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Abstract

We study the long time behavior of an Ornstein—Uhlenbeck process under the influence
of a periodic drift. We prove that, under the standard diffusive rescaling, the law of the
particle position converges weakly to the law of a Brownian motion whose covariance
can be expressed in terms of the solution of a Poisson equation. We also derive upper
bounds on the convergence rate.

1 Introduction

In this paper we study the long time behavior of solutions of the following Langevin
equation:

Ti(t) = v(x(t)) — &(t) + oB(t), z(t) € R™, (1.1)

where 3(t) is a standard Brownian motion ard 7 > 0. The parameter can be

thought of as a nondimensional particle relaxation time, which measures the inertia

of the particle. The drift termv is taken to be smooth, periodic with periadn all

directions; further, it is assumed that it satisfies an appropriate centering condition.
Itis well known that as- tends td) the solution of (1.1) converges with probability

1 to the solution of the Smoluchowski equation

#1t) = v(z() + o), x(t) € R™, (1.2)

uniformly over every finite time interval, see e.g. [Nel67, Ch 10]. The problem of ho-
mogenization for equation (1.2) has been studied extensively over the last three decades
for periodic [BLP78, Bat85, Par99] as well as random [CX97, KOO1, LOY98] drifts.
For the case whergz) is a smooth, periodic field which is centered with respect to the
invariant measure of the process, it is not hard to prove [BLP78, Ch 3] that the rescaled
process z(t/£?) converges, as tends ta), to a Brownian motion with a positive def-
inite covariance matrixC. The proof of this functional central limit theorem is based
on estimates on the spectral gap of the generator of the pro@gss

The long time behavior of particles with non—negligible inertia, whose evolution is
governed by equation (1.1) has been investigated by Freidlin and coworkers in a series
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of papers [FW98, Fre01, FWO01, FW99]. Among other things, Hamiltonian systems
under weak deterministic and random perturbations were studied in these papers:

Ti = —VV(2) + e(—ki + v) + Veo 3, (1.3)

with k, v € R. It was shown that, under appropriate assumptions on the potential
V(z), the rescaled proceds:(t/¢), y(t/¢)} converges weakly to a diffusion process
on a graph corresponding to the Hamiltonian of the system %T:'cz + V().

On the other hand, the problem of homogenization for (1.1) has been investigated
less. This is not surprising since the hypoellipticity of the generator of the process (1.1)
renders the derivation of the necessary spectral gap estimates more difficult. Homog-
enization results for the solutian(¢) of (1.1) have been obtained, to our knowledge,
only for the case where the drif(z) is the gradient of a potential. In this case the in-
variant measure of the proce§s(t), i(t)} is explicitly known and this fact simplifies
considerably the analysis. This problem was analyzed for periodic [Rod89] as well as
random potentials [PV85]. In both cases it was shown that the particle position con-
verges, under the diffusive rescaling, to a Brownian motion with a positive covariance
matrix /IC. The proofs of these homogenization theorems are based on the techniques
developed for the study of central limit theorems for additive functionals of Markov
processes [KV86], together with a regularization procedure for appopriate degenerate
Poisson equations. Related questions for subelliptic diffusions have also been investi-
gated [Nor94, Nor97, BBJR95].

The purpose of this paper is to prove a central limit theorem for the solution of
the Langevin equation (1.1) with a general periodic smooth dfif) and, further, to
obtain bounds on the convergence rate. The proof of our homogenization theorem relies
on the strong ergodic properties of hypoelliptic diffusions. The techniques developed
in [EPRB99, EHOO] enable us to prove the existence of a unique, smooth invariant
measure for (1.1) and to obtain precise estimates on the solution of the Poisson equation
—Lf = g, whereL is the generator of the process (1.1) and the fungjimsmooth
and centered with respect to the invariant measure. Based on these estimates it is rather
straightforward to show that the rescaled particle positioft/c2) convergences to a
Brownian motion, using the techniques developed in [KV86]. Obtaining bounds on
the rate of convergence requires more work. For this, we need to identify the limiting
Brownian motion and to introduce an additional Poisson equation.

