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Abstract. We construct examples of Gevrey non-analytic perturbations of an
integrable Hamiltonian system which give rise to an open set of unstable orbits and
to a special kind of symbolic dynamics. We find an open ball in the phase space,
which is transported by the Hamiltonian flow from −∞ to +∞ along one coordinate
axis, at a speed that we estimate with respect to the size of the perturbation.
Taking advantage of the hyperbolic features of this unstable system, particularly
the splitting of invariant manifolds, we can also embed a random walk along this
axis into the near-integrable dynamics.
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2 J.-P. Marco and D. Sauzin

1. Introduction

1.1. Michael Herman came to see us in October 1999. He had read our joint
work with P. Lochak devoted to the study of the splitting of invariant manifolds for
near-integrable Hamiltonians [LMS03], which was motivated by the question of the
optimality of the “stability exponents” in Nekhoroshev’s theorem in connection with
the speed of Arnold diffusion. He had observed that an analogue of Nekhoroshev’s
Theorem would hold if “Gevrey class” Hamiltonians were considered instead of
analytic ones and that the size of the splitting and the speed at which instability
could develop would be easier to evaluate in the Gevrey framework.

He thus proposed to collaborate with us on Nekhoroshev’s theory for Gevrey
quasi-convex Hamiltonians and started to explain a number of ideas he had already
thought of. Several discussions took place in the office of one of us, and we
sometimes saw him forget his cane and stand up to improvise an explanation at
the blackboard, in order to elucidate a point that seemed obscure to us.

Before we were able to contribute in any significant fashion to the research
project, he produced a thick set of notes [He99], which he distributed to a few
close colleagues and to us. Here was the plan of that manuscript:

(I) Examples of instabilities in Hamiltonian systems and their speed
(N) Nekhoroshev’s estimate for Gevrey classes (in the convex case)
(A) Appendix on Gevrey classes.

It contained a first stability result (N), analogous to Nekhoroshev’s, and a
method (I) to construct examples of unstable Hamiltonian systems in the Gevrey
category, but also in other non-quasianalytic ultradifferentiable classes or in
the Ck category. The method of (I) consisted in reasoning at the level of exact-
symplectic mappings (passing from discrete dynamical systems to Hamiltonian
flows at the end by a standard suspension procedure) and coupling the so-called
“standard map”, suitably rescaled, with a well chosen system possessing a periodic
orbit of large period. The first “accelerator mode” of the standard map would
yield a wandering point of the total system, drifting from −∞ to +∞ along one
coordinate axis, provided the coupling function would be adapted to the periodic
orbit. It was essential to have compact-supported functions at one’s disposal at that
stage. The appendix (A) was devoted to technical estimates, which were used, for
instance, to correctly choose the parameters, so as to make the Gevrey distance to
integrability arbitrarily small (and to compare it to the speed of drift).

Both the stability and the instability results needed to be improved and we
worked together to increase the stability time and to lower the drifting time, in
view of making them match. The stability time could indeed be characterized
by a “stability exponent” a (the action variables would remain confined for
|t| ≤ exp(const( 1

ε )a), where ε measures the distance of the system to integrability),
but the first result was not as satisfactory as in the analytic case, where Lochak,
Neishtadt and Pöschel had succeeded in obtaining a as large as 1

2N for quasi-convex
N -degree-of-freedom Hamiltonians. On the other hand, the method for designing
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examples left a lot of leeway and could probably result in a smaller “instability
exponent” a∗ than the one obtained in the manuscript [He99].

A few months later we obtained better estimates for the stability time. Replacing
the strategy of part (N) of [He99], which relied on the approximation of Gevrey
Hamiltonians by analytic ones (as described in (A)) and the classical analytic
normal form, we completely rewrote the normal form in the Gevrey framework
and ended up with a stability exponent a = 1

2Nα , where α denotes the Gevrey
index. We could thus recover the analytic result in the particular case where α = 1,
which exactly corresponds to analytic Hamiltonians. The passage from the Gevrey
normal form to the stability result was performed by using Lochak’s periodic orbit
method; we thus obtained, as in the analytic case, a larger exponent a = 1

2(N−m)α

for the solutions passing close to any m-fold resonant surface. But the instability
exponent remained at least two times larger than that in the examples we had at
that time.

Michael Herman gave several seminars on the work in progress and described
the results so far obtained at the Rome conference in September 2000. There he
told one of us that he maybe had an idea to gain a factor 2 in the exponent for the
examples of instability. We should have discussed that matter some weeks later in
Paris. . .

We never knew what idea Michael Herman had had. In the months following his
death, we went on studying his method of producing unstable systems, trying to
make it as conceptual and powerful as possible, and began to think of the writing
of an article that would gather all of this together. We finally realized that we
could get stronger examples of instability, which established the optimality of the
exponents 1

2(N−m)α for 2 ≤ m < N , by using the periodic orbits of a scaled
pendulum in the coupling method. This gave rise to the article [MS03], which
was completed at the end of 2001 (see [Sa03] for a survey of that long paper).

1.2. The present article is a continuation of [MS03]: we obtain new instability
examples as Gevrey perturbations of the completely integrable Hamiltonian h(r) =
1
2 (r21 + · · · + r2N−1) + rN on the annulus TN × RN . In fact, our method could be
applied as well to yield the same kind of unstable behaviour in perturbations of

hε =
1
2
(ε1r21 + · · ·+ εN−1r

2
N−1) + rN ,

with arbitrary ε1, . . . , εN−1 ∈ {−1,+1}; the quasi-convexity of h indeed does not
play any role in our constructions (but it plays a role in the exponential stability
we are fighting against). What matters in our constructions is rather the product
structure (the time-1 map Φhε can be written as an uncoupled product of N maps
of T× R).

The first new instability result is the existence of near-integrable systems which
possess wandering open sets, in place of the wandering points we previously obtained
in [MS03]. Namely, we shall be able to construct a sequence (Hj)j≥0 of Gevrey
perturbations of h(r), such that there exist for each j ≥ 0 an open set Oj satisfying(
ΦHj

)k(Oj) ∩ Oj = ∅ for each integer k ∈ Z (where ΦHj denotes the time-1 map
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4 J.-P. Marco and D. Sauzin

for Hj). Indeed, these open sets Oj drift from −∞ to +∞ along the r1-axis
(denoting by r1 the first of the action variables). Such a phenomenon was obtained
in [He99], but with Ck systems only, and with the further restriction that k ≤ N−3.
Here we shall reach any value of k and even the Gevrey category. The upshot is an
extension to the multidimensional case of the transport phenomenon which, to our
knowledge, was observed until now only for two-dimensional maps (see [Mei92] for
a survey on transport theory). We can furthermore estimate the speed of transport
as a function of the size of the perturbation. Just as is the case of drifting points
the speed is still given by an exponential, although the corresponding exponent is
only 1

2(N−m)(α−1) , thus no optimality can be claimed here.
Another interesting feature of that construction can be noticed when considering

the complete orbit of the open domain Oj under the continuous Hamiltonian flow.
This is an open connected invariant set, of positive measure, which is contained in
the complement of the KAM set of the perturbed Hamiltonian Hj . The system is
therefore non-ergodic in the complement of the KAM set.

Our second result concerns the existence of symbolic dynamics for near-integrable
systems. Here we continue to investigate the relations between our method
and the so-called Arnold mechanism of instability and construct a new sequence
(Hj)j≥0 of Gevrey perturbations of h such that the time-one map ΦHj possesses
a two-dimensional normally hyperbolic invariant annulus, the stable and unstable
manifolds of which intersect along two homoclinic two-dimensional annuli. This
(non-generic) phenomenon enables us to obtain explicit examples of a situation
described by Moeckel [Moe02]. The main consequence is that we can replace the
drift along the r1-axis by a random walk: the orbits described in the drift result
correspond to a bi-infinite sequence of upward jumps, whereas in the second result
any sequence of upward and downward jumps can be realized by some orbit which,
so to speak, materializes the symbolic dynamics. Moreover, these jumps occur at
moments which are integer multiples of a certain large integer qj , with a step which
is ±1/qj each time, and we can estimate qj quite precisely in terms of the size of the
perturbation (of course it has to be exponentially large). Our coding by symbolic
dynamics is thus more precise than in the standard constructions.

This last construction has interesting byproducts concerning the topic of lower
bounds for the splitting of invariant manifolds, a subject which was also lightly
touched on in [He99]. We showed in [MS03] that our construction could produce
a chain of partially hyperbolic tori with tangent heteroclinic connections from
one torus to its successor, and that the homoclinic splitting could be perfectly
controlled, at least in the drifting direction. Here we shall go farther: we shall be
able to arrange things so as to control all the entries of the splitting matrix. This
is because we use, instead of the pendulum of [MS03], a perturbed pendulum that
possesses transverse homoclinic orbits.

Another byproduct of the random walk construction is the existence of near-
integrable Hamiltonian systems on (T×R)N , which admit an orbit whose projection
onto the first factor T×R is dense (in the first angle variable as well as in the first
action).
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We shall seize the opportunity of this article to indicate Herman’s construction
of Ck systems with a wandering domain for k ≤ N − 3. Another work should be
devoted to the systematic study of finite-time stability in the differentiable category
and in ultradifferentiable classes. Here we shall content ourselves with an estimation
of the speed of drift in a Ck variant of our unstable system.

We wish to mention that compact-supported functions were already used in the
context of Hamiltonian perturbations and Arnold diffusion in [Do86] and [FM01].

2. Statement of the main results
2.1. Notations. Let N ≥ 3. For R > 0 we denote by BR the closed ball of
radius R in RN with center at the origin. As in [MS03], we shall work with the
Gevrey spaces defined by

Gα,Λ(K) = {ϕ ∈ C∞(K) | ‖ϕ‖α,Λ,K <∞},

with real numbers α ≥ 1, Λ > 0, compact sets of the form K = TN × BR and
Gevrey norms

‖ϕ‖α,Λ,K =
∑

`∈N2N

Λ|`|α

`!α
‖∂`ϕ‖C0(K) (1)

(we shall sometimes omit K in the indices, when there is no risk of confusion). We
have used the following notation for multi-indices of derivation:

|`| = `1 + · · ·+ `2N , `! = `1! . . . `2N !, ∂` = ∂`1
x1
. . . ∂`2N

x2N

and (x1, . . . , x2N ) = (θ1, . . . , θN , r1, . . . , rN ). But since our aim is to describe
dynamics in non-compact parts of the phase space TN × RN , we shall require a
new definition.

Definition. If α ≥ 1 and Λ > 0, we set

Kν = TN ×BRν
, Rν = 3να, Λν = 3−ν+1Λ, ν ∈ N∗, (2)

and we define Gα,Λ(TN×RN ) to be the complete metric space obtained by endowing
the intersection

⋂
ν≥1

Gα,Λν (Kν) with the distance

dα,Λ(ϕ,ψ) =
∑
ν≥1

2−ν min(‖ϕ− ψ‖α,Λν ,Kν , 1).

2.2. A drift result for an open set. If H is a Hamiltonian function generating a
complete vector field, we shall denote by ΦτH the time-τ map for τ ∈ R. We denote
by T the translation of step 1 in the r1-direction and introduce a transformation R,
which preserves r1 and commutes with T :

T (θ1, r1, θ2, r2, . . . , θN , rN ) = (θ1, r1 + 1, θ2, r2, . . . , θN , rN ),

R(θ1, r1, θ2, r2, . . . , θN , rN ) = (θ1 + θN , r1, θ2, r2, . . . , θN , rN ).
(3)
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6 J.-P. Marco and D. Sauzin

Theorem 2.1. Let α > 1, Λ > 0, N ≥ 3, h(r) = 1
2 (r21 + · · · + r2N−1) + rN ,

m ∈ {2, . . . , N − 1} and

a∗ =
1

2(N −m)(α− 1)
.

There exists a sequence (Hj)j≥0 of functions converging to h in Gα,Λ(TN × RN ),
such that, for each j ≥ 0, the Hamiltonian system generated by Hj is complete and
admits a wandering open set Uj that is biasymptotic to infinity.

More precisely, the sets Φ`Hj (Uj), ` ∈ Z, are mutually disjoint and there exists
a positive integer τj such that

Φ`τjHj (Uj) = T `R`(Uj), ` ∈ Z. (4)

The time τj required to translate by 1 the r1-projection of Uj is related to
εj = dα,Λ(h,Hj) by inequalities of the form

C1

ε2j
exp(C1

( 1
εj

)a∗

) ≤ τj ≤
C2

ε2j
exp(C2

( 1
εj

)a∗

), j ≥ 0,

where the positive constants C1 < C2 depend only on α, Λ and N −m.
The domain Uj is located close to the m-fold resonant surface S = { r1 = r2 =

· · · = rm = 0 }:
dist(x,S) ≤ 3

√
εj , x ∈ Uj .

The proof of Theorem 2.1 is contained in Sections 3–5.
Observe that the role of the transformation R is merely to describe the slight

deformation undergone by the domain under the time-τj map of the Hamiltonian,
whereas the most important feature of the dynamics is the drift described by the
translation T .

Of course, the novelty with respect to [MS03] is mainly the obtention of
wandering domains instead of wandering points. Still, we have tried to estimate
the speed of drift through an “instability exponent” a∗ like we did in [MS03]
and, if the factor 1

N−m reflects well the proximity of a resonance of multiplicity m,
the factor 1

α−1 is not so satisfactory. We recall indeed that the optimal exponent
is 1

2(N−m)α for individual solutions and we do not know whether it can be attained
with open sets; see Remark 4.2 below.

It is for the sake of clarity and to facilitate the comparison with the classical
Nekhoroshev Theorem that we have formulated our drift result using autonomous
Hamiltonians only, but the Hamiltonians Hj can be reduced to non-autonomous
time-periodic Hamiltonians

Hj =
1
2
(r21 + · · ·+ r2N−1) + fj(θ1, . . . , θN−1, r1, . . . , rN−1, t),

(see formula (43) below), which are themselves obtained by “suspending” discrete
dynamical systems Ψj possessing wandering domains Dj in TN−1 × RN−1 (see
Section 5). The sets Dj will be polydiscs A1 × · · · × AN−1, the Shilov boundaries
of which are Lagrangian tori. Choosing functions fj that are bounded on TN−1 ×
RN−1 × T and that vanish identically for t ∈ [0, 1

4 ], we shall be able to take

Uj = {(θ̂ + θN r̂, r̂, θN , rN ); (θ̂, r̂) ∈ Dj , θN ∈ [0, 1
4 ], rN ∈ R}. (5)
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We shall also mention in passing results concerning the Ck category, using the
semi-norms

‖ϕ‖Ck(K) =
∑
|`|≤k

1
`!
‖∂`ϕ‖C0(K), (6)

with the notation of (1) above (this way, ‖ϕψ‖Ck(K) ≤ ‖ϕ‖Ck(K)‖ψ‖Ck(K)), and
the corresponding distance when dealing with Ck functions on a non-compact set.

2.3. Embedding of a random walk. Leaving the question of the transport of open
sets aside, we shall be able to find near-integrable systems exhibiting instability in
another striking way.

Let π1 denote the projection onto the r1-axis:

π1(θ1, r1, θ2, r2, . . . , θN , rN ) = r1.

Theorem 2.2. Let α > 1, Λ > 0, N ≥ 3 and h(r) = 1
2 (r21 + · · · + r2N−1 + rN ).

There exist a sequence (Hj)j≥0 of functions converging to h in Gα,Λ(RN × TN )
and a sequence (qj) of positive integers such that, for each j ≥ 0, the Hamiltonian
system generated by Hj is complete and its time-qj map contains the random walk
of step 1

qj
along the r1-axis in the following sense:

For each κ ∈ {−1,+1}Z, there exists x ∈ TN × RN such that

π1

(
Φ`qjHj (x)

)
= π1

(
Φ(`−1)qjHj (x)

)
+
κ`

qj
, ` ∈ Z.

Moreover, qj is related to εj = dα,Λ(h,Hj) by inequalities of the form

C1

ε2j
exp(C1

( 1
εj

)a∗

) ≤ qj ≤
C2

ε2j
exp(C2

( 1
εj

)a∗

), j ≥ 0,

where a∗ = 1
2(N−2)(α−1) and the positive constants C1 < C2 depend only on α, Λ

and N .

The proof is given in Section 6.3.
In fact, we shall see that the time-qj map admits as a subsystem the random

walk, defined as usual as a skew-product over the two-sided Bernoulli shif [:

P (r1, κ) = (r1 +
κ1

qj
, [(κ)), r1 ∈

1
qj

Z, κ ∈ {−1,+1}Z.

In that result, we can think of the addition of ± 1
qj

as small upward or downward
jumps, a bi-infinite sequence of which can be realized in any prescribed order:
one can always find solutions which oscillate in the prescribed manner exactly at
instants that are multiples of qj . Theorem 2.1 corresponds to the case of the
constant sequence κ` = +1 with τj = q2j , except that Theorem 2.2 does not deal
with open sets of solutions.

Still, one can improve slightly the conclusion of Theorem 2.2, replacing the
initial condition x by a set Vj that is defined as in (5) but with a (N − 2)-polydisc
B1×{x2}×B3×· · ·×BN−1 instead of the (N−1)-polydisc Dj = A1×A2×· · ·×AN−1.
This yields oscillating submanifolds Vj of codimension 2.
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8 J.-P. Marco and D. Sauzin

In addition to the proof of Theorem 2.2 (which corresponds to a particular case
of the situation considered in [Moe02]), Section 6 also contains a study of the
splitting of the invariant manifolds associated with partially hyperbolic circles and
annuli, in the spirit of [LMS03] and [MS03]. These hyperbolic objects are the
traditional features of Arnold’s mechanism.

