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Counting Eigenvalues of Biharmonic Operators with Magnetic Fields
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An analysis is given of the spectral properties of perturbations of the magnetic bi-harmonic opekator
L*(R™), n=2,3,4, where\ is a magnetic vector potential of Aharonov-Bohm type, and bounds for the number

of negative eigenvalues are established. Key elements of the proofs are newly derived Rellich inequalities
for2 A% which are shown to have a bearing on the limiting cases of embedding theorems for Sobolev spaces
H*(R").
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1 Introduction

Let

? n-10 1
Di=—— — = + A,
or? r  or + r2
in L2(R™),n > 2, where(r,w) are polar co-ordinates iR™ andA,, is a non-negative self-adjoint operator with
domainD(A,,) in L2(S™~1) with a discrete spectrum. In [7] it was proved that forfalh the set

(1.1)

Do :={f:f€CFR"\{0}), f(r,-) €D(A,)for 0 <r < oo, Df € L*(R")}, (1.2)
we have
/ |Df*dx > C’(n)/ %dx (1.3)
r» [X|
where
o n(n—4)\
C(n) = ;L%fz {)\m + 4} (1.4)

and{\,, }mez is the set of eigenvalues df,. The celebrated inequality of Rellich (see [15, 16]) is the special
caseD = —A andA,, is then the Laplace-Beltrami operator. The main motivation behind [7] was to investigate
the case of: = 4 when the Rellich inequality fails and the case- 2 when the function class has to be restricted.
Our approach was reminiscent of that of Laptev and Weidl in [10] for the Hardy inequality which is invalid in
R2. We took D = —A,, the magnetic Laplaciarassociated with a magnetic potenti&lof Aharonov-Bohm
type. The magnetic fieldurlA is supported on a co-ordinate hyperplafig of co-dimension 2 iR", so that

R"™ \ L, is not simply connected. Problems for Sédinger operators involving such Aharonov-Bohm type
magnetic fields iR3 with support on thers — axis are considered in [11].
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2 W. D. Evans and Roger T. Lewis: Eigenvalues of Biharmonic Operators

Intimately connected with the Rellich inequality f&r = —A are analogues of the Cwikel-Lieb-Rosenblum
inequalities, namely, fod < V' € L"/4(R™) andn > 4, the numberV(A? — V) of negative eigenvalues of
A? — V satisfies

n

N(A?2-V) < const./ V(x)*dx. (1.5)

Whenn < 4 andV € L™/4(R"), there is no such bound; indeéx? — V may not even be bounded below.
Estimates of different types were derived in [5] for= 3 and [4] forn = 2. There are some results for the case
n = 4in[3], [4], [19], [20], but the article of greatest relevance to us here is [9] where an upper bound is obtained
for N(A? + |x°"2 — V) (¢ a positive constant) which coincides with (1.5) whéris radial.

In this paper we analyse the spectral properties of perturbations ofidgeetic bi-harmonic operatah?,
mainly in the cases = 2, 3,4. The perturbations are of the fori, — B_, where theB. are non-negative
symmetric operators which are small in the form sense relativ®3tcand are such that the essential spectrum
of A2 + B, — B_ coincides with[0,00). Upper bounds of Cwikel-Lieb-Rosenblum type are derived for
N(A% + By — B_) when the "magnetic flux® is not an integer. Similar results for the magnetic Laplacian in
R? were obtained in [1].

To establish our main results, various inequalities are proved which have an interesting bearing on the limiting
cases of embedding theorems for the Sobolev spACER™). Denoting the completion of 5°(R™ \ £,,) by
Ha (R™), with norm given by

IFlA = IAAFIP -+ ILF]1%,

where| - || denotes the.?(R™) norm, it is proved, in particular, thda (R*) — L>(R4; L*(S"~'),dr) and
HaR?) < {f: [g f(-,w)dw € C**(R?)}. These embeddings are not valid where Z.
We shall writea<b to mean that is bounded above by a constant multipléahe multiple being independent

of any variables i andb.

