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Abstract

At high momentum transfer jqj > 1GeV, the longitudinal response in quasi-
elastic electron scattering o¤ nuclei is well reproduced by the free Fermi gas model.
This suggests the suppression of the Z-graph contributions in elementary electron-
nucleon scattering in nuclear medium. Therefore we develop the relativistic model
in which those contributions are partially suppressed. The suppression rede�nes the
relativistic e¤ective mass and introduces the e¤ective charge of a nuclear nucleon
scattering the electrons. These quantities reproduce both the position and height of
the quasi-elastic peak. Consequently, the missing charge problem is also naturally
explained.

1 Introduction

Recently there are renewed interests [1-3] on the longitudinal response function in quasi-

elastic electron scattering from the viewpoint of the relativistic nuclear matter model.

They are inspired by the fact that the response for 56Fe at jqj = 1140MeV [4] is well

reproduced by the free Fermi gas model rather than the relativistic Hartree model [5].

It suggests the suppression of the relativistic medium e¤ect at high momentum trans-

fer. Frank [1] pointed out that the suppression is due to momentum dependence of the

scalar and vector self-energies of a nucleon in nuclear medium. He phenomenologically

introduced a step function to describe the momentum-dependent self-energies. Chen and

Ma [2] and Kim, Horowitz and Frank [3] re�ned Frank�s work by using more realistic

momentum dependencies. In Ref. [2] the result of the relativistic Bruekner-Hartree-Fock

calculation was employed, while in Ref. [3] phenomenological nucleon-nucleus optical

potentials were utilized. These works can reproduce the longitudinal response for 56Fe

at jqj = 550MeV and 1140MeV in the range of the energy transfer ! below the quasi-
elastic peak. However the position and height of the peak, which are essential ingredients

in the quasi-elastic picture, cannot be reproduced. We are not contented unless both the

quantities are well reproduced simultaneousely.

The quasi-elastic peak positions of the longitudinal responses at jqj = 550MeV and
1140MeV suggest that the e¤ective mass of a target nucleon scattering the electrons
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becomes larger than that obtained from the relativistic mean-�eld theory [6]. Now we

remember that the successes of the relativistic models are essentially due to the virtual

N �N pair e¤ect [7,8]. Therefore such an enhancement of the e¤ective mass may be owing

to the suppression of the virtual N �N pairs or the Z-graph contributions in elementary

electron-nucleon (eN) scattering. However the criticisms to the relativistic models [9-11]

are also concentrated on the N �N pair contribution because it corresponds to (qqq) (�q�q�q)

in a quark picture of the nucleons and such a simultaneous three �q creation should be

suppressed by taking into account the composite nature of the nucleons. On the other

hand, it was shown [12,13] that the nucleon Z-graph at nearly zero transferred momentum

is equivalent to the single quark Z-graph but not to three quark Z-graph. Consequently,

it is believed that the relativistic models are valid only at low momentum transfers while

the nucleon Z-graph contributions should be suppressed at high momentum transfers.

In the next section we develop a phenomenological model to suppress the e¤ects of the

Z-graph on the quasi-elastic electron scattering. In section 3 the numerical results of

the longitudinal responses for 56Fe at medium and high momentum transfer are given.

Finally we summarize in section 4.

2 Suppression of the Z-graph

In order to investigate the e¤ects of the Z-graph contributions in quasi-elastic electron

scattering, we �rst note that the positive-energy Dirac spinor in nuclear medium u � (p; s)

with mass M� is expanded by the positive and negative-energy Dirac spinors in the free

space, u (p; s) and w (p; s) with mass M [14]:

u� (p; s) =

�
E�p +M

�

2E�p

�1=2�
1

� � p=
�
E�p +M

�
���s; (1)

= cos �p u (p; s) + sin �p
X
s0

hs0j� � p jsiw (p; s0); (2)

where

u (p; s) =

�
Ep +M

2Ep

�1=2�
1

� � p= (Ep +M)

�
�s; (3)

w (p; s) =

�
Ep +M

2Ep

�1=2��� � p= (Ep +M)
1

�
�s; (4)

