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ABSTRACT. We show that the Douglas-Kroll block-diagonalization method for
the Dirac operator with Coulomb potential is convergent in norm resolvent
sense for coupling constant <y less than 7. = 0.37758 which corresponds to
atomic number 51. Moreover, we give an explicit expression for the corre-
sponding block-diagonalized Dirac operator.

1. INTRODUCTION

The one-particle Dirac operator is given by

(1) Dy:=a-iV+B+7V
acting in the Hilbert space $ := L?(R®) ® C'. Here a,j are the usual Dirac
matrices. In this article we consider the Coulomb potential V' = —1/| - | with the

coupling constant v € (—1,1). (We use units in which the rationalized Planck
constant, the mass of the particle, and the velocity of light are equal to one.) We
choose V' as a Coulomb potential merely for convenience and definiteness. The
method that we develop can be applied — in principle — to much more general
situations. In fact it is not even necessary that the unperturbed operator is the free
Dirac operator as the attentive reader will gather from the proofs.

It is well known that this operator is unbounded from below. Dirac postulated
that negative energy states are already occupied by electrons, i.e., physical electrons
are not allowed to exist in such states.

In most situations of chemical interest, pair-creation and excitations of the
positronic degrees of freedom are far beyond the energy scale of the valence shell
[30]. Therefore, it is a good approximation to neglect these quantum effects and
“fill the Dirac sea”. Mathematically this means that one should consider the Dirac
operator projected onto its positive spectral subspace, i.e., P(y)D,P(y) in the
Hilbert space P(7)$), where P(7) := X(0,00)(D~) is the spectral projection of the
Dirac operator D, to its positive spectral subspace.

For the free Dirac operator Dg the corresponding projection P(0) is well known;
in momentum space it is the matrix valued multiplication operator

Ep)+a-p+p
2E(p)

where E(p) := (1 + p®)'/? and F is the Fourier transform. In general, however,
the corresponding projections are not explicitly known. Thus, it is important to
develop an approximate procedure. One way of doing this was suggested in 1974
by M. Douglas and N.M. Kroll [7]. They start with the free case, i.e., ¥ = 0, as the
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initial step. In the free case Foldy and Wouthuysen [9] showed that in momentum
space the unitary transform

14+ pa-p
V2E(p)(E(p) +1)

maps the operator Dy into a block-diagonal form, i.e.,

fUpwfil =

11 _ (E) 0
FUprwDoUpw F ™~ = ( 0 —E(p)) .
For non-vanishing « the decoupling is done perturbatively. The method consists of a
series of unitary transforms which are chosen to block-diagonalize the Hamiltonian
up to a given order in the coupling constant . Every consecutive transform removes
the lowest order in v of the remaining off-diagonal part. This allows the decoupling
up to any power.

Brummelhuis et al. [5] observed that the first order term corresponds to the
Brown-Ravenhall operator. It was extensively studied in the physics literature by
Sucher and Hardekopf [27, 11, 12]. Evans et al. [8], Tix [28, 29], and Balinsky and
Evans [1, 2] later showed some basic mathematical properties, e.g., positivity and
self-adjointness.

Jansen and Hef [17] corrected an error in the derivation of the second order term
by Douglas and Kroll. Later, Samzow et al. [25] extended the method to multi-
particle operators. Actually, He3 et al. turned the method together with the effi-
cient handling of the matrix elements of the corresponding two-component Hamil-
tonian into the “most successful two-components computational tool of the rela-
tivistic quantum chemistry” [3]. From a mathematical point of view the Jansen-Hef}
operator has been studied by Brummelhuis et al. [5, 26], by Jakubafla-Amundsen
[14, 16, 15], and by JakubaBa-Amundsen and Iantchenko [13].

However, despite its success the question remains open as to whether proceed-
ing to higher approximation really leads to better results as indicated numerically
(Reiher and Wolf [23, 24]). This paper endeavors to fill this gap: we will show
that the spectrum of the approximate operators will become arbitrarily close to the
spectrum of the Dirac operator as the approximation degree increases.

The organization of the paper is as follows: in Section 2 we review the Douglas-
Kroll method. The unitary transform U(y), which block-diagonalizes the Dirac
operator, is constructed in Section 3. In Section 4 we define the Douglas-Kroll oper-
ator of order NV and state our main results. In Section 5, we prove that the operator
| Do|*/2U (v)|Do| /2 is analytic which implies that | Do|~*/2U () DU ()| Do| /2
is analytic as well. We use this in Section 6 to prove our main theorem. In Appendix
A we state some useful equations. Finally, in Appendix B, we show that the ex-
pansion of the block-diagonalized Hamiltonian up to second order in powers of the
coupling constant 7 indeed yields the Jansen-Hef} operator. In addition, however,
the expansion gives the possibility of obtaining further corrections to the energy.
In fact, we can even guarantee that these contributions yield — when summed — the
correct eigenvalue.