2 Some inequalities

We first establish some integral inequalities which play a pivotal role in subsequent analysis.
Theorem 1 For D andD, defined in (1.1) and (1.2),

x 2
IDFI1? + max{Am (2 = An)} [n LEH-dx

> sup {7""_2 fsn_l %Pdw + 2 min{\,, }r—* f5n—1 \f|2dw} (2.1)
r€(0,00) m
for f € Dy.
Proof. LetL, := 786722 —2=1.0 Forallf € D, set
Fp(r) = / J(r, @)t (w)dw, (2.2)
Sn—l

whereuw,,, m € Z, are the normalised eigenvectors/of,; sinceA,, is assumed to have a discrete spectrum,
{tm }mer is an orthonormal basis df*(S* ). We have on using Parseval’s identity that

Jan IDfPdx = [ |LefI?dx + 2Re[ [q L fAu frBs] + [pn [N 1P 155

= S L F P+ 2Re [Ny [ Fop Ly Fyr ™3]
. (2.3)
N2 fo [ F ()P —2dr}

=: Z{Il + 2A 1o + /\12%]3}

m
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It follows on integration by parts that

°° (n—1)% 1
L = / [1Fn? e{FFl} + g | |
0
_ / [\F;;|2+” L (2.4)
0
I, = / [|F7'n|21"72+(n74)|Fm|27’74]7’”71dr; (2.5)
0
and )
o0 Fm
13:/ 7| 4| r"Ldr.
0 T
Thus,

Fr 2 4 2=t p o2y nt gy, (2.6)

IDFI? = S{ [° (|Fp)? + n=it2n
Sincef, € C5°(0,00),

me/ t" AR, () FL (t)dt = " Fo ()| — (n — 4) /Tt”*S\Fm(t)Pdt
0

0

and
29%/ "2 EL (0 Fy (t)ydt = ™3| Fy (r)]? —(n—2)/ "3y, (1) Pt
0 0

which imply that

= ()2 < / (6247 3dt + (n — 3) / =51, (1) [2d
0 0

and

PRE P < [ ELOPe e =) [ 0P
0 0
By substituting these inequalities into (2.6) and using Parseval’s identity, we may conclude that, fox oo,
IDfI* = Z{r” 2| E (1) + 20 F (1) 2

+foo Am ()\ —2 |F7n( )|2 n_ldr}

> o |§f\2dw+ 2min{An }r ! fu o |f|2de
—maX{)\ }fR" ‘f\gcﬁ‘ll dx
whence (2.1). O
Corollary 1 Forall f € Dy
[ 21380 ey + 2 min{A} s
< IDFIP + max{Am (2 = Am) H X[ 2 £I? (2.7)
< (1 meefplall) D)2
if, for the last inequality, the constant(n) in (1.4) is not zero.
Proof. The proof follows from (1.3) and Theorem 1 above. O
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4 W. D. Evans and Roger T. Lewis: Eigenvalues of Biharmonic Operators

Note thatmax{\,,(2 — A\;»)} < 1, with equality attained only if somg&,,, = 1. In particular, whem = 4
andmin{\,,} > 0, then

£l z2(s2) o< (0,00 <IID I

Hence, for radialf € Dy, it follows that f € L>°(0, c0).

We shall be concerned with the case whenr= —A := (Va)?, whereVa := V — iA. We shall assume,
without loss of generality (see [21], Section 8.4.2) tAatx = 0 (Poincaé gauge) and\ is of Aharonov-Bohm
type. The associated magnetic fieldl A = 0 outside a co-ordinate hyperpladg and specifically, in the cases
n = 2, 3,4, which are our main concern, we have the following from g3,

n=2: Let|x| = r,w = x/|x| = (cos d,sin ) and forx ¢ L, = {0},
1
A(r,0) ==T(0)(—sinb,cosf), ¥ e L>(Sh), ¥(0) = ¥(2r).
T

Then,

92 10 1

Apf = L Y
A or2 ror 12

8 2
Ay, A, = (’aa +x1:(9)> .