The sequel of this paper is organized as follows. In section 2 we introduce the
notation that we will be using throughout the paper and we present our main result,
Theorem 2.1. In section 3 we prove various estimates on the invariant measure of (1.1)
and the solution of the cell problem, and we also derive estimates on moments of the
particle velocity. The proof of Theorem 2.1 is presented in section 4. Finally, section 5
is reserved for a few concluding remarks.
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2 Notation and Results
Consider the following Langevin equationR':

TiE(t) = o(x (1)) — #(t) + 0 5(t) , 2.1)
with initial conditionsz(0) = =, (0) = (v/7)"'y. We assume throughout this pa-

per thatv € C°°(T"). Introducingy(t) = /7i(t), we rewrite (2.1) as a first order
stochastic differential equation:

da(t) = =yt
1 1 - (2.2)
dy(t) = Fv(x(t)) dt — ;y(t) dt + \—Edﬂ(t) .
We denote by the generator of the proce&s(t), y(t)}:
02
E_\%(y'varv(x)‘Vy)nLi(y'Vy+2Ay>. (2.3)

By Theorem 3.1 below, the procegs(t), y(¢)} admits a unique, smooth invariant mea-
sure, denoted by(dx, dy).
Consider now theell problem

1
—Ld=—y. 2.4
L ﬁy (2.4)
This equation has a unique, smooth solution in the appropriate function space by Theo-
rem 3.3, provided thaf v(z) u(dx, dy) = 0. We define the symmetric, positivex n
matrix IC such that

2
K2 = %/Vﬂ) ®V,®dpu . (2.5)

The main result of this paper is that the particle position, under the standard diffusive
rescaling, converges weakly to a Brownian motion with covaridtte We further-

more give upper bounds on the rate of convergence in the following metric#Let
denote a separable Banach space4tidbe its dual space. Given two measutgsand

w2 0N %, we also denote by’ (11, 112) the set of all measures oA? with marginalsu,
andus. With these notations, we define the following metric on the space of probability
measures o8 with finite p-moment:

|£(=z) — L)

— ||’ = su inf / /7 (dx, dy) . 2.6
llpa M2|Hp zegg*we%(#huz) g KB pue( Y) (2.6)

This distance is close in spirit to theWasserstein distance

s sl = ot =l e,
HEE (11,12) J g2
so we will refer to it as the weal-Wasserstein distance. Note that the distance (2.6)
gives a locally uniform bound on the distance between characteristic fungtigfs=
[ €@ p(dx):
X0 (O = X (O] < 11| llar — pizll, -
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In particular one hafu; — po |\|p =0ifand only if u; = po.
In order to simplify notations, we define the fast procesges= y(¢~2t) and
2§ = x2(e~2t). We will also from now on use the notatio# = C([0, T], R"), for
a valueT' > 0 that remains fixed throughout this paper. Now we are ready to state the
homogenization theorem.

Theorem 2.1 Letz(t) be the solution 0f2.1), in which the velocity field € C>°(T")
satisfies[ v(z) u(dz, dy) = 0. For T' > 0 fixed, denote by. the measure o8 given
by the law of the rescaled process; and byu the law of a Brownian motion oR™
with covarianceC? as defined in (2.5). Then, for every> 1 anda € (0, 1), there is
a constantC' such that

e — wl, < Ce™ 2.7)

forall € € (0,1). Furthermore, if one denotes by, : 8 — C([0,T], R) the projection
given by(m,z)(t) = (k, z(t)), one has the bound

Imhpe — mepll, w < Ce® (2.8)
for everyk € R™ with || k|| < 1.

Remark 2.2 The condition| v(z) (dz, dy) = 0 ensures that there is no ballistic mo-
tion involved. In the general case, one can wiite= [ v(z)u(dz, dy) and define
exf = ex(e~?t) — e 'ot. Then, Theorem 2.1 holds fer:.

Remark 2.3 If n = 1, the bound (2.8) is much stronger than the bound (2.7).3 1
however, this bound does not imply any form of convergenace= u. It is indeed
possible to construct two Gaussian stochastic procegseandy(t) with values inR?
such that the law of differs from the law ofy and such that, for everly € R?, the law

of (k,z) is identical to the law ofk, y). As an example, choose three i.i.d. Gaussian
centered random variables, as, a3 and define

zi(t1) = ax za(t1) = ag z1(t2) = a3 za(t2) = a1

y1(t1) = a1 y2(t1) = az y1(t2) = az yo(t2) = as .

It is an easy exercise to check that these two processes possess the required properties.