Moreover, we indicate in Remark 6.2 a variant of the construction yielding an
orbit of ΦqjHj in (T× R)N whose projection onto the first factor T× R is dense.

2.4. Overview of the method. For the convenience of the reader, we include a
heuristic description of our constructions.

Since we shall follow closely [MS03], it is worth recalling the main features of the
method which was introduced there to obtain drifting points. This method deals
with discrete dynamical systems of the annulus An = Tn×Rn which are obtained as
perturbations of Φh0 : (θ, r) 7→ (θ+ r, r). Here n = N − 1, h0(r) = 1

2 (r21 + · · ·+ r2n),
and a suspension procedure is used later to recover continuous Hamiltonian systems
inN degrees of freedom. We split the annulus An and the unperturbed map into two
factors: Φh0 = Φ

1
2 r2

1 ×Φ
1
2 r2

2+···+ 1
2 r2

n : A×An−1 → A×An−1. Our main parameter
is a large integer q. The first idea is to consider a q-periodic point a ∈ An−1 on the
second factor and to try to define a “coupling diffeomorphism” Φuq on the product
A×An−1 so that Φuq ◦Φh0 have a wandering point which drifts along the r1-axis,
with the further requirement that uq → 0 when q → ∞ (in a suitable Gevrey
function space).

On the first factor A, the interesting part of the dynamics is localized on
the union Cq of the circles Ck/q = {(θ1, r1) ∈ A, r1 = k/q}, k ∈ Z. Each
of these circles is invariant under Φ

1
2 r2

1 and supports q-periodic dynamics, even
if q is not the minimal period. On the second factor we only consider the orbit
O(a) = {a(s), 0 ≤ s ≤ q − 1} of a = a(0) under Φ

1
2 r2

2+···+ 1
2 r2

n . The coupling
diffeomorphism Φuq is chosen so as to satisfy the “synchronization conditions”

Φuq ((0, r1), a) = ((0, r1 + 1/q), a),

Φuq ((θ1, r1), a(s)) = ((θ1, r1), a(s)), 1 ≤ s ≤ q − 1,

for all (θ1, r1) ∈ A. Due to the q-periodicity of Φh0 on Cq ×O(a), one sees that the
point ((0, 0), a) is wandering for Φuq ◦ Φh0 , and satisfies in particular

[Φuq ◦ Φh0 ]`q((0, 0), a) = ((0, `/q), a), ` ∈ Z,
while the first components of the other iterates move around the circles of the
family Cq. So q2 iterations of the coupled diffeomorphism Φuq ◦ Φh0 make the
point ((0, 0), a) drift along the r1-axis over an interval of length 1. This is all we
need in order to estimate our instability time.

As is easily checked, a simple way to get the synchronization is to choose uq

of the form uq((θ1, r1), x′) = 1
qU(θ1) g(q)(x′) for ((θ1, r1), x′) ∈ A × An−1, where

U ′(0) = −1 and

g(q)(a) = 1, dg(q)(a) = 0,

g(q)(a(s)) = 0, dg(q)(a(s)) = 0, 1 ≤ s ≤ q − 1.
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Wandering domains and random walks 9

The size of the function uq is seen to be of the order of ‖g(q)‖/q. The main
difficulty of the construction is to ensure the condition ε = ‖uq‖ → 0 as q →∞: by
compactness the distance between the initial point a and its nearest iterate tends
to 0 as q → ∞, and the values of g(q) on a and this iterate differ by 1; so any
Gevrey norm of g(q) will tend to ∞ when q →∞.

One can convince oneself that the construction is not possible with the second
factor kept equal to Φ

1
2 (r2

2+···+r2
n): the periodic points are equidistributed on

periodic tori, and the distance between two of them is just too short. For this
reason we add a perturbation to the initial Hamiltonian h0, splitting the dynamics
on the second factor An−1 = A×An−2 into two parts: the first one is the time-1 map
of a pendulum suitably rescaled, Φ

1
2 r2

2− 1
N2 cos(2πθ2), with a new large parameter N ,

and the second part is still the integrable twist map Φ
1
2 (r2

3+···+r2
n) on An−2. The

main property of this system is that, due to the presence of the pendulum and its
separatrix, one can find q-periodic points a = a(q), with arbitrarily large q, whose
distance to the rest of their orbit is of the order of 1/N . The introduction of such
a pendulum component in [MS03] was one of the main innovations with respect
to [He99]. In the present article too this will be crucial.

When applied to this system, the previous method leads to a function g(q)

whose Gevrey-α norm is exponentially large with respect to N , but this can
be compensated by choosing the parameter q large enough, namely q =
O(exp(constN1/2α(n−1))). This way we keep the Gevrey norms of uq and vN =
− 1

N2 cos(2πθ2) of the same order ε = 1/N2 and we obtain the connection between
the instability time τ (for a drift of order one) and the size ε of the perturbations uq

and vN :

τ = q2 = O
(
exp
(
const

(1
ε

) 1
2α(n−1) ))

.

We now come to the necessary modifications from [MS03] to the present article,
in order to obtain drifting open sets instead of drifting points. The global structure
of our new examples will be very close to that we have just described. In particular,
we shall still split the annulus An into the same three factors, and the drift will
occur along the action axis of the first annulus. Loosely speaking, we shall try to
keep the same drifting point as above but modify the various functions in order
to produce nondegenerate elliptic dynamics in the neighborhood of its projections
on the three factors. We shall then apply Moser’s invariant curve theorem and
obtain in each factor an open set centred on the projection, having the same global
behaviour. The product of these open sets will give us our drifting domain.

As for the random walk, the main modification concerns the pendulum factor,
on which we shall use a suitable perturbation of the pendulum map, for which both
upper and lower separatrices intersect transversely. We shall get two homoclinic
points, and prove the existence of a horseshoe on which the map is conjugate to a
Bernouilli shift on two symbols, one for the upper point and one for the lower point.
These two symbols will correspond to two distinct zones in the pendulum space,
and a suitable version of the coupling lemma will enable us to generate positive
or negative jumps of the orbits along the first action axis, in any prescribed order.
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10 J.-P. Marco and D. Sauzin

Since these jumps occur at prescribed instants and have prescribed length, we can
think of the motion on the first action axis as a random walk. The most technical
work in that part will be to estimate the number of iterates which is necessary to
get the symbolic dynamics.

3. A method for constructing unstable mappings
3.1. Discrete version of the Gevrey unstable system. Let A = T × R denote the
annulus. As already mentioned, we shall work with mappings rather than with
flows. Theorem 2.1 will follow from the construction of near-integrable discrete
dynamical systems in An ≈ T ∗Tn = Tn × Rn, with n ≥ 2. These mappings Ψj

will be compositions of three time-1 maps of Hamiltonian systems and will admit
nearly doubly resonant wandering domains Dj .

The case m = 2 will be obtained by “suspension” of Proposition 3.1 below
(see Section 5.2), whereas in the case m ≥ 3 we shall insert m− 2 extra degrees of
freedom before the suspension procedure, obtaining the intermediate system Ψj (see
Section 5.1). The relation between dimensions in Theorem 2.1 and Proposition 3.1
is thus N = n+ (m− 2) + 1.

We shall use systematically the notation ΦH introduced before the statement of
Theorem 2.1. For instance, h0 = 1

2 (r21 + · · · + r2n) gives rise to the standard twist
map of An,

Φh0(θ, r) = (θ + r, r),

whereas a function u(θ) which does not depend on the action variables ri yields
Φu(θ, r) = (θ, r − ∇u(θ)). For each δ > 0, we shall use the notation Tδ for the
translation of step δ in the r1-direction:

Tδ(θ1, r1, θ2, r2, . . . , θn, rn) = (θ1, r1 + δ, θ2, r2, . . . , θn, rn). (7)

Proposition 3.1. Let α > 1, L > 0, n ≥ 3 and

a =
1

2(n− 1)(α− 1)
.

There exist sequences (uj), (vj), (wj) of smooth functions, which have compact
supports contained in (T × [0, 3])n and belong to Gα,L

(
(T × [0, 3])n

)
, and a

sequence (qj) of integers such that

εj = max(‖uj‖α,L, ‖vj‖α,L, ‖wj‖α,L) −−−→
j→∞

0, qj −−−→
j→∞

∞

and, for each j, the system

Ψj = Φuj ◦ Φ
1
2 (r2

1+···+r2
n)+vj ◦ Φwj

admits a wandering open set Dj such that

(Ψj)`qj (Dj) = T `
qj

(Dj), ` ∈ Z. (8)

The number τj = q2j of iterates required to translate by 1 its r1-projection satisfies
inequalities of the form

C1

ε2j
exp(C1

( 1
εj

)a

) ≤ τj ≤
C2

ε2j
exp(C2

( 1
εj

)a

), (9)
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Wandering domains and random walks 11

where C1 and C2 are positive numbers which do not depend on j.
Moreover, dist(x, { r1 = r2 = 0 }) ≤ 3√εj for all x ∈ Dj.

The proof of this proposition will occupy us until the end of Section 4.
In fact, we shall have vj = 1

N2
j
V (θ2), with V (θ2) = −1−cos(2πθ2) and integersNj

directly related to εj :

‖uj‖α,L, ‖wj‖α,L ≤ εj =
1
N2

j

‖V ‖α,L.

The functions wj will be sums of non-interacting potentials of the form

wj = w
(j)
2 (θ2, r2) + w

(j)
3 (θ3) + · · ·+ w(j)

n (θn)

(and the functions uj will not depend on the actions r). Our unstable mappings
may thus be written Ψj = Φuj ◦

(
Φ

1
2 r2

1 ×G
)
, with

G =
(
Φ

1
2 r2

2+vj ◦ Φw
(j)
2
)
×
(
Φ

1
2 r2

3 ◦ Φw
(j)
3
)
× · · · ×

(
Φ

1
2 r2

n ◦ Φw(j)
n
)
.

Correspondingly, our wandering domain Dj will be a polydisc Bqj
×A(j)

2 ×· · ·×A(j)
n ,

the Shilov boundary of which is the Lagrangian torus ∂Bqj
× ∂A(j)

2 × · · · × ∂A(j)
n .

There will also be a preliminary Ck version of this proposition (Proposition 3.3
in Section 3.4), directly inspired by [He99], which may be used as an introduction
to Section 4, and a more elaborate result in Section 5.3 which is a more exact
analogue of Proposition 3.1 and Theorem 2.1 in finite differentiability.

3.2. Wandering domains for standard maps. As in [MS03], our starting point
is the knowledge of unstable orbits for a certain map of A, which is not close to
integrable (it would have more to do with an anti-integrable limit) but which we
shall be able to embed into some iterate of a near-integrable map of An.

Given a smooth function U on T and a positive integer q, we define the “standard
map”

ψq,U = Φ
1
q U ◦

(
Φ

1
2 r2

1
)q : A → A.

When there is no risk of confusion, we shall sometimes omit the index U or even
both indices and denote by ψq or ψ this map. Thus

ψ(θ1, r1) =
(
θ1 + qr1, r1 − 1

qU
′(θ1 + qr1)

)
.

As noticed in [MS03], if U ′(0) = −1, the origin is a drifting point:

ψ`(0, 0) =
(
0,
`

q

)
, ` ∈ Z.

This point goes from r1 = 0 to r1 = 1 in q iterations and its orbit is biasymptotic
to infinity (this is known as the “first accelerator mode of the standard map” in
the literature).

The function U(θ1) = − 1
2π sin(2πθ1) was used in [MS03], but we shall be led to

choose a different function by the next proposition, which is suggested by [He99]:
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12 J.-P. Marco and D. Sauzin

Proposition 3.2. Consider the map ψq,U with an integer q ≥ 1 and a
function U ∈ C∞(T) the derivative of which admits a Taylor expansion at the
origin of the form

U ′(θ1) = −1 + β1θ1 + β3θ
3
1 +O(θ41), 0 < β1 < 2, β3 6= 0. (10)

Then there exists a neighbourhood B∗ of (0, 0) in A (which depends only on the
function U ′), contained in the region { |r∗| ≤ 1

4 }, such that the domain

Bq =
{(
θ∗,

r∗
q

)}
(θ∗,r∗)∈B∗

⊂ A

is wandering for ψq,U . More precisely, the iterates of Bq by ψq,U are mutually
disjoint and can be obtained from Bq by translation of step 1

q in the r1-direction:

(ψq,U )`(Bq) = {(θ1, `
q + r1)}(θ1,r1)∈Bq

, ` ∈ Z.

The proposition follows from the following technical lemma, whose greater
generality will be used in Section 4.3 and whose proof is deferred to the appendix.

Lemma 3.1. Consider the mapping f : R2, 0 → R2, 0 defined by the formula

f(X,Y ) = (X +A′(Y −B′(X)), Y −B′(X)),

that is f = ΦA ◦ ΦB, where A(Y ) and B(X) are smooth functions defined in real
intervals containing 0 the derivatives of which admit Taylor expansions of the form

A′(Y ) = A1Y +A2Y
2 +A3Y

3 +O(Y 4), A1 ∈ R∗, A2, A3 ∈ R,

and

B′(X) = µ(X + bX3) +O(X4), µ ∈ R∗, b ∈ R, with 0 < µA1 < 2.

Then the origin is an elliptic fixed point of f , its eigenvalue λ = eiγ0 is determined
by

cos γ0 = 1− A1µ

2
, −π

2
< γ0 < 0,

and its first Birkhoff invariant can be written γ1 = Γ + bΓ′ with

Γ =
iµ3

λ− λ̄

(
3A3 +

2ωµA2
2

λ− λ̄

)
, Γ′ =

3iµ2A2
1

λ− λ̄

where ω = 2λ3/2+3λ1/2+3λ̄1/2+2λ̄3/2

λ3/2−λ̄3/2 ∈ iR (with the convention λ1/2 = eiγ0/2).

The absence of quadratic term in the Taylor expansion of B′(X) (or in that of U ′(θ1)
in (10)) is just intended to simplify the calculation of γ1 which can be found in the
appendix.

As a corollary, it is easy to choose µ and b so as to be able to apply Moser’s
theorem of stability of non-degenerate elliptic fixed points ([Mos62], [SM71, §§31–
34]): as soon as the twist condition γ1 6= 0 is satisfied, every neighbourhood of
the origin contains an f -invariant neighbourhood of this point, because invariant
curves (“KAM circles”) accumulate the origin. Such an invariant neighbourhood
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will sometimes be called an “elliptic island” in the sequel; it is in fact completely
invariant (i.e. it coincides with its image by f).

Lemma 3.1 implies Proposition 3.2: Assume (10) is satisfied. The idea is simply to
pass to the quotient by the translation r1 7→ r1 + 1

q , so that the origin appear as
a stable elliptic fixed point of an area-preserving map of the 2-torus: an invariant
neighbourhood for the quotient map will lift to a wandering domain Bq the iterates
of which are obtained by the translation of step 1

q . But, to be able to keep track of
the dependence upon q of this domain, we prefer to begin with the scaling

(θ∗, r∗) = σ(θ1, r1), θ∗ = θ1, r∗ = qr1,

which conjugates ψq and ψ1. Recalling the definition of ψ1,

ψ1(θ∗, r∗) = (θ∗ + r∗, r∗ − U ′(θ∗ + r∗)),

we observe that we can pass to the quotient by the integer translations along the
r1-direction: ψ1 induces a transformation F of T×T, which admits the origin as a
fixed point and which can be written

F (X,Y ) = (X + Y, Y +B′(X + Y )), B(X) = −X − U(X),

in local coordinates (X,Y ) near the origin of T×T. Setting A(Y ) = − 1
2Y

2, we have
F = Φ−B(Y ) ◦ Φ−A(X), thus we can apply Lemma 3.1 to f = F−1, with µ = −β1

and b = β3/β1.
The origin is thus an elliptic fixed point of F , and it is stable because we have

Γ = 0 and Γ′ 6= 0 in this particular case. By Moser’s theorem, we get an f -
invariant domain containing the origin (surrounded by a KAM circle), which lifts
to a wandering domain B∗ of ψ1, which in turn gives rise to a wandering domain Bq

by the scaling σ. 2

In the sequel we shall fix some analytic 1-periodic function U satisfying (10),
so as to have at our disposal wandering domains Bq for the maps ψq,U . The next
section indicates a method to construct, starting from ψq,U , a map Ψ of An which
is close to integrable when q is large (notice that, when q → ∞, ψq,U does not
tend to any integrable map!). In fact, in the notation of Proposition 3.1, qj will be
exponentially large with respect to εj and, as a consequence, the domain Bq will
be exponentially thin in the r1-direction.

3.3. The coupling lemma and the strategy for using it. We now give a slight
refinement of the “coupling lemma” which was one of the key ideas of [MS03]
(Lemma 2.1 in that paper):

Lemma 3.2. Let m,m′, q ≥ 1. Suppose we are given two diffeomorphisms, F :
Am → Am and G : Am′ → Am′

, and two Hamiltonian functions f : Am → R
and g : Am′ → R which generate complete vector fields and define time-1 maps Φf

and Φg. Suppose moreover that A ⊂ Am′
is completely Gq-invariant (i.e. A =
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14 J.-P. Marco and D. Sauzin

Φf

G

A

F

Am′

A

Bq

G(A) Gq−1(A)

Figure 1. Use of the coupling lemma to make Bq ×A drift.

