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Abstract

Consider the Floquet operator of a time independent quantum system, acting on a
separable Hilbert space, periodically perturbed by a rank one kick: e~ #HoTe—irT|$){¢|
where T', k are respectively the period and the coupling constant and Hj is a pure
point self-adjoint operator, bounded from below. Under some hypotheses on the vector
¢, cyclic for Hy we prove the following:

If the gaps between the eigenvalues ()\,,) are such that: A\, 1 — A\, > Cn~7 for
some v €]0,1[ and C' > 0, then the Floquet operator of the perturbed system is purely
singular continuous T-a.e.

If Hy is the Hamiltonian of the one-dimensional rotator on L?(R/TyZ) and the
ratio 27T /T is irrational, then the Floquet operator is purely singular continuous as
soon as kT # 0(2m)

We also establish an integral formula for the family (e #HoT e T10X9)) 1 o .

1 Introduction

The spectral properties of the Floquet operator associated to a periodic time-dependent
quantum system give some informations on the long time behaviour of this system [1]. In
the literature related to the subject, a special attention has been paid to the study of pure
point time-independent systems which are perturbed by a smooth time-periodic potential
or by periodic kicks. We refer the reader to the introduction of [2] for a review on the
subject.

For periodically kicked systems, the form of the Floquet operator is explicit. Moreover,
if the perturbation is of rank one, then, following a non-perturbative method developped
in [3], we may characterize completely the structure of its spectrum [4]. The spectral
properties of the Floquet operator of these systems appear as the result of an interplay
between the distribution of the eigenvalues of the unperturbed system and the choice of
the rank-one perturbation.

In [4], Combescure gave a simple criteria which ensures the Floquet operator of the per-
turbed system to remain “generically” pure point. But at the same time, she conjectured
that without this condition, the spectrum of this operator may be singular continuous
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as soon as the eigenvalues of the unperturbed Hamiltonian are simple ! and defined by a
polynomial with some Diophantine coefficient ([4], Remark C, p. 682). She proved it when
the polynomial is of degree 1 (the harmonic oscillator). In a following step, Bourget proved
the conjecture for polynomials of degree greater than 3 with some irrational coefficients
[2].

The aim of this article is twofold: first, we fill a gap left between [4] and [2] in proving
the conjecture for pure point Hamiltonians whose eigenvalues are given by polynomials of
degree 2 with some irrational coefficients (Theorem 3.4). It means in particular that the
Floquet operator of a one-dimensional rotator periodically perturbed by a rank-one kick
may be purely singular continuous (Corollary 4.1). Then, using a similar strategy, we prove
that the spectrum of the Floquet operator remains, in fact, purely singular continuous for
almost every period and for a large class of rank one perturbations, if the sequence of
eigenvalues of the unperturbed Hamiltonian diverges rapidly enough (Theorems 3.5 and
3.6). In appendix, we establish an integral formula for the Floquet operators of time-
independent quantum systems periodically perturbed by a rank-one kick (Theorem 8.1),
in analogy to the self-adjoint case [5].

2 General hypotheses and notations

The evolution of a time-independent quantum system periodically perturbed by a rank
one kick is described by the following Floquet operator [4]:

Vir = e HOTo=iTRIONAl — o=iHoT (1 1 (e=TF _1)|g)(¢]) , T >0, weR (2.1)

acting on a separable Hilbert space H. Hj is a self-adjoint operator defined on H and ¢
a vector of this space. The real numbers x and T are respectively the coupling constant
and the period of the system. Given all these ingredients, we may address the following
question: What are the spectral properties of the corresponding unitary operator Vier 7

Up to now, a special attention has been paid to those verifying the following hypotheses

[4]; [2]:

H;: Hj is bounded from below, with pure point spectrum. The set of eigenvalues (counted
with multiplicities) is infinite and will be written (X\y,),,cn. Where N* denotes the set of
positive integers. The corresponding family of orthogonal eigenprojections will be written

(Pm)mEN* -
H,: The vector ¢ is cyclic for Hy (||¢|| = 1 for simplicity).

Remark 1: These hypotheses are not so restrictive as they may appear. Indeed,

e If Hy is pure point with a finite number of eigenvalues (\n,)
—iHoT

me{l,..,N} N € N, the
essential spectrum of the operator e is reduced to a finite number of eigenvalues
for any T' > 0. Therefore, from relation (2.1) and Weyl’s theorem on the invariance
of the essential spectrum of bounded operators under compact perturbations (e.g.
[6]), it is clear that the spectrum of Vi is pure point for any x € R and any 7" > 0.

Tn the course of this article, we will see that this hypothesis is not necessary.



e If the vector ¢ is not cyclic, the whole family of unitary operators (Vir)xerr>0 is
simultaneously reduced by the orthogonal subspaces Ho and Hg (e.g. [7] paragraph
5), where:

Ho = Span{e~"HoTpn c Z} G H .