2. THE DougLAS-KROLL METHOD

In order to be self-contained we shortly describe the Douglas-Kroll method (see
[17] for details): the first step is to apply the (free) Foldy-Wouthuysen transform
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to (1). We get
(2) UFW-D’YUF_VIV =: ﬂE(%V) + & + 0.

Here we decompose the difference of the Foldy-Wouthuysen transformed operator
and BE(}V) into its diagonal part £; and off-diagonal part part, i.e.,

(3) & = v (B1UrwVUiwBs + B_UrwVUiwB-),
(4) O1 = B+UpwVUgyB— + hec..

Here B+ are the orthogonal projection onto the upper respectively lower two com-
ponents of four spinors, i.e., S+ = (1 3)/2.

Note that both & and O; are of order . The idea is then to remove the odd
(off-diagonal) term to a higher order in . That can be carried out by a unitary
transform

(5) Uy =1+ WHY2 + Wy,

with Wy = —W;. The operator W; is chosen such that — after applying U; and
expanding in v — it removes the odd term proportional to v in the Hamiltonian.
This will be the case, if W1 satisfies the equation [3E(3 V), W1] = O;. The resulting
Hamiltonian can be written as

(6) UiUpwDyUpyw Ur!

=BE(}V) + & + B (WLE(FV)Wy + ${W], E(;V)}) + [W1, O1] + p;
the term p2 represents operators which are O(v*) on the diagonal and O(y?) on the
off-diagonal part. Those off-diagonal terms of second order in v can be removed
using the method just described. This is the starting point of an iterative procedure

which determines Hamiltonians that are formally diagonal up to any desired power
in 7. We refer to the work of Wolf et al. [30] for details.

3. EXACT BLOCK-DIAGONALIZATION OF THE DIRAC HAMILTONIAN

The Dirac operator can be written in terms of its positive and negative spectral
projections as

(7) Dy = P(y)DyP(7) + P*(7)Dy P*(v),
here P1(vy) := 1— P(v). We note that to block-diagonalize D, is equivalent to find

a unitary transform U(y) such that

(8) UMmPHU(y) = By
Since Upw P(0)Upw = B+, it is enough to find a transform U () such that
(9) U)PU () = P(0).

Assuming the existence of such a transform U(7), we can say that D., is unitarily
equivalent to the operator

(10) B+UrwU (7) DU~ (1) Ui B + B_UrwU (7) DU " (7) Uy B

which is block-diagonal. Here the terms in the sum correspond to the electronic and
positronic states respectively. Both terms can be viewed as acting on L2(R3) ® C2
in a canonical way.
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In the following we will construct such a unitary map U(y) and show its desired
properties. We begin by recalling a property of the operator

(11) T, := |2|7"/2(Do — in) || /2
with 7 € R: Nenciu [22] conjectured and Kato [19], Formula 2.5, proved
(12) ITyll < 1.

In the next lemmata we will show some basic properties of P(7).

Lemma 1. The projection P(v) has an analytic continuation into the disc D :=
{yeClhl<1}.

Proof. Using the resolvent expansion given in [22], Lemma 2.2., we have for real
in the above disc

11 1 1/2

(13) Dv—in_Do—in_i_ryDo—in'V' 1

We note that the right hand side is meaningful and norm-analytic in D, since

lvT,|| < 1 because of (12). This follows immediately by expanding (1 — vT},) ™"
To prove the analyticity of P(v) we use

(14) PO =5+ [

where the integral is meant as Cauchy principal value in the strong sense (see Kato
[18], Lemma VI-5.6). Therefore,

1

(13) PO =PO) =5 [ (D, =)™ = (Do —in)ay

/ S 47(Do — in) VY2 (T,)" [V[/2(Dg — in)~d.
>

1
DO —l’l']

1
V 1/2
_’YTn| |

1
D, —in

dn

The integrand as function of (n,n) is integrable in both the counting measure in n
and the Lebesgue measure in 7. In fact,

V™ (Do — in) MV [*2(T,)™ |V [*/*(Dg — in) ||
|(, (Do = in) M|V |Y/2(T,)"|V|*/*(Do — in) )|