Remark 2.4 Convergence in the wegkWasserstein distance alone daes imply
weak convergence, as the space of probability measures mnnot complete under
I -1l,- This can be seen by taking = ¢? and choosing foy.,, the Gaussian measure
with covariance

Qn :diag(l,%,...,%,o,...) .
Itis straightforward to check that this forms a Cauchy sequence with respjecf| fo
but does not converge to any measure supported.in(Iit does however converge
weakly to a limiting measure in a weaker topology, and this is always the case.) In our
case, it is easy to check that the sequence of meagtlisgight, since the generalized
Kolmogorov criteria [RY99, Thm 2.1] provides us with uniform bounds on dhe
Holder constant (withv < 1) of the process.... Tightness, together with convergence
in the weakp-Wasserstein distance then implies weak convergence. Note also that
even though convergence in the weakVasserstein distance alone does not imply
weak convergence, it does imply weak convergence of finite-dimensional distributions.
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Remark 2.5 The covariance, ceffective diffusivity/C? of the limiting Brownian mo-

tion depends on the andr. It is shown in [PS03] that as tends to0 the covariance

K2 converges to the one obtained from the homogenization of equation 1.2. We re-
fer to [PS03] for further properties of the effective diffusivity, together with numerical
experiments for various fieldqz).

Remark 2.6 For simplicity, we choose the molecular diffusiento be a constant
scalar. Taking fowr a positive definite matrix would only require a slight change in
our notations. We could even allowto depend orx in a smooth way, as long as it
remains strictly positive definite for al € T". The results from [EPRB99, EHOO]
then still apply and one can check that all the bounds obtained in section 3 still hold.
Since the proof of Theorem 2.1 itself never uses the factdhatconstant, all of our
result immediately carry over to this case.

Remark 2.7 For simplicity, we assumed the initial conditiom, /) to be determin-
istic. However, it is easy to check that all our arguments work for randomly dis-
tributed initial conditions provided that they are independent of the driving noise and
thatEexpd||y||> < oo forall § € (0,072). In particular, one can take the initial
condition to be distributed according to the invariant measure.

The proof of this theorem will be presented in section 4.

3 Preliminary Estimates

In this section we collect various estimates which are necessary for the proof of the
homogenization theorem. In section 3.1 we study the structure of the invariant measure
u for (2.1). We show that it possesses a smooth density with respect to the Lebesgue
measure and we derive sharp bounds for it. Further, we investigate the solvability of
the Poisson equation

—Lf =h, (3.1)

whereh is a smooth function af andy which is centered with respect to We prove
that equation (3.1) has a smooth solution which is unique in the class of functions
which do not grow too fast at infinity.

In section 3.2 we derive estimates on exponential moments of the particle velocity.
Roughly speaking, these estimates imply that the particle velocity grows very slowly
with time.

3.1 Bounds on the invariant measure and on the solution of the Poisson equation

Iy

2
If v = 0, the invariant measure for (2.1) is given poy= P dy. Thisis “almost”
true also in the case # 0, as can be seen by the following result.

Theorem 3.1 Letu be the invariant measure for (2.1) and denotenfy, y) its density
with respect to the Lebesgue measure. Then, for eéver(0, 20~2) one can write

pe,y) =e P g@ ), ges, (3.2)

whereS denotes the Schwartz space of smooth functions with fast decay.
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Proof. The proof follows the lines of [EPRB99, EH00]. Denote §ythe (random)
flow generated by the solutions to (2.1) and By the semigroup defined on finite
measures by
(Pep)(A) = E(uo ¢ )(A) .

Sinceo; + L is hypoelliptic,P; maps every measure into a measure with a smooth den-
sity with respect to the Lebesgue measure. It can therefore be restricted to a positivity
preserving contraction semigroup oh(T" x R", dx dy). The generatol of P, is
given by the formal adjoint of defined in (2.3).

We now define an operatdf on L2(T" x R, dz dy) by closing the operator defined
onCge by

K = —eslvl® fo—5lul® (3.3)

The operatofs is then given by

o2 1) do2 5 1 9 n
K = =58+ 2(1= )l + 200 = 1) (-9, + 5)
1 n
+—ﬁ(y-vm+v(x)'vy)f§.

