of nucleons are

¤


¤


= (1¡¤
 )
2 



 

³
(1) (0) ¡ (0) (1)

´
+   3

³
 (0) ¡(0) (1)

´

(  
(0) +  

(0)3 )
2  (47)

¤


¤


= (1¡¤
 )
2 



 

³
(1) (0) ¡ (0) (1)

´
¡   3

³
(0) + (0) (1)

´

(  
(0) +  

(0)3 )
2  (48)

Finally, the pressure  is given by

 =
1

4

X



(¤  ¡¤
 ) +

1

4

X



( ¡ ) ¡ 1

2
2


µ



¶2µ
(0)

 (0)

¶2

¡ 1

2
2


µ



¶2µ
(0)

(0)

¶2

+
1

2

ÃX




¤


!2

2 +
1

2

ÃX



3
¤


!2

2 

(49)
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where ¤ and  are the Fermi energy of the hyperons and the leptons in NS matter

and  is the scalar density of the leptons.

3 Numerical analyses

For numerical calculations of the NS matter, we �rst determine the free meson-baryon
coupling constants. The  and  coupling constants are �xed to reproduce the

nuclear matter saturation [18]. We assume the saturation energy of ¡1575MeV at the

saturation density 016 fm¡3. The values ()
2 = 169 fm2 and ()

2 =

125 fm2 are obtained. The e¤ective nucleon mass and the incompressibility of saturated

nuclear matter are ¤
 = 0605 and  = 302MeV respectively. The    coupling

constants are �xed from the CQM or the SU(6) symmetry:

1

3
 =

1

2
¤¤ =

1

2
§§ = ¥¥ (50)

The    coupling constants are determined to give the hyperon potentials in saturated

nuclear matter  () that are compatible with experimental results for hypernuclei [3,7]:1

 ()¤ =  ()§ = ¡30MeV and  ()¥ = ¡28MeV (51)

In our model, they are given by

 ( ) = ¡¤   hi + ¤   h0i  (52)

where hi and h0i are the mean-�elds in saturated nuclear matter.

For  and  coupling constants, we employ the values of the Bonn A potential

in Ref. [5], ()
2 = 039 fm2 and ()

2 = 082 fm2. Unfortunately, these
values produce smaller symmetry energy of nuclear matter 246MeV than the empirical

value 30§4MeV. It is well known [4] that the RMF model is not compatible to the realistic

value of  coupling constant and much larger values are usually employed. In this
respect, the  and  coupling constants also have to be compared with the Bonn

A potential. Our values determined above do not largely di¤er from the Bonn A potential

while some works use rather di¤erent values of the coupling constants. In such cases, it
is commented that the coupling constants are the e¤ective ones in nuclear medium. This

statement however reveals that the model is only valid around the saturation density. On

the contrary, we have introduced the renormalized coupling constants to be determined
self-consistently at any density. Therefore the values of the free (unrenormalized) coupling

constants should be close to their realistic ones. At present, the Bonn A potential in Ref.

1Although it has been recently con�rmed [24] that the optical potential of § is repulsive, we here
assume attractive one because of the comparison of our model with the other RMF models in Refs.
[3,7,12,14].
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[5] is only realistic model that reproduces  interaction and nuclear matter saturation

simultaneously. On the other hand, there is no reliable empirical information about
nucleon-hyperon and hyperon-hyperon interactions. For the    and    coupling

constants, we therefore chose simply,

 = §§ = ¥¥ and ¤¤ = 0 (53)

 = §§ = ¥¥ and ¤¤ = 0 (54)

The properties of NS matter in our model are essentially determined by ¤
 and ¤



that are the solutions of Eqs. (38) and (39). To solve these equations, the densities of
every baryon are needed at �xed total baryon density  .

 =
X

=¤§+ 
§0§¡ ¥0¥+

  (55)

They are determined to ful�ll the -equilibrium condition,

  =   ¡   (56)

where   is the chemical potential of all the baryons and leptons (¡ and ¡) and   and

  are the corresponding baryon number and charge. There exist only two independent
chemical potentials of neutron and electron, which are �xed to satisfy Eq. (55) and the

charge neutral condition,

X

=

  = 0 (57)

Once  and  are obtained, the other chemical potentials are also obtained from Eq.