=7" sup
(16) £.9€9 171 lgll
<Ton [[Do|*/*(Do + i)~ £l [[[Do|'/*(Do — i)~ gl
=57 sup
2 roes /1] lgll
where we used (12) followed by Kato’s inequality |-|~! < (7/2)v/—A. Furthermore,

setting

(17) G'r(n) = |D7|1/2(D7 - in)_l,
we have
(18) / G (m)ellPdn =

for p € $ and v € (—1,1). Therefore, using the Schwarz inequality

(19) [ a6 @116, gl < i1 lg]
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for |¥/| < 1 and f,g € $. Thus, the right hand side of (16) is integrable, and the
lemma is proved. O

Lemma 2. For v € (—/3/2,v/3/2) we have the following estimate
2
T
(20) 1P() - PO < T v,
Here v, is the constant defined in Appendiz A. In particular, we have | P(y)—FPo|| <
1 for |y| < 0.68418.

Proof. Using the resolvent equation in (14), we write P(vy) = Py +vP1 + (), where
oo N N 2 oo
Po = P(0), Py := 5= [%_dn(Do —in)~'V(Do —in)~", and Q. := 3~ [ dn(Do —
in) V(Do — in) 'V(D, —in)~l. Noting that (Py — P(7))? = 1 — PoP(v)Py —
Pg-P(y)* Pt and also that PyP, Py = 0 = P;- P, Py~ we have
1(Po = PO = (Po"4, Q Po ) = (Pot, @ Poy)
< NP1 + [1Potpl1?) = Q4111112
To compute the norm of (), we estimate for f,g € §
|(f, (Do — i) ™'V (Do — i) "'V (D — in) ' g)|
<|T- VI (Do +im) " LIV (Dy = i)l
™ LN LN
< §|||D0|1/2(D0 +in) 7' FI 1| Dol'/*(Dyy — im) gl

_ ™
< v 22 IGom) A NIGy (gl

where we have used (12), Kato’s inequality, and (43). The lemma, follows now from
(19). O

(21)

(22)

Theorem 1. For |y| < 0.68418
(23) U(w) = (RP(Y) + P P(7))(1 = (P, — P(7))*)"*/?,
is analytic in v and unitary. Moreover, it fulfills U(v)P(y)U*(y) = Fy.

Proof. The operator is well defined due to Lemma 2. The unitarity as well as the
Property (9) can be easily verified using that (Py—P(7))? is equal to 1—(PyP(v) P+
Pg-P(y)*+P;t) and commutes with Py and P(v). Finally, the analyticity follows
from Lemma 1 and the fact that (1 — A)~'/2 has a convergent expansion in powers
of A as long as ||A4]| < 1. O

First, we note that the above strategy of diagonalization can be found in [18] but
has not been applied to Dirac operators in this context. The block diagonalization
of such operators under the condition that the potential is bounded by 1 has been
carried out by Langer and Tretter [20] by different means.

Next, we remark that the transform U(y) is not unique: Already Kato com-
mented [18], II-4.2, that there are other ways to derive such transforms which allow
to relax the condition on 7. However, they have the disadvantage that the expres-
sions are recursively determined instead of being given in a closed algebraic form.
Nevertheless, all of these transforms coincide up to order 72 (inclusive). This fea-
ture was also used in [30], where they explore the fact that the ansatz in (5) is not
unique. For another expansion method see [16].
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4. DEFINITION OF THE DOUGLAS-KROLL OPERATOR
The fully block-diagonalized Dirac operator is
(24)  Hy =B UpwU() DU (MU By + B-UswU () DU (1)U B--

In order to make contact with the Douglas-Kroll method we consider the expansion
in v of U(y)D., U~ (7) obtaining the formal operator

N J N-1 J
(25) D7 D wDouj i+ 3 Y wVuj
j=0 k=0 j=0 k=0
Here u;, for j € N, are the coefficients of the expansion of U(y), i.e.,
(26) U() =Y 7u;
j=0

Let us define the operator
N j N—1
@27)  RY =UMDUM ™ =) o

J
It E upVui_p
=0 k= k=0

*
upDouj_j —
0 j=0 =

acting in C§°(R3)*. We can now formulate one of our main results.

Theorem 2. If v or 1/N are small enough, the operator U(y)D,U(y)™' — R,JYV
admits o distinguished self-adjoint extension, the pseudo-Friedrichs extension dfyV
for which D(dY') C D(|Do|'/?) = H'/?(R®)*. Moreover, for |y| < 7. with v. =
0.37758, the operator dY converges in norm resolvent sense to U(y)D U (v)™ .

