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Abstract. - Soft matter (e.g., biomaterials, polymers, sediments, oil, emulsions) has 

become an important bridge between physics and diverse disciplines. Its fundamental 

physical mechanism, however, is largely obscure. This study made the first attempt to 

connect fractional Schrodinger equation and soft matter physics under a consistent 

framework from empirical power scaling to phenomenological kinetics and 

macromechanics to mesoscopic quantum mechanics. The original contributions are 

the fractional quantum relationships, which show Lévy statistics and fractional 

Brownian motion are essentially related to momentum and energy, respectively. The 

fractional quantum underlies fractal mesostructures and many-body interactions of 

macromolecules in soft matter and is experimentally testable. 

The frequency scaling power law of fractional order appears universal in physical 

behaviors of soft matter (1-5) and is considered “anomalous” compared with those of the 

ideal solids and fluids. For instance, Jonscher (4) concluded that a fractional frequency 

power law was “the universal dielectric response” in soft matter. It is also well-known (5, 

6) that acoustic wave propagation through soft matters (Fig. 1, reproduced from Ref. 5) 

obeys frequency power law dissipation. The standard mathematical modeling approach 

using integer-order time-space derivatives can not accurately reflect fractional frequency 

power law, while the fractional derivatives are instead found an irreplaceable modeling 

approach. In particular, anomalous diffusion equation has been recognized as a master 
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equation (8) to describe frequency power scaling of various physical processes (e.g., 

transport, relaxation) and is stated as 

( ) 02 =∆−+
∂
∂ s

t
s µ
η

η

γ , 10 ≤ηp , 20 ≤µp   (1) 

where s is the physical quantity of interest, γ the corresponding physical coefficient, 

( ) 2µ∆−  represents the symmetric non-local positive definite fractional Laplacian, and η<1 

leads to the non-local time derivative of fractional order (7, 9). Note that η and µ are in 

general real numbers, and “fractional” in this letter is traditional misnomer in academic 

nomenclature. For the ideal solids and fluids (e.g., water, crystals), η=1 and µ=2; while for 

soft matter such as polymers, colloids, emulsions, foams, living organisms, rock layers, 

sediments, plastics, glass, rubber, oil, soil, DNA, etc, µ ranges from 0 to 2 and η is from 0 

to 1. It is worth pointing out that equation (1) concerns with a phenomenological 

time-space representation but does not necessarily reflect physical mechanisms behind the 

scenes (7, 8). By using the separation of variables, namely, ( ) )()(, xQtTtxs = , we have  

( ) 02 =−∆− QQ λµ      (2) 

where λ are eigenvalues of the fractional Laplacian and are also the minima of the potential 

energy. Applying the Fourier transform to equation (2) and ( ){ } QkQF ˆ2 µµ =∆− , we get 

µλ k= , where k denotes the wavenumber (9). Now we find the discrete potential energy 

spectrum of fractional order µ (µ≠2) from phenomenological master equation (1). This 

implies that unlike ideal solids, soft matter has the fractional energy band.  
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On the other hand, the fractional Schrodinger equations have recently been proposed 

through a replacement of time/space derivative terms in the standard Schrodinger equation 

by the corresponding fractional derivatives (10-14) 
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where  and  are the scaled Planck constant in terms of η and µ , Ψ the wave 

function, and V represents the potential energy. The fractional derivative representation 

underlies a dissipative process. Equation (3) is not a consequence of a basic principle of 

physics. Laskin’s work (13) was inspired by Feynman’s discovery that quantum trajectories 

are of fractal self-similarity nature. By the quantum integral over the Lévy paths in contrast 

to the conventional Feynman Gaussian path integral, Laskin (13) derived his fractional 

Schrodinger equation with an anomalous kinetic term 

ηĥ µĥ

( ) 2µ∆−  and found the fractional 

energy spectrum of an artificial hydrogenlike atom, called the fractional “Bohr atom”, 

without referring to soft matter and the fractional frequency power law. The eigenvalue 

equation of fractional Schrodinger equation (13, 14) appears essentially the same as 

macromechanics fractional equation (2) for the potential V=0, while either energy may have 

different physical interpretation. The potential energy V in equation (3) is 

problem-dependent (13, 14). Fig. 2 (reproduced from Ref. 14) displays band structures of 

fractional order of fractional Schrodinger equation under a variety of potentials. Anomalous 

diffusion equation of power law scaling in soft matter and fractional quantum mechanics 

have common signature of the fractional energy band. 