27

The eigenvalues ok, are),, = (m + ¥)2,m € Z, where¥ = >[5 W(6)do is the magnetic flux. By

gauge invariance, we may assume that [0, 1). It follows that the constar®'(2) in (1.4) is

C@2) = nf{(m+ )2 —1})2
me
B (P2 -1)2  if¥ell )
- P2(T —2)2 if Uelol).
n=3: Forw = (cosf,sin b cosbq,sinb; sinby), 6; € (0,7), 02 € (0,27) and forx ¢ L3 = {x : rsinf; =0}

1
A =
(r;w) rsin 0

W (62)(0, — sin O, cos f),

with ¥ € L>°(S'), and¥(0) = ¥(2n). In this case, we have

92 290 1

“Aa=gz e e

and

02 o 1 o 2
Ap=—— —cotbh—— + —— (i—+T .
062 cottige, T sin 62 <2892 + (92)>

The eigenvalues of, can be enumerated as

A =(m—U)m—-V+1),meZ,

whereZ' = {m € Z : (m — ¥)(m — ¥ + 1) > 0}. It follows that

C(3) = inf {(m—\I!)(m—\I'—l-l) - }2.

meZ’

Note thatC'(3) = 0 if ¥ = 1/2.
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n=4: In this casev = (cos b1, sin 6, cos s, sin Oy sin O cos O3, sin 61 sin O sin b3 ), whereby, 0, € (0,7),05 €
(0,27). Forx ¢ L4 = {x : rsinf; sinfy = 0},
1

Alrw) = ——
(r;w) 7 sin 07 sin 0

U (603)(0,0, —sin 03, cos 03),

with ¥ € L>°(S'), ¥(0) = ¥(2n). Now,

2 30 1
Ap=— 229 p,
A Oor? r8r+r2
and
2 0
Ao=— 2~ 2coth—
a0~ “" g,

1 o? B 1 B} 2
- ot (i wey)) |
T nez | o6z 50, T sz (’aeg + ”) ]

The eigenvalues of, can be enumerated as
Am = (m+0)2 -1, meZ,
whereZ" = {m € Z : (m + ¥)? > 1}. It follows that

C(4) =min{(1+¥)? - 1,(-2+¥)? - 1}}.

From above we see that for= 2,4, C(n) > 0 andmin{A,} > 0 if ¥ € (0,1). Forn = 3, min{\,} > 0 if
€ (0,1)andC(3) > 0if ¥ € [0, %) U (3,1). A consequence of Corollary 1 is therefore

Corollary 2 If ¥ € (0,1) whenn = 2,4and ¥ € (0, 1) U (3,1) whenn = 3, we have

[r" =210 /or ]| .2

(Sﬂ’_l)HLw(O,oo)’ |rn_4||f||L2(S"_1)|‘Lw(07w)§“AAf||2 (28)

forall f € Dy.

3 Forms and operators

We shall assume hereafter that= 2, 3, or4, adopt the notation of Section 2, and make the assumptions necessary
for Corollary 2 to hold.
Let D, = C5°(R™\ L,,) and letSa denote the Friedrichs extension of the restriction-df 4 to D,. Clearly
Dé C Dy and so Corollary 2 holds dﬁg. The form domain 054, Q(Sa), is the completion oD}, with respect
to [|[Vafl?+[/f]?]2. Let H(Sa) be the Hilbert space defined by the inner product

(0, 9)sa = ((Sa +1)p, (Sa +9)¥)L2@n)
= (SA(pa SAw)LQ(R") + (1/’, ¢)L2(R"7’)a ()0711) € D(SA)7

which induces the graph norm associated vigh: D(Sa) — L*(R™).

Lemma 1 Suppose that the hypothesis of Corollary 2 is satisfied an |elbe the operator of multiplication
by the functiorb.., where

0<by € LRy L=(S"Y);r8dr) = YR 73dr) @ L®°(S™71).
Then,B% : H(Sa) — L*(R™) is bounded andB_%(SA +1i)~!is compact on.2(R™).
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6 W. D. Evans and Roger T. Lewis: Eigenvalues of Biharmonic Operators

Proof. Forp € D{ = C§°(R™\ L,,)

(Bro, @) = Jgumr Jo© br(r,w)lip(r, w)Pr—tdrdw
Jo™ Mol qsnnyr?dr sup (17 Jgon o dw) (3.1)

<r<oo

IN

1A

041121 (R 510 (sn—1)ir3ar) [ Sasl]

by Corollary 1. ThusP(S4) lies in the form domain o3 andBJ%r : H(Sa) — L*(R") is bounded.
Letyp, — 0in L?(R™) and set)yy = (Sa +1) 'y Thena, € D(Sa) andiy, — 0in H(Sa). Givene > 0,
choose .. such that

l~)+ € CgO(R+7 Loo(sn—l))’ Supp5+ - Qe = B((); ke) \ B(O; 1/k6))