For any value of the coupling constant x and the period T" > 0, the spectrum of
Vir is the union of the spectra of Vi3, and VnT[Hé—’ respectively seen as unitary
operators acting on the Hilbert subspaces Ho and Hg. The spectrum of Vor 1 is
nothing but the spectrum of e_"Honé, which is known by hypothesis. On the other
hand, the determination of the spectral properties of V77, is exactly the problem
addressed initially with hypothesis Ha, since the vector ¢ belongs to Hy and is cyclic
w.r.t. e*iHOTmO.
Remark 2: Notice that whenever kKT = 0 mod(27): Vir = e *HoT. Such values of x
will be excluded from our discussion in the sequel. For any fixed value of T' > 0, we will
denote by Zr the set {x € R; kT = 2km,k € Z}.

3 State of the art and main results

The existing works on the spectral properties of the family of unitary operators (Vir)xer 750
defined in section 2 let appear two types of results. On one hand, we know the spectrum
remains pure point in the following case:

Theorem 3.1 Let T > 0 and (Vir)ker be a family of unitary operators defined by relation
(2.1), hypotheses Hy and Haz. If (||Prnéll),,cn belongs to I'(N*), then, the spectrum of
Vier is pure point for almost every k with respect to the Lebesgue measure on R.

This result, established for the first time by Combescure [4], is related here in a slightly
extended framework. In this article, we propose an alternative proof of this theorem based
on the integral formula presented in section 8.

On the other hand, it is known that if (||Pprdl|),,cn- belongs to 2(N¥) \ IH(N*), the
spectrum of our Floquet operator may be purely singular continuous, at least in the two
following cases:

Theorem 3.2 Let Hy be the Hamiltonian of the harmonic oscillator with pulsation wg >
0. Let T > 0 and assume woT /27 is Diophantine. If there exists a unit vector ¢, cyclic
w.r.t. Hy such that: Iy E]%, 1[, 3¢ > 0, Imy € N*, Vm > my,

[Pl > em™7
then, the spectrum of Vir is purely singular continuous for all value of k ¢ Z7p.

Theorem 3.3 Let (Vir)wer1>0 be the family of unitary operators defined by relation
(2.1), hypotheses Hy and Ha, where the eigenvalues (Ay,)men< are given by: ¥Ym € N*,

d
Am =Y ppm" with d >3 .
k=0



Let T > 0 and suppose p,T /2w is irrational for an r in {1,...,d} such that rd > 3. If
there exist ¢ > 0, mg € N* such that for all m > my,

1
8d%(Ind + 1.5Inlnd + 4.2)

B .
IPmdll > em™ % with 0<f<p, p=

then, the spectrum of the operator Vir is purely singular continuous, provided k ¢ Zr.

Theorem 3.2 was established by Combescure [4] for frequencies wg such that wT'/2m
is Diophantine. Theorem 3.3 was proved in [2] and extends the conclusion of Theorem 3.2
to a class of Hamiltonians Hy with increasing gaps. They are related here with slightly
generalized hypotheses. We explain briefly why in sections 5 and 6.

Remark 3: As emphasized in [2], the irrationality condition on the coefficients of the
polynomials which define the eigenvalues of the operator Hy in Theorems 3.2 and 3.3 is
essential. In fact, the proofs of both theorems use the fact that in these cases, the eigen-
values of e 0T are uniformly distributed on the unit circle. If the spectrum of e~ *oT
was constituted by a finite number of eigenvalues, then the operator Vir would be pure
point, for any real x, T and any vector ¢ (see Remark 1 or [2] Proposition 2.1).

This article exhibits other examples where the operator V. is purely singular contin-
uous. It somewhat supports the idea that, by contrast with Theorem 3.1, the singular
continuous spectrum appears “generically” when the sequence (|| P, ||)men+ belongs to
I2(N*) \ 11 ().

First, we fill a gap between Theorems 3.2 and 3.3 by considering Hamiltonians Hj
whose eigenvalues are given by a polynomial of degree 2, whose coefficients satisfy some
irrationality condition. Namely,

Theorem 3.4 Let (Vir)wer,T>0 be a family of unitary operators defined by relation (2.1),
hypotheses Hy and Ha, where the eigenvalues (Ap)men+ are given by: VYm € N

Am = pam? + p1m + po

Let T > 0 and suppose poT /2w irrational. If there exist ¢ > 0, mg > 0 and B > 0, such
that for all m > my,
7
1Pl > em™ 2’ (m +1)

then, Vir is purely singular continuous, provided k ¢ Zr.
However, in most of basic models, we only know the asymptotics of the eigenvalues
of the Hamiltonian Hy. Despite of this, it is possible to exhibit purely singular continu-

ous Floquet operators Vi, if we assume the sequence of eigenvalues (A\p,)men+ of Hy is
increasing and, given a real positive number -, satisfies one of the two following properties:

H,(y): Je1 >0, Jeg > 0, Vm € N*, VE > com”, Ak — A > €1
Hy(y): Je1 >0, Jeg >0, Vm € N, Vk > comIn™(m + 1), Apyk — Am > €1

More precisely, we have:



Theorem 3.5 Let (Vir)wer,T>0 be a family of unitary operators defined by relation (2.1),
hypotheses Hy and Ha, where the eigenvalues (Apy)men+ of Hy fulfills the property Ha(y)
for some v €]0,1[. Assume there ezist ¢ > 0, € > 0 and mgy > 0 such that: Ym > my,

ln%+6(m +1)

3=~y
m 4

[Pl = c

Then, Vir is purely singular continuous for any value of T in a set of complete Lebesgue
measure and any Kk € R*.

Theorem 3.6 Let (Vir)wer,r>0 be a family of unitary operators defined by relation (2.1),
hypotheses Hy and Ha, where the eigenvalues (Ap)men+ of Hy fulfills the property Hy ()
for some v > 8. Assume there exist ¢ > 0, € €]0, 77_8[ and mg > 0 such that: Ym > my,

| P |l > cm_%lnz_Tv“(m +1) .

Then, Vit is purely singular continuous for any value of T in a set of complete Lebesgue
measure and any k € R*.

Remark 4: If the eigenvalues (A )men+ of the self-adjoint operator Hy behaves as: Vm €
N*) A1 — A = ¢m ™7 for some yp in 0, 1] and some positive number ¢, then it satisfies
the property Ha (o). For all m € N*, for all k& > m?°,

k-1 k-1 .\ =70
- J
A - A :EA i1 — A > 702 14+ = > >0 .
m+k m 2 m+j+1 m+j 2 CN pr ( m) Z Cyo

Similarly, a sequence of eigenvalues (Ap,)men+ that behaves as: Vm € N*, A\jii1 — Ay >
em~11n"°(m + 1) for some positive numbers g and c, satisfies the property Hy, (o). The
general formulation of Theorems 3.5 and 3.6 includes cases where the operator Hy may
have less regularly distributed eigenvalues.

Remark 5: The almost everywhere in Theorems 3.5 and 3.6 cannot be erased. Assume
for example that provided hypothesis Hy is checked, the eigenvalues of Hy are of finite
multiplicities and given by: Vm € N*, \,,T = e.m!. Writing {z} to denote the fractional
part of the real number z, the sequence ({A\,T})men+ is convergent and the essential
spectrum of e 0T is therefore reduced to a single point. It follows from Weyl’s theorem
that the spectrum of Vi is pure point.

Remark 6: We may also wonder if the hypotheses on the growth rate of the sequence
(Am)men+ in Theorem 3.6 may be improved. If the growth rate is too weak, the spectrum
of V.7 may remain pure point for all value of x € R and any choice of the vector ¢:

Proposition 3.1 Let K € R, T > 0 and Vir a unitary operator defined by relation (2.1)
and hypothesis Hy. Assume the eigenvalues of Hy are of finite multiplicities and there ex-
ists an integral number N such that the sequence (Am)m>n s increasing with the following
condition : 3C > 0, Ym > N, Ant1 — Am < Cm "nbm with b < —1. Then, the operator
VT 18 pure point.



Indeed, the hypotheses of the Proposition ensure the convergence of the sequence (A, ) men-
to some limit A. The essential spectrum of e *#T" is reduced to the single point e "7,
The conclusion follows as above.

Before turning to the proofs of Theorems 3.4, 3.5 and 3.6, let us illustrate them by
some applications.

4 Applications

As an application of Theorem 3.4, we can now exhibit periodically kicked one-dimensional
rotators with purely singular continuous spectrum:

Corollary 4.1 Let Ty > 0, T > 0 such that 2xT/T¢ is irrational and k ¢ Zp. Consider
the Hamiltonian Hy defined by: Hy = —83 on L*(R/TyZ). If the Floguet operator Vyr,
associated to Hy and defined by relation (2.1), hypotheses Hy and Hy is such that: 38 > 0,
dmg > 0, de¢ > 0, VYm > my,

1P| > cm™ 2P (m + 1) |

then, it is purely singular continuous.

For the proof, it is enough to note that the eigenvalues (\.,)men of Hp are given by:
Vm € N,
(2m)*

/\m:T—OQm )

and to apply Theorem 3.4.

