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Abstract

We consider a nonrelativistic electron interacting with a classical mag-

netic field pointing along the x3-axis and with a quantized electromagnetic

field. When the interaction between the electron and photons is turned off,

the electronic system is assumed to have a ground state of finite multiplic-

ity. Because of the translation invariance along the x3-axis, we consider

the reduced Hamiltonian associated with the total momentum along the

x3-axis and, after introducing an ultraviolet cutoff and an infrared regu-

larization, we prove that the reduced Hamiltonian has a ground state if

the coupling constant and the total momentum along the x3-axis are suf-

ficiently small. Finally we determine the absolutely continuous spectrum

of the reduced Hamiltonian.
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1 Introduction

We consider a nonrelativistic electron in R3 of charge e and mass m interacting
with a magnetic field pointing along the x3-axis and with photons. The magnetic
field takes the form (0, 0, b(x1, x2)) with b(x1, x2) = ∂a2

∂x1

(x1, x2) − ∂a1

∂x2

(x1, x2)
where a(x1, x2) is a vector potentiel. The associated Pauli Hamiltonian in
Coulomb gauge is formally given by

H =
1

2m
(p− ea(x′) − eA(x))2 − e

2m
b(x′)σ3 ⊗ 1 + V (x′) ⊗ 1

+1 ⊗Hph − e

2m
σ · B(x) .

(1.1)

Here the unit are such that h̄ = c = 1, p = −i∇x, x = (x1, x2, x3) together with
x′ = (x1, x2), σ = (σ1, σ2, σ3) is the 3-component vector of the Pauli matrices,
V (x′) is an electric potential depending only on the transverse variables. The
quantized electromagnetic field is formally given by

A(x) =
1

2π

∑

µ=1,2

∫

d3k

(

1

|k|1/2
εµ(k)e−ik·xa?

µ(k) +
1

|k|1/2
εµ(k)eik·xaµ(k)

)

,

(1.2)

B(x) =
i

2π

∑

µ=1,2

∫

d3k

{

−|k|1/2

(

k

|k| ∧ εµ(k)

)

e−ik·xa?
µ(k)

+ |k|1/2

(

k

|k| ∧ εµ(k)

)

eik·xaµ(k)

}

(1.3)

where εµ(k) are the real polarization vectors satisfying εµ(k) · εµ′(k) = δµµ′ ,
k · εµ(k) = 0; aµ(k) and a?

µ(k) are the usual annihilation and creation operators
acting in the Fock space

F := ⊕∞
n=0L

2(R3,C2)⊗
n
s

where L2(R3,C2)⊗
0

s = C and L2(R3,C2)⊗
n
s is the symmetric n-tensor power

of L2(R3,C2) appropriate for Bose-Einstein statistics. The annihilation and
creation operator obey the canonical commutation relations (a] = a? or a)

[a]
µ(k), a]

µ′(k
′)] = 0 et [aµ(k), a?

µ′(k′)] = δµµ′δ(k − k′) . (1.4)

Finally the Hamiltonian for the photons is given by

Hph =
∑

µ=1,2

∫

|k|a?
µ(k)aµ(k)d3k . (1.5)

The Hilbert space associated with H is then

H = L2(R3,C2) ⊗F ' L2(R3,C2 ⊗F) .

3



As it stands, the Hamiltonian H cannot be defined as a self-adjoint operator in
H and we need to introduce cutoff functions, both in A(x) and in B(x), which
will satisfy appropriate hypothesis in order to get a self adjoint operator in H.

This operator, still denoted by H , commutes with the third component,
denoted by P3, of the total momentum of the system (cf. [1]). We have P3 =
p3 ⊗ 1 + 1 ⊗ dΓ(k3) where dΓ(k3) is the second quantized operator associated
to the multiplication operator by the third component of k in L2(R3,C2). The
spectrum of P3 is the real line. In turns out that H admits a decomposition
over the spectrum of P3 as a direct integral

H '
∫ ⊕

R

H(P3)dP3 (1.6)

on

H '
∫ ⊕

R

L2(R3,C2 ⊗F)dP3 '
∫ ⊕

R

L2(R3,C2) ⊗FdP3 .

The reduced operator H(P3) will be explicitely computed and the aim of this
article is to initiate the spectral analysis of H(P3) when |P3| is small.

In the free case, i.e. when b = V = 0, a similar problem has been studied
in [2] by T. Chen who considers a freely propagating nonrelativistic spinless
charged particle interacting with the quantized electromagnetic field. T. Chen
proves that the reduced Hamiltonian associated to the total momentum P has a
unique ground state when P is sufficiently small by applying the renormalization
group method introduced in [3]. In the case of the one-particle sector of Nelson’s
model, similar result has been obtained first by J. Fröhlich (see [4], [5]) and more
recently by A. Pizzo (see [6], [7]) and J.S. Møller [8].

When V = 0 and b 6= 0, the electronic part has an infinitely degenerated
ground state and we face a difficult mathematical problem: the perturbation of
an eigenvalue of infinite multiplicity at the bottom of the essential spectrum. To
overcome this difficulty we essentially add an electrostatic potential V in order
to obtain an electronic Hamiltonian having a ground state of finite multiplicity
(cf. section 2.1 for the precise hypothesis on b and V ). Of course we still face
the problem of perturbing an eigenvalue at the bottom of the essential spectrum
but we give a simple proof for the existence of a ground state for H(P3) with an
ultraviolet cutoff and an infrared regularization. The proof borrows ideas both
from [4] (see also [5, 6, 7, 9]) where the Hamiltonian is invariant by translation
and [10] (see also [11, 12, 13, 14, 15, 16, 17, 18] where the electronic part is
confined).

Following [2], we can conjecture that H(P3) without infrared regularization
has no ground state in H.

The same proof also works for any free atom or positive ion interacting with
the quantized electromagnetic field.

Acknowledgements LA and BG acknowledge the hospitality of the Centre de
Mathématiques Appliquées de l’École Polytechnique where a large part of this
work has been done.
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2 Definition of the model and selfadjointness

The Hamiltonian H can be written as

H = H0 +HI (2.1)

where

H0 =







1

2m
p2
3 +

1

2m

∑

j=1,2

(pj − eaj(x′))2 − e

2m
b(x′)σ3 + V (x′)







⊗ 1 + 1 ⊗Hph(2.2)

and HI describes the interaction between the electron in the magnetic field b(x′)
with the photons. A basic tool is now to describe the spectral properties of the
Pauli operator in L2(R2,C2) that we are dealing with.

2.1 The Pauli operator with magnetic fields

Let h(b, V ) be the following operator in L2(R2,C2)

h(b, V ) =
1

2m

∑

j=1,2

(pj − eaj(x1, x2))2 − e

2m
b(x1, x2)σ3 + V (x1, x2) . (2.3)

As in [19] the aj ’s are real functions in C1(R2) such that b(x1, x2) = ∂
∂x1

a2(x1, x2)−
∂

∂x2

a1(x1, x2) and we suppose that

Hyp. 2.1. b and V sastisfy

(i) b ∈ C1(R2) and

1/C ≤ b(x1, x2) ≤ C and |∇b(x1, x2)| ≤ C

for some C > 1.

(ii) V is a real function in L∞(R2) and

V (x1, x2) → 0 as |(x1, x2)| → +∞ .

