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Abstract

The derivative scalar-coupling (DSC) model of relativistic nuclear matter by
Zimanyi and Moszkowski is reconsidered from a constituent quark picture of nucle-
ons. The DSC can be regarded as a correction to  coupling owing to the e¤ect
of scalar mean-�eld on the constituent quark. By a little revision of the DSC model,
we �nd a new model that can reproduce the nuclear matter saturation properties
as well as the Dirac-Brueckner-Hartree-Fock model. This model is readily extended
to hyperons and then is applied to investigate the strange hadronic matter. It pre-
dicts the same metastable state as the nonlinear Walecka model or the modi�ed
quark-meson coupling model.

1 Introduction

The relativistic nuclear model based on the Dirac equation for a nucleon has now became
a standard approach to describe nuclear systems. A lot of variations and extensions to

the original Walecka model [1] have been developed. Among them, the following four

models are especially important. The nonlinear Walecka (NLW) model including phe-
nomenological  and  self-coupling terms [2] is most widely used. The Dirac-Brueckner-

Hartree-Fock (DBHF) theory [3] has no �tting parameters to nuclear properties and so

is the most con�dential model at present. The quark-meson coupling (QMC) model [4]
is also noticeable. It is a �rst attempt to take into account the nucleon structure in the

nuclear mean-�eld.

Another interesting phenomenological model is the derivative scalar-coupling (DSC)
model [5] developed by Zimanyi and Moszkowski. It predicted the same saturation prop-

erties of nuclear matter as the QMC model. Both the models have e¤ectively density-

dependent  coupling constant. These suggest that the DSC model has its theoretical
foundation on the nucleon structure. In fact it has been shown [6] that the relativistic

SU(6) model of a nucleon gives the similar  coupling to the DSC. Furthermore, it has

been shown recently [7] that the generalized version of the DSC model [5], which includes
e¤ectively density-dependent  coupling also, can be derived by the renormalization

of wave function in the Walecka model. It is noted that this renormalization takes into
¤This paper is the revised version of CDS ext-2003-062. I have improved the results of Figs. 6-8 and

corrected some texts and mistypes, but the essential features are not altered.
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account the nucleon structure in terms of the meson cloud in nuclear medium. The

predicted nuclear matter saturation properties are comparable to the DBHF calculation.
The e¤ectively density-dependent  and  couplings in the DSC model or its

variation inspire us to apply and test the model to describe high-density hadronic matter.

In this respect, the strange hadronic matter (SHM), especially the metastable exotic
multi-hyper-nuclear object (MEMO), is a recent interest. The �rst investigation has been

done using the NLW model [8]. The metastable state with large strangeness fraction  ¼
13 is predicted. The NLW model is able to reproduce the properties of nuclear matter
at saturation or �nite nuclei. However this never means that it precisely predicts the

properties of the hadronic matter at high density, since there are no density-dependences

in it. Then the study using the modi�ed QMC model [9], which has e¤ectively density-
dependent  coupling, has been performed. Contrary to our expectation, both the

models predict the similar results since their metastable states with large strangeness

fraction are mainly due to the additional strong attraction in YY channels.
On the other hand, the DSC model has ever been applied only to  + ¤ matter

[10] because the theoretical principle for extending the DSC to hyperons does not exist.

To overcome the problem, in the present work, we reconsider the DSC model from the
constituent quark picture of baryons and improve it to reproduce the nuclear matter

saturation properties as well as the DBHF theory. Since this new model can be easily

extended to hyperons, we apply it to describe the SHM. The detailed formulation is
presented in the next section and the calculational results are discussed in section 3. We

have however not taken into account the strange mean-�elds included in Ref. [8] and [9]

because the coupling constants of strange mesons cannot be determined unambiguously
at present and because the main purpose of the present work is to show the essential

framework of our new nonlinear mean-�eld model of hadron matter. Conclusions of this

work are drawn in section 4.