Now, let us consider the consequences of periodic kicks on an unperturbed self-adjoint
operator Hy of the form: Hy = —0,% + V(z) on L*(R) with V(z) ~ B|z|’, 8 > 0 and
p > 0 (e.g. the one-dimensional anharmonic oscillator [8]). Using Bohr-Sommerfeld type
conditions, we know that the eigenvalues (A, )men+ of this operator are such that: A\, ~

2p_ .- . . .
cn?+? for some positive ¢. In this case, Theorem 3.5 allows us to derive the following
result:

Corollary 4.2 Let k € R*, p >0, 8 > 0 and Hy be the Hamiltonian: Hy = —9,> + V()
on L2(R) with V(x) ~ B|z|P. If the Floguet operator Vi, associated to Hy and defined by
relation (2.1), hypotheses Hy and Hy is such that: 3¢ > 0, Je > 0, Img > 0, Vm > my,

5
Ina*¢(m + 1) 4
P, >c———— ith =1-—
Pl > e G i g1

then, it is purely singular continuous for any period T in a set of complete Lebesgue
measure.

The remainder of the article is devoted to the proof Theorems 3.4, 3.5, 3.6 and the
integral formula. In the next section, we present and discuss some criteria whose combi-
nation allows to prove the absence of eigenvalues in the spectrum of Vir. The proofs of



Theorems 3.4, 3.5 and 3.6 are presented as an application of these criteria in section 6.
We also mention how Theorem 3.2 may be derived in a similar way. Some intermediate
results of analytic number theory are gathered and postponed in section 7. Section 8 is
devoted to the proof of the integral formula from which we deduce Theorem 3.1.

5 General strategy

From now, {a} and [a] will denote respectively the fractional and the integral part of
any real number a: a = [a] + {a}. The fractional part of a real number belongs to the
unit interval [0, 1[. The discrepancy (Dy)nyen+ of a sequence of real numbers (z,,) is
defined by: VN € N*,

meN*

A([a,bl; N; (zm,
DN:SUP0§a<b§1 ( [N( ))—(b—a)

with  A([a,b[; N; (zm)) = #{1 <m < N;{znn} € [a,b]} .

This quantity measures the rate of convergence of the distribution of the sequence ({Z,}),,cn-
to an ideal uniform distribution. If limy o Dy = 0 the sequence (z.,),,cn- is said to
be uniformly distributed mod(1).

5.1 Key Lemmas

We already know that the spectrum of V7 is purely singular for all values of k and T if
the family (Vi) obeys hypothesis Hy (e.g. [2] section 3.1). So, it remains to justify how
the hypotheses of Theorems 3.4, 3.5 and 3.6 exclude the existence of eigenvalues in the
spectrum of Vi for T > 0 and <7 # 0(27).

Lemma 5.1 gives a necessary and sufficient condition for a point of the unit circle to
belong to the point spectrum of V7. It is a straightforward reformulation of the criterion
given by Combescure ([4] corollary 2) on the basis of Simon-Wolff method [3]:

Lemma 5.1 Let T > 0 and k € R such that kKT # 0 mod(2w). Consider the unitary
operator Ver as defined by relation (2.1) and satisfying the hypotheses Hy and Ha. Then,
the complex number € belongs to the point spectrum of Vir iff:

2
B(z)™' = 1 < 400
. 2 (2 0m(T)
meN* SIn (#)
z — 0,(T kT
and 3 1Pl cot(“ ) — cor ()
meN*
where 0,,(T) is defined by: Ym € N¥,
AmT
Om(T) = 27r{;”—7r} i (5.2)

The convergence (or divergence) of the series B(x)~! is the result of a competition between
the decay rate of the numerator and the distribution of the sequence (0,,(7T"))men+ in
[0,27[. It is enough to establish a general criterion which ensures the divergence of the
series B(z) ! for any value of z in [0,27], to prove the absence of eigenvalues in the
spectrum of Vi if T > 0 and T # 0(27). This criteria is given by Lemma 5.2. Namely,



Lemma 5.2 Let (cp)men- be a complez-valued sequence and (Om)men- € [0,27[Y a uni-
formly distributed mod(1). (Dn)nen+ will denote the sequence of discrepancies associated
to (0m)m<n. Suppose we can construct:

e two positive sequences (€m)ment and (bpy)mene such that: Im, € N*, Vm > m,,
0 < b <leml, €ms1 < €m and limy, 4« €, = +00,

e a subsequence of integral numbers (Ni)ren, where N denote the set of non-negative
integers, such that: Vk € N, Dy, < en,

which verify,

2
lim NkGNk ( inf _m) =400 ,

k—+o0
then, Vz € [0, 2x],
|cm|”
> el
102 (2—0m

e S’ (F5)
This lemma, is proven in section 5.2.
Remark 7: Lemma 5.2 relates the divergence of B(z) ! to the asymptotics of (Dy,)men

and (¢ )men+. However, regardless of the distribution of the sequence (60,;,)men+, this
lemma is no help for sequences (¢, )men+ such that: 3C > 0, Vm € N*|

Vinm
—

lem| < C (5.3)

This limitation is related to Schmidt’s theorem (e.g. [9] Theorem 2.3):

Theorem 5.1 For any infinite sequence of real numbers, there exists ¢ > 0,
Dy >c—— .
N=""N

Taking in account Lemma 3 of [4], it means in particular, that we have still no criteria for
the divergence or the convergence of B(z)™! if the sequence (¢, )men+ verifies inequality
(5.3) but does not belongs to I (N*).