We then have

Proposition 2.2. Suppose that hypothesis 2.1 is satisfied, then the operator
h(b, V ) with domain

D(b, V ) =
{

u ∈ L2(R2,C2) | h(b, V )u ∈ L2(R2,C2)
}

is self-adjoint in L2(R2,C2).
Furthermore h(b, V ) is essentially self-adjoint on C∞

0 (R2,C2).
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The proof can be found in [20] (see also [21] and [22]).
According to [23] (see also [24, 25, 26]) 1

2m

∑

j=1,2(pj − eaj(x1, x2))2 −
e

2mb(x1, x2)σ3 has zero as an eigenvalue of infinite multiplicity. Zero is also the
bottom of its spectrum. By adding V (x1, x2), the operator h(b, V ) may have
eigenvalues of finite multiplicity accumulating at zero. In fact there exist b and
V satisfying hypothesis 2.1 such that h(b, V ) has strictly negative eigenvalues
of finite multiplicity (see [19, 26]).

We now suppose that

Hyp. 2.3. b and V are such that the bottom of the spectrum of h(b, V ) is a
strictly negative isolated eigenvalue of finite multiplicity.

Notice that hypothesis (2.1),(2.3) allow to choose a constant magnetic field
but, in this case, V cannot be identically zero.

In fact in what follows we only use that : h(b, V ) is essentially self-adjoint
on C∞

0 (R2,C2) and inf σ(b, V ) is an isolated eigenvalue with finite multiplicity.

2.2 The model

We now introduce the formal Hamiltonian in the Fock space associated to (1.1).
As usual we will consider the charge e in front of the quantized electromagnetic
field A(x) as a parameter and from now on we will denote it by g.

We introduce ρ(k) a cutoff function associated with an ultraviolet cutoff and
an infrared regularization the precise regularization assumption verified by ρ
will be given in each theorem but ρ will always satisfy (2.7) below.

The associated quantized electromagnetic field is then given by (j = 1, 2, 3)

Aj(x, ρ) =
1

2π

∑

µ=1,2

∫

d3k

(

ρ(k)

|k|1/2
εµ(k)je

−ik·xa?
µ(k) (2.4)

+
¯ρ(k)

|k|1/2
εµ(k)je

ik·xaµ(k)

)

,

Bj(x, ρ) =
i

2π

∑

µ=1,2

∫

d3k

(

−|k|1/2ρ(k)

(

k

|k| ∧ εµ(k)

)

j

e−ik·xa?
µ(k) (2.5)

+ |k|1/2 ¯ρ(k)

(

k

|k| ∧ εµ(k)

)

j

eik·xaµ(k)

)

.

The interaction Hamiltonian (cf. (2.1)) reads

HI = − g

m

∑

j=1,2

{Aj(x, ρ)(pj − eaj(x′)) + (pj − eaj(x′))Aj(x, ρ)}

− g

m
{A3(x, ρ)p3 + p3A3(x, ρ)}

− g

2m
σ · B(x, ρ) +

g2

2m
A(x, ρ) ·A(x, ρ) .
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Noticing that k · εµ(k) = 0, HI can be rewritten as

HI = − g

m
A3(x, ρ)p3 −

g

m

∑

j=1,2

Aj(x, ρ)(pj − eaj(x′))

− g

2m
σ · B(x, ρ) +

g2

2m
: A(x, ρ) · A(x, ρ) :

(2.6)

where we also substitute the Wick normal ordering : A(x, ρ)·A(x, ρ) : for A(x, ρ)·
A(x, ρ). This last substitution changes the Hamiltonian by a constant as it
follows from the canonical commutation relations.

Let F0,fin be the set of (ψn)n≥0 ∈ F such that ψn is in the Schwartz space
for every n and ψn = 0 for all but finitely many n. Suppose that

∫

|k|≤1

|ρ(k)|2
|k|2 d3k <∞ and

∫

|k|≥1

|k||ρ(k)|2d3k <∞ . (2.7)

Then our model is described by the operator H = H0 +HI given by (2.2), (2.6),
and this operator is well defined on C∞

0 (R3,C2) ⊗F0,fin.

2.3 Selfadjointness

In L2(R3,C2) ⊗ F , the operator H0 given by (2.2) is essentially self adjoint
on C∞

0 (R3,C2) ⊗ F0,fin (see [27]). Its self-adjoint extension is still denoted
by H0. The interaction operator HI (see (2.6)) is a symmetric operator on
C∞

0 (R3,C2)⊗F0,fin. We are going to prove that HI is relatively bounded with
respect to H0 to apply the Kato-Rellich theorem

Theorem 2.4. Assume (2.7) and

6|g|
π
√

2m

(
∫ |ρ(k)|2

|k|2 d3k

)1/2

+
g2

π2m

∫ |ρ(k)|2
|k|2 d3k <

1

2
.

Then H is a self-adjoint operator in H with domain D(H) = D(H0) and H is
essentially self-adjoint on C∞

0 (R3,C2) ⊗F0,fin.

Proof. To begin with we recall the following well known estimates (cf. [28])

‖aµ(g(., x))ψ‖ ≤
(
∫ |g(x, k)|2

|k| d3k

)1/2

‖(I ⊗H
1/2
ph )ψ‖ (2.8)

and

‖a∗µ(g(., x))ψ‖ ≤
(
∫ |g(x, k)|2

|k| d3k

)1/2

‖(I ⊗H
1/2
ph )ψ‖

+

(
∫

|g(x, k)|2d3k

)1/2

‖ψ‖ .
(2.9)
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We get for ψ ∈ C∞
0 (R3,C2) ⊗F0,fin

|g|
m

‖A3(x, ρ)p3ψ‖ ≤ 4|g|
π
√

2m

(
∫ |ρ(k)|2

|k|2 d3k

)1/2

‖(I ⊗H
1/2
ph )(

p3√
2m

⊗ I)ψ‖

+
2|g|
π
√

2m

(
∫ |ρ(k)|2

|k| d3k

)1/2

‖(
p3√
2m

⊗ I)ψ‖ .

Denoting e(b, V ) := inf σ(h(b, V )), notice that

‖(I ⊗H
1/2
ph )(

p3√
2m

⊗ I)ψ‖ ≤ 1

2

(

‖(I ⊗Hph)ψ‖ + ‖(
p3√
2m

⊗ I)ψ‖
)

≤ ‖(H0 − e(b, V ))ψ‖

and, for every ε > 0,

‖(
p3√
2m

⊗ I)ψ‖ ≤
√

ε

2
‖(H0 − e(b, V ))ψ‖ +

1√
2ε

‖ψ‖

to obtain that

|g|
m

‖A3(x, ρ)p3ψ‖ ≤ 4|g|
π
√

2m

(
∫ |ρ(k)|2

|k|2 d3k

)1/2

‖(H0 − e(b, V ))ψ‖

+
2|g|
π
√

2m

(
∫ |ρ(k)|2

|k| d3k

)1/2(√
ε

2
‖(H0 − e(b, V ))ψ‖ +

1√
2ε

‖ψ‖
)

.