2 Revision of the DSC model and its extension to
hyperons

In the present work, we treat charge symmetric hadronic matter and so take only into

account the isoscalar  and  mesons and their mean �elds. In the constituent quark

model of a nucleon, the  or  coupling used in the Walecka model is depicted
by

+

q q q

+

q q q q q q
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or expressed by

() = 3 () (1)

Only one quark  =  or  in a nucleon couples to the mesons (wavy lines) while the
other two quarks are the spectators. However, for a nuclear nucleon, all the three quarks

are embedded in nuclear mean �eld. This e¤ect should be taken into account so as to go

beyond the Walecka model. It was also a subject of the QMC model [4], in which the
mean �eld ful�lls a nucleon bag.

Here we consider the following �rst-order correction by the scalar potential of a quark:

q q q

(N)
qS

+

q q q

+
(N)
qS (N)

qS

q q q

where ¹() ´ () . Using the scalar potential  and the mass  of a nucleon,

those of a quark are () = (13) and  = (13) . As a result we have the

e¤ective  coupling constant

 ! ¤ =  + 3 ¹
( )
 = ¤

  (2)

where ¤
 ´ ¤

 with ¤
 =  +  . It is noted that Eq. (2) is just the DSC

itself. Similarly, we have the e¤ective  coupling constant

 ! ¤ =  + 3  ¹
()
 = ¤

  (3)

Both of Eqs. (2) and (3) corresponds to the generalized DSC model of Eq. (A-3) in Ref.
[5] using  =  = 2.

We have reconsidered the DSC model from the constituent quark picture of a nu-

cleon. However the DSC model cannot reproduce the saturation properties of nuclear
matter. Especially, it gives larger e¤ective mass of a nuclear nucleon ¤

 ' 085 than

the appropriate value ¤
 ' 06 to yield strong spin-orbit potential. On the other hand,

it was found in Ref. [7] that nuclear saturation properties are well reproduced using the
e¤ective  and  coupling constants

¤() =
h³
1¡ 

()


´
+ 

()
 ¤



i
() (4)

We have obtained 
 =  

 = 035, which is close to 13 and thus suggests that Eq. (4)

has its origin in the constituent quark picture of a nucleon. In fact, if 
 = 

 = 13,
Eq. (4) can be derived by using ¹( ) ´ ()  in Eqs. (2) and (3) in place of
¹( ) ´ () . We adapt this prescription in the following.
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According to the quark picture, the extension of Eq. (4) to hyperons is straightfor-

ward. For ¤ and § hyperons, the usual    or    coupling is depicted by

q q sq q s

+

or expressed by

¤¤() = §§() = 2 () = (23) () (5)

They are corrected by the following contribution,

q q s

( )
qS Λ ( )

qS Σor

where ¹(¤) ´ (¤) ¤ or ¹(§) ´ (§) § is the e¤ect by the scalar potential of a quark

in ¤ or §. Because the scalar potentials of ¤ and § are ¤ = 2
(¤)
 and § = 2

(§)
 , the

e¤ective ¤¤() and §§() coupling constants are given by

¤¤¤() = ¤¤() + ¹(¤) () =

µ
1 +

1

4
¹¤

¶
¤¤() (6)

¤§§() = §§() + ¹
(§)
 () =

µ
1 +

1

4
¹§

¶
§§() (7)

where ¹¤(§) ´ ¤(§)¤(§). On the other hand, ¥ hyperons contain only one  or 

quark and so ¥¥() coupling constant is not corrected by nuclear (scalar) mean �eld:

¤¥¥() = ¥¥() (8)

If the strange mean-�elds are considered [8,9], ¥¥() coupling will be also corrected.

The present work however does not study such a correction.
We can summarize the above results as

¤() =
h³
1¡ ()



´
+ ()

 ¤


i
() (9)

where


 = 

 = 13 (10)
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 
¤ =  

¤ = 14 (11)

 
§ =  

§ = 14 (12)

 
¥ =  

¥ = 0 (13)

and ¤
 ´  ¤

 with  ¤
 = + . The strangeness of each baryon is revealed in

the di¤erent values of ()
 .