Gq(A)) and that, for all x′ ∈ A,

g(x′) = 1, dg(x′) = 0, g(Gs(x′)) = 0, dg(Gs(x′)) = 0, 1 ≤ s ≤ q − 1.
(11)

Then f ⊗ g generates a complete Hamiltonian vector field and the mapping

Ψ = Φf⊗g ◦ (F ×G) : Am+m′
→ Am+m′

satisfies
Ψ`q(x, x′) = (ψ`(x), G`q(x′)), x ∈ Am, x′ ∈ A, ` ∈ Z, (12)

with ψ = Φf ◦ F q.

We have denoted by f ⊗ g the function (x, x′) 7→ f(x)g(x′), and by F × G the
mapping (x, x′) 7→ (F (x), G(x′)).

Proof. The proof is an obvious adaptation of that of Lemma 2.1 of [MS03], where
it was already checked that Xf⊗g is complete and that

Φf⊗g(x, x′) = (Φg(x′)f (x),Φf(x)g(x′)), (x, x′) ∈ Am+m′
. (13)

Let x ∈ Am and x′ ∈ A. It is sufficient to prove the desired identity for ` = 1;
indeed, it will then be possible to iterate it backwards or forwards thanks to the
Gq-invariance of A.

The points (F s(x), Gs(x′)), 1 ≤ s ≤ q − 1, are fixed points of Φf⊗g because
of (11) and (13). Thus

Ψs(x, x′) = (F s(x), Gs(x′)), 0 ≤ s ≤ q − 1.

But for the qth iteration, (11) and (13) yield

Ψq(x, x′) = Φf⊗g(F q(x), Gq(x′)) = (Φf (F q(x)), Gq(x′)).

2

To construct near-integrable mappings with wandering domains, it is thus
sufficient to apply this coupling lemma with Φf ◦ F q = ψq,U , q ≥ 1 and U like
in Section 3.2, that is with

f = 1
qU(θ1), F = Φ

1
2 r2

1 ,
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and to find G, A and g in such a way that the hypotheses of the lemma be fulfilled:
we shall obtain a wandering domain Bq × A as illustrated on Figure 1, and the
map Ψ will be near-integrable if 1

q‖g‖ is small and G is close to integrable, in
the Ck or Gevrey-α topology. Since the dynamics of ψq,U will then appear as a
subsystem of Ψq, the time needed for transporting Bq × A from r1 = 0 to r1 = 1
will be q2.

The choice of G with a globally q-periodic domain A is a new feature of the
present work with respect to [MS03] and constitutes the essential part of the next
sections.

As for the choice of g, we shall use “bump functions” of one variable†, the
existence of which in the Gevrey case is alluded to at the end of Section A.1
of [MS03], and this is precisely the point where the estimates differ from what
we could do for unstable points. Let us indicate now the technical statement:

Lemma 3.3. Let α > 1, Λ > 0. There exists c > 0 such that, for each real p > 2,
the space Gα,Λ(T), contains a function ηp,Λ which satisfies

ηp,Λ(θ) =

∣∣∣∣∣∣
1 if − 1

2p ≤ x ≤ 1
2p ,

0 if − 1
2 ≤ x ≤ − 1

p or 1
p ≤ x ≤ 1

2 ,
(14)

and
‖ηp,Λ‖α,Λ ≤ exp

(
c p

1
α−1
)
. (15)

Remark 3.1. We shall also use non-periodic bump functions η̃p,Λ which have
compact supports contained in [− 1

p ,
1
p ] and are defined by

η̃p,Λ(x) =

∣∣∣∣∣ ηp,Λ(x) if − 1
2 ≤ x ≤ 1

2 ,

0 if not.

Remark 3.2. Analogously, if k ≥ 0, the space Ck(T) contains functions which
satisfy (14), but the Ck norm grows more slowly with p; in fact, we can have
a C∞ function ηp such that

‖η(`)
p ‖C0(T) ≤ cp`, ` ∈ N, (16)

where c > 0 does not depend on any parameter, simply by taking ηp(θ) = η1(pθ)
for − 1

2 ≤ θ ≤ 1
2 , where η1(x) is a fixed C∞ function which vanishes outside [−1, 1]

and is equal to 1 identically in [− 1
2 ,

1
2 ].

Proof of Lemma 3.3. Let β > 0 be determined by α = 1 + 1
β ; in view of the proof

of Lemma A.3 of [MS03], the function f defined by

f(x) =
∣∣∣∣ 0 if x ≤ 0,

exp(− λ
xβ ) otherwise

† In this article, by “bump function” we mean a function which vanishes identically outside a
given interval I and whose value is 1 at each point of a given subinterval of I.
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16 J.-P. Marco and D. Sauzin

is known to belong to Gα,Λ(R) for λ large enough with respect to α and Λ. We
define

ϕp(x) = f
( 1
4p

+ x
)
f
( 1
4p
− x
)
, Φp(x) =

∫ x

−∞
ϕp(x′) dx′.

Observe that ϕp vanishes outside [− 1
4p ,

1
4p ], hence

Φp(x) =

∣∣∣∣∣∣
0 if x ≤ − 1

4p ,

Kp =
∫ 1

4p

− 1
4p

ϕp(x′) dx′ if x ≥ 1
4p .

It follows that the function

ηp,Λ(θ) =
1
K2

p

Φp

( 3
4p

+ θ
)
Φp

( 3
4p
− θ
)
, − 1

2 ≤ θ ≤ 1
2

(extended by 1-periodicity) takes the desired values on the intervals specified in the
statement of the lemma.

As for the Gevrey norms, clearly ‖ϕp‖α,Λ ≤ ‖f‖2α,Λ (because of the property
of Banach algebra) and the inequality ‖Φp‖α,Λ ≤ ‖Φp‖C0 + Λα‖ϕp‖α,Λ shows
that ‖Φp‖α,Λ is bounded independently of p. Since f is monotonic non-decreasing,
we have ϕp(x) ≥ f( 1

8p )2 for |x| ≤ 1
8p , thus Kp ≥ 1

4p exp(−2λ(8p)β) and the
conclusion follows. 2

In the sequel, having fixed α > 1 and L > 0, we shall define close to integrable
maps of the form

Ψ = Φ
1
q U⊗g ◦ (Φ

1
2 r2

1 ×G), G = Φ
1
2 (r2

2+···+r2
n)+v ◦ Φw,

with ε = max(1
q‖U ⊗ g‖α,L, ‖v‖α,L, ‖w‖α,L) arbitrarily small, in such a way that G

admits a globally q-periodic domain A and g “separates” A from its iterates by G
in the sense of (11).

It is clear that ‖g‖α,L will depend crucially on

d = min
1≤s≤q−1

dist(A, Gs(A)).

We shall indeed resort to Lemma 3.3 to define g (adapting it to take advantage
of the fact that g can depend on several variables) and this will yield a Gevrey-α
norm of the order of exp(const d−

1
α−1 ).

But we shall need to take q large to make 1
q‖g‖α,L as small as ε (anyway, we

know in advance that the time of drift τ = q2 needs to be large). This will tend
to diminish d and thus to increase ‖g‖α,L. Hence we shall need to take q even
larger, to compensate this growth. However, it is a priori not obvious to prevent
this increase of q from diminishing in turn the distance d, thus increasing again the
norm of g. We shall see in Section 3.4 a Ck example where this method leads to
the limitation k ≤ n− 2.

Faced with such an inflation of norms, we shall use in Section 4 an idea which was
already an important feature of the unstable system of [MS03]. We shall choose
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a system G which is 1
N2 -close to integrable, involving a rescaled pendulum (the

integer N will play the role of the scaling parameter), and impose the condition

1
q‖g‖α,L, ‖w‖α,L ≤ ‖v‖α,L =

1
N2

.

We shall manage to have q = NM , with M extremely large, but d almost
independent of M . More precisely, d will be larger than ( 1

N )
1

n−1 independently
of the choice of M , thus Lemma 3.3 will provide us with a function g of norm
‖g‖α,L ≤ exp(constN

1
γ ), where γ = (n − 1)(α − 1), in view of which we shall

choose M of the order of N exp(constN
1
γ ) (formula (33) below). This way, we

shall obtain a time of drift τ ∼ N4 exp(constN
1
γ ), where N = ε−1/2.

3.4. Herman’s examples of Ck unstable systems. Following [He99], we now
illustrate our strategy with a first construction, which is very simple but works
only for k ≤ n− 2.

We fix a smooth function S on T such that

S(θ∗) =
1
2
θ2∗, −1

4
≤ θ∗ ≤

1
4
. (17)

Proposition 3.3. Suppose n ≥ 2 and 0 ≤ k ≤ n − 2. There exist sequences (uj)
and (vj) of smooth functions, which converge to 0 in Ck(Tn), and an increasing
sequence (qj) of integers such that, for each j, the system

Ψj = Φuj ◦ Φ
1
2 (r2

1+···+r2
n)+vj

admits a wandering open set Dj whose iterates (Ψj)`qj (Dj) are mutually disjoint
and satisfy

(Ψj)`qj (Dj) = T `
qj

(Dj), ` ∈ Z.

Proof. Let (pj)j≥0 be the sequence of prime numbers. We set

qj = pjpj−1 . . . pj−n+2, j ≥ n− 1,

and consider G = Φ
1
2 (r2

2+···+r2
n)+vj , with

vj(θ) =
( 1
pj

)2

S(θ2) +
( 1
pj−1

)2

S(θ3) + . . .+
( 1
pj−n+2

)2

S(θn).

The system G is obviously decoupled and can be written

G = G2 × · · · ×Gn, Gi = Φ
1
2 r2

i +( 1
pj−i+2

)2S(θi)
, 2 ≤ i ≤ n.

Moreover, in the region Ri = { r2i + ( 1
pj−i+2

)2θ2i < 1
16 ( 1

pj−i+2
)2 }, the map Gi is

periodic with minimal period pj−i+2, since the scaling

(θ∗, r∗) = σi(θi, ri) = (θi, pj−i+2ri)

conjugates it with the time- 1
pj−i+2

map of the Hamiltonian h∗(θ∗, r∗) = 1
2r

2
∗ +

S(θ∗) which coincides with the normalized harmonic oscillator 1
2 (r2∗ + θ2∗) in the

region R∗ = { r2∗ + θ2∗ <
1
16 }. Consequently, all the points of R2×· · ·×Rn (except

those for which (θi, ri) = (0, 0) for some i) are G-periodic with minimal period qj
(the periods pj−i+2 have no non-trivial common divisor because we have used prime
numbers).
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θ∗1
8

1
4

A(δ)
∗

0

2πδ
p

Figure 2. Iteration of A(δ)
∗ under Φ

1
p

h∗ .

Lemma 3.4. Given a real δ ∈ ]0, 1/6π] and an odd integer p not smaller than 3,
the domain

A(δ)
∗ = { 1

8 <
√
θ2∗ + r2∗ <

1
4 , |θ∗| < (tan 2πδ

p )r∗ }

satisfies A(δ)
∗ = Φh∗(A(δ)

∗ ) ⊂ { |θ∗| ≤ πδ
2p } and

Φ
s
p h∗(A(δ)

∗ ) ⊂ { πδ
p ≤ |θ∗| ≤ 1

4 }, 1 ≤ s ≤ p− 1.

Proof of Lemma 3.4. Each point in A(δ)
∗ is Φh∗ -periodic with minimal period 1

because A(δ)
∗ is contained in R∗. Elementary trigonometry yields

A(δ)
∗ ⊂ { |θ∗| < 1

4 sin 2πδ
p }, Φ

s
p h∗(A(δ)

∗ ) ⊂ { 1
8 sin π(1−2δ)

p < |θ∗| < 1
4 },

for 1 ≤ s ≤ p− 1 (see Figure 2). We conclude by observing that 2x
π < sinx < x

for 0 < x < π/2 and that δ is small enough to yield the desired inequalities. 2

We thus choose

A = σ−1
2 A(δ)

∗ × · · · × σ−1
n A(δ)

∗ , δ = 1
6π ,

and, using the bump functions furnished by Remark 3.2,

g(j)(θ2, . . . , θn) = η6pj
(θ2) . . . η6pj−n+2(θn).

We can apply Lemma 3.2 to

Ψj = Φuj ◦ Φ
1
2 (r2

1+···+r2
n)+vj , uj =

1
qj
U ⊗ g(j).

According to formula (12), the dynamics of ψ = ψqj ,U is thus embedded into the
(Ψj)qj -invariant set A × A. In particular, by Proposition 3.2, we get a wandering
polydisc Dj = Bqj

×A with the kind of orbit we wanted.
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It only remains for us to check that εj = max(‖uj‖Ck(Tn), ‖vj‖Ck(Tn)) tends
to 0 when j → ∞. With our definition (6) of Ck-norms, we have ‖vj‖Ck(Tn) =((

1
pj

)2 + · · ·+
(

1
pj−n+2

)2)‖S‖Ck(T) and, using (16),

‖uj‖Ck(Tn) =
1
qj

∑
|`|≤k

1
`!
‖U (`1)‖C0(T)‖η

(`2)
6pj

‖C0(T) . . . ‖η
(`n)
6pj−n+2

‖C0(T)

≤ cn−1

qj
‖U‖Ck(T)

∑
`2+···+`n≤k

1
`2! . . . `n!

(6pj)`2 . . . (6pj−n+2)`n

≤ e6cn−1‖U‖Ck(T)

(pj + · · ·+ pj−n+2)k

pj . . . pj−n+2
.

The conclusion follows from the Prime Number Theorem which ensures that, for j
large enough, all the numbers pj−i+2, 2 ≤ i ≤ n, lie in the interval [12pj , pj ] (this
was the interest of choosing successive prime numbers). It is only to ensure the
Ck-convergence to 0 of (uj) that we imposed k ≤ n− 2.

This ends the proof of Proposition 3.3. 2

It is easy to check that the number τj = q2j of iterates required to translate by 1
the r1-projection of Dj satisfies inequalities of the form

τj ≤

∣∣∣∣∣ C
(

1
εj

)n−1 if 0 ≤ k ≤ n− 3,

C
(

1
εj

)2(n−1) if k = n− 2.
(18)

We shall indicate later (Section 5.3) a more elaborate construction which yields
better results, without any bound imposed upon k.

As for the size of the polydisc Dj , when k ≤ n − 3 we obtain a diameter ≈
(√εj)n−1 for its (θ1, r1)-projection and √

εj for the other canonical projections;
when k = n− 2 we find respectively εn−1

j and εj .

4. Examples of Gevrey unstable systems
We now move on to the proof of Proposition 3.1, applying the strategy described
at the end of Section 3.3. We thus fix α > 1 and L > 0.

Let (pj)j≥0 be the sequence of prime numbers (inverses of primes will now be
used as action variables to produce periodic points of the integrable twist map).
We define

Nj = pjN
′
j where N ′

j = 1 if n = 2, and N ′
j = pj−(n−3)pj−(n−4) . . . pj if n ≥ 3,

(19)
and

vj(θ) =
1
N2

j

V (θ2), V (θ2) = −1− cos(2πθ2). (20)

We shall first define a small function of the form

wj(θ, r) = w
(j)
2 (θ2, r2) + w

(j)
3 (θ3) + · · ·+ w(j)

n (θn),
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and it is only in Section 4.4 that we shall introduce the other ingredients g(j), Mj

and uj = 1
NjMj

U ⊗ g(j) (with U like in Section 3.2). In the notation of Lemma 3.2,
this means that we shall have G = G2 ×G3 × · · · ×Gn, with

G2 = Φ
1
2 r2

2+ 1
N2

j

V (θ2)
◦ Φw

(j)
2 , Gi = Φ

1
2 r2

i ◦ Φw
(j)
i (θi), 3 ≤ i ≤ n.

We shall define G3 × · · · × Gn so as to have a globally N ′
j-periodic domain

A(j)
3 × · · · × A(j)

n and the role of A in Lemma 3.2 will be played by a domain

A = A(j)
2 ×A(j)

3 × · · · × A(j)
n ,

where A(j)
2 is globally NjMj-periodic for the perturbed pendulum G2. Finally,

setting qj = NjMj , we shall have a wandering domain Dj = Bqj
× A for the

mapping Ψj = Φ
1

qj
U⊗g(j)

× (Φ
1
2 r2

1 ×G) (of course G is reduced to G2 and A to A(j)
2

when n = 2).

4.1. Choice of the map G3 × · · · × Gn. The present section is concerned with
the case n ≥ 3 only. If p ∈ N∗, the point (0, 1

p ) is a parabolic fixed point of

the pth iterate of the standard twist map Φ
1
2 r2

: A → A; we shall make use of the
bump functions of one variable defined in Lemma 3.3, with the given values of α
and L, to perturb Φ

1
2 r2

and create ellipticity.

Lemma 4.1. Let p ∈ N∗ and

βp,µ(θ) = µ
(

θ2

2 + θ4

4

)
η2p,L(θ), 0 < µ ≤ 1

p .

The point (0, 1
p ) ∈ A is a stable elliptic fixed point of the pth iterate of Gp,µ =

Φ
1
2 r2 ◦ Φβp,µ , which is contained in an elliptic island Ap,µ satisfying Ap,µ =

(Gp,µ)p(Ap,µ) ⊂ {− 1
4p ≤ θ ≤ 1

4p } and

(Gp,µ)s(Ap,µ) ⊂ { 3
4p ≤ θ ≤ 1− 3

4p }, 1 ≤ s ≤ p− 1.