Note at this point that < 202 is required to make the coefficient §f||* in this
expression strictly positive. This can be written ifithander’s “sum of squares” form

as
2n

K=> X/X,+Xo,
i=1

with
Xi—\;%ayi ifi=1...n,
X, = 2(1—$)yi,n ifi=(n+1)...2n,
on%(602—1)(y~vy+g)+\%(y-v$+v(x)-vy)—%.

Sincew is C*° on the torus, it can be checked in a very straightforward way that the
assumptions of [EH00, Thm. 5.5] are satisfied wkh = 1 — A, — A, + ||y||>.
Combining this with [EHOO, Lem. 5.6], we see that there exists 0 such that, for
every~y > 0, there exista a positive constaritsuch that

[A“TFI < CUANKFI + AV F]) (3.4)

holds for everyf in the Schwartz space. Looking at (3.4) with= 0, we see that
K has compact resolvent. Sinee /I’ is an eigenfunction with eigenvaluefor
K*, it follows that K has also an eigenfunction with eigenvalydet us call itg. It
follows from (3.4) and a simple approximation argument fhétg|| < oo for every
~ > 0, and thereforey belongs to the Schwartz space. Furthermore, an argument
given for example in [EPRB99, Prop 3.6] shows thahust be positive. Since one has
furthermore

Leslvl’g =0,
the functionp given by (3.2) is the density of the invariant measure of (2.1). This
concludes the proof of Theorem 3.1. 0
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Before we give bounds on (2.4), we show the following little lemma.

Lemma3.2 Let§ € (0,2072) and let K be as in (3.3). Then, the kernel &f is
one-dimensional.

Proof. Let § € ker K. Then, by the same arguments as abeve,!?!” § is the density
of an invariant signed measure fBy. The ergodicity ofP; immediately implieg; « g.
O

Now we are ready to prove estimates on the solution of the Poisson equation (3.1).

Theorem 3.3 Leth € C>(T" x R") with DS h € L*(T" x R™; e~<191* dady) for
every multindexx and everys > 0. Assume further thaf h(z, y) p(dz dy) = 0,
wherey is the invariant measure for (2.1). Then, there exists a funcfiauch that
(3.1) holds. Moreover, for every > 0, the functionf satisfies

fay) =W fay),  fes. (3.5)

Furthermore, for e\zler)é € (0,2072), f is unique (up to an additive constant) in
LA(T™ x R™, e 0V ddy).

Proof. By hypoellipticity, if there exists a distributioi such that (2.4) holds, thef
is actually aC*° function.

We start with the proof of existence. Fixc (0, 20~2), consider the operatdi *
which is the adjoint of the operatdt defined in (3.3), and define the function

w(w,y) = h(z,y)e sIWI° .

It is clear that if there exist§ such thatk* f = u, thenf = e21¥1” f is a solution to
(3.1). Consider the operatéf* . By the considerations in the proof of Theorem 3.1,
K*K has compact resolvent. Furthermore, the kerngkdf< is equal to the kernel
of K, which in turn by Lemma 3.2 is equal to the spangofDefine = (g)* and
defineM to be the restriction of{* K to H. SinceK™* K has compact resolvent, it has
a spectral gap and st/ is invertible. Furthermore, sinc8y = 7—/2v(z) — 7~ 1y,
one checks easily thgte H, thereforef = KM ~'u solvesK* f = u and thus leads
to a solution to (3.1).

SinceK* satisfies a similar bound to (3.4) and sifge u|| < oo for everyy > 0,
the bound (3.5) follows as in Theorem 3.1. The uniquenessrothe class of functions
under consideration follows immediately from Lemma 3.2. |

Remark 3.4 Note that the solutiorf of (3.1) is probably not unique if we allow for
functions that grow faster thaf ~I1¥1I°.

Remark 3.5 The identityyLp = 0, where£ is the formal adjoint ofZ, immediately

yields that [ y u(dz, dy) = /7 [v(z) p(dz, dy). In particular, the assumption that

the drift is centered implies thatis also centered. Moreovey,clearly satisifies the
smoothness and fast decay assumptions of Theorem 3.3. Hence, the theorem applies
to each component of equation (2.4) and we can conclude that there exists a unique
smooth vector valued functioh which solves the cell problem and whose components
satisfiy estimate (3.5).
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3.2 Estimates on the particle velocity
One has the following bound

Lemma 3.6 There exists a constant> 0 such that
1, _ 1
Eexp (5o~ v0I) < exp (5o~ v O + 1)