E�p =
�
jpj2 + (M�)2

�1=2
, Ep =

�
jpj2 +M2

�1=2
and �s is the Pauli spinor. The mixing

angle �p between the positive and negative-energy states is given by [14]

tan (2 �p) =
jpj (M �M�)

jpj2 +MM�
: (5)
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Here we note that �p � 1 in Eq. (2) or

tan (2 �p) � sin (2 �p) � 2 �p =
jpj (M �M�)

jpj2 +M M�
; (6)

as shown in Fig. 1. Thus Eq. (2) is approximately rewritten by

u � (p; s) � u (p; s) + �p
X
s0

hs0j� � p jsiw (p; s0) : (7)

tan(2 p)
2 p
sin(2 p)
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Figure 1: The momentum dependence of the mixing angle between the positive and
negative energy states de�ned by Eq. (5). The solid, dotted and long-dashed curves
denote tan (2�p), 2�p and sin (2�p) respectively. We asume the value of the scalar potential
S = �375MeV.

Then we consider the current matrix

h �u � (p0; s0)j J� ju � (p; s) i (8)

Using Eq. (2) or (7), this is composed of the four contributions as

h �u (p0; s0)j J� ju (p; s) i : (++) coupling; (9)

h �u (p0; s0)j J� jw (p; s) i : (+�) coupling; (10)

h �w (p0; s0)j J� ju (p; s) i : (�+) coupling; (11)

h �w (p0; s0)j J� jw (p; s) i : (��) coupling: (12)

Di¤erence between the nuclear matter and the Fermi gas is due to (+�) (or (�+))
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coupling. Because the mixing of w (p; s) in u� (p; s) is essentially due to the scalar

potential S; the (+�) coupling means the following Z-graph contribution in elementary
eN scattering:

S

J q

If the transferred momentum jqj becomes large, the electron sees the inside of nucleon.
In this case, the electron (or virtual photon) interacts with the quark in nucleon but

not the nucleon itself. Thus the above nucleon Z-graph contributions should be partially

suppressed. Unfortunately, the theoretical derivation of such suppression is di¢ cult. In

the present work we will partially suppress the (+�) and (�+) coupling in a phenom-
enological way.

For this purpose we arti�cially multiply Eq. (10) by the suppression factor � (jqj):

� (jqj) h �u (p0; s0)j J� jw (p; s) i : (13)

The factor � (jqj) shall satisfy the condition

� (jqj) =
�
= 1 : jqj = 0;
� 1 : jqj > M: (14)

So as to replace Eq. (10) by Eq. (13), we modify the current matrix (8) as

h �u � (p0; s0)j ��� (p0) J��� (p) ju � (p; s)i ; (15)

where

�� (p) = �
+ (p) + ��� (p) ; (16)

with the projection operators to the positive (�+) and negative (��) energy states:

�+ (p) =
X
s

u (p; s)uy (p; s) =
=p+M

2Ep

0; (17)

�� (p) =
X
s

w (p; s)wy (p; s) = 
0
=p�M
2Ep

: (18)

However �� (p) is not a projection operator and so Eq. (15) does not satisfy the current

conservation

h �u � (p0; s0)j ��� (p0) q�J� �� (p) ju � (p; s)i = � (1� �) (M �M�)
�
cos � 0p � cos �p

�
6= 0;
(19)

4



except that � (jqj) is a step function as � (jqj) = � (jqj � qc) with cut-o¤ momentum qc.

Although the strict theoretical derivation of the suppression factor � (jqj) is beyond the
present work as mentioned above, it should be related to the nucleon structure function

and thus is not a step function. At present it is reasonable to assume the Sachs form

factor GE (jqj) as � (jqj), which satis�es the condition (14):

� (jqj) = GE (jqj) =
�
1 + jqj2=c

��2
with c = 0:71GeV�2: (20)

Because within the picture of point-like nucleons GE (jqj) is regarded as the probability
for electrons with momentum q to see a whole nucleon as a point particle, the Z-graph

of a point-like nucleon should be weighted with the probability. Although the current J�

in Eq. (13) already contains the form factors, the weighting factor of Eq. (20) does not

cause double counting since the Z-graph is the second-order contribution as seen in the

above picture.