(2.10)

Therefore g
mA3(x, ρ)p3 is relatively bounded with respect to H0 with relative

bound 4|g|
π
√

2m

(

∫ |ρ(k)|2
|k|2 d3k

)1/2

. Similarly we verify that for j = 1, 2, g
mAj(x, ρ)(pj−

eaj(x′)) is also relatively bounded with respect to H0 with the same relative

bound, and that |g|
2mσ · B(x, ρ) is relatively bounded with respect to H0 with

zero relative bound.
It remains to estimate the quadratic terms associated with g2

2m : A(x, ρ) ·
A(x, ρ) :. Let us recall the following estimates (cf. [29]):
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‖aµ(f)aλ(f)ψ‖ ≤
(
∫ |ρ(k)|2

|k|2 d3k

)

‖(Hph + 1)ψ‖

+K

(
∫ |ρ(k)|2

|k|2 d3k

)1/2(∫

|ρ(k)|2d3k

)1/2

‖(Hph + 1)1/2ψ‖ ,

‖a∗µ(f)aλ(f)ψ‖ ≤
(
∫ |ρ(k)|2

|k|2 d3k

)

‖(Hph + 1)ψ‖

+

(

K

(
∫ |ρ(k)|2

|k|2 d3k

)1/2 (∫

|ρ(k)|2d3k

)1/2

+

( |ρ(k)|2
|k|2 d3k

)1/2( |ρ(k)|2
|k| d3k

)1/2
)

‖(Hph + 1)1/2ψ‖ ,

‖a∗µ(f)a∗λ(f)ψ‖ ≤
(
∫ |ρ(k)|2

|k|2 d3k

)

‖(Hph + 1)ψ‖

+

(

K

(
∫ |ρ(k)|2

|k|2 d3k

)1/2 (∫

|ρ(k)|2d3k

)1/2

+

( |ρ(k)|2
|k|2 d3k

)1/2( |ρ(k)|2
|k| d3k

)1/2
)

‖(Hph + 1)1/2ψ‖

+

(

(
∫ |ρ(k)|2

|k|2 d3k

)1/2(∫

|k||ρ(k)|2d3k

)1/2

+

∫ |ρ(k)|2
|k| d3k

)

‖ψ‖

where K = 1
π

∫∞
0

√
λ

(1+λ)2 .

As (Hph + 1)1/2 is relatively bounded with respect to Hph + 1 (and thus

to H0) with a zero relative bound, we deduce that the relative bound of g2

2m :
A(x, ρ) · A(x, ρ) : with respect to H0 is given by

16
g2

2m

1

4π2

∫ |ρ(k)|2
|k|2 d3k .

Finally we get that HI is relatively bounded with respect to H0 with the relative
bound

12|g|
π
√

2m

(
∫ |ρ(k)|2

|k|2 d3k

)1/2

+
2g2

π2m

∫ |ρ(k)|2
|k|2 d3k

and hence theorem 2.4 is a consequence of the Kato-Rellich theorem.

2.4 The reduced Hamiltonian

The operator H is invariant by translation in the x3-direction. Thus, denoting
by P3 the total momentum in the x3-direction (P3 = p3 ⊗ 1 + 1 ⊗ dΓ(k3)), H
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has a direct integral representation in a spectral representation P3, i.e.

H '
∫ ⊕

R

H(P3)dP3 (2.11)

To compute H(P3) we proceed as in [4] (see also [1, 29] and[18]). Let Π be the
unitary map from F to L2(R) ⊗ L2(R2,C2) ⊗F defined by

(Πφ)n(P3, x
′, k1, . . . , kn) = φ̂n(P3 −

n
∑

i=1

ki,3, x
′, k1, . . . , kn)

where the hat stands for the partial Fourier transform in x3. One easily verifies
that, on C∞

0 (R3,C2) ⊗F0,fin,

(ΠAj(x′, x3, ρ)Π∗ = Aj(x′, 0, ρ) .

Therefore, for ψ ∈ C∞
0 (R3,C2) ⊗F0,fin,

(ΠHΠ∗ψ)(P3, ·) = H(P3)ψ(P3, ·)
where the reduced Hamiltonian H(P3) is given by

H(P3) = H0(P3) +HI(P3) (2.12)

with

H0(P3) = h(b, V ) ⊗ 1 + 1 ⊗
{

1

2m
(P3 − dΓ(k3))2 +Hph

}

(2.13)

and

HI(P3) = − g

2m
σ ·B(x′, 0, ρ) − g

m

∑

j=1,2

Aj(x′, 0, ρ)(pj − eaj(x′))

− g

m
A3(x′, 0, ρ)(P3 − dΓ(k3)) +

g2

2m
: A(x′, 0, ρ) ·A(x′, 0, ρ) :

(2.14)

For every P3, H(P3) is now an operator in L2(R2,C2) ⊗ F . We want to show
that this operator has a self adjoint representation such that (2.11) be satisfied.

The operator 1
2m (P3 − dΓ(k3))2 + Hph is essentially self-adjoint on F0,fin.

Therefore, for every P3 ∈ R, H0(P3) is essentially self-adjoint in C∞
0 (R2,C2) ⊗

F0,fin. We still denote by H0(P3) its self-adjoint extension. On the other hand
HI(P3) is a symmetric operator on C∞

0 (R2,C2) ⊗F0,fin and we want to prove
that it is relatively bounded with respect to H0(P3). For this we follow closely
the lines of section 2.3 and we only focus on the estimates of the new terms.
For ψ ∈ C∞

0 (R2,C2) ⊗F0,fin we have

|g|
m

‖A3(x′, 0, ρ)(P3 − dΓ(k3))ψ‖ ≤ 4|g|
π
√

2m

(
∫ |ρ(k)|2

|k|2 d3k

)1/2

‖(I ⊗H
1/2
ph )(I ⊗ P3 − dΓ(k3)√

2m
)ψ‖

+
2|g|
π
√

2m

(
∫ |ρ(k)|2

|k| d3k

)1/2

‖(I ⊗ P3 − dΓ(k3)√
2m

)ψ‖ .
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For every component ψn of ψ ∈ F0,fin associated with n photons the op-

erator (I ⊗H
1/2
ph )(I ⊗ P3−dΓ(k3)√

2m
) is the multiplication operator by the function

(
∑n

i=1 ω(ki))
1/2 P3−

∑
n
i=1

ki,3√
2m

. We then get

‖(I ⊗H
1/2
ph )(I ⊗ P3 − dΓ(k3)√

2m
)ψ‖ ≤ 1√

2
‖(I ⊗

{

Hph +
1

2m
(P3 − dΓ(k3))2

}

ψ‖

≤ 1√
2
‖(H0(P3) − e(b, V ))ψ‖

and, for any ε > 0,

‖I ⊗ P3 − dΓ(k3)√
2m

)ψ‖ ≤
√

ε

2
‖(H0(P3) − e(b, V ))ψ‖ +

1√
2ε

‖ψ‖ .

Therefore

|g|
m

‖A3(x′, 0, ρ)(P3 − dΓ(k3))ψ‖ ≤ 2|g|
π
√
m

(
∫ |ρ(k)|2

|k|2 d3k

)1/2

‖(H0(P3) − e(b, V ))ψ‖

+

√

ε

m

|g|
π

(
∫ |ρ(k)|2

|k| d3k

)1/2

‖(H0(P3) − e(b, V ))ψ‖

+
1√
εm

|g|
π

(
∫ |ρ(k)|2

|k| d3k

)1/2

‖ψ‖ .

And thus, as in section 2.3, we obtain that, for any η > 0, there exists a finite
constant aη such that

‖HI(P3)ψ‖ ≤ |g|(b+ η)‖H0(P3)ψ‖ + |g|aη‖ψ‖ (2.15)

with

b =
12

π
√

2m

(
∫ |ρ(k)|2

|k|2 d3k

)1/2

+
2g

π2m

∫ |ρ(k)|2
|k|2 d3k .

Therefore we have

Theorem 2.5. Assume (2.7) and

6|g|
π
√

2m

(
∫ |ρ(k)|2

|k|2 d3k

)1/2

+
g2

π2m

∫ |ρ(k)|2
|k|2 d3k <

1

2
. (2.16)

Then, for every P3 ∈ R, H(P3) is a self-adjoint operator in L2(R2,C2) ⊗ F
with domain D(H(P3)) = D(H0(P3)) and H(P3) is essentially self-adjoint on
C∞

0 (R2,C2) ⊗F0,fin.