Proof. Let N denote the neighbourhood {−δ ≤ θ ≤ δ, |r − 1
p | ≤ δ } of xp = (0, 1

p ),
with

δ =
1

4p(3p+ 4)
,

and consider the iterates of N by Gp,µ. Since the functions βp,µ and µ( θ2

2 + θ4

4 )
coincide on N , with µ|θ + θ3| ≤ 2δ on that set, we have

N ′ = Φβp,µ(N ) ⊂ {−δ ≤ θ ≤ δ, |r − 1
p
| ≤ 3δ },

and the inclusions(
Φ

1
2 r2)s(N ′) ⊂ Σ = { 3

4p ≤ θ ≤ 1− 3
4p }, 1 ≤ s ≤ p− 1

follow easily from our choice of δ.
Consequently, since Φβp,µ boils down to identity on Σ, the mappings (Gp,µ)s

and (Φ
1
2 r2

)s ◦ Φβp,µ coincide on N for each s ∈ {1, . . . , p}.
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− 1
4p

1
4p

0 1

Φ
1
2 r2

Φβp,µ

AN

Figure 3. Elliptic island of Gp,µ = Φ
1
2 r2

◦ Φβp,µ .

Applying Lemma 3.1 to (Gp,µ)p = (Φ
1
2 r2

)p ◦Φβp,µ near its elliptic fixed point xp,
we get the twist condition γ1 6= 0 (because Γ = 0 and γ1 = Γ′ 6= 0 in this case).
By Moser’s theorem, we obtain an elliptic island Ap,µ ⊂ N , the orbit of which
obviously satisfies the required properties (see Figure 3). 2

We choose

w
(j)
i = βpj−i+3,µi,j , Gi = Φ

1
2 r2

i ◦Φw
(j)
i , A(j)

i = Apj−i+3,µi,j , 3 ≤ i ≤ n, (21)

with µi,j =
(
max

(
pj−i+3, (n− 2)N2

j ‖βpj−i+3,1‖α,L

))−1, so that

n∑
i=3

‖w(j)
i ‖α,L ≤

1
N2

j

.

Observe that, since the pj−i+3’s are mutually prime, the domain Â(j) = A(j)
3 ×· · ·×

A(j)
n is globally periodic for the system Ĝ = G3× · · · ×Gn with minimal period N ′

j

and

Â(j) ⊂
n⋂

i=3

{− 1
4pj−i+3

≤ θi ≤ 1
4pj−i+3

} ⊂ An−2, (22)

Ĝs(Â(j)) ⊂
n⋃

i=3

{ 3
4pj−i+3

≤ θi ≤ 1− 3
4pj−i+3

}, 1 ≤ s ≤ N ′
j − 1. (23)

4.2. Time-energy coordinates for the simple pendulum. The present section and
the next one are devoted to the obtention of a perturbed pendulum with an elliptic
island of large period, which will be our system G2. We begin with elementary facts
on the pendulum, to prepare the ground for the choice of the perturbation w

(j)
2 .

For the sake of clarity, we shall omit the indices j.
Let us introduce the notation

PN (θ2, r2) =
1
2
r22 +

1
N2

V (θ2), P∗(θ∗, r∗) =
1
2
r2∗ + V (θ∗).

The mapping φPN is the time-1 map of the Hamiltonian flow generated by PN ,
which is obtained from the flow of the normalized pendulum P∗ by rescaling time
and action:

ΦtPN = σ−1 ◦ Φ
t
N P∗ ◦ σ, where (θ∗, r∗) = σ(θ2, r2) = (θ2, Nr2). (24)
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r∗

θ∗

e

e(M)

0 τ

R∗

R

r
(M)
∗

2

Figure 4. Straightening of the pendulum flow in R∗.

Let M ∈ N∗ (in fact, M will be chosen equal to the integer Mj defined
in equation (33) below). We shall be interested in a neighbourhood of the
point (0, r(M)

∗ ) that is determined by the conditions

ΦMP∗(0, r(M)
∗ ) = (0, r(M)

∗ ), r
(M)
∗ > 2,

i.e. (0, r(M)
∗ ) is the intersection of {θ∗ = 0} with the unique orbit of P∗ which has

period M and is located above the upper separatrix r∗ = | cosπθ∗|.
The mapping (ΦP∗)M can be described near its fixed point (0, r(M)

∗ ) as
follows. Using {θ∗ = 0} as a reference section, we define symplectic flow-box
coordinates (τ, e) for the normalized pendulum, say, in the region

R∗ = { |θ∗| ≤ 1
4 and r∗ ≥ 1 }.

Since P∗(0, r∗) = 1
2r

2
∗ − 2, this amounts to considering the canonical change of

coordinates

(θ∗, r∗) = ΦτP∗
(
0,
√

2(e+ 2)
)
∈ R∗ ⇔ (τ, e) =

(
τ(θ∗, r∗), e(θ∗, r∗)

)
∈ R

(see Figure 4). In particular, the functions e and P∗ coincide (they are nothing but
the energy function), while the time is given by the incomplete elliptic integral

τ(θ∗, r∗) =
∫ θ∗

0

dθ√
2(e(θ∗, r∗)− V (θ))

, (θ∗, r∗) ∈ R∗. (25)

In the region {e > 0} (i.e. above the separatrices), the period of motion is given as
a (decreasing) function of energy by the formula

T∗(e) =
∫ 1

0

dθ√
2(e− V (θ))

. (26)

Thus, T∗(e(M)) = M with the notation e(M) = e(0, r(M)
∗ ) (observe that T∗(e) <

1/
√

2e, hence e(M) < 1
2M2 ).
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In the coordinates (τ, e), the flow of P∗ is straightened: in the domain R,

ΦtP∗ : (τ, e) 7→ (τ + t, e), |t| small enough,

whereas one can check that the mapping (ΦP∗)M takes the form

(ΦP∗)M : (τ, e) 7→ (τ +A′∗(e), e), A′∗(e) = M − T∗(e),

for (τ, e) in a neighbourhood of (0, e(M)) of the form { |τ | < δ∗, |e− e(M)| < ρ
(M)
∗ },

where δ∗ ≤ 1 can be chosen independent of M and ρ(M)
∗ ≤ 1

2e
(M) must be chosen†

small enough to ensure the return of the orbit toR within a timeM . In other words,
locally, (ΦP∗)M must be viewed as generated by a Hamiltonian A∗(e) explicitly
computable in terms of the function T∗.

Correspondingly, setting q = NM , we obtain a description of ΦPN and
(
ΦPN

)q
in a new system of local symplectic coordinates centred at the q-periodic
point (0, 1

N r
(M)
∗ ) as follows.

We consider the change of coordinates

(X,Y ) 7→ (θ2, r2) = ΦNXPN

(
0, 1

N

√(
r
(M)
∗
)2 + 2NY

)
, (27)

for the inverse of which we have the formulae

X = τ(θ2, Nr2), Y =
e(θ2, Nr2)− e(M)

N
, (θ2, r2) ∈ σ−1R∗. (28)

This transformation is symplectic since dX ∧ dY = 1
N dτ ∧ de = 1

N dθ∗ ∧ dr∗ =
dθ2 ∧ dr2. We end up with the formulae

ΦPN : (X,Y ) 7→ (X + 1
N , Y ) (29)

(in the domain corresponding to (θ2, r2) ∈ σ−1R∗ ∩ Φ−PN (σ−1R∗)) and(
ΦPN

)q : (X,Y ) 7→ (X +A′(Y ), Y ), A′(Y ) = M − T∗(e(M) +NY ) (30)

for |X| < δ∗ and |Y | < 1
N ρ

(M)
∗ .

The following estimates will be used in the next section:

Lemma 4.2. Let (θ∗, r∗) ∈ R∗ admit time-energy coordinates (τ, e).

• If 1 ≤ r∗ ≤ 3, then |τ | ≤ |θ∗| ≤
√

11 |τ |.

• If e > 0, then |θ∗| ≥ 2|τ |
1+4π2τ2 .

• If 0 < e < 2e(M), then |θ∗| ≤ (2 +M−2)|τ |.

† For instance, one can fix δ∗ small enough to guarantee that [−2δ∗, 2δ∗] × {e(M)} ⊂ R for

all M ≥ 1 and choose ρ
(M)
∗ = min( 1

2
e(M), δ∗/|T ′

∗( 1
2
e(M))|). The mean value theorem yields

indeed |T∗(e(M) ± ρ
(M)
∗ )− T∗(e(M))| ≤ δ∗ because |T ′

∗| is decreasing.
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Proof. We can assume τ ≥ 0 thanks to reversibility.
The first statement is obtained by checking that, because of the conservation of

energy, 1 ≤ θ̇∗ = r∗ ≤
√

11 in the time-interval [0, τ ].
The second statement is obtained by comparison between the angular

component τ 7→ θ
(e)
∗ (τ) of the solution obtained by fixing the energy to the positive

value e and that of the separatrix solution τ 7→ θ
(0)
∗ (τ) = 1

π arctan(sinh 2πτ): we
have θ(e)∗ (τ) ≥ θ

(0)
∗ (τ) ≥ 2τ

1+4π2τ2 .
The last inequality is an easy consequence of formula (25) with e−V (θ) ≤ e+ 2

and e < 2e(M) < M−2. 2

4.3. Elliptic islands of large period for a perturbed pendulum. The point x2 =
(0, 1

N r
(M)
∗ ), which corresponds to the origin in the coordinates (X,Y ), is ΦPN -

periodic with period q = NM , but it is in fact a parabolic fixed point of
(
ΦPN

)q,
in view of (30). To introduce some ellipticity, we shall compose ΦPN by a close-
to-identity map which leaves x2 fixed. We shall imitate here the method used in
Section 4.1, but the picture is slightly distorted because it is the pendulum that we
perturb, instead of the standard twist map; this is why we use the symplectic
transformation (θ2, r2) 7→ (X,Y ) defined in σ−1R∗ by X = τ ◦ σ(θ2, r2) and
Y = (e◦σ(θ2, r2)− e(M))/N (according to formulae (27) and (28); see formula (24)
for the definition of σ).

Let K = [− 1
4 ,

1
4 ] × [1, 3] ⊂ R∗ (thus σ−1K = [− 1

4 ,
1
4 ] × [ 1

N ,
3
N ]). Since the

function τ defined by (25) is analytic in R∗, its derivatives satisfy inequalities of
the form ‖∂kτ‖C0(K) ≤ C λ|k|, from which we deduce that

τ ◦ σ ∈ Gα,L(σ−1K), with ‖τ ◦ σ‖α,L ≤ 21−αΛα
N ,

where ΛN is defined by Λα
N = 2α−1C

∑
1

k!α−1 (λLαN)|k|. We shall use the bump
functions defined in Remark 3.1. Let us consider

ξN (X) =
(

X2

2 + X4

4

)
η̃2N,ΛN

(X).

Proposition A.1 from [MS03] can be applied: the function ξN ◦ (τ ◦ σ) belongs
to Gα,L(σ−1K) (and has its Gevrey-(α,L) norm bounded by ‖ξN‖α,ΛN

). Moreover,
this function vanishes for |τ | ≥ 1

N and the first statement of Lemma 4.2 shows that,
for N ≥ 14,

|τ | ≤ 1
N and 1

N ≤ r2 ≤ 3
N ⇒ (θ2, r2) ∈ σ−1R∗,

thus the formula

WN (θ2, r2) = η̃N,L(r2 − 2
N ) ξN

(
τ(θ2, Nr2)

)
defines a function WN ∈ Gα,L(T×[0, 3]) which has its support contained in σ−1K ⊂
σ−1R∗. Moreover, inside σ−1R∗, the functions WN and X2

2 + X4

4 coincide in a
neighbourhood of x2, whereas WN vanishes identically for |X| ≥ 1

2N .
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Lemma 4.3. Assume N ≥ max( 5
4δ∗
, 14). There exists a positive number µN,M

which depends only on N and M such that, if 0 < µ ≤ µN,M , the point x2 =
(0, 1

N r
(M)
∗ ) is a stable elliptic fixed point of the qth iterate of

G2 = Φ
1
2 r2

2+ 1
N2 V (θ2) ◦ ΦµWN ,

contained in an elliptic island A2 which satisfies

A2 = (G2)q(A2) ⊂ {− 1
4N ≤ θ2 ≤ 1

4N ,
2
N ≤ r2 ≤ 3

N }.

Moreover, if N = pN ′ with integers p ≥ 6 and N ′ ≥ 1,

(G2)`N ′
(A2) ⊂ { 3

4p ≤ θ2 ≤ 1− 3
4p }, 1 ≤ ` ≤ p− 1.

Proof. Let w(θ2, r2) = µWN (θ2, r2) and B(X) = µ
(

X2

2 + X4

4

)
: these functions can

be identified in the region { |X| < 1
4N } inside σ−1R∗. On the other hand, if we

define the function A by A(0) = 0 and A′(Y ) = M −T∗(e(M) +NY ), equation (30)
allows us to identify

(
ΦPN

)q and ΦA(Y ) in the region { |X| < δ∗, |Y | < 1
N ρ

(M)
∗ }

inside σ−1R∗.
We first determine a neighbourhood of x2 where (G2)q can be written ΦA ◦ ΦB

when using the coordinates (X,Y ). We shall assume 0 < µ ≤ 1.
Let

N = { |X| < δ, |Y | < δ } ⊂ σ−1R∗, δ = 1
3N min(ρ(M)

∗ , 1
4N |T ′

∗(
1
2 e(M))| ).

We have δ ≤ 1
4N (and even δ < 1

12N because ρ(M)
∗ < 1

4 ), therefore the maps Φw

and ΦB can be identified in N and, since |X +X3| ≤ 2δ in N ,

N ′ = Φw(N ) ⊂ { |X| < δ, |Y | < 3δ }.

With a slight abuse of notation, we can consider that G2 coincides with ΦPN ◦ ΦB

on N .
In view of equation (29), we have G2(N ) = ΦPN (N ′) ⊂ { 1

N − δ < X <
1
N + δ, |Y | ≤ 3δ } and, recalling that δ ≤ 1

4N , w = 0 on G2(N ). By an easy
induction, we obtain (G2)s =

(
ΦPN

)s ◦ ΦB on N for s ≥ 2 and s small enough to
ensure w = 0 on (G2)s−1(N ) =

(
ΦPN

)s−1(N ′).
Let us check that we can reach the value s = q. Writing

(
ΦPN

)q−1(N ′) =(
ΦPN

)q(Φ−PN (N ′)
)
, with

Φ−PN (N ′) ⊂ {− 1
N
− δ < X < − 1

N
+ δ, |Y | ≤ 3δ },

we see that our choice of δ ensures 3δ ≤ 1
N ρ

(M)
∗ , while 1

N + δ ≤ δ∗ since N

is large enough, therefore
(
ΦPN

)q and ΦA coincide on Φ−PN (N ′). Moreover, in
that domain, the mean value theorem yields |A′(Y )| ≤ 3Nδ|T ′∗( 1

2e
(M))| (because

e(M) +NY ≥ 1
2e

(M) and |T ′∗| is decreasing), hence

X +A′(Y ) < − 1
N

+ δ +
1

4N
< − 1

2N
,
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thus w = 0 on ΦPN (N ′), (ΦPN )2(N ′), . . . , (ΦPN )q−1(N ′). We have thus proved our
claim.

Having at our disposal this neighbourhood N of x2, in which the qth iterate
of G2 can be written ΦA ◦ ΦB , we now apply Lemma 3.1.

The Taylor formula gives A′(Y ) = A1Y + A2Y
2 + A3Y

3 + O(Y 4) with
A1 = −NT ′∗(e(M)) > 0, A2 = − 1

2N
2T ′′∗ (e(M)) and A3 = − 1

6N
3T ′′′∗ (e(M)), while

B′(X) = µ(X +X3). We thus get ellipticity as soon as µ < 2
N |T ′

∗(e
(M))| and we can

check that the first Birkhoff invariant γ1 = Γ + Γ′ is negative for µ small enough.
For this, since Γ′ < 0, it is sufficient to observe that

lim
µ→0

|γ0|Γ
µ3

=
10A2

2 − 9A1A3

6A1

(this is obtained by a straightforward asymptotic analysis of γ0, λ, ω and Γ) and
that the last quantity is negative, since the Cauchy-Schwarz inequality yields(∫ 1

0

dθ(
e− V (θ)

)5/2

)2

<

∫ 1

0

dθ(
e− V (θ)

)3/2

∫ 1

0

dθ(
e− V (θ)

)7/2
.

The twist condition γ1 6= 0 being fulfilled, Moser’s stability theorem provides us
with the desired q-periodic elliptic island A2 ⊂ N , the orbit of which is well enough
located in view of the above description of the first q iterates of N under G2 and
Lemma 4.2 (on the one hand, A2 ⊂ N ⊂ { |θ2| ≤ (2 +M−2)δ, 2

N ≤ r2 ≤ 3
N }; on

the other hand, information on the location of (G2)`N ′
(A2) is obtained by observing

that a point in that set—unless it falls outside σ−1R∗—has coordinates (X,Y ) with
|X± 1

p | ≤ δ when ` = 1 or p−1, hence |θ2| ≥ 3
4p because 1+4π2X2 is close enough

to 1, and the same is true a fortiori for the intermediate values of `). 2

For the sequel, we thus choose

w
(j)
2 = µjWNj , µj = min

( 1
N2

j ‖WNj‖α,L
, µNj ,Mj

)
, (31)

with Mj as in (33) below. This way,

‖w(j)
2 ‖α,L ≤

1
N2

j

and G2 = Φ
1
2 r2

2+ 1
N2

j

V (θ2)
◦Φw

(j)
2 (θ2,r2) admits a qj-periodic domain A(j)

2 as described
in Lemma 4.3, with N = Nj , p = pj , N ′ = N ′

j and qj = NjMj .