5.2 Proof of Lemma 5.2

Let us recall first that the uniform distribution property of the sequence (6,,,)men+ implies:

lim Dy=0.
N—+o0

Let us define the following families of sets: VN € N*, Vz € [0, 27,

Sin() = {1<m<N;bp, € [z,2 4+ 265},
Son(z) = {1<m<N;bp, €z,z+2en[} -



For any fixed z, (Si,n(z))ven+ is an increasing sequence of subsets of N*, and since the
sequence (€m,)men is positive, asymptotically decreasing and converges to 0: AN, > 0,
VN > Nz, Son(z) C Sin(z). Therefore, using the definition of the discrepancy of
the sequence (0,,)m<n, we get: Vo € [0,27], VN > N4, 2Ney — NDy < #So n(z) <
#S1,~(z). In particular, since 0 < Dy, < en,, for all k € N such that N > N,

NiDn, < Nien, < #S1.n,(z) . (5.4)
Note that the combination of this inequality and Theorem 5.1 implies:

lim NiDy, = kEI—EooNkeNk = kgrfoo #S1,n, () = 400 . (5.5)

k——+o00
On the other hand, following [2], we can do the following estimates: Vz € [0, 27[, VN € N*,

N N

Z |Cm|2 >4 Z ‘Cm| > 4 Z ‘Cm|2 >4 Z |Cm‘2
$ 9m = (z — = (z —60)% — (z — O)?

Sln
=1 meSy, n(x) meSt N (z),m>mux

b2
>4 > .

2
meS1,n (z)m>m. "

Therefore, considering the same inequality for the subsequence (N)gen and using inequal-
ity (5.4), we obtain: Vz € [0,2x[, Vk € N such that Ny > N,

gkj em® A([Nyen,] —my) inf b A([Nyen,] — my) inf -2
—_— €N, | — T in -2 > €N, ] —my) inf % .
2 gin? (20m) = RN mesix, (@) €, EE <

Since the subsequence (Nyen, )ken is divergent (see relation (5.5)), the conclusion follows
from the hypotheses when taking the limit k to +oo. O

Let us now combine these Lemmas for our purposes.

6 Proofs

The proofs of Theorems 3.4, 3.5 and 3.6 will be led by means of Lemmas 5.1 and 5.2. In
each case, their application requires the identification of suitable lower bounds (resp. upper
bounds) on the sequence (|| P, ¢||) (resp. (Dp,)), expressed in terms of the input sequence
(brm)men+ (resp. (€m)men+). This can be realized if we get some reasonably good estimates
on some subsequence of discrepancies (D, )iren associated to the sequence (60,,(T))men+
defined by relation (5.2). These estimates will be specified in each case.

6.1 Proof of Theorem 3.4

Assume the eigenvalues (A, )men+ of the Hamiltonian Hy are defined by: A, = pom? +
p1m + pg for all m € N*. Following relation (5.2) of Lemma 5.1, we write for any m € N*
and any T > 0,

O(T) = 200} = om( Py e(m)} T >0,



where Py, r is the polynomial defined by: Vz € R,
T 2
Projr(z) = 5 (p2z® + p17 + o) -

If T is chosen in such a way the coefficient poT'/27 is irrational, the sequence (Pg, 7(m))men-
(resp. (0m(T"))men+) is uniformly distributed mod(1) [9]. Denoting by Dy the discrepancy
of (Pg,r(m))m<n, we know by Proposition 7.1 (see section 7.1), there exist a positive
constant C' and an infinite subsequence of integers (Ny)xen such that: Vk € N,

_1
DNk < CNk 6 ln(Nk + 1) .

Now, if view of Lemma 5.2, we define the sequences (by,)ment, (€m)men and (¢m)men
by: Ym € N*,

b =cm I’ (m+1) , en=Cm eln(m—+1) , cm=]|Pnd|

where c is a fixed positive constant and 8 > 0. These sequences clearly fulfill the hypothe-
ses of Lemma, 5.2 for some m,. In particular,
2

lim Ney inf Tm =400 .
N—+oo m<N €,

Therefore, by Lemma 5.2: B(z) ! = +oo for all z € [0,2n], which proves the result,
provided the constant x ¢ Zr. O

Note that Theorem 3.3 may be proven by a similar procedure. We explain briefly how
in the next paragraph.