Further we get

Corollary 2.6. We have

ΠHΠ∗ =

∫ ⊕

R

H(P3)dP3 .

The proof of corollary 2.6 follows by mimicking [29].
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3 Main results

For a bounded below self-adjoint operator A with a ground state, m(A) will
denote the multiplicity of inf σ(A). Our main result is the following theorem
which states that, for P3 and g sufficiently small, H(P3) has a ground state:

Theorem 3.1. Assume that the cutoff function satisfies

∫

|k|≤1

|ρ(k)|2
|k|3 d3k <∞ and

∫

|k|≥1

|k||ρ(k)|2d3k <∞ . (3.1)

Then there exist P > 0 and g0 > 0 such that for |P3| ≤ P and |g| ≤ g0, H(P3)
has a ground state. Furthermore m(H(P3)) ≤ m(h(b, V )). In particular, if
e(b, V ) is a simple eigenvalue of h(b, V ), then inf σ(H(P3)) is a simple eigenvalue
too.

The proof of this theorem is given in the next section. Notice that the
regularization condition (3.1) does not allow ρ(k) = 1 near the origin.

The existence of a ground state has several consequences. The first one is
the existence of asymptotic Fock representations for the CCR:

For f ∈ L2(R3,C2), we define on D(H0(P3)) the operators

a]
µ,t(f) := eitH(P3)e−itH0(P3)a]

µ(f)eitH0(P3)e−itH(P3) .

Let Q be a closed null set such that the polarization vectors εµ(k) are C∞ on
R3 \Q for µ = 1, 2. We have

Corollary 3.2. Suppose that the hypothesis of theorem 3.1 are satisfied. Then,
for f ∈ C∞

0 (R3 \ Q) and for every Ψ ∈ D(H0(P3)) the strong limits of a]
µ,t(f)

exist:
lim

t→±∞
a]

µ,t(f)Ψ =: a]
µ,±(f)Ψ .

The a]
µ,±’s satisfy the CCR and, if Φ(P3) is a ground state for H(P3), we have

for f ∈ C∞
0 (R3 \Q) and µ = 1, 2

aµ,±(f)Φ(P3) = 0 .

We then deduce the following corollary

Corollary 3.3. Under the hypothesis of theorem 3.1, the absolutely continuous
spectrum of H(P3) equals to [inf σ(H(P3)),+∞).

The proofs of these two corollary follow by mimicking [12, 15].
Our last application concerns the renormalized mass and magnetic moment

of the electron.
From now on we assume that the ground state of h(b, V ) is simple in such a

way that the ground state of H(P3) is also simple. To state our result we need
the notations and results of theorem 4.1: let Eσ(P3) be the ground energy of
the hamiltonian with infrared cutoff Hσ(P3), Eσ(P3) is a simple and isolated

12



eigenvalue of Hσ(P3) and therefore we deduce from the standart Kato’s per-
turbation theory that Eσ(P3) is a regular function of P3. We then define the
renormalized mass of the electron by

m? := lim inf
σ→0

m?
σ (3.2)

where
(m?

σ)−1 = ∂2
P3
Eσ(0) .

Let gel be the magnetic moment of the dressed electron. We then have

Corollary 3.4. Under the hypothesis of theorem 3.1 and assuming h(b, V ) as
a simple ground state, we have

m? ≥ m

i.e. the renormalized mass of the dressed electron in a magnetic field is larger
than the bare mass of the electron. It then follows that gel ≥ 2.

Proof. Since the ground state of Hσ(P3) is non degenarate, Eσ(P3) and Φσ(P3)
are smooth function of the parameter P3 and we easily obtain differentiating
the relation Hσ(P3)Φσ(P3) = Eσ(P3)Φσ(P3) the following formulas

∂P3
Eσ(P3) = 〈Φσ(P3), (∂P3

Hσ(P3))Φσ(P3)〉

and

∂2
P3
Eσ(P3) =〈Φσ(P3), (∂2

P3
Hσ(P3))Φσ(P3)〉

−2〈∂P3
Φσ(P3), (Hσ(P3) −Eσ(P3))∂P3

Φσ(P3)〉 . (3.3)

As ∂P3
Hσ(P3) = 1/m and Hσ(P3) − Eσ(P3) ≥ 0 we obtain m?

σ ≥ m for all σ
and thus m? ≥ m.

The fact that gel ≥ 2 follows from m? ≥ m as in [30, 31, 32].

4 Proof of the main theorem

To begin with we introduce an infrared (regularized) cutoff in the interaction
Hamiltonian HI(P3). Precisely, for σ > 0, let ρσ be a C∞ regularization of ρ
such that

(i) ρσ(k) = 0 for |k| ≤ σ

(ii) limσ→0

∫ |ρσ(k)−ρ(k)|2
|k|j d3k = 0 for j = 1, 2.

We define HI,σ(P3) as the operator obtained from (2.14) by substituting ρσ(k)
for ρ(k). We then introduce

Hσ(P3) = H0(P3) +HI,σ(P3)

and we set Eσ(P3) := inf σ(Hσ(P3)). Theorem 3.1 is a simple consequence of
the following result (see [28])

13



Theorem 4.1. There exist g0 > 0 and P > 0 such that, for every g satisfying
|g| ≤ g0 and for every P3 satisfying |P3| ≤ P , the following properties hold:

(i) For every Ψ ∈ D(H0(P3)) we have Hσ(P3)Ψ →σ→0 H(P3)Ψ

(ii) For every σ ∈ (0, 1), Hσ(P3) has a normalized ground state Φσ(P3) and
Eσ(P3) is an isolated eigenvalue of Hσ(P3).

(iii) Fix λ ∈ (e(b, V ), 0). For every σ > 0, we have

〈Φσ(P3), P(−∞,λ] ⊗ PΩph
Φσ(P3)〉 ≥ 1 − δg(λ)

where δg(λ) tends to zero when g tends to zero and δg(λ) < 1 for |g| ≤ g0.

In the last item, P(−∞,λ] is the spectral projection on (−∞, λ] associated to
h(b, V ) and PΩph

is the orthogonal projection on Ωph, the vacuum state in F .
Theorem 3.1 is easily deduced from theorem 4.1 as follows. Let Φσ be as

in theorem 4.1 (ii). Since ‖Φσ‖ = 1, there exits a sequence (σk)k≥1 converging
to zero and such that (Φσk

(P3))k≥1 converges weakly to a state Φ(P3). On the
other hand, since P(−∞,λ] ⊗ PΩph

is finite rank for λ ∈ (e(b, V ), 0), it follows
from (iii) that for |g| ≤ g0,

〈Φ(P3), P(−∞,λ] ⊗ PΩph
Φ(P3)〉 ≥ 1 − δg(λ)

which implies Φ(P3) 6= 0. Then we deduce from (i) that Φ(P3) is a ground state
for H(P3).

The result concerning the multiplicity of the ground state is an easy conse-
quence of corollary 3.4 in [15].

So it remains to prove theorem 4.1. The assertion (i) is easily verified in
section 4.1 below. The second assertion is proved in the appendix. Actually the
proof of (ii) is lenghty but straightforward since with the infrared cutoff we have
a control of the photon’s number in term of the energy. The real difficult part
is the third one which allows to remove the infrared cutoff. The fondamental
lemma in the proof of (iii) is lemma 4.3 which states that, for g and P3 small
enough, the fundamental energy Eσ(P3 − k3) may be smaller than Eσ(P3) but
the difference is controlled by − 3

4 |k|. This estimate, proved in section 4.2, is
essential to control the number of photons in the ground state of H(P3) via a
pull through formula (cf. section 4.3).