Remark 4.1. We did not try to study the size of A(j)
2 (nor that of Â(j) in

Section 4.1). This size is probably exponentially small, because ‖WNj‖α,L is
exponentially large, but it seems to us that it would be larger (although still
exponentially small) if one would use a function like νjηNj ,L(θ2), with νj well
chosen, instead of w(j)

2 ; however, checking that such a function is sufficient to
create an elliptic island would require more complicated calculations than those of
the proof of Lemma 3.1.
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4.4. Choice of the function g(j) and end of the proof of Proposition 3.1. Putting
together the conclusions of Sections 4.1 and 4.3, we obtain a function

wj = w
(j)
2 (θ2, r2) + w

(j)
3 (θ3) + · · ·+ w(j)

n (θn)

satisfying ‖w(j)‖α,L ≤ 2
N2

j
and such that G = Φ

1
2 (r2

2+···+r2
n)+vj(θ2) ◦ Φwj admits a

periodic domain A = A(j)
2 × Â(j) of minimal period qj .

Let us define the function

g(j) = η2pj ,L(θ2)ĝ(j)(θ3, . . . , θn), ĝ(j) = η2pj,L
⊗ · · · ⊗ η2pj−n+3,L

, (32)

and consider the map

Ψj = Φuj ◦
(
Φ

1
2 r2

1 ×G
)
, uj =

1
NjMj

U ⊗ g(j),

with U like in Section 3.2 and Mj as follows:

Lemma 4.4. Let us denote by [ . ] the integer part of a real number and use the
same c > 0 (which depends only on α and L) as in Lemma 3.3. There exist an
integer J , which depends only on n, and positive real numbers c1 < c2, which depend
only on n, α, L, such that, with the choice

Mj =
[
Nj‖U‖α,L exp

(
(n− 1)c(2pj)

1
α−1
)

+ 1
]
, (33)

the numbers εj = max(‖uj‖α,L, ‖vj‖α,L, ‖wj‖α,L) and qj = NjMj satisfy

εj =
‖V ‖α,L

N2
j

, c1N
2
j exp(c1N

1
(n−1)(α−1)
j ) ≤ qj ≤ c2N

2
j exp(c2N

1
(n−1)(α−1)
j ) (34)

for all j ≥ J .

Proof. In view of Lemma 3.3,

‖g(j)‖α,L ≤ exp
(
(n− 1)c(2pj)

1
α−1
)
, (35)

and the definition of Mj yields

‖uj‖α,L ≤
‖U‖α,L

NjMj
exp
(
(n− 1)c(2pj)

1
α−1
)
≤ 1
N2

j

.

Since ‖V ‖α,L > 2, the number εj thus coincides with ‖vj‖α,L.
On the other hand, if n ≥ 3, we can use the Prime Number Theorem to ensure

N ′
j ∈ [2−(n−2)pn−2

j , pn−2
j ] for j ≥ J , hence N

1
n−1
j ≤ pj ≤ 2N

1
n−1
j , and the conclusion

follows. 2

Lemma 3.2 can be applied to this situation, with F = Φ
1
2 r2

1 and f = 1
qj
U .

Our function g(j) satisfies indeed the requirement (11), as is easily checked by
distinguishing the cases where N ′

j divides s and the cases where it does not.
According to formula (12), the dynamics of ψ = ψqj ,U is thus embedded into the
(Ψj)qj -invariant set A × A. In particular, by Proposition 3.2, we get a wandering
domain Dj = Bqj

×A which satisfies the desired properties.
We end the proof of Proposition 3.1 by renumbering our sequences, replacing j

by J + j.
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Remark 4.2. Observe that the instability exponent a = 1
2(n−1)(α−1) which is

obtained at the end stems from inequality (35), which has dictated our choice of Mj

and thus of qj. This inequality reflects the necessity of “separating” through the

function g(j) the set A from its iterates which lie at a distance ≈ pj ≈ N
1

n−1
j .

It is the use of Lemma 3.3 which has introduced the factor 1
α−1 . This is to be

compared with Lemma 2.4 of [MS03], where we had managed to introduce the
optimal factor 1

α instead of 1
α−1 because compact-supported functions were used

somewhat differently in that paper.
In fact, we do not know whether it is possible to get the same instability

exponent for wandering points and for wandering polydiscs. The difficulty is that
the condition that the function g(j) be identically equal to 1 on A imposed by the
coupling lemma is much more demanding when A is not reduced to one point. It
can be shown that the exponent 1

α−1 in Lemma 3.3 is optimal.

5. Proof of Theorem 2.1 and a Ck variant
Let α > 1, Λ > 0, N ≥ 3 and m ∈ {2, . . . , N − 1}. We shall apply Proposition 3.1
with

n = N −m+ 1, L = Λ
(
1 + (Λα + 3α +

1
2
)‖ϕ‖α,Λ

) 1
α

, ϕ(t) =
η8,Λ(t)∫

T η8,Λ
. (36)

We set h0(r) = 1
2 (r21 + · · ·+ r2N−1).

5.1. Nearly m-resonant wandering domains. We suppose in this section that
m ≥ 3 and we wish to obtain nearly m-resonant domains instead of the nearly
doubly resonant domains of Proposition 3.1. To that end, we add m− 2 degrees of
freedom and consider

G(j) = Φ
1
2 (rn+1+···+rn+m−2)+

1
N2

j

(S(θn+1)+···+S(θn+m−2))
,

with the same function S as in Section 3.4 and the same Nj as in Section 4.
We make use of the system G(j) quite in the same way as in Section 3.4: since

G(j) = G
(j)
n+1× . . .×G

(j)
n+m−2, G

(j)
i = Φ

1
2 r2

i + 1
N2

j

S(θi)
, n+ 1 ≤ i ≤ n+m− 2

and the scaling (θ∗, r∗) = σ
(j)
i (θi, ri) = (θi, Njri) conjugates G(j)

i with the time- 1
Nj

map of the Hamiltonian h∗(θ∗, r∗) = 1
2r

2
∗+S(θ∗) which is reduced to the normalized

harmonic oscillator in R∗ = { θ2∗ + r2∗ <
1
16 }, we have a G(j)-periodic domain

A(j) =
(
σ

(j)
n+1

)−1R∗ × . . .× (σ(j)
n+m−2)

−1R∗

with minimal period Nj .
Since Nj divides qj , the domain Dj = Dj ×A(j) is wandering for

Ψj = Ψj ×G(j) = Φuj ◦ Φh0(r)+vj ◦ Φwj ,
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with
vj =

1
N2

j

(
V (θ2) + S(θn+1) + · · ·+ S(θn+m−2)

)
.

Moreover,
(Ψj)

`qj (Dj) = T `
qj

(Dj), ` ∈ Z (37)

and dist(x, { r1 = r2 = 0 and rn+1 = . . . = rn+m−2 }) ≤ 3√εj for all x ∈ Dj ,
where εj = 1

N2
j
(‖V ‖α,L + (m− 2)‖S‖α,L) is the new small parameter.

Since this new parameter is only slightly larger than the εj of Section 4 (up to a
multiplicative constant, the true small parameter is in fact 1/N2

j ), we can also find
new constants C1 < C2 such that inequalities (9) hold with εj in place of εj .

5.2. Suspension. Our aim is now to pass from the discrete dynamical system Ψj ,
defined on AN−1, to a near-integrable Hamiltonian flow. We shall first define a non-
autonomous time-periodic Hamiltonian Hj(θ, r, t), where (θ, r) ∈ AN−1 and t ∈ T,
the return map of which coincides with Ψj for the section { t ≡ 0 } ≈ AN−1.

If H(θ, r, t) is a non-autonomous Hamiltonian function defined on AN−1×T, we
extend the notation ΦH by considering the time-1 map of the vector field X̃H of
the extended phase space AN−1 × T,

X̃H

∣∣∣∣∣∣
θ̇ = ∂rH(θ, r, t)
ṙ = −∂θH(θ, r, t)
ṫ = 1.

Thus ΦH is a mapping of AN−1 ×T, the last component of which is always trivial.
We shall obtain the desired Hamiltonian Hj(θ, r, t) by applying the following

lemma with u = uj , v = vj and w = wj .

Lemma 5.1. Assume Λ and L are related by (36) and set

K1 =
1∫

T η8,Λ
, K2 =

‖η8,Λ‖α,Λ∫
T η8,Λ

.

Let u, v, w : AN−1 → R be smooth functions with support ⊂ (T× [0, 3])N−1, which
belong to Gα,L

(
(T× [0, 3])N−1

)
and have norms ≤ 1/K2, and

Ψ = Φu ◦ Φh0+v ◦ Φw, h0(r) =
1
2
(r21 + · · ·+ r2N−1).

There exists a non-autonomous time-periodic Hamiltonian function Hbelonging
to Gα,Λ(AN−1 × T), such that H(θ, r, t) = h0(r) if (θ, r, t) ∈ AN−1 × [0, 1

4 ],

K1 max(‖u‖C0 , ‖v‖C0 , ‖w‖C0) ≤ dα,Λ(H,h0) ≤ K2 max(‖u‖α,L, ‖v‖α,L, ‖w‖α,L)
(38)

and the time-1 map ΦH for the corresponding autonomous vector field X̃H

of AN−1 × T satisfies

ΦH(x, 0) = (Ψ(x), 0), x ∈ AN−1. (39)
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Proof. We shall obtain H = h0(r)+ f(θ, r, t) by adapting the suspension procedure
of [MS03], Section 2.4.1.

Let us fix three periodic functions ϕ1, ϕ2 and ϕ3 depending only on t, each one
of total mass 1, such that the first one has support ⊂ [ 34 , 1], the second one ⊂ [ 12 ,

3
4 ]

and the third one ⊂ [ 14 ,
1
2 ]. For instance, we may take ϕi(t) = ϕ(t − 9−2i

8 ) with ϕ

as in (36). A simple way of fulfilling (39) is to use H = H∗ defined by

H∗ = u⊗ ϕ1 + (h0 + v)⊗ ϕ2 + w ⊗ ϕ3.

But the limit of H∗ as u, v, w → 0 is h0 ⊗ ϕ2 rather than h0. We thus apply
the same modification as in [MS03], using ϕ̃2(t) =

∫ t

0
(ϕ2(t′) − 1) dt′ to define an

exact-symplectic time-periodic transformation x∗ = Ft(x) by the formula

Ft(θ, r) = (θ + ϕ̃2(t)r, r), (θ, r) ∈ AN−1

(notice that ϕ̃2 is periodic because
∫

T ϕ2 = 1). The conjugate vector field
in AN−1 × T is generated by the Hamiltonian

H = h0(r)+f(θ, r, t), f(x, t) = ϕ1(t)u◦Ft(x)+ϕ2(t)v ◦Ft(x)+ϕ3(t)w ◦Ft(x)

and still satisfies (39) because Ft is reduced to identity for t = 0. Our final formula
is thus

f(θ, r, t) = ϕ1(t)u(θ+ ϕ̃2(t)r, r)+ϕ2(t)v(θ+ ϕ̃2(t)r, r)+ϕ3(t)w(θ+ ϕ̃2(t)r, r) (40)

(one can notice that ϕ̃2(t) = −t for t ∈ [0, 1
2 ] and ϕ̃2(t) = 1− t for t ∈ [ 34 , 1]).

In order to check (38), let us estimate norms on Kν = TN ×BRν
for ν ≥ 1. We

are in fact dealing with functions which depend on one angular variable (as ϕ and
the ϕi’s) or on 2(N − 1) variables (as u, v, w); in all cases, their support can be
viewed as a subset of Kν (because Rν ≥ 3).

On the one hand, since ϕ1, ϕ2 and ϕ3 have disjoint supports and attain the value
K1 = 1/

∫
T η8,Λ,

K1 max(‖u‖C0 , ‖v‖C0 , ‖w‖C0) ≤ ‖f‖C0(Kν) ≤ ‖f‖α,Λν ,Kν .

On the other hand, we can apply the result on composition contained in Remark A.1
of the appendix of [MS03] to get the inequality

‖f‖α,Λν ,Kν
≤ ‖ϕ‖α,Λν

max(‖u‖α,L, ‖v‖α,L, ‖w‖α,L).

It is here that we use the definition of L in (36), to ensure the inequality

(Λα
ν +Rν)‖ϕ̃2‖α,Λν

−Rν‖ϕ̃2‖C0(T) ≤ Lα − Λα
ν

which is required for applying the composition result (we also use the inequality
(Λα

ν + Rν)‖ϕ̃2‖α,Λν − Rν‖ϕ̃2‖C0(T) ≤ (Λα
ν + Rν)Λα

ν ‖ϕ2‖α,Λν + 1
2Λα

ν ‖ϕ2‖C0(T)—
see [MS03], Section 2.4.1—and the fact that, according to (2), RνΛα

ν is bounded
by 3αΛα independently of ν while Λν ≤ Λ).

We end up with

K1 max(‖u‖C0 , ‖v‖C0 , ‖w‖C0) ≤ ‖f‖α,Λν ,Kν
≤ K2 max(‖u‖α,L, ‖v‖α,L, ‖w‖α,L),

with K2 = ‖ϕ‖α,Λ = K1‖η8,Λ‖α,Λ, whence the conclusion follows, since the right-
hand side is ≤ 1. 2
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Applying the lemma to the map Ψj defined in Section 5.1, we obtain a non-
autonomous Hamiltonian Hj . Let us consider the “tube of solutions” generated by
the flow of Hj from Dj × {0} in the time-interval [0, 1

4 ]:

D̃j = {ΦtHj (x, 0); x ∈ Dj , t ∈ [0, 1
4 ]} = {(θ + tr, r, t); (θ, r) ∈ Dj , t ∈ [0, 1

4 ]}, (41)

where the last identity is due to the fact that Hj is reduced to h0(r) for t ∈ [0, 1
4 ].

We shall now check that

Φ`τjHj (D̃j) = T `R`(D̃j), ` ∈ Z, (42)

where τj = q2j and T and R are commuting transformations defined as in (3),
except for the absence of the last component:

T (θ1, r1, . . . , θN−1, rN−1, t) = (θ1, r1 + 1, . . . , θN−1, rN−1, t),

R(θ1, r1, . . . , θN−1, rN−1, t) = (θ1 + t, r1, . . . , θN−1, rN−1, t).

Notice the relation T (x, t) = (T1(x), t), where T1 is the translation defined just
above the statement of Proposition 3.1. We observe that

R−`T −`Φsh0(x, 0) = Φsh0T −`(x, 0), x ∈ AN−1, ` ∈ Z, s ∈ R,

where the action of Φsh0 is extended to AN−1×T in the obvious way: Φsh0(θ, r, t) =
(θ + sr, r, t + s). This action coincides with that of ΦsHj on the points (x, t) ∈
AN−1 × T such that [t, t + s] ⊂ [0, 1

4 ]. Thus, if (y, t) ∈ D̃j , we can write
(y, t) = ΦtHj (x, 0) = Φth0(x, 0) for some x ∈ Dj and t ∈ [0, 1

4 ], and

Φ`τjHj (y, t) = Φ(t+`τj)Hj (x, 0) = ΦtHj ((Ψj)`τj (x), 0)

by virtue of (39), whence

R−`T −`Φ`τjHj (y, t) = R−`T −`Φth0((Ψj)`τj (x), 0) = Φth0(T−`
1 (Ψj)`τj (x), 0).

We conclude that

R−`T −`Φ`τjHj (D̃j) =
⋃

t∈[0, 1
4 ]

Φth0(T−`
1 (Ψj)`τj (Dj)× {0}) =

⋃
t∈[0, 1

4 ]

Φth0(Dj × {0})

by (37), which yields D̃j . Thus (42) is proved.

Finally, we pass to the autonomous Hamiltonian system generated by

Hj(θ, r, θN , rN ) = rN +Hj(θ, r, θN ), (θ, r) ∈ AN−1, (θN , rN ) ∈ A (43)

and take Uj = D̃j × R as wandering domain for ΦHj . This ends the proof of
Theorem 2.1.

Remark 5.1. One could also take for Uj the tube of solutions generated by Hj

from Dj × {0} × I during the time-interval [0, 1
4 ], where I is some real interval.

We would still obtain a wandering domain, but relation (4) would persist for
the N − 1 first components only: the last component rN does indeed drift so as
to maintain 1

2r
2
1 + rN bounded.
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5.3. Variants in the Ck category. The above construction can be adapted with
little effort to the case of finite differentiability.

Let k ≥ 0. If we do not care about the size of the wandering domain,
we can use the coupling lemma with the same systems ψ = Φ

1
qj

U ◦
(
Φ

1
2 r2

1
)qj

and G = G2 ×G3 × · · · ×Gn−1 as in Section 4, except that we modify the tuning
of the parameters: qj = NjMj with a new value

Mj =
[
(e2c)n−1‖U‖CkNjp

k
j + 1

]
,

where c is the constant appearing in Remark 3.2. Indeed, choosing now

g(j) = η2pj
⊗ ĝ(j), ĝ(j) = η2pj

⊗ · · · η2pj−n+3

and observing that

‖g(j)‖Ck ≤ cn−1
∑
|`|≤k

1
`!