6.2 About the proof of Theorem 3.3

Assume the eigenvalues (Ay;)men+ of the Hamiltonian Hy are given by a polynomial of
degree d greater than 3: Ym € N*,

d
Am = Zpkmk ’
k=0

and T > 0 is chosen such as T'p, /27 is irrational for some r in {1,...,d}. It is known the
sequence (Pp, 7(m))men+ where: ¥Ym € N*,

T d
Pror(2) = 5 > ppat
k=0

is uniformly distributed mod(1) [9]. Define (by;,)men+ and (¢, )men respectively by: Vm €
N,
_148
bm=cm™ 2 , cpm = ||Pndl
where ¢ is a positive constant, 8 belongs to |0, p[ and p is defined in the statement of
Theorem 3.3. Now, if we denote by Dy the discrepancy of (Pg, (m))m<n, assume the

10



index 7 mentionned above is such that rd > 3 and choose € in |3, min(p, #)[ (note that
0 < 8 < p < 1), then by Lemma 3.3 of [2], we can construct an infinite sequence of
integers (Ng)gen such that: 3Ce > 0, Vk € N,

Dy, < C.N;€ .

Therefore, it is enough to define (€,,)men by: Vm € N*| ¢, = Cem ™ and the result
follows by means of Lemmas 5.2 and 5.1, provided x ¢ Zr.

6.3 Proof of Theorems 3.5 and 3.6

Assume the eigenvalues (A, )men< of the Hamiltonian Hy obeys the hypothesis H,(7)
(resp. Hp (7)) for some «y €]0,1[ (resp. v > 8). For any T € R, let us define the sequence
(fHo,r(m))men+ by: Vm € N,

T
fHO,T(m) = %’\m .
Theorem 6.1 states that such sequences are uniformly distributed mod(1) for every value
of T in a set of complete Lebesgue measure. More precisely, we have:

Theorem 6.1 Let (x,,)men+ be a non decreasing sequence of real numbers which satisfies
the property Ha(y) for some v €]0,1[. If Dy denotes the discrepancy of the sequence
(@mT)1<m<n and € is a fized positive constant, then for Lebesgue almost every T :

N I_T’YDN,T
im —— T
N—+o0 ln§+6(N 4 1)
Moreover, if (Tm)men+ Satisfies the property Hy(y) for some v > 2 and if € is a fized
positive constant, then for Lebesque almost every T':

lim DyrIn™& (N +1)=0 .
N—+00
The proof of the first part is derived in [10] p. 288 and the second part in the commentaries
about [10] Theorem 5.2 (pp. 291-292). This result is an improvement of a former theorem
of Erdos and Koksma [11].
It means in our context that if Dy denote the discrepancy of (fg,r(m))m<n and
e is chosen positive (resp. in |0, 7T78[), there exist a subset of Rt of complete Lebesgue
measure, L, and a positive constant C, such that: VN € N*,

In3 (N + 1)

1—y
2

Dy < Cep (xesp. Dir < Copln™ 5" F(N + 1))

Now, define the sequences (¢, )ment; (bm)men+ and (€m)men+ by: Vm € N*|

5 5
Inat¢(m + 1 In2t¢(m + 1
cm = |Pmdll , bm = C% y €m = Ce,'y#

m 4 m-2
(resp. by, = cmféln*%“(m +1), ey = Cwln*%”(m + 1)) )

11



where c is a fixed positive constant. These sequences verify the hypotheses of Lemma 5.2,
which means that for all periods 7" in £¢ and for all z in [0, 27],

+00 2
P,
B(z) ' = ] =400 .
.9 (2—0,(T)
m=1 Sin <f)
The last part of the proof follows directly from Lemma 5.1, provided x € R*. O

7 Technicalities

This section is devoted to the statement and the proof of Proposition 7.1, which is used
in the proof of Theorems 3.4. This proposition is an attempt to estimate the discrepancy
of sequences (zn)n<n given by some polynomials of degree 2. More precisely:

Proposition 7.1 Let (x,)nen be the sequence defined by: Vn € N*, z,, = agn® +a1n +ag
where a9 1s irrationnal and aq, ag are real. If we denote by Dy the discrepancy associated

to (zn)n<n, then there exist a constant C > 0 and a infinite subsequence of integers
(Nk)gen such that: Yk € N,

1
DNk < CNk 6 ln(Nk + 1) .

The general strategy of the proof is similar to that of [2] Lemma 3.3, for sequences
(zn)n<n given by some polynomials of degree greater than 3. The estimates on the dis-
crepancy are obtained from the study of the asymptotical behaviour of the corresponding
exponential sum. In the present case, this will be achieved by means of the following
proposition:

Proposition 7.2 Let (z,),cn- be a sequence of real numbers and denote by Dy the dis-
crepancy of (Tn)1<p<n- Let (Un)nen- be a positive non-decreasing sequence and define:

N

SN _ sup 627rzhmn

he{l,...,[un]}

n=1
Then, VN € N*,
S2 6 1 )1/3

Dy< (2N 42 ~
N_<N2+7T2[UN]

Proof: LeVeque’s inequality states (e.g. [9] Theorem 2.4) that for any N € N*, the
discrepancy Dy associated to (zn);<,<y is such that:

+o0o N 2 1/3
Dy < 6 Z 111 Z o2rihn
B m’ h=1 W2 |N n=1
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But: VN € N*,

2

00 | N [uN}llN oo | N
2nthzy | 27mihxy, 2mihxy,
AL =) = |woe + D e
h=1 h* | N n=1 h=1 h* | N n=1 h=[un]+1 h* | N n=1
kad 1) 52, =
S\ 2z |zt 2
h=1 h=[un]+1
+
(S L)Sy [Cde Sy 1
B b1 h? | N2 [un] z2 6 N2 [’U,N] ’
which proves the proposition. O

So, now, the problem is reduced to the study of the asymptotical behaviour of the sequence
(Sn)nen+ for a suitable sequence (un)nen+. We will do it by means of Lemma 7.1:

Lemma 7.1 Define the polynomial P by: Yz € R, P(x) = agz®+a1z+ag, where a1, ag are
real numbers and ao is an irrational number for which the following rational approximation
holds:

s 1
p 2

q

where s and q are relatively prime integers and ¢ > 1. Then, there exists a positive constant
C such that: Ym € N*, VN € N

N
§ : eQmmP(n)
n=1

The proof of this lemma, which follows essentially that of Weyl’s inequality (e.g. [12],
chapter 4), is based on the two following results:

ag — —| <

2
2

N
<C (q + N+ Nm+ m) max{1l,Inqg} . (7.6)

Lemma 7.2 For every real number a and all integers N1, Ny such that N1 < No,

No ) 1
> el <min (o Na- ) (7.7)

n=N1+1
where () = inf({a},1 — {a}).

Lemma 7.3 Let « be an irrational number, ¢ (¢ > 1) and s two integral numbers that
are relatively prime. If,

1

q_2 )

then, there exists a positive constant C such that for any positive integral numbers mq,
ma,

a——| <

| ®

mims

mi 1
Zmin me,—— | <C|g+m1+mo+ max{1,Inq} .
= {ak)

13



The reader may consult [12] Lemmas 4.7 and 4.11 for a proof.

Proof of Lemma 7.1: First notice that for all m € N* and all N € N*,

i b)) _ [ § Y gmmadP| (7.8)
n=1

|d|<N neI(d)
where I(d) is the interval [1 — d, N — d| N [1, N] and for all n € I(d), Ay(P)(n) = P(n +
d) — P(n) (e.g. [12] Lemma 4.12). On one hand, Ag(P) = 0 and on the other hand, if
d # 0, then Vn € Z, Ag(P)(n) = 2aand + a4, with ag = a1d + azd?. Therefore, for any
positive integer m,

Z Z eQiﬂmAd(P)(n) <N+ Z Z 2z7rmAd )(n)

|d|<N neI(d) 0<|d|<N neI(d)

=N+ Z Z 62i7rm(2a2nd+ad)

0<|d|<N neI(d)
min(N—d,N)
<N+ Z Z e2i7r(2a2mnd)62i7rmad

0<|d|<N |n=max(1—d,1)

2

If we note that the intervals (I(d))o<|q/<n are included in [1, N], we get by lemma 7.2:

S Z 2P| < N4 3" min (N’m)

|d|<N nel(d 0<|d|<N

1
<N in{ 2N, ————
< + Z mln( ] <2a2dm)>

1<d<N

2Nm 1
<N+ min | 2N,

> min (28 )

The last sum may be estimated by means of Lemma 7.3. It results that: 3C' > 0, Vm € N*,
VN € N,

2
2

N
E : e2z7rmP(n)
n=1

hence the result. O

N
§N+C(q+N+Nm+ m)max{l,lnq},

Proof of Proposition 7.1: On one hand, the continued fractions expansion of the
irrational number a9 enables us to construct two infinite sequences of integers (si)xen and
(gk)ken such that for all k£ in N, g > 1, gx and sy are relatively prime and

Sk 1
ar — —| < — (eg. [13]).
p g (e.g. [13])

14



On the other hand, it follows from Lemmas 7.2: VN € N*,

2 1/3
1

Combining both with Lemma 7.1, we get: 3C > 0, VN € N*, Vk € N,

N

1 .
DN S W sup Z e2mhzn

he{l,...,[VN]}

n=1

1/3

1 q [VN] | [VN] 1
Dy <C <N+N_I€2+T+q—k> max{l,lnqk}—l—w . (7.9)

As the number as is irrationnal,

lim ¢ =400 ,
k—+o00

and therefore max{1,logqr} = loggy for all k£ great enough. The result follows then by
choosing the subsequence (Ng)ren such as: Ny = g, — 1 (with the convention In0 = —o0).
O

8 An integral formula

This last section is devoted to the proof of an integral formula for the Floquet operators of
autonomous systems periodically perturbed by a rank-one kick. As a corollary, we derive
an alternative proof of Theorem 3.1.