4.1 Proof of (i) of theorem 4.1

Let ρ̃σ := ρ− ρσ , we have

H(P3)−Hσ(P3) = HI(P3) −HI,σ(P3)

= − g

2m
σ · B(x′, 0, ρ̃σ) − g

m

∑

j=1,2

Aj(x′, 0, ρ̃σ)(pj − eaj(x′))

− g

m
A3(x′, 0, ρ̃σ)(P3 − dΓ(k3)) +

g2

2m
: A(x′, 0, ρ̃σ) ·A(x′, 0, ρ) :

+
g2

2m
: A(x′, 0, ρσ) ·A(x′, 0, ρ̃σ) :
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Therefore, as by hypothesis limσ→0

∫ |ρ̃σ(k)|2
|k|j d3k = 0 for j = 0, 1, 2, we deduce

from the estimates of sections 2.3, 2.4 and from the Lebesgue’s theorem that
for every Ψ ∈ D(H0(P3)),

(H(P3) −Hσ(P3))Ψ →σ→0 0 .

4.2 Fundamental estimates

In this section we give two lemmas that allow to control the function

P3 7→ Eσ(P3) .

Let g1 > 0 such that (2.16) is satisfied for |g| ≤ g1.

Lemma 4.2. There exists a finite constant C > 0 which does not depend on
σ ∈ [0, 1] and P3 ∈ R such that

e(b, V ) − |g|C ≤ Eσ(P3) ≤ e(b, V ) +
P 2

3

2m
(4.1)

for every σ ∈ [0, 1], P3 ∈ R and |g| ≤ g1.

Proof. Let φ(b, V ) be the normalized ground state of h(b, V ). Since 〈aµ(k)Ωph,Ωph〉 =
〈Ωph, a

∗
µ(k)Ωph〉 = 0, we have

〈Hσ(P3)φ(b, V ) ⊗ Ωph, φ(b, V ) ⊗ Ωph〉 = 〈H0(P3)φ(b, V ) ⊗ Ωph, φ(b, V ) ⊗ Ωph〉

= e(b, V ) +
P 2

3

2m

and thus

Eσ(P3) := inf {〈Hσ(P3)Φ,Φ〉 | Φ ∈ D(H0(P3)), ‖Φ‖ = 1}

≤ e(b, V ) +
P 2

3

2m
.

On the other hand, let H̃σ be the following operator in L2(R2,C2) ⊗F :

H̃σ = H̃0 + H̃I,σ

with
H̃0 = h(b, V ) ⊗ I + I ⊗Hph

and

H̃I,σ = − g

2m
σ · B(x′, 0, ρσ)

− g

2m

∑

j=1,2

(Aj(x′, 0, ρσ)(pj − eaj(x′)) + (pj − eaj(x′))Aj(x′, 0, ρσ))

+
g2

2m

∑

j=1,2

: Aj(x′, 0, ρσ) · Aj(x′, 0, ρσ) :
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As in section 2.4 one easily checks that, for |g| ≤ g1, H̃σ is a self-adjoint op-
erator in L2(R2,C2)⊗F with domain D(H0(P3)). Furthermore, on D(H0(P3))

Hσ(P3) = H̃σ +
1

2m
(P3 − dΓ(k3) − gA3(x′, 0, ρσ))2 − C(g, σ)

where, in order to take into account the Wick normal ordering,

C(g, σ) :=
g2

2m

1

(2π)2

∫ |ρσ |2
|k|

(

∑

µ=1,2

εµ(k)23

)

d3k .

Hence,
inf σ(H̃σ) ≤ Eσ(P3) + C(g, σ) (4.2)

for every P3 ∈ R. By (2.15) which also holds when ρ is replaced by ρσ, we get
that there exist two constants b > 0, a > 0 that does not depend on σ ∈ [0, 1]
and g ∈ [−g1, g1] and satisfying bg1 < 1 such that for Φ ∈ D(H̃0)

‖H̃I,σΦ‖ ≤ |g|(b‖H̃0Φ‖ + a‖Φ‖) .

Therefore, since inf σ(H̃0) = e(b, V ), we obtain as a consequence of the Kato-
Rellich theorem,

inf σ(H̃σ) ≥ e(b, V ) − max

(

a|g|
1 − b|g| , a|g| + b|g||e(b, V )|

)

. (4.3)

Combining (4.2) and (4.3) we deduce the announced lower bound for Eσ(P3)
with

C = max

(

a

1 − bg1
, a+ b|e(b, V )|

)

+
g1
2m

1

(2π)2

∫ |ρ|2
|k| d

3k .

Lemma 4.3. There exist 0 < g2 ≤ g1 and α > 0 such that

Eσ(P3 − k3) −Eσ(P3) ≥ −3

4
|k| (4.4)

uniformly for k ∈ R, σ ∈ [0, 1], |g| ≤ g2 and |P3| ≤ α.

Remark that in this lemma we do not assume that Hσ(P3) has a ground state
(i.e. we do not assume that Eσ(P3) is an eigenvalue of Hσ(P3)) and actually we
will use (4.4) in appendix A where we prove the existence of a ground state for
the Hamiltonian with infrared cutoff.

Proof. First we remark that, if (4.4) is proved forHσ(P3)+c for some constant c,
it will hold also for Hσ(P3). Thus, in what follows, we suppose that e(b, V ) = 0.

The proof decomposes in two steps. In the first one, we consider the large
values of |k3| (namely |k3| ≥ m/2) while, in the second one, we consider the
small values of |k3| (namely |k3| ≤ m/2).
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From (4.1), we deduce that, uniformly for σ ∈ [0, 1] and |g| ≤ g1, we have
for all k and P3

Eσ(P3 − k3) −Eσ(P3) ≥ − P 2
3

2m
− C|g|

and thus assuming |P3| ≤
√

3
4 m and |g| ≤ 3m

16C , (4.4) holds true for |k3| ≥ m/2.

Now we suppose |k3| ≤ m/2. As Eσ(P3 − k3) belongs to the spectrum of
Hσ(P3 −k3) there exists a sequence (ψj)j≥1 in D(Hσ(P3 −k3)) (= D(H0)) such
that ‖ψj‖ = 1 and

lim
j→∞

Hσ(P3 − k3)ψj −Eσ(P3 − k3)ψj = 0 .

We then have for every j

〈Hσ(P3 − k3)ψj , ψj〉 = 〈Hσ(P3)ψj , ψj〉 +
k2
3

2m
− k3

m
〈(P3 − dΓ(k3))ψj , ψj〉

+
2gk3

m
〈A3(x′, 0, ρσ)ψj , ψj〉

≥ Eσ(P3) +
k2
3

2m
− |k3|

m
|〈(P3 − dΓ(k3))ψj , ψj〉|

− 2|g||k3|
m

|〈A3(x′, 0, ρσ)ψj , ψj〉| .

(4.5)

In what follows C will denote any positive constant which does not depend on
P3 ∈ R, k3 ∈ R, g ∈ [−g1, g1], σ ∈ [0, 1] and j ≥ 1. We have

|〈(P3 − dΓ(k3))ψj , ψj〉| ≤ |k3| + |〈(P3 − k3 − dΓ(k3))ψj , ψj〉|
≤ |k3| + ‖(P3 − k3 − dΓ(k3))ψj‖
≤ |k3| + ‖(P3 − k3 − dΓ(k3))2ψj‖1/2

≤ |k3| +
√

2m‖H0(P3 − k3)ψj‖1/2 .