Hb+||Lcc(Rn) < k€7 and H||b+ — b+||LOO(Sn_l)’|L1(R+;7'3d7') <e€

for somek, > 1.
For some constarit’ > 0
IBE(Sa + ) pel® = IBEel? = (Bye, o)
Jrn b [the|?dx + Jrn (b — b )|e|2dx
ke Jo, Ioldx (3.2)
+[lIb+ = E+HLOC(Sn—l)||L1(R+;r3dr)0<5;1£w{rn74 Jon-1 [¥ePdw}

ke Jo [elPdx + €C||Sathe|?

IN

IN

by (2.8).
Foru € Dy = CP(R™\ L)

(7| |>( ) = { ?ie(max u)(x), ((::))f(())

SinceRe[u 5~ ] Re[u( 27, + 1A;)u|, then we have the diamagnetic inequality
[V]u(x)|| < |Vau(x)] (3.3)
asin[12], p. 193. Since

IVatell® = (Sate,vbe) < [1(Sa +i)vel*/2
= loel?/2
it follows from (3.3) that the sequendex/,|} must be bounded if/! (R™). SinceH! (2. ) is compactly embed-
ded in L%(Q,), it follows thaty, — 0 in L?(Q.). The result now follows from (3.2) and the fact thatan be

chosen arbitrarily small.
O

Remark 1 The compactness (BJ%(SA +i4)71 . L?(R™) — L?(R") established in Lemma 1 implies that

Bé is Sa-compact, and consequently, [8} (Corollary 111.7.7), Bé hasSa-bound zero. This implies that the
form (B4 u,u) is relatively bounded with respect to the fofiia u, Sau) with relative bound zero. Therefore,
A% + B, is defined in the form sense and has form donf(f 4 ), cf. Kato[8] Theorem V1.1.33.
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Lemma 2 Letn = 4 and suppose that the hypothesis of Corollary 2 is satisfied. For
0<V e L' Ry; L®(S?),r3dr),

let B_ be a nonnegative self-adjoint operator with form domRiff s ) which is such that, givea> 0,

6/ / r’gcp(nw)fdwdr—i—k(e)/ / V (r,w)|p(r,w) |*r3dwdr. (3.4)
0 S3 87" 0 s3

for all o € D(Sa) and some constaiit(e). ThenB%(SA + i)~ ! is compact on.?(R?).
Proof. As in the proof of Lemma 1, gived > 0, chooseV such that for somés > 1
V € CP(R4; L™(S?)), suppV C Q5 = B(0;ks) \ B(0;1/ks),
HV”Loe R4) < ks, and ||||V VHLOC(SJ)HLl (0,00);73dr) < 4.
Letp, — 0in L2(R*) with ||| < 1 and sety, = (Sa +i) 1p,. Thenpy, — 0in H(Sa) and, on using (3.4)
|B2(Sa + 1) Lo < efooo fsSﬂa%W (r,w) |2dwdr
(){ks [, [Pe(x |2dx+50 sup Jss te(r, w)Pdw}

e Jo” Jss vl Fbe(r,w) | dwdr
(ks [o, [Ve(x)Pdx + 3C||Saty|* }

by (2.8). Now note that from (2.4) for the case- 4,

/ / we rw | dwdr < 211 < [|Sathe|?
o Jss

IN

by (2.3). Consequently,

IB2(Sa +1) " el < §lleell® + k(e){ks [o, [ve(x)[?dx + 5C| e }-
On allowing? — co we may conclude as in the proof of Lemma 1 that the last line is bounded by
€+ Ck(e)o.

Sinced ande are arbitrary, the lemma follows.