Statistically, anomalous diffusion equation (1) and fractional Schrodinger equation (3) 

are characterized by Lévy statistics (long fat tailed distribution, η=1, µ<2) and the 

fractional Brownian motion (long-range correlation, η<1, µ=2) (15, 16). µ is also the 
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stability index of Lévy distribution, while η is the index of memory strength involving 

correlation function of physical process (dependence on the past history of motion, 

non-Markovian process), and the smaller it is, the stronger memory (17). And we can also 

obtain the fractional Langevin kinetic description of power law noise and the fractional 

Fokker-Planck equation of the corresponding probability density function (PDF) (16, 18). 

In recent decade both “anomalous” statistic paradigms have been recognized mathematical 

foundation of the classical (18, 19) and quantum (14, 19, 20) statistical physics of soft 

matter. Given this statistic argument and the signature of fractional energy spectrum, we 

consider the fractional Schrodinger equation the underlying physics of soft matter under 

mesoscopic quantum scale, while phenomenological kinetics of the fractional Langevin and 

Fokker-Planck equations in the classical limit along with anomalous diffusion equation 

describe microscopic and macroscopic physical behaviors, respectively. The standard 

kinetics, macromechanics and quantum mechanics underlying Gaussian Brownian motion 

are the limiting cases η=1, µ=2. 

The kinetic energy of fractional order in Laskin’s fractional Schrodinger equation was 

given by (also in Ref. 14) 

µ
µ pDEk = ,      (4) 

where Dµ is the scaled constant with the physical dimension erg1-µ×mµ×sec-µ and p denotes 

momentum (13, 14). In terms of the standard quantum momentum relationship , we 

have 

hkp =

µµ
µ khDEk = . Further comparing it with mpEk 22= , we derive 

2ˆ µ
µkhp = , 20 ≤µp    (5) 
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where µ
µµ hmDh 2ˆ = . Here we encounter a fundamental contradiction between 

mpEk 22=  and linear  in the presence of fractional order kinetic energy. In 

essence, the energy and momentum relationship (4) contradicts with 

hkp =

mpEk 22=  and is 

superficial. In contrast, µµ
µ khDEk =  is fundamental. The fractional quantum 

relationship (5) simply avoids the paradox inherent in (4) and saves mpEk 22= . And (5) 

results only in Lévy process (fractional Laplacian) with respect to momentum and is thus 

considered soft matter quantum. The Fourier transform of the Lévy probability density 

function is ( )
µγ kekP −= . In terms of the fractional quantum, the Lévy PDF of energy state 

is ( ) ( )γµhDE
k

keEP
ˆ−=  in the classical Maxwell-Boltzmann statistics fashion. Similarly, we 

can derive the Bose-Einstein and the Fermi distributions corresponding to the Lévy PDF of 

energy state.  

In the fractional Schrodinger equation (3), the fractional Laplacian corresponds to the 

Lévy process (13, 14), while the fractional time derivative representation accounts for the 

fractional Brownian motion (11, 12). Through a quantum plane wave analysis, we find the 

physical underpinning of the latter is a fractional Planck quantum energy relationship  

η
ηνhE ˆ= , 10 ≤ηp ,   (6) 

where ν denotes the frequency. The quantum relationship (6) suggests that quantum process 

in soft matter only involves the fractional Brownian motion with respect to energy and also 

implies quantum particles of fractional order. For instance, acoustic wave propagation is 

actually vibration of the molecules of media, and the quantized energy of this vibration 

(quantum oscillator) is called phonons. In terms of , acoustic energy is η
ηνhE ˆ=
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transmitted and absorbed in fractional quantum, the history-dependent fractional phonon, 

through soft matter, underlying anomalous vibration.  