(4.6)

On the other hand, we get from (2.8) and (2.9),

|〈A3(x′, 0, ρσψj , ψj〉| ≤ C(‖H1/2
ph ψj‖ + 1)

≤ C(‖H0(P3 − k3)ψj‖1/2 + 1) .
(4.7)

Now, given ε > 0, let J be such that

‖Hσ(P3 − k3)ψj −Eσ(P3 − k3)ψj‖ ≤ ε (4.8)

for every j ≥ J (notice that J depends on ε but also on σ and P3 − k3).
Inserting (4.6) and (4.7) in (4.5) we obtain for j ≥ J

Eσ(P3 − k3) −Eσ(P3) ≥ −ε− k2
3

2m
− |k3|

√

2/m‖H0(P3 − k3)ψj‖1/2

− |k3|C|g|(‖H0(P3 − k3)ψj‖1/2 + 1)

(4.9)
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and it remains to estimate ‖H0(P3 − k3)ψj‖.
Writing

H0(P3−k3)ψj = (Hσ(P3−k3)−Eσ(P3−k3))ψj +Eσ(P3−k3)ψj−HI,σ(P3−k3)ψj

we get for j ≥ J

‖H0(P3 − k3)ψj‖ ≤ ε+ |Eσ(P3 − k3)| + ‖HI,σ(P3 − k3)ψj‖ .

Using (2.15) there exists C > 0 such that

‖HI,σ(P3)φ‖ ≤ |g|C(‖H0(P3)φ‖ + 1)

for every P3 ∈ R and φ ∈ D(H0(P3)). Thus, choosing g′1 ≤ g1 such that
g′1C ≤ 1/2, we get

‖H0(P3 − k3)ψj‖ ≤ 2ε+ 2|Eσ(P3 − k3)| + 2|g|C (4.10)

for j ≥ J and |g| ≤ g′1. Inserting this last inequality in (4.9) we obtain

Eσ(P3 − k3) −Eσ(P3) ≥ −ε− k2
3

2m
− |k3|

√

1/m(ε+ |Eσ(P3 − k3)| + |g|C)1/2

− |k3|C|g|((2ε+ 2|Eσ(P3 − k3)| + 2|g|C)1/2 + 1)

for every ε > 0. Hence

Eσ(P3 − k3) −Eσ(P3) ≥ −|k3|
{ |k3|

2m
−
√

1/m(|Eσ(P3 − k3)| + |g|C)1/2

−C|g|((2|Eσ(P3 − k3)| + 2|g|C)1/2 + 1)
}

(4.11)

for every k3 and P3 in R. Finally we use (4.1) to get for |k3| ≤ m/2,

|Eσ(P3 − k3)| ≤ C|g| +
P 2

3

2m
+

|P3|
2

+
m

8

and therefore there exit α > 0 and g2 ≤ g′1 such that for |P3| ≤ α, |k3| ≤ m/2
and |g| ≤ g2,

Eσ(P3 − k3) − Eσ(P3) ≥ −3

4
|k3| .

4.3 Proof of (iii) of theorem 4.1

In this section we assume that assertion (ii) of theorem 4.1 is already proved
(see appendix A). Thus let Φσ(P3) denote a normalized ground state of Hσ(P3),
i.e.

Hσ(P3)Φσ(P3) = Eσ(P3)Φσ(P3) .
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The main problem in proving (iii) of theorem 4.1 is to controll the number of
photons in the ground state Φσ(P3) uniformly with respect to σ. The operator
number of photons Nph is given by

Nph :=
∑

j=1,2

∫

R3

d3k a∗µ(k)aµ(k)

and we set

G(k) := |k|1/2|ρ(k)| +
|ρ(k)|
|k|1/2

.

Lemma 4.4. There exists a constant C independant of g and σ such that

‖(I ⊗N
1/2
ph )Φσ(P3)‖ ≤ C|g|

(
∫ |G(k)|2

|k|2 d3k

)1/2

(4.12)

for every σ ∈ (0, 1], |g| ≤ g2 and |P3| ≤ α (g2 and α are introduced in lemma
4.3).

Proof. One easily verifies that one has the following ”pull through” formula

aµ(k)Hσ(P3) = Hσ(P3 − k3)aµ(k) + ω(k)aµ(k) + vµ(k) (4.13)

with

vµ(k) =
ig

2πm
|k|1/2ρσ(k)e−ik′·x′

(

k

|k| ∧ εµ(k)

)

−
∑

j=1,2

g

2πm

ρσ(k)

|k|1/2
e−ik′·x′

εµ(k)j(pj − eaj(x′))

− g

2πm

ρσ(k)

|k|1/2
e−ik′ ·x′

εµ(k)3(P3 − dΓ(k3))

+
g2

2πm

ρσ(k)

|k|1/2
e−ik′ ·x′

εµ(k) ·A(x′, 0, ρσ) .

Applying (4.13) to Φσ(P3), we obtain

0 =(Hσ(P3 − k3) −Eσ(P3) + ω(k))aµ(k)Φσ(P3) + vµ(k)Φσ(P3)

=(Hσ(P3 − k3) −Eσ(P3 − k3) +Eσ(P3 − k3) −Eσ(P3) + ω(k))aµ(k)Φσ(P3)

+ vµ(k)Φσ(P3)

and thus, as Hσ(P3 − k3) −Eσ(P3 − k3) ≥ 0, we get using (4.4),

‖aµ(k)Φσ(P3)‖ ≤ 1

|Eσ(P3 − k3) −Eσ(P3) + ω(k)| ‖vµ(k)Φσ(P3)‖

≤ 4

|k| ‖vµ(k)Φσ(P3)‖
(4.14)
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for |P3| ≤ α and |g| ≤ g2. Using estimates from section 2.4 (and similarly as
(2.15)) we show that there exits a constant C > 0 such that

‖vµ(k)Φσ(P3)‖ ≤ C|g|G(k)(‖H0(P3) − e(b, V ))Φσ(P3)‖ + 1) . (4.15)

Now, similarly as (4.10), we have for |g| ≤ g2

‖H0(P3)Φσ(P3)‖ ≤ 2|Eσ(P3)| + 2Cg .

By lemma 4.2 |Eσ(P3)| ≤ C|g| +
P 2

3

2m and therefore we deduce from (4.14) that

‖aµ(k)Φσ(P3)‖ ≤ C|g|G(k)

|k|

where the constant C is uniform with respect to |P3| ≤ α, σ ∈ (0, 1] and |g| ≤ g2.
Thus lemma 4.4 follows from this last inequality and from

‖(I ⊗N
1/2
ph )Φσ(P3)‖2 =

∑

µ=1,2

∫

d3k‖(I ⊗ aµ(k))Φσ(P3)‖2 .

Let us remark that the above proof is a little bit formal since we do not check
that Φσ(P3) belongs to the domain of the different operators involved in the
pull through formula (4.13). But by mimicking [15] one easily gets a rigourous
proof. We omit the details.

Recall that we denote by P(.] the spectral measure of h(b, V ) and by PΩph

the orthogonal projection on Ωph. We have the following

Lemma 4.5. Fix λ ∈ (e(b, V ), 0). There exists δg(λ) > 0 such that δg(λ) → 0
when g → 0 and

〈P[λ,∞) ⊗ PΩph
Φσ(P3) , Φσ(P3)〉 ≤ δg(λ) (4.16)

for every σ ∈ (0, 1], |P3| ≤ α and |g| ≤ g2.