1 ¢ -1 2 1 —1 2 i
— < - —t) .
Eexp(5- [ o™ w0 ds) < exo( I v + )
holds for any initial conditiony(0) and everyt > 0.
Proof. Itds formula yields immediately the existence of a constesuch that

1 1.
Slle @I < Sllo ™ yO)* +

o /0 Ha*ly(s)n?czw% /O (0 (s, dB(5))

The first bound follows by exponentiating both sides and taking expectations. The
second bound follows in a similar way after dividing both sidegby 0

This yields the following:

Theorem 3.7 Lety : T x R™ — R be such that

sup

1, _
v, exp(=glo7yl?) | < oo
z€Tn,ycR"

Then, there exist constant§ § > 0 such that

E (). y(0)) — /

T xR

(e, y) plde, dy) < Cexp(|lo™'y(0)||> — 6t) .  (3.6)

Proof. From the smoothing properties of the transition semigroup associated to (2.2),
combined with its controllability and the fact thé||? is a Lyapunov function, one
gets the existence of constadtsandd’ such that

[Pe, ;) — pllv < CQA+ [ly]|e "

(Seee.g.[MT93] for further details.). Herdlv — p||tv denotes the total variation dis-
tance between the measugeandr. Cauchy-Schwarz furthermore yields the generic

inequality
\/fdu - /fdu\ < W - v||w/f2 (dps + dv) (3.7)

The bound (3.6) immediately follows by combining Lemma 3.6 with (3.7). 0

We also have a much stronger bound on the supremum in time of the solution:

Lemma 3.8 For everyx > 0 and everyl' > 0, there exist constant§ C' > 0 such
that 2
E sup exp(8]ly(s)]|?) < CerellvOI™
te[0,Te~2]

holds for every € [0, 1].
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Proof. Let g be the Ornstein-Uhlenbeck process defined by

. 1 b s
y(t)z\7/0 e o ds(s)

Then (see.g.[AdI90]), there exists constanés andcs such that

P(swp_ [[5®)] > A) e,
t€[s,s+T]

for everys > 0. This immediately yields

P sup [70)] > A) < eas e
te[0,Te—2]

which in turn implies that there exist constantisandc, such that

E( swp exp(eal§O]*) < cas ™
te[0,Te—2]

The claim follows immediately by choosing= (csx)/2 and by noticing that there
exists a constanty such that|y(s)|| < |lg(s)l] + |ly(0)|| + ¢4 for all s > 0 almost
surely. O

4  Proof of Theorem 2.1

In this section we prove Theorem 2.1.

Proof. By Theorem 3.3 we hav@(y, z) € C*°(T™ x R™,R"), so we can apply thedt
formula to the functionb(y5, «5) to obtain:

1 [ 1o [f
Bof.af) ~ 00) = 5 [ Lo0Eds+ 1T [ V,000.00) 457

11/t 1o [*
—_ - £ - o £ £ 5
82\/F 0 ysd8+€\/7i/0 Vy (ysvxs)dﬁ (8)7

where we defineg®(t) = ¢3(s~?t) and we used (2.4) to get the second line. We also
interpretV, ® as a linear map froriR™ into R™. Thus we have:

et L [
ex; = ex . OyS s
t
g
— e — (B, 2%) — By, ) +—/ V, (45, 25) dB°(s)
(®(y5, 25) )+ | )
= ex+elj(t)+ M(¢t) . (4.1)

It follows from (3.5) and Lemma 3.8 that, for evesy> 0 there exists a constaat
such that
E sup |I{(t)]° <Ce % .
t€[0,T1]
It is therefore sufficient to show that (2.7) and (2.8) hold wittreplaced by the law of
the martingale termd/<. We first show that (2.7) holds. This is equivalent to showing
that, for every! € 2* one can construct a random variatite such that

E|B; — (M) < Ce*, (4.2)
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holds uniformly over|¢|| < 1, and such the law oB, is given by¢*u. We therefore
fix £ € 2* with ||£]] < 1, which we interpret as R"-valued measure with total mass
(i.e.the sum of the masses of each of its components) smallernthéfe also use the
notation?; = ¢([t, T1).