Now we have to recover the current conservation. For this purpose, it is noted that the

Dirac spinor u� (p; s) with mass M� can be also expanded by the Dirac spinors u� (p; s)

and w� (p; s) with any mass M� similar to Eq. (7):

u � (p; s) � u� (p; s) + ��p
X
s0

hs0j� � p jsiw� (p; s0) : (21)

Then we demand that �� (p)u� (p; s) in Eq. (15) can be replaced by N�u� (p; s) with

appropriate value of mass M� and normalization factor N�. As a result, the current

matrix becomes

N2
� h �u� (p0; s0)j J� (q) ju� (p; s)i ; (22)

in place of Eq. (8). An appropriate value of M� can be de�ned as follows. We have

supposed that Eq. (22) gives the reduced (+�) coupling of Eq. (13). Therefore it is
expected that the new Dirac spinor u� (p; s) is expressed by

u� (p; s) � u (p; s) + � �p
X
s0

hs0j� � p jsiw (p; s0) : (23)

in place of Eq. (7). De�ning a new mixing angle �p between the positive and negative-

energy states as

�p � � �p =
1

2

jpj (M �M�)

jpj2 +MM�

; (24)

the corresponding e¤ective mass M� is given by

M� =
M
�
jpj2 +MM��� � (M �M�) jpj2

jpj2 +MM� + �M (M �M�)
: (25)
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This satis�es the conditions

M�=0 =M; (26)

M�=1 =M
�: (27)

Since the momentum dependence of M� is troublesome, we replace jpj2 in Eq. (27) by
MM� which gives the maximum value of �p. This approximation is reasonable because

of the weak dependence of M� on jpj as shown in Fig. 2. Consequently, the appropriate
value of M� for the current matrix (22) is

M� �
2M � � (M �M�)

2M� + � (M �M�)
M�: (28)
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Figure 2: The e¤ective mass M� de�ned by Eq. (25) as functions of jpj for � = 0:2, 0:4,
0:6 and 0:8.

Next, the value of the renormalization constant N� has to be determined. Although

N� � 1, we cannot set N� = 1 because it determines the height of the quasi-elastic peak
through the e¤ective charge eeff� of a target nucleon. (Note N� < 1.)

eeff� � N2
� e: (29)

Here N� is de�ned by

N� �
h
uy� (p; s) (�� (p)j p0=E�)u� (p; s)

i
p=0

: (30)

Although p0 = Ep in the original de�nition of �� (p) in Eq. (16), p0 = E� �
�
jpj 2 +M2

�

�1=2
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has been assumed. Furthermore we have taken p = 0 corresponding to the quasi-elastic

peak position. Consequently,

N� =
1

2
[(1 +m�) + � (1�m�)] ; (31)

where m� � M�=M . Comparing Eqs. (7) and (23), u� (p; s) returns to u� (p; s) for

� = 1 while it reduces to u (p; s) for � = 0 and the Z-graph contributions are completely

suppressed. For 0 < � < 1 they are partially suppressed.

Now we have seen that the suppression of the nucleon Z-graph contributions can be

accounted by using e¤ective mass M� and e¤ective charge e
eff
� in place of M� and e.

This only means that the incident electrons (or virtual photons) see the target nucleus

as a collection of the nucleons with mass M� and charge e
eff
� . The properties of nuclear

matter is determined by M� but not by M�.

3 Results and analyses

Here we show the numerical results of the longitudinal response RL. Our model is not

appropriate for the transverse response RT because we have simply chosen the nucleon

charge distribution as the Z-graph suppression factor in Eq. (20). Our calculation of RL
is equivalent to the relativistic mean-�eld model except for the e¤ective mass M� and

the e¤ective charge eeff� , which depend on transferred momentum jqj. We take the value
of the scalar potential as S = �375MeV. This value corresponds to M�=M ' 0:6 and is
reasonable for the relativistic nuclear matter saturation properties [15].

Figures 3 and 4 show RL for 56Fe at jqj = 550MeV and 1140MeV. The solid, dashed
and dotted curves are the results of our model, relativistic mean-�eld model and the

free Fermi gas model respectively. The agreement of our model with the experimental

data [4,16] is quite good except that the quasi-elastic peak position shifts to somewhat

higher energy transfer at jqj = 1140MeV. The relativistic mean-�eld model can reproduce
neither the position nor the height of the quasi-elastic peak. The free Fermi gas model

provides too high quasi-elastic peak at jqj = 550MeV. Our results are also superior to the
models of Refs. [2] and [3]. These indicate that the Z-graph contributions in elementary

eN scattering are really suppressed.