Proof. Since PΩph
Hph = 0 and PΩph

(P3 − dΓ(k3))2 = P 2
3 PΩph

we get

(P[λ,∞) ⊗ PΩph
)(Hσ(P3) −Eσ(P3)) = P[λ,∞)(h(b, V ) ⊗ I) ⊗ PΩph

+ (
P 2

3

2m
−Eσ(P3))P[λ,∞) ⊗ PΩph

+ P[λ,∞) ⊗ PΩph
HI,σ(P3) .

Applying this last equality to Φσ(P3) we obtain

0 = P[λ,∞)(h(b, V ) ⊗ I) ⊗ PΩph
Φσ(P3)

+ (
P 2

3

2m
−Eσ(P3))P[λ,∞) ⊗ PΩph

Φσ(P3)

+ P[λ,∞) ⊗ PΩph
HI,σ(P3)Φσ(P3) .

(4.17)
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Since h(b, V )P[λ,∞) ≥ λP[λ,∞) we obtain from (4.17) and lemma 4.2

〈P[λ,∞) ⊗ PΩph
Φσ(P3) , Φσ(P3)〉 ≤

−1

λ− e(b, V )
〈(P[λ,∞) ⊗ PΩph

)HI,σ(P3)Φσ(P3) , Φσ(P3)〉

for every σ ∈ (0, 1]. The lemma then follows from (2.15) (which is also valid for
HI,σ(P3)).

We are now able to conclude the proof of (iii) of theorem 4.1. We have

〈P(−∞,λ] ⊗ PΩph
Φσ(P3) , Φσ(P3)〉 = 1 − 〈P[λ,∞) ⊗ PΩph

Φσ(P3) , Φσ(P3)〉
− 〈P[λ,∞) ⊗ P⊥

Ωph
Φσ(P3) , Φσ(P3)〉 .

Now it suffices to remark that the second term in the right hand side of this
equality is estimated by lemma 4.5 and, noticing that P⊥

Ωph
≤ Nph, the third

term is estimated by lemma 4.4.

A Exitences of a ground state for the Hamilto-

nian with infrared cutoff

In this appendix we prove the assertion (ii) of theorem 4.1 : for σ and P3 small
enough, the Hamiltonian with infrared cutoff has a ground state. This result is
not surprising but the complete proof is long. Actually it follows by mimicking
[9, 18, 33] (see also [8]) and, here, we only give a sketch of the proof.

In this appendix we are faced with ths lack of smoothness of the εµ(k)’s
which define vector fields on sheres |k| =cst (see [17, 34]). It suffices to consider
one example. From now on suppose that

ε1(k) =
1

√

k2
1 + k2

2

(k1,−k2, 0) and ε2(k) =
k

|k| ∧ ε1(k) .

The functions εµ(k), µ = 1, 2, are smooth only on R3 \ {(0, 0, k3) | k3 ∈ R}.
Nevertheless, in our case, we can overcome easily this problem choosing the
regularization ρσ of ρ as a C∞ function whose support does not intersect the
line {(0, 0, k3) | k3 ∈ R}. From now on we suppose that it is the case.

Let ωmod(k) be the modified dispersion relation as defined in ([18], section
5, hypothesis 3), i.e. : ωmod(k) is a smooth function satisfying

(i) ωmod(k) ≥ max(|k|, σ
2 ) for all k ∈ R3, ωmod(k) = |k| for |k| ≥ σ.

(ii) |∇ωmod(k)| ≤ 1 for all k ∈ R3, and ∇ωmod(k) 6= 0 unless k = 0.

(iii) ωmod(k1 + k2) ≤ ωmod(k1) + ωmod(k2) for all k1, k2 ∈ R3.

We set

Hph,mod =
∑

µ=1,2

∫

ωmod(k)a?
µ(k)aµ(k)d3k
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and

Hmod,σ(P3) = h(b, V ) ⊗ I + I ⊗
{

1

2m
(P3 − dΓ(k3))2 +Hph,mod

}

+HI,σ(P3) .

Theorem 2.5, with the same assumtion (2.16), is still valid for Hmod,σ(P3).
Set Emod,σ(P3) := inf σ(Hmod,σ(P3)). Then Emod,σ(P3) still satisfies lemma
4.3 and (4.4) for the same constants g2 and α. Moreover, according to ([18];
thm 3), Eσ(P3) = Emod,σ(P3) for |P3| ≤ α and |g| ≤ g2 and Eσ(P3) is an
eigenvalue of Hσ(P3) if and only if Emod,σ(P3) is an eigenvalue of Hmod,σ(P3).
Thus in order to prove that Hσ(P3) has a ground state it suffices to prove
that Emod,σ(P3) < inf σess(Hmod,σ(P3)). The proof is by contradiction, so we
suppose that Emod,σ(P3) = inf σess(Hmod,σ(P3)) and we set

λ = Emod,σ(P3) = inf σess(Hmod,σ(P3)) . (A.1)

We now observe that Emod,σ(P3) satisfies (4.1) for |g| ≤ g2.
Let δ := dist (e(v, V ) , σ(h(b, V )) \ {e(b, V )}) > 0. According to (4.1) there
exist 0 < β ≤ α and 0 < g3 ≤ g2 such that

λ ≤ e(b, V ) +
δ

3
for|P3| ≤ β

C|g| ≤ δ

12
for|g| ≤ g3

(A.2)

where C is the constant in (4.1).
Let ∆ be an interval such that λ ∈ ∆ and sup ∆ < e(b, V ) + δ

2 . Thus

e(b, V ) +
2δ

3
− sup ∆ − C|g| ≥ δ

12

for |P3| ≤ β and |g| ≤ g3 and we introduce η > 0 such that

η2 < e(b, V ) +
2δ

3
− sup ∆ − C|g| .

Then, along the same lines as in the proof of theorem II.1 in [28], one easily
shows that it exists M∆ such that for any |P3| ≤ β and any |g| ≤ g3

‖(eη|x′| ⊗ I)χ∆(Hmod,σ(P3))‖ ≤M∆ . (A.3)

Since we assume λ ∈ σess(Hmod,σ(P3)) there exits a sequence (φn)n≥1, with
‖φn‖ = 1, such that

φn ∈ Ranχ∆(Hmod,σ(P3)) ,

(Hmod,σ(P3) − λ)φn →n→0 0,

w − lim
n→0

φn = 0

and therefore
λ = lim

n→∞
〈φn, Hmod,σ(P3)φn〉 . (A.4)
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Notice that, as for (A.3), one easily shows that for any |P3| ≤ β, any |g| ≤ g3
and any n ≥ 1

‖(e
η
2
|x′| ⊗ I)χ∆(Hmod,σ(P3))∇x′φn‖ ≤M ′

∆

‖(e
η
2
|x′| ⊗ I)χ∆(Hmod,σ(P3))dΓ(k3)φn‖ ≤M ′

∆

(A.5)

where M ′
∆ is a finite constant.

Now, in order to estimate 〈φn, Hmod,σ(P3)φn〉 from below, we need to localize
the photons. Let j0, j∞ ∈ C∞(R3) be real valued functions with j20 + j2∞ = 1,
j0(y) = 1 for |y| ≤ 1 and j0(y) = 0 for |y| ≥ 2. Given R > 0, we set j·,R(y) =
j·(

y
R ) and let jR = (j0,R, j∞,R). Here y = 1

i∇k and jR is an operator from
F ⊗F to F .

Then let Γ̌(jR), dΓ̌(jR, ωmodjR−jRωmod) be the operators from L2(R3,C2)⊗
F ⊗ F to L2(R3,C2) ⊗ F as defined in sections 2.13 and 2.14 of [33] (see also
section 2.6 of [18]). Here ωmod := (ωmod, ωmod). Roughly speaking, Γ̌(jR)
separates the set photons between photons localized arround the electron and
photons that escape to infinity (when R → ∞).