(2pj)`1(2pj)`2 . . . (2pj−n+3)`n−1 ≤ (ce2)n−1pk
j ,

we get ‖ 1
qj
U ⊗ g(j)‖Ck ≤ 1

N2
j
, hence the small parameter εj is still 1/N2

j (up to

some multiplicative constant). We therefore obtain a Ck version of Proposition 3.1
with

C1N
2( k

n−1+2)

j ≤ τj = q2j ≤ C2N
2( k

n−1+2)

j

for some positive constants C1 < C2. (We would probably obtain larger
wandering domains by replacing the various Gevrey functions ηp,L occurring in
the construction of G by their Ck counterpart.)

Inserting m− 2 extra degrees of freedom like we did in Section 5.1 and applying
the suspension procedure of Section 5.2 with minor changes, we end up with
a Ck version of Theorem 2.1 where the drifting time τj satisfies inequalities of
the form

C1

( 1
εj

)a∗ ≤ τj ≤ C2

( 1
εj

)a∗
, a∗ =

k

N −m
+ 2.

Observe that “Ck version” refers here to the topology, in which our unstable
systems tend to the standard integrable one, and to the way εj , i.e. the distance
to integrability, is measured, but all the functions we manipulate are in fact C∞

(as in Proposition 3.3).
This instability result is to be compared with the Ck analogue of Nekhoroshev’s

Theorem in the quasi-convex case. As one would expect, the exponentially long
stability times that are available in the analytic and Gevrey categories must replaced
by shorter times, which are given by some positive power of the inverse of the
small parameter, in the Ck category. More precisely, Theorem A from [MS03]
and its addendum can be transposed as follows, for any k ≥ 2: the hypotheses
“h,H ∈ Gα,L(TN × BR)” being replaced by “h,H ∈ Ck(TN × BR)” and ε

being defined using ‖H − h‖Ck instead of ‖H − h‖α,L, the conclusion is that the
confinement property ‖r(t)− r0‖ ≤ C2ε

b holds at least for |t| ≤ C1( 1
ε )a, with

a =
k

N
, b =

1
2N

.
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And for solutions starting at a distance ε1/2 of a m-fold resonant surface (defined
by some resonant submodule of codimension d = N − m of ZN ), the exponents
improve:

a =
k

N −m
, b =

1
2(N −m)

.

We do not give here any detail of the proof of the Ck stability result, preferring
to devote another paper to the systematic study of finite-time stability in the
differentiable category and in ultradifferentiable classes.

6. Splitting, symbolic dynamics and random walk
The aim of this section is to investigate new dynamical behaviours, closely related
to the preceding examples. Many possibilities are clearly left open, but we shall
content ourselves with the case where the pendulum map has transverse homoclinic
points instead of elliptic islands; as we shall see, the functions involved in the
construction are almost the same as in the previous examples. The existence of such
homoclinic points has several new consequences, which will enable us to extend the
results of [MS03].

Regarding the splitting problem, we shall prove the existence of a one-parameter
family of hyperbolic tori, the invariant manifolds of which split along at least two
orthogonal directions, and we shall also completely describe the structure of the
splitting matrix of these manifolds at their homoclinic points.

Concerning the search for unstable orbits, we shall take advantage of the
existence of a horseshoe associated with the homoclinic point (Birkhoff-Smale-
Alexeiev theorem), and shall be able to construct oscillating orbits: these are
orbits whose r1-projection can take any prescribed sequence of values chosen in
a given set. The drifting orbits biasymptotic to infinity of [MS03] now appear as
a particular case of this new construction, but we also get much more general ones,
whose complete description will be given in Proposition 6.4.

6.1. Transverse homoclinic points for the perturbed pendulum. The construction
of our homoclinic points will be very similar to that of the elliptic islands in
Section 4.3. The main difference is that we shall make use of a perturbation centred
on the upper point of the separatrix of the pendulum map, instead of theM -periodic
point that we considered in Section 4.3. We shall keep the notation of Sections 4.2
and 4.3, in particular PN (θ2, r2) = 1

2r
2
2 + 1

N2V (θ2) with V (θ2) = −1 − cos(2πθ2),
and we assume N ≥ 3.

We start again with a straightening symplectic transformation (θ2, r2) 7→ (X,Y )
defined in σ−1(R∗) = { |θ2| < 1

4 , r2 > 1
N }, which differs from that defined in

Section 4.2 only by its central point. Namely, we set

X = τ ◦ σ(θ2, r2), Y = e ◦ σ(θ2, r2)/N,

so {Y = 0} corresponds to the upper separatrix of the pendulum map ΦPN , and
the upper point on that separatrix has (0, 0) as new coordinates. We introduce a
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θ2

ΦPN

X1
N

O O

W− W+

hN

r2

Y

ΦµSN

Figure 5. Left: Invariant manifolds of G2 = ΦPN ◦ ΦµSN . Right: Action of ΦµSN and ΦPN .

compact-supported function

SN (θ2, r2) = η̃N,L(r2 − 2
N )
(

X2

2 η̃4N,ΛN
(X)

)
; (44)

whose effect will be to create a local distorsion of the separatrix around its upper
point. As in Section 4.3, the function SN belongs to Gα,L(T× [0, 3]) and satisfies

‖SN‖α,L ≤ exp(cN
1

α−1 )

where c is a positive real number depending only on α. Moreover, one checks that
the support of SN is contained in RN = [− 3

4N ,
3

4N ]× [ 1
N ,

3
N ].

A map of the form ΦµSN , for any real number µ, will be referred to as a splitting
map. The right part of Figure 5 shows, in the coordinates (X,Y ), the effect of
ΦµSN on the axis X = 0, which will be the main feature for the creation of the
splitting of the invariant manifolds in the next lemma.

Lemma 6.1. The point O = (1/2, 0) is a hyperbolic fixed point for the map

G2 = ΦPN ◦ ΦµSN .

Its stable and unstable manifolds W±(O,G2) have a transverse intersection at the
homoclinic point hN = (0, 2/N). At this point, the angle Θ of these two manifolds,
measured in the (θ2, r2) coordinates, satisfies tanΘ = −µ

4 .
Moreover, there exists a connected neighbourhood Σ+

N of hN in the intersection
RN ∩ W+(O,G2) such that the restriction of PN to Σ+

N is a bijection onto the
energy segment [−µ/8N,µ/8N ].

Proof. The assertion on O is plain: the map ΦµSN is reduced to identity outside the
set {|θ2| ≤ 1/N}. Consider the fundamental domain ∆ centred on the point hN for
the invariant manifolds W±(O,ΦPN ), that is the segment of the upper separatrix

comprised between the points Φ−
1
2PN (hN ) and Φ−

1
2PN (hN ), and denote by ∆−

and ∆+ its negative and positive iterates under ΦPN . Observe that, due again to
the form of ΦµSN , ∆− ⊂ W−(O,G2) and ∆+ ⊂ W+(O,G2). Therefore, the direct
and inverse images of these segments under G2 satisfy:

G2(∆−) ⊂W−(O,G2), G−1
2 (∆+) ⊂W+(O,G2).

To determine these two images, is is convenient to make use of the straightening
coordinates (X,Y ), in which the map ΦPN is just the translation of step 1/N

Prepared using etds.cls



Wandering domains and random walks 35

along the X-axis. The segments ∆, ∆± are the subsets the X-axis defined by
∆ = [−1/2N, 1/2N ], ∆+ = [1/2N, 3/2N ] and ∆− = −∆+, while the support of
ΦµSN is contained in {|X| ≤ 1/4N}, from which one deduces

G2(∆−) = ∆, G−1
2 (∆+) = Φ−µSN (∆).

Therefore, in a neighbourhood of hN , the unstable manifold coincides with the
separatrix of the pendulum map, while the stable one is the preimage of that
separatrix by the splitting map (as illustrated on the left part of Figure 5). The
second assertion comes from the diagonal form of the derivative of the change
(X,Y ) 7→ (θ2, r2) at the point (0, 0).

Finally, the segment Σ+
N will be the rectilinear part of G−1

2 (∆+), whose
projection on the Y -axis is the segment [−µ/8N,µ/8N ]. By definition of the
straightening coordinates, this proves the last part of the lemma. 2

In the following, we shall denote by Σ−N the neighbourhood of the point hN in
W−(O,G2) whose projection on the X-axis is the interval [−1/4N, 1/4N ].

6.2. Splitting of the invariant manifolds. In this section we examine the
consequences of the existence the previous homoclinic point concerning the coupling
of G2 to other degrees of freedom. Our main purpose will be to describe the splitting
of the invariant manifolds of the n-dimensional tori which already appeared in the
example of [MS03]. In the present example, we want to describe not only the
longitudinal splitting but also the transverse one (see the precise meaning below).
We also would like to keep the structure of the system as close as possible to that
of [MS03], but in order to determine a complete splitting matrix we shall have
to use, in addition to the new map G2, the coupling functions g(j)

i introduced in
Section 4.4. Nevertheless, as the construction is very much like that of [MS03], we
shall content ourselves with detailed statements and short proofs.

We assume n ≥ 3 in the rest of this section, the case n = 2 being analogous and
simpler. As in the preceding sections, we shall use the sequences (Nj) and (N ′

j)
defined in (19). We introduce a new sequence of maps (Ψj):

Ψj = Φ
1

qj
U⊗g(j)

◦
(
Φ

1
2 r2

1 ×
(
Φ

1
2 r2

2+ 1
N2

j

V (θ2)
◦ ΦµjSNj

)
× Φ

1
2 (r2

3+···+r2
n)
)
, (45)

with U(θ1) = 1
2π sin(2πθ1), V (θ2) = −1 − cos(2πθ2), the same function g(j) as

in (32), a function SNj defined by (44), the same qj = MjNj as in Lemma 4.4 and

µj =
1

N2
j ‖SNj‖α,L

.

Notice that µj ≥ exp(−cN
1

α−1
j ), while ‖ 1

qj
U ⊗ g(j)‖α,L, ‖µjSNj

‖α,L < εj = ‖V ‖α,L

N2
j

.

We finally introduce the following neighbourhood of the origin in the torus Tn−2:

B̂j = {(θ3, . . . , θn) ∈ Tn−2 | |θ3| < 1
2pj

, . . . , |θn| < 1
2pj−n+3

},
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so g3 ⊗ · · · ⊗ gn ≡ 1 on B̂j , and we set

r̂(j) =
( 1
pj
, . . . ,

1
pj+n−3

)
.

Our first statement depicts the various hyperbolic objects of Ψj , together with
their invariant manifolds. As in [MS03], one first notices that the (2n − 2)-
dimensional annulus A × {(1/2, 0)} × An−2 is invariant under Ψj and normally
hyperbolic in An. Moreover, for each r01 ∈ R and r̂0 ∈ Rn−2, the (n − 1)-
dimensional torus Tr0

1 ,r̂0 = Cr0
1
× {(1/2, 0)} × Tr̂0 , where Cr0

1
= T × {r̂01} ⊂ A

and Tr̂0 = Tn−2 × {r̂0} ⊂ An−2, is invariant and partially hyperbolic, with n-
dimensional invariant manifolds.

Proposition 6.1. Let S be the surface of equation θ2 = 0 in An.
1. For each θ̂ ∈ B̂j, the 2-dimensional annulus V (j)

θ̂
= A × {(1/2, 0)} × {(θ̂, r̂(j))}

is invariant under Ψ
N ′

j

j and partially hyperbolic in An. Its 3-dimensional stable and

unstable manifolds W±(V (j)

θ̂
,Ψ

N ′
j

j ) satisfy

A×Σ+
Nj
×{(θ̂, r̂(j))} ⊂W+(V (j)

θ̂
,Ψ

N ′
j

j ), A×Σ−Nj
×{(θ̂, r̂(j))} ⊂W−(V (j)

θ̂
,Ψ

N ′
j

j ).

They admit a 2-dimensional homoclinic annulus inside S:

A× {hNj
} × {(θ̂, r̂(j))j} ⊂W+(V (j)

θ̂
,Ψ

N ′
j

j ) ∩W−(V (j)

θ̂
,Ψ

N ′
j

j ) ∩ S.

2. For each r01 ∈ R and each θ̂ ∈ B̂j, the circle C(j)

r0
1 ,θ̂

= Cr0
1
×{(1/2, 0)}×{(θ̂, r̂(j))},

where Cr0
1

= T × {r01}, is invariant under Ψ
N ′

j

j and partially hyperbolic. Its 2-

dimensional stable and unstable manifolds W±(C(j)

r0
1 ,θ̂
,Ψ

N ′
j

j ) satisfy

Cr0
1
× Σ+

Nj
× {(θ̂, r̂(j))} ⊂W+(C(j)

r0
1 ,θ̂
,Ψ

N ′
j

j ),

Φ
1

qj
U (Cr0

1
)× Σ−Nj

× {(θ̂, r̂(j))} ⊂W−(C(j)

r0
1 ,θ̂
,Ψ

N ′
j

j ).

Proof. Recall that the support of SNj is contained in RNj = [− 3
4Nj

, 3
4Nj

]× [ 1
Nj
, 3

Nj
].

One just has to remark that the (N ′
j)

th iterate of RNj by G
(j)
2 = ΦPNj ◦ ΦµjSNj

does not intersect the support {|θ2| ≤ 1
pj
} of the function ηpj ,L; the proof is then

completely analogous to that of the corresponding statement of [MS03]. 2

We can now pass to the splitting problem. As a consequence of the previous
proposition, one sees that for each θ̂ ∈ B, the circle C(j)

r0
1 ,θ̂

has two homoclinic

orbits Γ±, whose intersection with S are the points

ω±(θ̂) =
(
(±1/4, r01), (0, 2/Nj), (θ̂, r̂(j))

)
.

One then observes the following inclusion, relating the invariant manifolds of the
circles C(j)

r0
1 ,θ̂

to those of the invariant tori Tr0
1 ,r̂(j) : for each r01 ∈ R,

W±(C(j)

r0
1 ,θ̂
,Ψ

N ′
j

j ) = W±(Tr0
1 ,r̂(j) , ψj) ∩ (A× A× {(θ̂, r̂(j))}).
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We refer to [MS03], §2.5.4, for a proof in an essentially analogous context. As a
consequence, one sees that each torus Tr0

1 ,r̂(j) possesses an open (n−2)-dimensional
homoclinic manifold, formed by the union of the orbits of the homoclinic points
ω(θ̂), θ̂ ∈ B̂j . This remark enables us to give an explicit description of the
invariant manifolds as graphs of suitable functions, in a neighbourhood of one of
the homoclinic points ω(θ̂), and thus to fully determine the splitting matrix.

Proposition 6.2. For each θ̂ ∈ B̂j, the splitting matrix S of the invariant
manifolds of the torus Tr0

1 ,r̂(j) at the homoclinic point ω(θ̂), relative to the
coordinates θ and r, is diagonal, and its diagonal elements are [ 2π

qj
,−µj

4 , 0, . . . , 0].

Proof. Note that both segments Σ±N have the same projection on the θ2-axis, that
we shall denote by JN . Let Oj = T× JNj

× B̂j ⊂ Tn, and let w±2 JNj
→ R be the

functions whose graphs are the segments Σ±Nj
. The manifolds W±(Tr0

1 ,r̂(j) , ψj) are,
over the open set Oj , the graphs of the functions w± : Oj → Rn defined by:

w+(θ) = (r01, w
+
2 (θ2), r̂(j)), w−(θ) = (Φ

U
q1 (θ0, r01), w

−
2 (θ2), r̂(j)),

and the splitting matrix has components Sij = ∂i(w+
j − w−j )(ω(θ̂)). 2

Observe that, in the above result, the first diagonal element is exponential small
as indicated in (34); when related to the small parameter εj , it is thus characterized
by the exponent 1

2(n−1)(α−1) , whereas the second diagonal element is potentially
much smaller (one can modify the construction so as to make it of the order of
magnitude of exp(− const( 1

εj
)

1
2(α−1) )).

Remark 6.1. The above contruction is only an example, chosen among many
others, for which the splitting matrix is completely depictable. For instance, one can
produce an example of nondegenerate splitting matrix by choosing a new function
g(j) = g

(j)
2 ⊗ g3 ⊗ · · · ⊗ gn, with

g
(j)
2 = ηNj ,L, g3 = · · · = gn = U,

a new parameter qj = N2
j ‖ηNj ,L‖α,L‖U‖n−1

α,L and the same µj = (N2
j ‖SNj

‖α,L)−1.
The (2n−2)-dimensional annulus A×{(1/2, 0)}×An−2 and the (n−1)-dimensional
tori Tr0

1 ,r̂0 are still invariant under Ψj, for all r̂0 = (r03, . . . , r
0
n). The torus Tr0

1 ,r̂0

has now 2n−1 homoclinic orbits, whose intersection with S are the points(
(±1/4, r01), (0, 2/Nj), (±1/4, r03), . . . , (±1/4, r0n)

)
.

At these points, the splitting matrix is still diagonal, but the diagonal elements are
now [± 2π

qj
,−µj

4 ,±
2π
qj
, . . . ,± 2π

qj
].

6.3. Horseshoe and fibred dynamics over the shift. We now wish to produce
oscillating orbits instead of drifting ones and to prove Theorem 2.2. To generate
positive and negative jumps of the r1-variable, it is necessary to have two zones in
the pendulum space at our disposal, one for each sign; then, to produce a random
walk, it suffices to find orbits visiting these two zones in any prescribed order, and
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to make use of an adapted version of the coupling lemma. Our starting point will be
the creation of two transverse homoclinic points for the perturbed pendulum, which
will enable us to construct adapted symbolic dynamics by the classical horseshoe
method, the two aforementioned zones being two suitable neighbourhoods of the
homoclinic points.