It is noted that our model has no �tted parameters. Values of the Z-graph suppression

factor � (jqj) given by Eq. (20) are � = 0:492 at jqj = 550MeV and � = 0:125 at jqj =
1140MeV. Therefore the Z-graph contributions are rather suppressed even at medium

momentum transfer jqj = 550MeV and are largely suppressed at high momentum transfer
jqj = 1140MeV. Figure 5 shows the ratio of the e¤ective mass M� to the physical mass

M as a function of jqj. In the region jqj < 1GeV,M� rapidly changes with increasing jqj
while the change is slow for jqj > 1GeV. This indicates that the Z-graph contributions
are rapidly suppressed with increasing jqj up to 1GeV.
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Figure 3: The longitudinal response at jqj = 550MeV for 56Fe. The solid, dashed and
dotted curves are the results of our model, the relativistic mean-�eld model and the free
Fermi gas model respectively. Experimental data are from Ref. [16].
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Figure 4: The same as Fig. 3 but for jqj = 1140MeV. Experimental data are from Ref.
[4].
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Figure 5: The ratio of the e¤ective mass M� to the physical mass M as a function of
transferred momentum jqj.

The height of the quasi-elastic peak depends on the e¤ective charge eeff� . Figure 6

shows the dependence of eeff� on jqj. We can see that the e¤ective charge apparently
decreases from the physical charge e around jqj = 576MeV. This is the reason of the

success of our model at jqj = 550MeV. The e¤ective charge is also concerned with the
so-called missing charge problem. Although Jourdan [17] suggested no missing-problem

from re-analysis of the world data, Morgenstern and Meziani [18,19] recently criticize

it and we here follow their assertion. Then the Coulomb sum [5] is calculated in Fig.

7. Experimental data [16] is well reproduced over the wide range of momentum transfer.

Our e¤ective charge has resolved the missing charge problem. Here we want to emphasize

that other models [20,21], which are able to reproduce the Coulomb sum, use the larger

values of the e¤ective mass M� than 0:6 taken in our model. However their values are

not appropriate for nuclear matter saturation properties and strong spin-orbit potentials.

On the contrary we have usedM� in place ofM�. This rede�ned e¤ective mass is derived

fromM� through the suppression of Z-graph, and so does not con�ict with nuclear matter

saturation properties.

Finally, we mention the relation of the present model to the picture of swollen nucleon

[21,22] in nuclear medium. Although the e¤ective charge has been de�ned in Eq. (29),

we can incorporate the renormalization factor N� into the form factor of the nucleons.

Then the Sachs form factor becomes

G �
E (jqj) = N2

� (jqj)GE (jqj) : (32)
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Figure 6: The ratio of the e¤ective charge eeff� to the physical charge e as a function of
transferred momentum jqj.
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Figure 7: Coulomb sum C (jqj) for 56Fe as a function of transferred momentum jqj.
Experimental data are from Ref. [16].
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Therefore

dG �
E

dq2

����
q2=0

=
dGE
dq2

����
q2=0

+ 2
dN�
dq2

����
q2=0

: (33)

Using Eq. (31) we have

dN�
dq2

����
q2=0

=
1

2
(1�m�)

d�

dq2

����
q2=0

: (34)

Because � (jqj) = GE (jqj) from Eq. (20), the charge radius is



r2p
�� � �6 dG�E

dq2

����
q2=0

= (2�m�)


r2p
�
: (35)

As a result the charge radius of nuclear nucleon becomes larger by about 18% than that

of the free nucleon using m� = 0:6. This value is smaller than 30% swelling obtained

by other works. This is due to our choice of � (jqj) = GE (jqj), which explains the
longitudinal responses of quasi-elastic electron scattering well in the region jqj > 500MeV
as shown above. However it might be invalid at small jqj region where the charge radius
is determined. We note that the picture of quasi-elastic scattering becomes invalid at

small jqj, and so it is di¢ cult to derive the charge radius of nuclear nucleon.

4 Conclusion

We have investigated the e¤ects of the suppression of the nucleon Z-graph contributions

in the relativistic model for quasi-elastic electron scattering. They are accounted by

introducing the new e¤ective mass M� and the e¤ective charge e
eff
� of nuclear nucleon

that the incident electrons see. The longitudinal responses for 56Fe at medium and high

transferred momentum are well reproduced. This indicates that the nucleon Z-graph

in elementary eN scattering is really suppressed. Although our model has no �tted

parameters, there is an uncertainty in determining the suppression factor � (jqj) with
which the Z-graph contributions are weighted. We naively assumed the nucleon form

factor for it. However this choice has no theoretical foundations. It is a challenging subject

to study the mechanism of the Z-graph suppression from more fundamental theoretical

viewpoint.
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