Examples of multiplication operato¥s_ which satisfy the hypothesis of Lemma 2 are given by
Lemma 3 Letb(r) > 0 on(0, c0) and

/ / )s2dsdr < oo, /OOO r(/roo b(s)s>ds)dr < oo. (3.5)

Then there is a functio’ € L'((0, 0o); r3dr) such that for any > 0,

> 2.3 RPN > 2,3
/0 b(r)|e(r)|*r’dr < 6/0 o' ()] dr—i—k(e)/o W (r)|e(r)|*r°dr (3.6)

forall ¢ € C§°(0,00) and some constarif(e). We can take

r) = T(/TOO b(s)s2ds)2 + /TOO b(s)s*ds. 3.7)
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8 W. D. Evans and Roger T. Lewis: Eigenvalues of Biharmonic Operators

Proof. Let
3 52
r2y\/w ds. (3.8)

According to Opic and Kufner [13], Theorem 5.9, p.63, the inequality

[ otemprar<e [ L uipnPirt Vot 39)
0 0

is satisfied for some > 0 if and only if
C:= sup [/ b(t)dt - sup {[t %\/ )] '} < oo
0<r<oco Jr o<t<r

with ¢ = C the best possible constant for (3.9). On choosing (3.8) it follows@hat1. From (3.9) withe < 1

jo (r)Pridr < 2]0 7le(r) %FdT+jO lo(r) %\/7517"
< efyrly! 7")|2d7”+;f0 lo(r)[Pw(r) r4dr+f0 lo(r)|? %\/Tdr

The choice (3.7) yields (3.6) with(¢) = ¢! + 1 andW € L((0,00);73dr) in view of (3.5). O

Theorem 2 Assume the hypothesis of Lemma 1, and when4 assume the hypothesis of Lemma 2. Then
we have the following.

(i) The form(Sau, Sav) is closed with coreD;, and S5 is the associated self-adjoint operator.

(i) The symmetric fornia [u, v] = (Sau, Sav) + (Biu,v) is closed and bounded below with cdrg. Let
T3 = Sa + B denote the operator associated with. It has form domairQ(73) = Q(54) = D(Sa)
andaess(Ti) = UQSS(Si) = [0, 00).

(iii) For Ta defined as the positive square root®{ andn = 4, B (Ta +4)~! is compact onZ.?(R*) and
Ti — B_ is defined in the form sense with form dom®iSa ). Moreover,

UESS(Si +B,—B_)= 0558(5’%) = [0, ).

Proof. (i) The proof of (i) follows as in [8], Examples VI.2.13 & VI.1.23.
(i) The first part follows from Remark 1. The fact th@{(73) = Q(S3) = D(Sa) is a consequence of the
second representation theorem, [8], p.331.

SinceBJ%r(SA + i)t is compact inL?(R™) by Lemma 1, then Theorem IV.4.4 of [6] applies (wjth = 0)
showing that (vi) of Theorem IV.4.2 of [6] holds. (Equivalently, we have that the faBn-, -) is relatively
form compact with respect to the for(®a-, Sa-) - see Reed and Simon [14], p. 369.) This fact implies that
Oess (Ti) = Oess (Si)

(i) For f € D(SA)

ISafI? < ITafI” = [ISafI? + (B+f. f)

implying that we have for som€ > 0
1(Sa +0)f1* < |(Ta +0)fII* = Cll(Sa + ) I
by (3.1). Then forf = (Ta + i)~ 'g, we have that
1(Sa +i)(Ta + )~ gl <llgll,

so that from Lemma 2 we have thB (Ta +14)~tis compact onl.?(R?*). The remainder of the proof for part
(i) follows as in the proof for part (ii) given above. O
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4 Estimating the number of eigenvalues
Theorem 3 Let the hypothesis of Lemma 2 be satisfied. Then

(i) La :=S3 + B — B_ is a self-adjoint operator defined in the form sense;
(ii) B: (Ta + i)~ ' is compactinL?(R*), whereT3 = S% + By;
("I) Uess(LA) = [0,00),

(iv) if U € (0,1), there exists a positive constafit= C'(¥) such that the numbe¥ (L » ) of negative eigenval-
ues ofL 5 satisfies

N(Lp) < C(W H||V||L°0(S3 ||L1((O 00);r3dr) 0

whereV is given in (3.4) and’(¥) depends on the distance ffrom {0, 1}.