We are not yet in a position to give the proof of this result. We postpone it to
Section 6 and define instead the N-th order Douglas-Kroll operator as

(28) HY := B Urwd) Upg Bs + B-Urwd) Upg B
One can explicitly verify that the first terms correspond precisely to the ones ob-
tained in [17] (see Appendix B). The important fact following from Theorem 2 is,

that the eigenvalues of deV converge to the eigenvalues of D, as the degree N of the
approximation tends to infinity:

Corollary 1. For v < 7. hold: If A € R\ o(D,), then X ¢ a(d,YN) for all large
enough N. If X\ € o(D,), then there exists Ay € a(dfyv) for which A}im AN = A
—00
For a proof of this result see e.g. [6] Chapter 2.

5. ANALYTICITY OF |Do|'/2U (7)|Dg|~1/?
We first need some technical results:

Lemma 3. The operator |Do|"/?(P(7y) — Po)|Do|~'/? has an analytic continuation
into the disc D :={y € C||y| < 1/2}.

Proof. We follow the same strategy as in Lemma 1. The analyticity follows from
(15), the fact that |V['/2T7 = (|V|(Do —in)~")"|V['/2, and the following estimate

Y"1 Do[*/*(Do — i)~ (|V'|(Do — in)~)"|V'|| Do|~*/2(Do — i) ~"|
(29 <229)™ sup [Go(m) Il Go(mgl

f19€9
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where we used Hardy’s inequality | - |72 < 4|Dy|?. O
Lemma 4. For vy € (—/3/2,1/3/2) we have the following estimate

(30) [[1Do]*/?(P(v) = Po)|Do| ™2l < yw3*\/1+ 57
In particular, we have |||Do|*/?(P () — Po)|Do|~'/2|| < 1 for |y| < 7e.
Proof. For f,g € H'/?(R*)* we have
|(f,|1Do["/*(P () = Po)| Do|~*/?g)]

Gy o ‘/ (f,1Do["2(Do = in)~'V/(D - im‘llDO"”Zg)d"‘

<5 / I1Do|'/?(Do +in) ™" FIIIVI(D~ — 1) " Do| ™/ glldn.

Now, using Hardy’s inequality and (43) we estimate
(32) I[VI(D~ —in)~"|Do|~*/?g|| < 2||[Do|(D —in)~*|Do| /2g||
< 207Dy |(Dy — i) 7} Do T2l

Therefore, (19) implies

(33) (£, 1Dol'*(P(3) — Po)|Do|™2g)| < w5t IF I I1D4 /2| Do| =]

which leads to the desired result after using Kato’s inequality on the right hand
side of the latter expression. O

Lemma 5. The operator |Do|'/2U(y)|Do|~/? is bounded and analytic in ~y for
Il <e-

Proof. Using properties of orthogonal projections we have the operator identity
PyP(y) + P-P(y)t =1 — (Pt — Py)(P(v) — Ry). Inserting the latter equation in
(23) we write

(34) U(y) = (1= (B = Ro)(P(7) = Ry))(1 = (R = P(7))*) ™"/
Let us note first that
(35) | Do|'/*(1 = (Pg" — Po)(P(7) = Fy))| Do|~*/*
=1 - (Ps" = Po)|Dol"*(P(7) = Po)|Do| '/

is bounded by Lemma 4. Secondly we use (44) and look at
(36) [ Dol'/2(1~ (Po — P(7))*)7"/?|Do|7"/?

1
(1 —y(Po = P(7)))

Dy|'/? |Do| ' /*dy

1t
-2/ S
1t 1
T /A V1 =y2 (1= y|Do|'/2(Py — P(7))|Do| /%)

By Lemma 4 we can estimate the operator inside the integral above as

dy.

(37) (1 —y|Do|'/*(Po — P(7))|Do|~1/*)7!
< [ = |yl Il Do|**(Po — P())|Do| /|| 7.
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Therefore,
(38) [lIDol'/*(1 = (Po = P())*)7'/*[Do| /2|
< [1 = |[|Do["*(Po = P())|Do| /] "

which together with Lemmata 3 and 4 completes the proof. |

6. CONVERGENCE OF THE DOUGLAS-KROLL HAMILTONIAN

Lemma 6. For v < 7., the operator |Do| */2U(y)D,U(y) ' |Do|'/? is bounded
and analytic in .