The physical principles apply on the physical size scale. Einstein's relativity theory has 

revealed our universe on the large scale and shown a profound link between time and space. 

But the theory does not hold at the microscopic subatomic level, where quantum mechanics 

theory prevails. In soft matter, the large amount of the elementary molecules is grouped 

together on mesoscopic scale, in between microscopic and macroscopic scales, and behaves 

like a macromolecule. Physical properties of soft matter can not arise from relativistic or 

quantum properties of elementary molecules (1), which have otherwise been extremely 

successful in ideal solids and fluids. Macromolecule mesostructures, average volume much 

larger than atomic scales, are non-local fractal and not lattice (e.g., the folding of DNA 

macromolecules (21)) and play a vital role in determining physical properties (1). Refs. 19 

and 22 give a detailed analysis of how the fractional mechanism arises naturally from a 

dispersive quantum particle evolving in a chaotic environment characterized by Lévy 

fluctuation, analogous to mesostructures in soft matter. For instance, many-body 

cooperative interactions, other than the isolated polar molecules of the Debye model 

(independent relaxation), have been considered the physical mechanism behind soft matter 

dielectrics (23). From the fractional quantum point of view, complex many-body 

interactions obey Lévy statistics (similar to complex quantum system in 22) and cause 

fractional band structures and determine fractional frequency power law dielectrics.  

The fractional indices η and µ through this report are actually fractal (dimension of 

fractional order, see Ref. 24) and characterize affect of time-space topological complexity 

of macromolecules on mesoscopic quantum and macroscopic physical processes (e.g., 

dispersion). Both appear in fractional empirical power law scalings, kinetics, diffusion, 

wave, quantum, and statistics equations of soft matter, while the classical quantum and 
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statistics (η=1, µ=2) are recovered for free particles and ideal solids and fluids (atomic 

lattice) in which correlation decays exponentially and influence of the past is very weak. In 

a descriptive level, Lévy statistics and fractional Brownian motion produce common 

characteristic process, such as the power-law growth of the second moment and long-range 

correlation (algebraic decay), but are fundamentally different (21), respectively related to 

superdiffusion (η=1, µ<2) and subdiffusion (η<1, µ=2)( 18, 19). Both “anomalous” 

statistics have in recent years been observed in a wide variety of quantum systems (e.g., 

quantum excitation, tunneling, laser cooling (25)) and experiments (20, 26 , 27), involving 

amorphous semiconductor, polymer, porous media, quasicrystals, and fractal lattices, see, 

for example, Ref. 11 and references therein. 

In summary, this study explored the links between fractional power law scaling, 

anomalous diffusion, fractional kinetics, Lévy statistics, fractional Brownian motion, fractal 

topology, fractional derivatives, and fractional quantum in soft matter and incorporated the 

previous results in scattered reports under a consistent theoretical framework. The original 

contributions of this work are the new mesoscopic fractional quantum relationships (5) and 

(6), which can derive dissipative fractional Schrodinger equation (3). This study also made 

the first attempt to connect fractional Schrodinger equations and soft matter physics 

through statistic arguments and the common signature of macromechanics and mesoscopic 

quantum. Although the connection is presented in somewhat heuristic way and need further 

be solidified in the future research, the fractional quantum of soft matter is physically sound 

and mathematically consistent and underlies mesostructures and many-body long-range 

interactions of macromolecules such as entanglements, branching and cross-linking, 

essentially responsible for universal power law scaling. The fractional energy band 

structures and quantum relationships can be tested in experiments through measurements of 

excitation, vibration, and absorption spectra of such soft matters as polymers, oil, human 
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tissues, DNA macromolecules, or emulsions, in which parameters η and µ can be 

determined. 