(56) and then the densities of baryons are determined from

 =
¡
2 +

¤

2
¢12

+  (58)

Since the right hand side of Eq. (58) includes ¤
, Eqs. (38), (39) and (55)»(58) have

to be solved consistently.

Figure 1 shows the fraction of every baryons and leptons in cold -stable NS matter
as functions of  . At low densities, the matter consists of nucleons and leptons. The

¡ appears near the saturation density  = 016 fm¡3. The hyperons appear above

 = 0275 fm¡3. The �rst is the §¡ rather than the lighter ¤ because of its negative

charge. As the §¡ appears, the fractions of the leptons turn to decrease because of the
charge neutral condition and the fraction of neutron decreases more rapidly. The §¡

increases steeply until the ¤ appears above  = 044 fm¡3. Since the fraction of ¤ also

increases rapidly, the fraction of proton almost saturates. Above  = 0625 fm¡3 the ¥¡

11



rather than the lighter §0 appears because of its negative charge as in the case of §¡

and ¤. Since the ¥¡ increases rapidly, the §¡ turns to decrease and the fraction of ¡

becomes lower than 10¡3. Consequently, the fraction of proton increases slightly. The §0

appears above  = 073 fm¡3. As the ¥0 appears above  = 083 fm¡3, the fractions

of  and ¤ almost saturate. The fraction of electron becomes lower than 10¡3 above
 = 0925 fm¡3. As the §+ appears �nally above  = 095 fm¡3 owing to its positive

charge, the fraction of proton turns to decrease because of the charge neutral condition.

At higher densities than  = 10 fm¡3, the ¤ exceeds the nucleons and the ¥�s exceed
the §�s. The latter however needs a proviso that our treatment of the e¤ective meson-¥

couplings is not consistent to the other hyperons. We have renormalized the meson-¤

and meson-§ coupling constants but used free coupling constant (¥ = 0) for ¥.
Figures 2 and 3 show the e¤ective mass ¤

 = ¤
 of each baryon and the

renormalized coupling constant ¤()() of isoscalar meson as functions of  .

Because ¤¥¥()¥¥() = 1 in our model, it is not shown. The curves are the same as
Fig. 1. As mentioned at the end of section 2.1, the renormalization constant  of each

baryon is �xed according to its strangeness. The di¤erences of the strangeness between

the baryons are clearly seen in Figs. 2 and 3. There are small di¤erences between the
masses of proton and neutron, between §+, §0 and §¡, and between ¥0 and ¥¡ owing

to the isovector scalar mean-�eld. Because the renormalized coupling constants depend

on the e¤ective masses, the isospin symmetry of the e¤ective interactions is also broken.
In this respect we note that the baryons in the medium are not physical particles but

quasi-particles.

The e¤ective mass of neutron becomes negative above  = 12 fm¡3. Reference [3]
has discussed the problem of negative e¤ective mass and suggested that the hyperon-

hyperon interactions mediated by the (hidden) strange mesons can resolve the problem.

Indeed, the interactions between strange quarks may be important to reproduce realistic
hyperon-hyperon interactions. However they are not well known at present. Furthermore

it is generally believed that the RMF models of baryon matter lose their physical validity

at high densities above  = 10 fm¡3. We have therefore stopped the calculation when
negative e¤ective masses appear.

Figure 4 shows the equation of state (EOS) for cold -stable NS matter. The solid

and dashed curves are the results with and without hyperons. The di¤erence between
them is revealed above E = 270MeV¢fm¡3 when the §¡ appears in Fig. 1. As is well

known [20], the hyperons have e¤ect to soften the EOS considerably.

Using the EOS obtained above, we calculate non-rotating NS by integrating the
Tolman-Oppenheimer-Volkov (TOV) equation [21].