We want to emphasize that our model has advantages over the NLW and the QMC

models. Our model has no more parameters than the Walecka model and e¤ectively
density-dependent () coupling constants while the NLW model has three additional

parameters but has no density dependences. Both our and the QMC models take into

account the e¤ect of nuclear mean-�elds on quarks in a baryon. However it is incompatible
with the con�nement mechanism realized by the bag model used in the QMC model. Our

model is not worried by such a problem because it is based on the naïve constituent quark

model.
Next we apply the model (9) to the SHM in bulk. Our model Lagrangian is

L =
X

=¤§¥

¹

¡
¡¤

 ¡ 0 
¢
 ¡ 1

2
2

 hi2 + 1
2
2

 h 0i2 (14)

and so the energy density is

E =
X

=¤§¥

(h¤
i + )  +

1

2
2

 hi2 ¡ 1

2
2

 h0i2  (15)

where h¤
i is the average kinetic energy and  is the density of each baryon. The

vector potential  is given by

 = ¤ h0i = [(1¡ 
) + 


¤
]  h0i  (16)

Inverting Eq. (16) as

h0i =


¤

=


¤  

 (17)

we have

 =
¤  

¤

  (18)

On the other hand, the scalar potential  is given by

 = ¡¤ hi = ¡ [(1¡ 
) + 


¤
]  hi  (19)
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Inverting Eq. (19) as

hi = (1¡¤
)

¤

=
(1¡¤

 )

¤  

 (20)

we have

1¡¤
 =





  



(1¡  
 ) +  

 ¤


(1¡ 
 ) + 

 ¤


(1¡¤
 )  (21)

=

·
 

 +






  

(1¡ 
 ) + 

 ¤


1¡¤


¸ ¡1
 (22)

Substituting Eqs. (17) and (20), Eq. (15) becomes

E =
X

=¤§¥

h¤
i  +

Ã X

=¤§¥

¤

¤



!
 +

1

2
2

 hi2 ¡ 1

2

µ


¤

¶2

 2
  (23)

The vector potential  for a nucleon is determined by E = 0:

 =
¤



X

=¤§¥

¤


 (24)

Substituting Eq. (24) into Eq. (23) again, the energy density becomes

E =
X

=¤§¥

h¤
i +

1

2

µ
 

¤

¶2

(1¡¤
)

2 +
1

2

Ã
X

=¤§¥

¤




!2

 (25)

Finally we can determine ¤
 from the self-consistency equation,



¤


µ E


¶
=

X

=¤§¥






()



¤


¤


¡ 



µ




¶2 1¡¤


[(1¡  
) +  

 ¤
 ]

3

+



Ã
X

=¤§¥


¤



!Ã
X

=¤§¥

 







¤


¤


!
= 0

(26)

where  =
P

=¤§¥

 is the total baryon density,  =  is the baryon fraction,


()
 is the scalar density and

¤


¤


=






  

µ
1¡¤



1¡¤


¶2

 (27)

Once solving Eq. (26) and having the value of ¤
 , we can calculate ¤

 from Eq. (22)

and then the energy density from Eq. (25).
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3 Numerical analyses

We �rst calculate the usual nuclear matter and determine the coupling constants 

and  to reproduce the saturation condition  ¡  = ¡1575MeV at  =

016 fm¡3. The detailed procedure of the calculation is essentially the same as Ref. [7].
Only the di¤erence is that the parameter  of Eq. (105) in Ref. [7] is given by Eq.