But to make sure that a coupling perturbation of the form which we already
used in the previous sections is still relevant in the present context, we shall have in
addition to control the minimal number of iterates required to produce a horseshoe.
And this will cause new difficulties, since we shall have to take care of the fact that
not only the splitting angle, but also the Lyapounov exponents of the fixed point
go to 0 when j → ∞, the latter even being exponentially small with respect to
the perturbation. To overcome that difficulty without introducing cumbersome
estimates, we shall slightly modify our pendulum map in order to facilitate the
local analysis in the neighbourhood of the hyperbolic point.

We introduce a new function V , which differs from the previous one mainly by
the fact that it is exactly reduced to its quadratic part in the neighbourhood of its
maximum. Namely, we choose in Gα,L(T) a function V taking its values in [−2, 0]
and satisfying the conditions:

V (0) = −2, V ( 1
2 ) = 0, V (θ) = − 1

2

∣∣θ − 1
2

∣∣2 if
∣∣θ − 1

2

∣∣ < 1
8 (46)

(such a function is easily constructed, e.g. using Gevrey partitions of unity). Our
new functions P∗ and PN have the same expressions as above:

P∗(θ∗, r∗) =
1
2
r2∗ + V (θ∗), PN (θ2, r2) =

1
2
r22 +

1
N2

V (θ2),

but they now involve the new function V . Note in particular that the relation
P∗ ◦ σ = N2 PN and the conjugacy equation ΦPN = σ−1 ◦ Φ

1
N P∗ ◦ σ still remain

valid.
The point O = ( 1

2 , 0) is still a hyperbolic fixed point for the pendulum-
like maps ΦP∗ and ΦPN , the separatrices of which are the curves of equations
r∗ = ±

√
−2V (θ∗) and r2 = ± 1

N

√
−2V (θ2) respectively; we shall denote by

h
(±1)
∗ = (0,±2) and h(±1)

N = (0,± 2
N ) the upper and lower points on them.

To create transverse intersections of the invariant manifolds of O at the points
h

(±1)
N , we shall also modify our previous splitting function. We now set:

SN (θ2, r2) =
(
η̃N,L(r2 − 2

N ) + η̃N,L(r2 + 2
N )
)(

X2

2 η̃4N,ΛN
(X)

)
, (47)

so the behaviour of SN is exactly the same as that of the previous function in
the neighbourhood of the upper point and we now have an analogous effect in the
neighbourhood of the lower one. We define our new “perturbed pendulum” map
as:

G
(j)
2 = Φ

1
2 r2

2+ 1
N2

j

V (θ2)
◦ ΦµjSNj , (48)

with the functions V and SNj
just defined by (46) and (47), and with the same Nj

as always (defined in (19)) and µj = 1/(N2
j ‖SNj

‖α,L). Note that we still have
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µj ≥ exp(−cN
1

α−1
j ) for a given positive constant c, because the supports of the η̃

functions involved in the first term of the definition of SN are disjoint.
Note also that O = (1/2, 0) is still a hyperbolic fixed point for G(j)

2 , and now
admits the two homoclinic points h(±1)

Nj
= (0,± 2

Nj
).

Finally, we set qj = 2NjMj with Mj as in Lemma 4.4, so qj is now even
but still satisfies inequalities of the form (34). As in the previous sections, qj
is chosen in order to control the size of the coupling perturbation 1

qj
U ⊗ g(j),

which will be defined later in the construction (equation (49)): we shall still have
‖ 1

qj
U ⊗ g(j)‖α,L, ‖µjSNj

‖α,L ≤ εj := ‖V ‖α,L

N2
j

.
The following lemma provides us with the necessary symbolic dynamics for the

qthj power of the function G(j)
2 .

Proposition 6.3. Let B(+1)
j = [− 1

Nj
, 1

Nj
] × [ 1

Nj
, 3

Nj
] and B(−1)

j = [− 1
Nj
, 1

Nj
] ×

[− 3
Nj
,− 1

Nj
]. There exist a compact set Kj ⊂ B(+1)

j ∪ B(−1)
j , invariant under(

G
(j)
2

)qj , and a homeomorphism ρj from Kj to the space {−1,+1}Z conjugating
the restriction

(
G

(j)
2

)qj

|Kj
with the shift [ on {−1,+1}Z.

Moreover, given x ∈ Kj, one has ρj(x) = (κ`)`∈Z if and only if
(
G

(j)
2

)`qj (x) ∈
Bκ`

j for each ` ∈ Z.

The shift [ is defined here by [((κ`)`∈Z) = (κ′`)`∈Z, with κ′` = κ`+1. The proof of
Proposition 6.3 will be the main part of the present section. To obtain Kj , we shall
first construct an invariant set in the neighbourhood of the fixed point, using the
classical horseshoe method; then the composition by a suitable iterate of the map
G

(j)
2 will yield the desired localization inside the boxes B(±1)

j . We shall closely follow
Moser’s simple presentation of the horseshoe theorem for two-dimensional systems
([Mos73], Chapter III). Our main difficulty here will be to prove that the minimal
number of iterates required to produce a horseshoe for the system G

(j)
2 is smaller

that the number qj . To overcome the difficulty caused by the j-dependence of the
map G

(j)
2 , we shall take advantage, as far as possible, of the conjugacy between

the pendulum and normalized pendulum maps ΦPNj and ΦP∗ , and perform our
constructions simultaneously for the two maps.

We shall need some additional definitions based on Moser’s presentation. We
fix a coordinate system (zh, zv) in the plane R2. Given a real number β > 0, we
consider the rectangle R = {|zh| ≤ β, |zv| ≤ β} and a fixed positive number ζ. We
define a ζ-horizontal curve in R as the graph of a ζ-Lipschitz map zh 7→ zv = γh(zh)
defined on the interval |zh| ≤ β, and a ζ-vertical curve as the graph of a ζ-Lipschitz
map zv 7→ zu = γv(zv) defined on the interval |zv| ≤ β. A ζ-horizontal strip is a
domain of the form:

Sh = {(zh, zv) | γd
h(zh) ≤ zv ≤ γu

h(zh)},
where γd

h, γ
u
h are two ζ-horizontal curves such that γd

h(zh) < γu
h(zh) if |zh| ≤ β. One

has an analogous definition for the vertical strips Sv.
The horseshoe method for producing symbolic dynamics in our problem first

requires to find a rectangle R together with two vertical strips V (±1), such that
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the images H(±1) =
(
G

(j)
2

)qj (V (±1)) intersect R along two horizontal strips. Then
one has to check some cone conditions ensuring the existence of an invariant set
and the conjugacy of the dynamics to a shift. The proof will necessitate several
steps, the first of which is the definition of natural coordinate systems in suitable
neighbourhoods of the fixed point and the separatrices for ΦP∗ and ΦPNj .

We first take into account the particular form of the function V and introduce
linearizing symplectic coordinates in the neighbourhood V∗ = {

∣∣θ∗ − 1
2

∣∣ < 1
8} of

the hyperbolic fixed point O. Writing θ̄∗ for θ∗ − 1
2 , we set:

u∗ = 1√
2
(r∗ + θ̄∗), s∗ = 1√

2
(r∗ − θ̄∗);

so ds∗∧du∗ = dr∗∧dθ̄∗ and P∗(θ∗, r∗) = 1
2r

2
∗− 1

2 θ̄
2
∗ = u∗s∗ in V∗. As a consequence,

the map ΦP∗ is linear inside V∗:

ΦP∗(u∗, s∗) = (eu∗, e−1 s∗).

We introduce the ball

B0
∗ = {|u∗| ≤ e−3, |s∗| ≤ e−3} ⊂ V∗,

which will serve as a reference neighbourhood for O; note that the extremal values
of P∗ on B0

∗ are ±e−6. For each β ∈ ]0, e−6], we define a tubular neighbourhood of
the separatrices by V∗(β) = {|P∗| ≤ β}; remark that V∗(β) is moreover invariant
under the flow ΦtP∗ , and that B∗0 ⊂ V∗(e−6).

In the subset V∗(β) ∩ {0 < θ∗ < 1, r∗ > 0} we introduce the coordinate system
(τ∗, e∗), where τ∗ is defined as in (25) (beware of the change of V ) and e∗ is the
value of P∗; note that e∗ = u∗s∗ in the common part V∗(β) ∩ B0

∗.
We now get the analogous neighbourhoods for the map ΦPN , taking care of the

various transformation formulae (for the sake of clarity, we omit the subscript j in
this paragraph). Writing θ̄2 = θ2 − 1

2 , the symplectic linearizing coordinates (u, s)
for ΦPN are defined in V = {

∣∣θ̄2∣∣ < 1
8} by:

u = 1√
2
(
√
Nr2 + 1√

N
θ̄2), s = 1√

2
(
√
Nr2 − 1√

N
θ̄2);

and the (u∗, s∗)-coordinates of a point (θ∗, r∗) are related to the (u, s)-coordinates
of σ−1(θ∗, r∗) by u = u∗√

N
, s = s∗√

N
. In V we get the simple expression

PN (θ2, r2) = 1
2r

2
2 − 1

N2 θ
2
2 = 1

N us for the Hamiltonian, which yields a time-one
map of the form

ΦP∗(u∗, s∗) = (e
1
N u∗, e−

1
N s∗).

We finally introduce the neighbourhood B0 = σ−1(B0
∗) = {|u| ≤ e−3

√
N
, |s| ≤ e−3

√
N
}.

We shall construct our vertical and horizontal strips in the rectangle B0, which
we endow with the coordinates (zh = u, zv = s). Let us state a first auxillary
lemma, to gather the necessary information relative to the strips.

Lemma 6.2. There exists an integer j0 and a sequence (ζj)j≥j0 of positive numbers,
tending to 0 when j → ∞, such that, for each j ≥ j0, there exists in B0 two ζj-
vertical strips V (±1)

j , whose images H(±1)
j =

(
G

(j)
2

)qj (V (±1)
j ) are two ζj-horizontal

strips in B0.
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V
(−1)
j

V
(+1)
j

H
(+1)
j

H
(−1)
j

B(+1)
j

B(−1)
j

Figure 6. Construction of the symbolic dynamics for G
(j)
2 = Φ

PNj ◦ Φ
µjSNj .

Proof. We shall first construct the vertical and horizontal strips V (+1)
j and H

(+1)
j .

To preserve a certain symmetry, we find it useful to choose a small neighbourhood
∆j of the upper homoclinic point h(+1)

Nj
and examine its iterates of order + qj

2 and

− qj

2 by the map G
(j)
2 . We shall first select inside ∆j a subset whose qj

2 -backward
iterate will give us the desired vertical strip V (+1)

j , and then prove that the forward

iterate
(
G

(j)
2

)qj (V (+1)
j ) is a horizontal strip in B0. The other strips H(−1)

j and

V
(−1)
j will be obtained by the same process, using the lower homoclinic point h(−1)

Nj

instead of the upper one.
It would of course be easier to perform the constructions for the normalized

map ΦP∗ only, but we shall need some information relative to the j-dependent
map ΦPNj , because the splitting map does not possess a simple expression in the
(θ∗, r∗) coordinates. So we shall mainly work in the (θ∗, r∗) system for defining
intermediate subsets, but at the same time we consider their (θ2, r2)-analogues,
obtained by composition by the map σ−1.

For each integer m ≥ 1, we define a neighbourhood ∆∗(m) of h∗ by

∆∗(m) = {(θ∗, r∗) | |τ∗(θ∗, r∗)| ≤ 1
m , |e∗| ≤ e−10},

and provide it with the coordinates (τ∗, e∗). Let ν be the smallest integer for
which ΦνP∗(h∗) belongs to the interior of B0

∗. One can fix m0 large enough so as
to ensure the inclusion ΦνP∗(∆∗(m)) ⊂ B0

∗ when m ≥ m0. Let j0 be such that
Nj0 ≥ m0. In the following, for j ≥ j0, we shall consider the normalized domains
∆∗j = ∆∗(Nj) and their images ∆j = σ−1∆∗j . The final horizontal and vertical
strips we are searching for will be obtained as the qj

2 -forward and qj

2 -backward
iterates of a certain subdomain of ∆j , which will be constructed by means of two
successive reductions of ∆j . More precisely, the final subdomain will be nearly a
parallelogram in the (θ2, r2) coordinates, the boundary of which is composed of
nearly horizontal upper and lower sides, and right and left sides nearly rectilinear
with slope of the order of the splitting µj . The horizontal part of the boundary will
be determined in order that the qj

2 -forward iterate be a horizontal strip contained
in B0, while the right and left part will be determined in order that the qj

2 -backward
iterate be a vertical strip contained in B0.
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Let us perform the first reduction. We recall that Mj = qj

2Nj
is integer and

denote by D∗j the set of points x∗ ∈ ∆∗j such that the iterate ΦkP∗(x∗) belongs to
the set

(V (e−10) ∩ { 1
2 < θ∗ < 1}) ∪ B0

∗

for each k ∈ {1, . . . ,Mj}. Remark that

ΦνP∗(D∗j) = ΦνP∗(∆∗j ) ∩ {|u∗| ≤ e−Mj+ν−3} ⊂ {e−3 ≤ s∗ ≤ e−5}

and observe that the map ΦνP∗ sends the τ∗-axis on the s∗-axis. Let

ξj = 2e−Mj+ν−3.

Simple estimates based on the mean value theorem, applied to the derivative
of ΦνP∗ , show that, for j large enough, D∗j is a ξj-horizontal strip in R∗j =
{|τ∗| ≤ 1

Nj
, |e∗| ≤ 1}, relatively to the (τ∗, e∗) coordinates, and that the image

H∗ = ΦMjP∗(D∗j) is a horizontal strip in the rectangle B0, relatively to the (u∗, s∗)
coordinates. In the following we assume that j0 is large enough to ensure that
these two properties hold when j ≥ j0. Therefore, for j ≥ j0, the set Dj = σ−1D∗j
is also a ξj

Nj
-horizontal strip in the rectangle Rj = σ−1(R∗j), relatively to the

(u2, s2)-coordinates, and the image Hj = Φ
qj
2 PNj (Dj) is a horizontal strip in B0,

the Lipschitz factor of which we do not have to make precise. This ends the first
reduction of the initial domain.

The second reduction and the construction of the vertical strip V
(+1)
j will be

performed simultaneously: we shall now examine the behaviour of the backward
iterate

(
G

(j)
2

)−qj (Hj), and prove that some part of its intersection with B0 is a
vertical strip in B0, that we shall choose as V (+1)

j ; the corresponding part in Dj

will be the reduced domain. This is where the splitting map comes into play.
Indeed, remark that(
G

(j)
2

)−qj (Hj) = Φ−
qj
2 PNj ◦ Φ−µjSNj ◦ Φ−

qj
2 PNj (Hj) = Φ−

qj
2 PNj

(
Φ−µjSNj (Dj)

)
,

so we first have to describe the set Ej = Φ−µjSNj (Dj). Equivalently, we shall
describe the image E∗j = σ(Ej). This is in fact another strip, for which we shall
come back to the (τ∗, e∗)-coordinates in the neighbourhood of the upper point h∗.
More precisely, we shall limit ourselves to the intersection of E∗j with the rectangular
domain R∗j = {|τ∗| ≤ 1

Nj
, |e∗| ≤ 1}. We claim that, if j0 is large enough and j ≥ j0,

the intersection E∗j ∩R∗j is a strip contained between the graphs of two decreasing
functions γd < γu defined on the interval {|τ∗| ≤ 1

Nj
}, which furthermore satisfy

γd

(
− 1

8Nj

)
≥ µj

16
, γu

( 1
8Nj

)
≤ −µj

16
,

−2µjNj ≤ γ′u(τ∗), γ′d(τ∗) ≤ −µjNj

2
, |τ∗| ≤

1
Nj

.

The verification is easy, using Lemma 6.1, since D∗j is a ξj-horizontal strip and the
ratio ξj/µj goes to 0 when j tends to ∞.
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Now we can take up the description of
(
G

(j)
2

)−qj (Hj) = Φ−
qj
2 PNj (Ej), which will

lead to the construction of the vertical strip V
(+1)
j . We shall proceed as for the

first reduction of domain and consider the points x∗ in E∗j whose backward iterates
Φ−kP∗(x∗) belong to the set (V (e−10) ∩ {0 < θ∗ <

1
2}) ∪ B

0
∗ for k ∈ {1, . . . ,Mj}.

The problem is now to determine the intersection

Φ−νP∗(E∗j) ∩ { |s∗| ≤ e−Mj+ν−3 }.

We claim that this intersection is a horizontal strip I∗j , relatively to the (u∗, s∗)-
coordinates in B0

∗, limited by the graphs of two functions ϕd < ϕu, the derivatives
of which satisfy

max{‖ϕ′d‖C0 , ‖ϕ′u‖C0} ≤ c1
µj
,

the positive number c1 being independent of j. The proof of that assertion is
straightforward and left to the reader.