Integrating by parts, we can write

T o T
é(ME):/O (M=(t), £(dt)) = ﬁ/o (0(0), Vy@(yy, z7) dF° (1)) -

We now define on the intervad[7T’] the R-valued martingalé/; by

Mi) = % / ((5), Yy B (5, 25) dF(s)) -

According to the Dambis—Dubins—Schwartz theorem [RY99, Thm 1.6] there exists a
Brownian motionB such that\/; (t) can be written as

M0 = BM; M) = B(% / (K60, (7,00 7, 8)(45.25) €9)) )

On the other hand, the measuie: is a centered Gaussian measure with variance
fOT(é(s), K?4(s)) ds, so we can choosB, to be given by

t
B,=Bf, Bi= B( / ((s), K26(s)) ds) .
0
We will actually show a stronger bound than (4.2), namely we will show that

JP=E sup |BL — ME(H)]P < Ce™P . (4.3)

te[0,T

We use the H8lder continuity of the Brownian motios, together with the Cauchy—
Schwarz inequality to derive the estimate

<(E HoIQP(B)) sup ‘/ (0(s), H(yS, x5) £(s)) ds

0<t<T

JP < E(Hblg(B) sup ‘/ e(s) v O © V) ()5, 25) — /c2) €(s)> ds’ )

0<t<T
p)%
3

< C E sup ’/ (0(s), H(yS, x5) £(s)) ds’ p) , (4.4)
0<t<T
where we introduced the x n-matrix valued function

0.2

In deriving the above estimate, we have used the fact that fer % the a-Holder
constant of a Brownian motion is uniformly bounded on every bounded interval [RY99,
Thm 2.1].

Note now that sincé(t) is of bounded variation{(t) ® ¢(t) is also of bounded
variation, so there exists7 x n-matrix valued measuréon [0, 7] such that/(t) ®
o(t) = {([t, T]). Therefore, we can integrate by parts in (4.4) to obtain

Jp<C’ sup Tr/ / HOE, dré(ds)’ )

0<t<T
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t
<c(e suw || [ HO0)ds
0<t<T

2ap) %
Consider now the Poisson equation
—LF=H. (4.5)

By the definition ofK?, we have[ H(z,y) u(dz, dy) = 0 (for each component), and

we furthermore havexp(—4||y||?)H € S for everys > 0. Therefore, using the same
reasoning as in the proof of Theorem 3.3, equation (4.5) has a unique smooth solution
satisfying

F(x,y) = eg”y”z]}(x,y) , Fes (4.6)
for everyé > 0. We can apply i formula to deduce as before that

/0 H(E, 2% ds = —e2(F(ys, 25) — Fy,x)) + / Y, F (e, 25) 0dB(s) -

Therefore:

22 < 4PE sup [|F(y;,af)|*F + C<*E sup | / Y F G5 2 do) |
te[0,T] t€[0,T1]

Combining Lemma 3.8 with (4.6), the first term can be bounded by

el PE sup [F (s, 2f)|>*P < Ce2P
tel0,T
In order to control the second term, we use the Burkholder—Davis—Gundy inequality
followed by Holder’s inequality, assuming that> é:

sup H/ VyF(ys, i)dﬁ(s)H <CE(/T ||vyp(y§7$§)||2ds)ap

te[o T]

<orert sup EIIV F(y;, =) .
tefo,T
This is bounded independently ofby (4.6) and Lemma 3.6, and sf < Ce??, for
p > L. Whenp < L, one can bound’? using the higher order moments. This
completes the proof of bound (4.2) and thus of the first part of Theorem 2.1.
The proof of the second part of Theorem 2.1 is obtained in a straightforward way

as a particular case of (4.3) if one makes the chéieekd. O

5 Conclusions

The problem of homogenization for periodic hypoelliptic diffusions was studied in
this paper. It was proved that the rescaled particle position converges to a Brownian
motion with a covariance matrix which can be computed in terms of the solution of the
Poisson equation (2.4). Further, an upper bound on the convergence rate in a suitable
norm was obtained. Our analysis is purely probabilistic and this enables us to obtain
more detailed information than what one could obtain from studying the problem at the
level of the Kolmogorov equation.

A very interesting question is whether a homogenization theorem of the form 2.1
holds for random drifts)(z, t) and, if yes, under what conditions e, t). From a
mathematical point of view, it would be interesting to know whether it is possible to
achieve convergence in tlpeWasserstein distance far> 1. We plan to come back to
these issues in a future publication.
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