 ()

 
=
42

2
2E ()  (59)
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 ()

 
= ¡ 

2

[E() +  ()]
h
 () + 4 3 ()2

i


£
¡ 2 ()2

¤  (60)

where  (), E () and  () are the radial distributions of the pressure, energy and

mass of the NS. Since we have employed realistic but small  coupling constant, the
pressure in Fig. 4 has quite small negative values below  = 004 fm¡3. This however is

not a problem because our RMF model of baryons describes only the high-density core-

region of the NS. For the outer region, we use the EOS by Feynman-Metropolis-Teller,
Baym-Pethick-Sutherland and Negele-Vautherin from Ref. [22]. Figures 5 and 6 show

the gravitational mass of NSs in units of the solar mass as functions of the central energy

density E and the radius . The solid and dashed curves in Fig. 5 are the results with
and without hyperons. The separation of the two curves occurs when the §¡ appears as

the case of Fig. 4. The hyperons have the e¤ect to reduce the pressure considerably. The

dashed line in Fig. 6 is the upper limit of the mass of NS derived from the data of Vela
pulsar [23]. Our result almost lies under it.

Finally, we compare our results, the particle composition of Fig. 1 and the mass-radius

relation of Fig. 6, with other models. For this purpose we take the result obtained from

the phenomenologically-determined realistic EOS in Ref. [20] as a criterion. (The EOS 2
is chosen.) The characteristic features of its particle composition are: 1) The fraction of

§¡, which is the hyperon appearing �rst, decreases gradually at high densities. 2) As a

result the fraction of ¥¡ exceeds §¡. Our model has both the features. The DDRH model
[7] using phenomenological density-dependence exhibits only the �rst feature while the

NLW model [3] and the QMC model [14] exhibit only the second. The naïve extension of

the ZM model to hyperons [12] has neither. The characteristic feature of the mass-radius
relation by the e¤ective EOS is that the mass decreases slowly up to the radius  = 13 km

and then falls headlong to the value below 05¯. Although the solid curve in Fig. 6

exhibits roundness between  = 12km and 13 km and slight backbend between  =

13km and 14 km, the agreement with the e¤ective EOS is fairly good. The DDRH model

has the similar feature only by using the phenomenological density dependence. The

results using the NN potential models, Groningen and Bonn A, are rather di¤erent. This
suggests that the density dependences from the DBHF calculations are not necessarily

reliable at high densities. In this sense our model proposes another choice against the

DBHF model.

4 Summary

We have introduced the renormalized e¤ective meson-baryon coupling constants into the
RMF theory of NS matter. They are derived from the analysis of the ZM model based on

the CQM of baryons and have the general form ¤¦ = [( 1¡ ) + ¤
 ]¦ where
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the renormalization constant  is �xed according to the strangeness () as  = 13

for  = 0,  = 14 for  = ¡1 and  = 0 for  = ¡2. In contrast to the ZM model,
the renormalized meson-hyperon coupling constants are determined uniquely without

introducing additional parameters. Our model has e¤ective density-dependence but is

independent to the DBHF model in contrast to the DDRH model.
We have calculated the composition and the EOS of the NS matter that is cold, -

equilibrium and neutrino-free. Then the mass-radius relation is calculated by integrating

the TOV equation using the EOS. Our results enjoy agreement with the results by the
e¤ective EOS that is phenomenological but reliable. In this respect our model is fairly

promising than the other models. However there remain important problems mentioned

in the following.
We have emphasized the importance to use realistic meson-nucleon coupling constants

in the calculation. However the CQM of baryons, on which our model is based, is never

realistic. This means that the physical values of the renormalization constants  may
deviates from the values employed, especially for hyperons. So as to �x the problem, it

is needed to merge the realistic but simple model of the structure of baryons with the

RMF model of baryon matter. Unfortunately, we have no models to be appropriate for
the purpose and so postpone it to future subjects.

Furthermore we have not included the interactions between the strange quarks in

hyperons, which are important for the realistic reproduction of hyperon-hyperon interac-
tions. Although the hyperon-hyperon interactions are not well known, it is worthwhile

to include the e¤ect of the (hidden) strange mesons into our model according to Ref. [3].

We want to investigate it in a future work.
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Figure 1: The partial fractions of baryons and leptons as functions of the total baryon
density.
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Figure 2: The e¤ective baryon masses ¤
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¤
 as functions of the total baryon

density. The curves are the same as Fig. 1.
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Figure 3: The renormalized coupling constants ¤()() as functions of the total
baryon density. The curves are the same as Fig. 1.
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Figure 4: The equation of state for cold -stable NS matter. The solid and dashed curves
are the calculations with and without hyperons.
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Figure 5: The NS mass in units of the solar mass as functions of the central energy
density. The solid and dashed curves are the calculations with and without hyperons.
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