Proof. We write

(39)  [Do| ™2 U()D,U()™HDo| ™2 = (IDo| 72U (7)|Do|*/?)
x (|Do| =2 D4 Do| ~/?)(IDo|"/*U (7) 7' [Do| /%)

and observe that each term is bounded and analytic by Lemma 5 in one case or by
Kato’s inequality in the other. a

An immediate consequence of Lemma 6 is that, for v < 7,
(40) [1Dol /2R 1Do| /2| = 0,
as N — oo.
Proof of Theorem 2. Note first that for u € C§°(R®)* the following estimate holds
(41) |, |, FU T ) RYUM)ID, | Hu)

_1 _1 2 _1 _1
< |IDol=2 B 1Dy |2 105172120l 19,172 |l

[ 1Dol}U () Do~

The left hand side is obviously bounded for v < «.. We proceed now to prove the
self-adjointness of d)Y. We will now take the Pseudo-Friedrichs extension (see [18]
Theorem VI-3.11) of this operator. The operator U(7) leaves the Sobolev space
H'/?(R3)* invariant by Lemma 5. Thus it is enough to prove

(42) |(u, U (MRFU(Mw)] < by, (u, [Dylu)  u € CF(R*)™.

with b, x < 1. This, however, is clearly true because (41), if v is small or N is big.
Finally, the resolvent convergence of dlwv to U(v)D.,U~!(v) follows from Corollary
VI-3.12 in [18] and (40). O

APPENDIX A. SOME USEFUL EQUATIONS

We introduce the constant v2 := (1/2){1 + C2 — [(1 — C2)? + 4y2C?]'/?} with
C,, == (1/3)[(4y* + 9)*/2 — 47]. Then

Lemma 7 (Morozov [21]). For v € (—v/3/2,/3/2) we have
(43) D, > v2|Do .
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We note that this result generalizes [4], Inequality (2) to the massive case.
The following formula is useful for an integral representation of the unitary
operator U(y). For |a| < 1 we have

1/1 1 1 d
Tl i A—ya) ™

In order to verify the above see, e.g., [10] Formula 3.197.4.

(44) (1-a*)7'? =

APPENDIX B. DERIVATION OF THE HAMILTONIAN

In this section we explicitly derive the block-diagonalized Hamiltonians up to
the order N = 2. In particular, we will look at (28) and compare it with (6).
Expanding the projection P(7) yields for v < 1

(45) P(y) = Z Y P,
n=0
with
1 o0 —1 " 1
4 P, =— .
(46) 2n /_oo (Do —inv) Do—in "

Next, we compute the first coefficients of the expansion of U(y) as given by (23)
and (26) and get

Uy = 1,
(47) ur = (Po = P3P,
1
U = (Po—PO'L)P2+§P12,

here P; with ¢ € N are given in (46). The following properties for the P; stem from
the fact that P(y) is idempotent, and will be used later:

(48) P = BP +Ph,

(49) P, = PP, + PP, + P

For N = 0 we have d3 = Do. Therefore,

(50) HY = UrwPyDoPoUgyy + Urw Pi-DoBi-Upyy = BV=A +m,
which corresponds to the first term in (6). In the above we used

(51) B+Urw = UrwFo.

For N =1 we have

(52) d}, = d3, + vDou} + yu1 Do + 7V,

the terms uy Dy and its adjoint do not contribute to H}. In fact, using that (51) in
(28), and the fact that since (48) holds, PoPy Py = P;- P P;- = 0 we can eliminate
those terms. Therefore,

(53) H), = UpwPo(Do + V) PoUgy + Usw Py (Do +vV) Py Uiy »

which corresponds to the first two terms in (6). The electronic part is the Brown-
Ravenhall operator. Note that £ in (6) fulfills UEV{,E Urw = PoyV Py + PV Pst.
Finally, we consider the case N = 2, we have

(54) di = d; + 723 (Doul + us Do + uy Dou} + w1V + Vuy)
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We note that

(55)

1 1
Pous Py = Py(PoP2 P + §P12)P0 = Po(—§P12)P0,

1
PiusP = PH(- L PR

where we used (49) projected by Py and Pj-, respectively. Therefore,

(56)

1
H? =H), + Urwhy (P1D0P1 - {51912, Do} + PV + VP1> PoUpw

1
+ Upw Py~ <P1D0P1 - {§P12’ Dy} — PV — VP1> Pi- Uy

which are the terms that appear in (6), since

UpwWiUsw = (Po — P5") Py,
UpwO1Urw = PoyV g + Py V Py.

Here the electronic part of Hﬁ is the Jansen-Hef} operator.

(1]
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