The classical physics is mostly linear in its principle which describes and explains 

successfully behaviors of microscopic atomic lattices and free particles, while the fractional 

physics has the nonlinear physics principle caused by fractal mesostructures. For instance, 

the fractional Laplacian modeling underlies the concept of the fractional Riesz potential 

stemming from topological complexity (6, 9). It is stressed that the non-linearization of 

physics equations of integer-order derivatives alone can not accurately describe fractional 

power law scaling and various “anomalous” quantum phenomena (versus fractionalization). 

In literature Lévy statistics and fractional Brownian motion arise mostly in physics at a 

descriptive level. In contrast, either statistics is now a direct consequence of the basic 

fractional quantum relationships, which essentially represent history-dependent and 

non-local fractal topological properties (e.g., non-isolated quantum systems in Ref. 22) of 

collective behaviors. As of the future quantum physics, Sir Atiyah (28) once pointed out 

“Perhaps we need to know the past in order to predict the future, perhaps the universe has 

memory, perhaps laws of physics are governed by integro-differential equations involving 

integration over the past”, of which my interpretation is fractional time derivative equations 

underlying long-range correlation inherent in the fractional Brownian motion. In particular, 

he (28) stresses the role of topology in quantum theory, whose implication in this work is 

the influence of fractal mesostructures on quantum mechanics. Westerlund (29) describes 

an abundance of natural phenomena, from weather prediction to finance to geophysics, to 

just name a few, in which the past can not simply be truncated in the prediction of the 

future. This research also shows that the fractional derivative models can lead us to the 

deep portions of the physical mechanism. As Baglegy and Torvik (30) put it, the fractional 

calculus equation representations “should be viewed as something more than an arbitrary 

construction which happens to be convenient for the description of experimental data”. 
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Fig. 1. Data for shear and longitudinal wave loss which show power-law dependence over 

four decades of frequency (taken from 5). Acoustic attenuation typically exhibits an 

empirical frequency dependency characterized by a power law function of frequency, 

µωα0 , where ω denotes frequency, α0 and µ∈(0,2] are media-specific parameters. This 

figure shows log-log plots of absorption versus frequency in some materials, where “shear” 

and “long” means respectively shear and longitudinal waves. YIG is the abbreviation of 

yttrium indium garnet, and granites 1 and 2 denote the two types of granite, respectively. 

The unit decibel (dB) is based on powers of 10 (decade) to provide a relative measure of 

the sound intensity. The slope of the straight line is the exponent of frequency power law of 

dissipation. For example, µ=1.3 for 1–100 MHz in longitudinal wave loss of bovine liver. 

YIG as a single crystalline material has µ=2 for both longitudinal and shear absorptions at 

very high frequencies. Clearly, YIG is an ideal solid (atomic lattice) rather than soft matter 

(fractal macromolecules). The longitudinal wave dissipation of granite 1 follows a linear 

dependence (µ=1 corresponding to the fractional Laplacian of 1/2 order (7)) on frequency 

from 140 Hz to 2.2 MHz. 
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Fig. 2. Band structures of fractional order of folded polymers (taken from 14). κ (equivalent 

to p in this study) represents momentum, β denotes intensive inverse temperature, q is the 

continuous Bloch phase and n the discrete band index, and A, B, C, D in four panel stand 

for four different potentials (cosine potential, square potential, localized high potential 

barriers and wells). The value of µ is determined by the folding topological properties of 

the polymer. Ref. 14 chose momentum instead of energy to express band structures but both 

quantities were incorrectly related by µκ 1E=  (see the fractional quantum relationship (4) 

in this report). Despite this error, the figures nevertheless manifest sharp variances 

schematically of band structures between the normal Laplacian (µ=2) and the fractional 

Laplacian (µ =1/2) representations in Schrodinger equation. 
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