Set

Gl,µ(x′, ρσ) =
1

2π

ρσ

|k|1/2
e−ikx′

εµ(k)l , l = 1, 2, 3,

Hµ(x′, ρσ) = − i

2π
|k|1/2ρσ(k)σ.(

k

|k| ∧ εµ(k))e−ikx′

,

Φµ(h) =
1√
2

(aµ(h) + a?
µ(h)) .

Let Ȟmod,σ(P3) be the following operator in L2(R3,C2) ⊗F ⊗F :

Ȟmod,σ(P3) = h(b, V ) ⊗ I ⊗ I + I ⊗Hmod,ph ⊗ I + I ⊗ I ⊗Hmod,ph

+
1

2m
I ⊗ (P3 − I ⊗ dΓ(k3) ⊗ I − I ⊗ I ⊗ dΓ(k3))2

− g

2m

√
2
∑

µ=1,2

Φµ(Hµ(x′, ρσ)) ⊗ I

− g

m

√
2
∑

µ=1,2

∑

j=1,2

(pj − eaj(x′))Φµ(Gj,µ(x′, ρσ)) ⊗ I

− g

m

√
2(P3 − I ⊗ dΓ(k3) ⊗ I − I ⊗ I ⊗ dΓ(k3))

(

∑

µ=1,2

Φµ(G3,µ(x′, ρσ)) ⊗ I

)

+
g2

2m

∑

l=1,2,3

(

∑

µ=1,2

Φµ(Gl,µ(x′, ρσ))

)2

⊗ I .

Again, assuming (2.16), Ȟmod,σ(P3) is a self-adjoint operator in L2(R3,C2) ⊗
F ⊗F for |g| ≤ g1. We remark that

Ȟmod,σ(P3) ≥ Emod,σ(P3) + I ⊗ I ⊗Hmod,ph (A.6)
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and thus 〈φ, Ȟmod,σ(P3)φ〉 ≥ Emod,σ(P3) + σ
2 if the state φ has a component

along the delocalized photons. Actually we are going to prove that, since λ is
in the essential spectrum, Γ̌(jR)φn has a non vanishing component along the
delocalized photons and thus, in view of (A.4), we will obtain a contradiction
with (A.1).

Finally set for l = 1, 2, 3

Tl,R(G)(x′) =
∑

µ=1,2

(Φµ((j0,R − 1)Gl,µ(x′, ρσ)) ⊗ 1 + 1 ⊗ Φµ(j∞,RGl,µ(x′, ρσ)))

and

TR(H)(x′) =
∑

µ=1,2

(Φµ((j0,R − 1)Hµ(x′, ρσ)) ⊗ 1 + 1 ⊗ Φµ(j∞,RHµ(x′, ρσ))) .

By using [33] (sections 2.13 and 2.14) and [18] (sections 2.5 and 2.6) we obtain
that Ȟmod,σ(P3) and Hmod,σ(P3) are almost conjugated by Γ̌(jR), namely

Γ̌(jR)Hmod,σ(P3) − Ȟmod,σ(P3)Γ̌(jR) = − g

2m

√
2TR(H)(x′)Γ̌(jR)

− g

2m

√
2(P3 − I ⊗ dΓ(k3) ⊗ I − I ⊗ I ⊗ dΓ(k3))T3R(G)(x′)Γ̌(jR)

− g

m

√
2
∑

j=1,2

(pj − eaj(x′))TjR(G)(x′)Γ̌(jR) − dΓ̌(jR, ωmodjR − jRωmod)

−dΓ̌(jR, k3jR − jRk3)

(

1

2m
(P3 − dΓ(k3)) +

√
2
∑

µ=1,2

Φµ(G3,µ(x′, ρσ))

)

− 1

2m
(P3 − I ⊗ dΓ(k3) ⊗ I − I ⊗ I ⊗ dΓ(k3))dΓ̌(jR, k3jR − jRk3)

+
g2

2m





∑

l=1,2,3

∑

µ=1,2

∑

µ′=1,2

{aµ(j0,RGl,µ(x′, ρσ)) ⊗ 1 + 1 ⊗ aµ(j∞,RGl,µ(x′, ρσ))

+a?
µ(j0,RGl,µ(x′, ρσ)) ⊗ 1 + 1 ⊗ a?

µ(j∞,RGl,µ(x′, ρσ))}
{aµ′(j0,RGl,µ′ (x′, ρσ)) ⊗ 1 + 1 ⊗ aµ′(j∞,RGl,µ′(x′, ρσ))

+a?
µ′(j0,RGl,µ′(x′, ρσ)) ⊗ 1 + 1 ⊗ a?

µ′(j∞,RGl,µ′(x′, ρσ))}

−
∑

l=1,2,3

(

∑

µ=1,2

Φµ(Gl,µ(x′, ρσ))

)2

⊗ I



 Γ̌(jR) .

(A.7)

Since ρσ is a C∞
0 function, one has for γ > 0

(1 − ∆k′)γ ρσ(k)

|k|1/2
εµ(k)l ∈ L2(R3) l = 1, 2, 3, µ = 1, 2, σ > 0

(1 − ∆k′)γρσ(k)|k|1/2σ ·
(

k

|k| ∧ εµ(k)

)

∈ L2(R3) µ = 1, 2, σ > 0 .
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Here k′ = (k1, k2).
We then prove, as in ([18] lemma 9), that both

e−
η
2
|x′|Tl,R(G)(x′)(I + I ⊗Nph ⊗ I + I ⊗ I ⊗Nph)−1/2

and
e−

η
2
|x′|TR(H)(x′)(I + I ⊗Nph ⊗ I + I ⊗ I ⊗Nph)−1/2

tend to zero in L2(R3,C2) ⊗ F ⊗ F when R → ∞. Therefore it follows from
(A.3) and (A.7) that

〈φn, Hmod,σ(P3)φn〉 = 〈φn, Γ̌(jR)?Ȟmod,σ(P3)Γ̌(jR)φn〉 + o(R0) (A.8)

uniformly in n (cf. [18] and [33]).
Denoting by PΩ∞

the orthogonal projection on the vacuum of delocalized
photons, we have using (A.6)

〈φn, Γ̌(jR)?Ȟmod,σ(P3)Γ̌(jR)φn〉 ≥ Emod,σ(P3) +
σ

2

− σ

2
〈φn, Γ̌(jR)?(I ⊗ I ⊗ PΩ∞

)Γ̌(jR)φn〉 .

On the other hand we verify

Γ̌(jR)?(I ⊗ I ⊗ PΩ∞
)Γ̌(jR) = Γ(j20,R) .

Then, by using lemma 4.2 for Emod,σ(P3) and the compactness of

χ∆(Hmod,σ(P3))e−η|x′|Γ(j20,R)(Hmod,σ(P3) + i)−1 (see [33] lemma 34 or [18]
lemma 36 and [20] theorem 2.6), we deduce from (A.8), letting n→ ∞,

λ ≥ Emod,σ(P3) +
σ

2
+ o(R0) .

Letting R → ∞ we get a contradiction with (A.1) and thus assertion (ii) of
theorem 4.1 is proved.
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Henri Poincaré, 4:439–486, 2003.

[7] A. Pizzo. Scattering of an infraparticle : the one-particle sector in Nelson’s
massless model. preprint mp-arc, 2004.

[8] J. S. Moller. The translation invariant massive nelson model : The bottom
of the spectrum. preprint, mp-arc 04-258, 2004.
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