For a > 0, we denote the one-dimensional torus R/aZ by T, and its Borel o-algebra by
B(T,). In particular, T = Ty,.

Proposition 8.1 Let us consider a family of unitary operators (Vir)r>oxer defined by
relation (2.1), where the vector ¢ is chosen normed. For any T > 0 and any k € R the
spectral family of Vir is denoted by (Exr(I))rep(r)- Then, the measure pur defined by:
VI € B(T),

,UnT(I) = <¢7 EnT(I)¢>

is a probability measure such that: for all f in L'(T,dz), the function
K — / f(z)dper(z)
T

belongs to Ll(T%w,dm) and,

A2WA‘f($)dunT(m)dn:Af(x)d?x |

T

Once this formula established, Theorem 3.1 may be proved rapidly. Namely,

Proof of Theorem 3.1: Let k € R\ Z7. From Birman-Krein’s theorem we know that
the spectrum of V,r is purely singular. Since the vector ¢ is cyclic w.r.t. e *#oT it is also

15



true for the measure u,7. Now, again by the cyclicity of the unit vector ¢, it is enough to
prove that the singular continuous part of the measure u.7, denoted px7 sc, vanishes on
the torus for almost every value of k. Combescure proved ([4] Proposition 1) that the set
&, defined by

E={zeT;B(z) =0}

contains the support of the measure p.r s (i-e. perse(T \ €) = 0). On the other hand, if
xe denotes the characteristic function of the set &£, it results from Proposition 8.1 that:

d
[ mer@s= [ [ xe@dnr@= [ xew
T 2n Tﬂ' T

T

Since we know the quantity B(z) ™! is finite for almost every z with respect to the Lebesgue
measure ([4], Lemma 3) the set £ is of Lebesgue measure 0 and the last term of the
preceding equality vanishes. Therefore,

/ kT (E)dk =0 .
Tr
p2d
and per(€) = 0, K -a.e. with respect to the Lebesgue measure. The same result holds

for p1r 5c(€) and the conclusion follows: k7 sc(T) = prr,sc(T\E) + pixr,5c(€) = 0, k-a.e. O

Now, let us return to the proof of Proposition 8.1. As a preliminary, we state the following
lemma;:

Lemma 8.1 Under the hypotheses of Proposition 8.1, we get for all n € Z,
27
/]1‘7r <¢, )d’i = ?5710 )
T
where 6pg denotes the Kronecker symbol.

Proof: If n = 0, the formula is immediate since ¢ is normed. Assume now that n # 0.
Since,

/ RACCEE / Vil

T T

it is enough to check the equality for the positive values of n. For these values, (¢, V.’.¢)
is a polynomial of degree n at most and valuation 1 in the variable e 7. Let us justify
it by induction on n (n > 1). If n = 1, we get,

(¢: Vierg) = (¢, e 10T T100g) = 7K (g e~ 0T g)
Now, assume this property was proven until the n-th step. Using relation (2.1), a rapid
computation by induction shows that: Vn € N,

n

(6, V) —MTZ HRIT 6) (6, Vi @) = D (g, IR g (g V)

k=1
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Its combination with the induction hypothesis proves the property for (¢, VH”T’quﬁ). O

Proof of Proposition 8.1: Let (P;)o<r<1 be the family of Poisson kernels defined by:
Ve €T,

1—r?
14+7r2—2rcosz

P.(z) = Zr‘"'eim =

neZ
Since for all f in L*(T,dz) (e.g. Corollary of Theorem 11.12 in [15]),

10) = tim [ P(o—t)f()

r—=1=JT 2T

it is enough to prove the formula for the family of function (P.(6 — -))o<r<1,9eT. For any
r €[0,1] and any 6 € T,
/ P.(0 - )d_:z; =1
T " T 27 - )
On the other hand,

/_7r /TPT(O — z)dpgr(T)dr

Z |n/ /em(w_e)d,u,iT(w)dm
T

neL

= 3 M/_,r =006 U )i

neZ

Now, using Lemma 8.1, the conclusion is immediate:
2 d
/ /P 0 — z)dpr(x) T /P — ) x.
Tﬂ'
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