(10). In the following table, we summarize the values of the coupling constants, the

e¤ective mass ¤
 , the scalar  and vector  potentials, the incompressibility  and

the Coulomb coe¢cient  [11]:

  ¤
  (MeV)  (MeV)  (MeV)  (MeV)

114 140 0605 ¡371 297 302 ¡555

The results are comparable to the DBHF calculation [3]. Therefore our new nonlinear

mean-�eld model of nuclear matter is reasonable and useful to investigate dense baryonic

matter.
Next we investigate the charge symmetric  +¤ matter and compare our model with

the DSC model in Ref. [10], which corresponds to using 
 = ¤ = 1 and 

 = 
¤ = 0

in place of Eqs. (10) and (11). According to the usually used prescription [5,8], the
¤¤ coupling constant is determined by the constituent quark model (5) while the ¤¤

coupling constant is chosen to yield reasonable ¤ potential  ()
¤ () = ¡30MeV in

saturated nuclear matter. Figure 1 calculates the lowest binding energy per baryon,

 = E ¡  ¡ ¤¤ (28)

for each value of the total baryon density  =  + ¤, and the corresponding lambda

fraction ¤. The solid and dotted curves are the results by our and the DSC models,

respectively. We note that the minimum of  is only slightly shifted from the sat-
uration point of nuclear matter, namely,  = ¡163MeV and  = ¡165MeV

at  = 018 fm¡3 for our and the DSC model. The corresponding lambda fraction is

¤ = 010 and ¤ = 012 respectively. This metastable state with small lambda fraction
is more clearly seen in Fig. 2, which shows the lowest  for each value of lambda

fraction. The similar results were also obtained in the QMC model [9].

The di¤erence of  between the solid and dotted curves in Fig. 1(a) is small
below the minimum point, while it becomes larger at higher densities due to the larger

incompressibility of our model than the DSC model. The lambda fractions in Fig. 1(b)

become larger as the density increases except for low densities. For our model, this is also
seen in Fig. 3, which shows  as the functions of total baryon density for the �xed

values of lambda fraction. At densities larger than  = 018 fm¡3,  for ¤ = 02

becomes lower than  for ¤ = 00. At densities larger than  = 036 fm¡3,  for
¤ = 04 becomes lowest. There is a negative-energy minimum only below ¤ = 064 for
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our model and below ¤ = 072 for the DSC model. The corresponding density to the

minimum increases up to ¤ = 04 and then turns to decrease. This is explicitly seen in
Fig. 4 that shows the density corresponding to the binding energies in Fig. 2.

Figure 5 shows ¤
 and ¤

¤ corresponding to the binding energies in Fig. 2. We

�rst note the large di¤erences between the two models. However the dependences on the
lambda fraction are weak especially below ¤ = 04 in both the models. We further note

that both the e¤ective masses in the two models have minimum values at ¤ = 033,

which is rather di¤erent from the minimum point ¤ ¼ 01 in Fig. 2. These facts indicate
that the relativistic dynamics by the nuclear mean-�elds are not directly re�ected in the

metastable state of  +¤ matter. This is the reason that both our and the DSC models

have predicted the similar properties of the metastable state.
Next we investigate the SHM consisting of +¤+§+¥ under the chemical equilibrium

[8]. The    coupling constants are determined by the constituent quark model (5)

while the    coupling constants are chosen to yield reasonable § and ¥ potentials in
saturated nuclear matter, namely,  ()

§ () = 30MeV and  ()¥ () = ¡28MeV.

We �rst calculate in Fig. 6 the binding energy per baryon




=

E


¡
X

=¤§¥

  (29)

as functions of the total baryon density  =
P

=¤§¥

 for �xed strangeness fractions

 = ¤ + § + 2 ¥ (30)

The energy minimum of the SHM with  = 04 or 08 is lower than the saturation

energy of nuclear matter while that with  = 12 or 16 is larger. The total baryon
density corresponding to the minimum grows with the strangeness fraction.