We can now conclude our description of the interesting part of
(
G

(j)
2

)−qj (Hj).
It only remains for us to examine the backward iterate Φ−(Mj−ν)P∗(I∗j), which is
easy since, due to the linear character of the map ΦP∗ inside B0

∗, our last assertion
directly implies that Φ−(Mj−ν)P∗(I∗j) is a vertical strip in the rectangle B0

∗, with
Lipschitz factor ζj = c1

µj
exp(−2(Mj − ν)) tending to 0 when j tends to ∞. We

denote by V (+1)
∗j that vertical strip, and we finally get the desired vertical strip in

B0 by setting V (+1)
j = σ−1(V (+1)

∗j ), which is also a ζj-vertical strip in B0.

As for the reduction of domain, we now set P∗j = Φ−MjP∗(V (+1)
∗j ). This is a

small neighbourhood of the point h∗, contained in the strip E∗j , which has nearly
the shape of a parallelogram in the (τ∗, e∗)-coordinates. More precisely, P∗j is
obtained as the intersection of E∗j with the horizontal strip S∗j limited by the
images by ΦνP∗ of the two segments s∗ = ±e−Mj+ν−3 in B∗0 . As above, it is not
difficult to see that these images are ξj-Lipschitz graphs of functions from the τ∗-
axis to the e∗-axis. Hence the boundary of P∗j is composed of two nearly horizontal
parts, the intersections of these two graphs with E∗j , and of right and left parts
which are the intersections of the right and left parts of the boundary of E∗j with
the horizontal strip S∗j . These parts are graphs of functions, the slope of which
is approximately −µjNj in the (θ∗, r∗) variables. Finally, we end up with the
corresponding parallelogram Pj = σ−1(P∗j) in the (θ2, r2) variables, the boundary
of which has obvious description.

To conclude the proof, it only remains for us to go forward and show that the
image

(
G

(j)
2

)qj (V (+1)
j ) is indeed a horizontal strip in B0. Just as above, we have to

take care of the occurrence of the splitting map in the chain of iterates. We remark
that(

G
(j)
2

)qj (V (+1)
j ) = Φ

qj
2 PNj ◦ ΦµjSNj ◦ Φ

qj
2 PNj (V (+1)

j ) = Φ
qj
2 PNj ◦ ΦµjSNj (Pj)

The domain Lj = ΦµjSNj (Pj) is still nearly a parallelogram, the boundary of which
is the image of the previous one: the right and left parts of its boundary are now
the images by the splitting map of the horizontal parts of the boundary of Pj ,

Prepared using etds.cls



44 J.-P. Marco and D. Sauzin

while the other two ones are nearly horizontal. For the final step, we go back to
the (τ∗, e∗)-coordinates and consider L∗j = σ(ΦµjSNj (Pj)). The slope of the right
and left parts of its boundary has a lower bound of the form c2µjNj , and this is
enough to ensure that Φqj/2Nj (L∗j) is a ζj-horizontal strip in B0

∗. The final strip
H

(+1)
j is therefore a ζj-horizontal strip in B0, and we are done. This ends the proof

of Lemma 6.2. 2

As indicated at the beginning of the proof, we proceed in a similar way to
get two other strips V (−1) and H(−1) inside B0, with the same Lipschitz factor.
Our last task will be to consider the usual cone conditions inside the vertical and
horizontal strips. Following Moser, given δ > 0, we now define two trivial sector
bundles Ch(δ) and Cv(δ) in the tangent space TB0 = B0 × R2, whose fibres over
each point are respectively the sectors Ch(δ) = {(ωu, ωs) | |ωs| ≤ δ |ωu|} and
Cv(δ) = {(ωu, ωs) | |ωu| ≤ δ |ωs|}. The following and last auxillary lemma, whose
proof is straightforward, depicts the behaviour of these bundles under positive and
negative iteration by G(j)

2 .

Lemma 6.3. There exists j1 ≥ j0 and a sequence (δj)j≥j1 of positive numbers,
converging to 0, such that the sector bundle Ch(δj), restricted to V (+1) ∪ V (−1), is
invariant under

(
G

(j)
2

)qj , and that the sector bundle Cv(δj), restricted to H(+1) ∪
H(−1), is invariant under

(
G

(j)
2

)−qj . Moreover, for each point z ∈ V (+1) ∪ V (−1)

and each (ωu, ωs) ∈ Ch(δj), the image (ω′u, ω
′
s) = Tz

(
G

(j)
2

)qj (ωu, ωs) satisfies the
dilatation condition |ω′u| ≥ δ−1

j |ωu|, and for each point z ∈ H(+1)∪H(−1) and each

(ωu, ωs) ∈ Cv(δj), the image (ω′u, ω
′
s) = Tx

(
G

(j)
2

)qj (ωu, ωs) satisfies the contraction
condition |ω′s| ≤ δj |ωs|.

The horseshoe theorem applies (see [Mos73]) and yields a compact invariant set
K̄j contained in the union H

(−1)
j ∪ H(+1)

j , and a homeomorphism ρ̄j from K̄j to

{−1,+1}Z satisfying the conjugacy equation
(
G

(j)
2

)qj

|K̄j
= ρ̄j ◦ [ ◦ ρ̄−1

j . The coding
sequence ρ̄j(x) = (κ`) of a point x ∈ K̄j is determined by the sequence of visits of
its iterates in the strips H(+1) and H(−1): by construction

(G(j)
2 )`qj (x) ∈ H(κ`), ` ∈ Z.

The last step of our construction will be to send the previous invariant set K̄j into
the two neighbourhoods B(±1)

j of the upper and lower homoclinic points. For this,
one just has to consider the image

Kj = (G(j)
2 )

qj
2 (K̄j) ⊂ (G(j)

2 )
qj
2
(
H(+1) ∪H(−1)

)
,

and to set ρj = ρ̄j ◦ (G(j)
2 )−

qj
2 . Since (G(j)

2 )
qj
2
(
H(±1)

)
⊂ B(±1)

j , the conclusion of
Proposition 6.3 follows. 2

We now consider a suitable composed diffeomorphism Ψj , for which we shall
prove the existence of skew-product dynamics, fibred over the shift map on two
symbols. This construction may be seen as a perturbative example of the situation
described in [Moe02]. We have to modify the coupling function, in order to take
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advantage of our two disjoint zones in the pendulum space and choose the sign of
the drift. We define a function

g(j) = g
(j)
2 (θ2, r2)ĝ(j)(θ3, . . . , θn), ĝ(j) = η2pj,L

⊗ · · · ⊗ η2pj−n+3,L
, (49)

i.e. a function of the same form as in (32), but with

g
(j)
2 (θ2, r2) = η̃Nj ,L(r2 − 2

Nj
) η2pj ,L(θ2)− η̃Nj ,L(r2 + 2

Nj
) η2pj ,L(θ2), (50)

and we consider the map

Ψj = Φ
1

qj
U⊗g(j)

◦
(
Φ

1
2 r2

1 ×G
(j)
2 × Φ

1
2 (r2

3+···+r2
n)
)
, (51)

where G(j)
2 = ΦPNj ◦ΦµjSNj = Φ

1
2 r2

2+ 1
N2

j

V (θ2)
◦ΦµjSNj is the map which has occupied

us until now in the present section.

Proposition 6.4. For each x̂(j) ∈ B̂j × {r̂(j)}, the set Ij = A × Kj × {x̂(j)} is
invariant under the map Ψqj

j . After identification of Ij with A×Kj, the restriction
to Ij of Ψqj

j satisfies the conjugacy equation

(Ψj)
qj

|Ij
= (Id× ρj)−1 ◦ Pj ◦ (Id× ρj)

where the map Pj : A× {−1, 1}Z → A× {−1, 1}Z is defined by

Pj(x1, κ) = (Φ
κ1
qj

U ◦ (Φ
1
2 r2

1 )qj (x1), [(κ)) for x1 ∈ A and κ = (κ`)`∈Z ∈ {−1, 1}Z.

Proof. We are in a situation comparable to that of Lemma 3.2, with f = 1
qj
U ,

g = g(j), F = Φ
1
2 r2

1 and G = G
(j)
2 × Ĝ, where Ĝ = Φ

1
2 (r2

3+···+r2
n). We

first observe that ΦN ′
jPNj (Kj) lies outside the support of G(j)

2 . Let (x1, x2) ∈
A × Kj and x = (x1, x2, x̂

(j)). In view of (13), we readily compute Ψqj−1
j (x) =(

F qj−1(x1), (G
(j)
2 )qj−1(x2), Ĝqj−1(x̂(j))

)
, hence

Ψqj

j (x) =
(
Φ

1
qj

g
(j)
2 ((G

(j)
2 )qj (x2))U (F qj (x1)), (G

(j)
2 )qj (x2), x̂(j)

)
=
(
Φ

κ1
qj

U ◦ F qj (x1),
(
G

(j)
2

)qj (x2), x̂(j)
)
,

the last equality stemming from the definition of g(j)
2 and that of the coding sequence

for x2. This proves the proposition. 2

As a consequence, we can now obtain the random walk behaviour, by an
appropriate choice of the initial point on the first factor. As in (7), we denote
by Tδ the translation of step δ > 0 along the first action axis in An.

Corollary 6.1. Let G(j) be the diffeomorphism of An defined by G(j)(x1, x2, x̂) =
(x1, G

(j)
2 (x2), x̂). For all κ = (κ`)`∈Z ∈ {−1, 1}Z, there exists a point x ∈ An such

that
Ψ`qj

j (x) = Tκ`
qj

◦ G(j)(Ψ(`−1)qj

j (x)), ` ∈ Z.

In particular, the sequence (r(`)1 )`∈Z formed by the r1-coordinates of the points
Ψ`qj

j (x) satisfies

r
(`)
1 = r

(`−1)
1 +

κ`

qj
.
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Proof. The assertion results of an iterated application of Proposition 6.4, using a
point of the form x = ((0, 0), x(j)

2 , x̂(j)), where x(j)
2 = ρ−1

j (κ) and x̂(j) is any point
of B̂j × {r̂(j)}. 2

Theorem 2.2 is deduced from this result, with N = n+1, by the same suspension
procedure as in Section 5.2. In view of (51), we can indeed apply Lemma 5.1 with
u = 1

qj
U ⊗ g(j), v = 1

N2
j
V (θ2) and w = µjSNj

(θ2); we get a non-autonomous time-

periodic Hamiltonian Hj(θ, r, t), from which we obtain the desired Hamiltonian
of Tn+1 × Rn+1 as

Hj(θ, θn+1, r, rn+1) = rn+1 +Hj(θ, r, θn+1),

for (θ, θn+1) ∈ T× Tn and (r, rn+1) ∈ R× Rn.

Remark 6.2. The ergodicity result contained in § 4 of [Moe02] can also to some
little extent be adapted to our situation, at the price of a slight modification of the
map Ψj.

According to Proposition 6.4, we can indeed view the restriction (Ψj)
qj

|Ij
as a

skew-product

Pj(x1, κ) = (Fκ1(x1), [(κ)), Fκ1 = Φ
κ1
qj

U ◦ Φ
1
2 qjr2

1 ,

and consider F−1 and F+1 as two maps randomly iterated on the annulus A.
If we change the definition of g(j)

2 in (50) by retaining the first term only, the

new map Ψj defined by (51) now corresponds to the same F+1 = Φ
1

qj
U ◦ Φ

1
2 qjr2

1

but to F−1 = Φ
1
2 qjr2

1 . We then recover a particular case of the situation of
Theorem 4 of [Moe02], except that we have not restricted ourselves to a finite-
measure part of the annulus. By the same arguments as Moeckel, we can prove the
ergodicity of the Lebesgue measure λA for the pair of maps {F−1,F+1}. This is
sufficient to get a dense orbit for the skew-product Pj, and thus an orbit of Ψqj

j

whose first projection onto A is dense (indeed, the non-exitence of non-trivial Borel
subsets of A simultaneously invariant by F−1 and F+1 implies that for any two
non-void open subsets U , U ′ of A, there exist r ≥ 0 and κ1, . . . , κr ∈ {−1,+1}
such that Fκr ◦ · · · ◦ Fκ1(U) ∩ U ′ 6= ∅; hence, for any two non-void subsets E,
E′ of A × {−1,+1}Z, there exists n ≥ 0 such that Pn

j (E) ∩ E′ 6= ∅, since
each of these open sets contains a “rectangle” of the form U × C where C is a
“symmetric cylinder” {κ ∈ {−1,+1}Z | κ−m = α−m, . . . , κm = αm} for some
finite sequence α−m, . . . , αm and iterates of such rectangles are easy to compute;
topological transitivity follows by standard arguments). However, we were not able
to use this to obtain an ergodic measure for Ψqj

j , the support of which would have
been Ij = A×Kj × {x̂(j)}, simply because A has infinite Lebesgue measure and we
cannot invoke Kakutani’s theorem as Moeckel does in the finite measure case.

A. Appendix: proof of Lemma 3.1

A.1. We suppose

A′(Y ) = A1Y +A2Y
2 +A3Y

3 +O(Y 4), B′(X) = µ(X + bX3) +O(X4),
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with real coefficients such that 0 < µA1 < 2, and we wish to study locally
f = ΦA ◦ ΦB , defined by the formula

f(X,Y ) = (X1, Y1), X1 = X +A′(Y −B′(X)), Y1 = Y −B′(X).

The origin is a fixed point, at which the linear part is given by the matrix

Df(0) =
(

1− µA1 A1

−µ 1

)
.

We thus obtain λ = eiγ0 (and λ̄ = e−iγ0) as eigenvalue, with γ0 determined by

cos γ0 = 1− A1µ

2
, −π

2
< γ0 < 0,

as indicated in the statement of the lemma. Notice that λ−λ̄
i = 2 sin γ0 < 0 (it is

understood in that statement that Df(0) is rotation of angle γ0 rather than −γ0)
and that our assumptions ensure that none of the numbers λ, λ2, λ3, λ4 coincide
with 1.

The general theory guarantees the existence of a symplectic change of coordinates
which puts f in Birkhoff normal form at order 2:

X̃1 = X̃ cosα− Ỹ sinα, Ỹ1 = X̃ sinα+ Ỹ cosα, α = γ0 + γ1
X̃2+Ỹ 2

2 + . . . .

Our aim is to compute the number γ1 (which is uniquely determined).
We shall follow the procedure described in [SM71, §§31–34], according to which

we need not care about the symplectic character of the tranformations and can
content ourselves with searching for complex coordinates (ξ, η) in which f takes
the form

ξ1 = λξ(1 + iγ1ξη + . . .), η1 = λ̄η(1− iγ1ξη + . . .). (52)

A.2. We first perform a complex linear change of coordinates

x = −1
λ−λ̄

(X + λ̄−1
µ Y ), y = 1

λ−λ̄
(X + λ−1

µ Y ),

to diagonalize Df(0): in these coordinates, f becomes

x1 = p(x, y) = λx+ p2(x, y) + p3(x, y) + . . . ,

y1 = q(x, y) = λ̄y + q2(x, y) + q3(x, y) + . . . ,
(53)

with q(x, y) = p̄(y, x) because of the realness of f . The computation of γ1 requires
the knowledge of all the coefficients of the quadratic part

p2(x, y) = C2x
2 +D2xy + E2y

2, q2(x, y) = Ē2x
2 + D̄2xy + C̄2y

2,

and of the coefficient D3 of the cubic part

p3(x, y) = C3x
3+D3x

2y+E3xy
2+F3y

3, q3(x, y) = F̄3x
3+Ē3x

2y+D̄3xy
2+C̄3y

3.

We leave it to the reader to check that the inverse formulae for the linear change
of coordinates are

X = (1− λ)x+ (1− λ̄)y, Y = µ(x+ y)
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and that

C2 = Ωλ2, D2 = 2Ω, E2 = Ωλ̄2, D3 = − 3λµ2

λ− λ̄
(A2

1b+A3µ) Ω = −A2µ
2

λ− λ̄
.

(54)

A.3. We can now write the conjugation equation to be satisfied by a tangent-to-
identity transformation

x = φ(ξ, η) = ξ+φ2(ξ, η)+φ3(ξ, η)+. . . , y = ψ(ξ, η) = η+ψ2(ξ, η)+ψ3(ξ, η)+. . .

to pass from (53) to (52):

φ(λξ(1 + iγ1ξη + . . .), λ̄η(1− iγ1ξη + . . .)) =

λφ(ξ, η) + p2(φ(ξ, η), ψ(ξ, η)) + p3(φ(ξ, η), ψ(ξ, η)) + . . . ,

with ψ(ξ, η) = φ̄(η, ξ) because of the realness condition. The quadratic part of the
transformation is easily obtained by solving φ2(λξ, λ̄η)− λφ2(ξ, η) = p2(ξ, η):

φ2(ξ, η) =
C2

λ2 − λ
ξ2 +

D2

1− λ
ξη +

E2

λ̄2 − λ
η2

and ψ2(ξ, η) = φ̄2(η, ξ).
The coefficient γ1 is determined by examining the coefficient of ξ2η:

iλγ1ξ
2η + φ3(λξ, λ̄η)− λφ3(ξ, η)− p3(ξ, η) =

cubic part of
[
p2(ξ + φ2(ξ, η), η + ψ2(ξ, η)

]
,

thus

iλγ1 = D3 +
2− λ̄

1− λ
C2D2 +

1
1− λ̄

D2D̄2 +
2λ̄2

1− λ̄3
E2Ē2.

This corresponds to the formula given by [Io79], p. 30.
In view of (54), since Ω ∈ iR, we can write

iλγ1 −D3 = −2Ω2λ

(
(2− λ̄)λ
λ− 1

+
2

λ− 1
+

1
λ3 − 1

)
= −2Ω2λω,

whence the conclusion follows.
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