So as to investigate the results of Fig. 6 in detail, Figs. 7(a) and (b) show the lowest

 for each value of  and the corresponding total baryon density. Furthermore Figs.
8(a) and (b) show the corresponding density fraction  and the e¤ective mass ¤

 of each

baryon. The § hyperons do not appear because of the repulsive optical potential assumed

above. The dip at  = 01 in Fig. 7(a) corresponds to the minimum of the solid curve in
Fig. 2. For the convenience of comparison, we re-present the result of  + ¤ matter by

the dotted curve. The advent of ¥ hyperons at  = 0175 predicts lower binding energy

than  + ¤ matter and the metastable state of  ' ¡171MeV at  ' 025 fm¡3

with  ' 06. The negative-energy state is obtained up to  = 17. These are the same

as the results by model 1 in Ref. [8]. Inversely speaking, the properties of the metastable

state in the SHM do not depend on detailed di¤erences between the models. Especially,
the e¤ective density-dependent  and  coupling constants in our model, which

are essential di¤erences from the NLW model, have not been distinctly revealed. The

reason can be found in Fig. 8(b). The dependences of the e¤ective baryon masses on 

are not signi�cant. Their lowest values appear at  = 1575 that is much larger than
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 = 06. As in the case of  + ¤ matter, these indicate that the relativistic dynamics

of our model are not re�ected explicitly in the metastable state.

4 Conclusions

We have reconsidered the DSC model of relativistic nuclear matter from the constituent
quark picture of a nuclear nucleon. The DSC has been interpreted as a correction to

 coupling in the Walecka model owing to the e¤ect of the scalar mean-�eld on

the constituent quark. A little revision of the DSC model and its application to 

coupling improve signi�cantly the reproduction of nuclear matter saturation properties.

We have readily extended this new model to hyperons. Their strangeness appears as the

di¤erent dependences of   () coupling constants on their e¤ective masses.
We �rst apply the model to +¤ matter and compare it with the naïve extension of

the DSC model to ¤. Although the relativistic dynamics in both the models are rather

di¤erent, the properties of predicted metastable state are similar. We further extend
our model to the SHM consisting of  + ¤+ §+¥ under the chemical equilibrium and

compare it with the NLW model. It is found again that the metastable states in both the

models have similar properties. This is because that the metastable state occurs at the
density near the saturation point of nuclear matter and has relatively small strangeness

fraction, namely,  = 018 fm¡3 with ¤ = 01 in +¤ matter and  ' 025 fm¡3 with

 ' 06 in the SHM. Since all the models have been adjusted to reproduce the saturation
properties of nuclear matter and since the dependences of the e¤ective baryon masses on

the strangeness fraction are relatively weak in our model, the detailed di¤erences between

the models have not been revealed in the metastable state.
We have not taken into account the strange mean-�elds considered in Refs. [8] and

[9]. They produce the metastable state in SHM with large strangeness fraction at much

higher density than the saturation point. Because of the e¤ectively density-dependent
meson-baryon coupling constants, the inclusion of the strange mesons ¤ and  into our

model might predict the di¤erent properties of the metastable state from Refs. [8] and

[9]. This possibility will be studied in a future work.
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Figure 1: The lowest binding energy per baryon (a) and the corresponding lambda fraction
(b) of  +¤ matter for each value of the total density. The solid curves are our model
calculations using Eqs. (10) and (11) while the dotted curves are the DSC results using

 = 

¤ = 1 and 
 = 

¤ = 0.
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Figure 2: The lowest binding energy per baryon of  + ¤ matter for each value of the
lambda fraction.
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Figure 3: The binding energy per baryon of  + ¤ matter with �xed lambda fractions
as functions of the total baryon density. The curves are the results of our model.
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Figure 5: The ratios of the e¤ective masses of a nucleon (a) and lambda (b) to their free
masses in  + ¤ matter corresponding to the binding energies in Fig. 2.
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Figure 6: The binding energies per baryon (30) with �xed strangeness fraction as functions
of the total baryon density.
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The dotted curve in (a) is the result for  + ¤ matter.
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to the binding energy (the solid curve) in Fig. 7(a).
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