Proof. Parts (i)-(iii) are included here for completeness. We refer the reader to Theorem 2 for proofs.
For part (iv), we see from (2.6) that far= 2, 3, 4,

laafl? =% / T Do o™y
m 0

whereF;, is given by (2.2) and

1 @@ B =D+ d g dy 20— DA + A

P T B 4.2

g ) T U rd (4.2)
Define

W(T) = ||V(7"7 ')”Lw(ss).
Thus, whem = 4, since
ed, d
B_ < — 5 (ro) + KOW(r)
from (3.4), we have
A2 +B,—-B_> A% -B
= méeZ"{ [D + 5 3 dr( dir) o k(e)W(r)] ® Im} (4.3)

where )
"= {me Z : (m—i—\Il)2 > 1}7

I,,, is the identity on the orthonormal bagis, . } ez, of L2(S?), and\,, = (m+ ¥)% —1; see Section 2 above.
In (4.3)
e d, d 1 &, 5d° 3+2\,,—€ed , d A2,
r3dr <7~$> N 7’73d7‘2( dr? ) r3 5(7“%) +T74.
We also have that c
A+ — = D), + L,
+ 7,4 \m6|921{[ m 4] ® 71}
in which ) ) o 002 4
1d d 342X\, d, d A
DO £ — = = (3 m
mt rt 3 dr? (r er) 3 dr ( ) r4

with A2 = m? — 1. If m € Z”, then eitherm > 1, in which case

A > A0 020 X2 > (\0)2 4 04

m m m
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10 W. D. Evans and Roger T. Lewis: Eigenvalues of Biharmonic Operators

orm < —2 implying that
Am > (mA+1)2 =14 (1—-0)2 =), +(1-0)2
A= (A)?+ (1 -0)%
As a consequence, for > 1
Pt e () 2 Pt

if ¢ <202 ande < ¥4, Form < —2

€ d d
— > DY

Dm+r3dr(d) D+1+

if e <2(1—W)2andc < (1 — )% Hence, ife < 2min{¥?, (1 — ¥)?} ande < min{¥*, (1 — ¥)*}, then

N( @ [Dnt e (rih) —HOW ()] @)
<N 8, [Dh+ & — koW ()] @ L)
and
V(9 IDn+ 5 0H) - HOW ] 9T,)
<N L& [Pt = kOW ()] @ L)
Now, Theorem 1.2 of Laptev and Netrusov [9] and the last two inequalities imply (4.1). 0

Theorem 4 LetW € (0,1) forn = 2,4and¥ ¢ [0,1)U(3,1) forn = 3. LetV(x) > 0 and
Ve LYRy; L=(S" 1), ridr).

Then, the operatof3 — V is defined in the form sense and has essential spedtium). Moreover, for,,
givenin§ 2 andn = 2, 3,4,

4
N(Sz -V) <
(SA-V1<3 14\, + n(n — 4)[v/n2 + 8Am,

3||‘/ )”Loc(su—l)dr

whereY" " indicates that all summands less thaare omitted.

Proof. The fact thatS3 — V is defined in the form sense and has essential spedtrusa) follows from
Lemma 1 and Theorem 2.
Forall f € D = Cg°(R™\ L,) and

we have from (2.6) witm = 2, 3,4,

FI ‘2 2(n— 4))\7n+/\7”

|AAf]? = Z{ e (P 4 n=l2de
Z{f (4(" 2)? +n 1427,

Fm\2)r”’1dr}
‘2 + 2(n74)r):1m+)\m |Fm|2)7’n71d7’}

v

F/

m

by Hardy’s inequality. Making the substitutions
v Am
c(n, Am) =102 + 8\, and ¢, (r) := %T“’_g)ﬂﬂn(r}
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we have that

e’} n— n— m (Am n— c(n,Am -1
||AAf||2 > Efo [|%0;n|2_|_( 3)(n—5)+16A (Z\T2+2( 4))c(n, ) |<pm|2]dr.

Therefore, forf € D}, and
K(n,A\p) := (n—3)(n —5) 4+ 16Am (A + 2(n — 4))(n? + 8Ap)

it follows that

(AR =)L) = 3 f57 [l + E0emd o, 2 — A2 W (r) o |?] dr (4.4)
with W (r) := |V (r,-)|| L= (sn-1). Bargmann's bound for the number of negative eigenvalues (see [2] and [18])
applies to the Sturm-Liouville operator associated with the integral on the right-hand side of (4.4), i.e.,
> K(n,\n) 472
7(n,m) '__W+ 2 _n2+8)\mW(T)’ n=2,3,4,

if

K(n,Am) > —1. (4.5)
In that case,

N(r(n,m)) < 1 / r3W (r)dr.
(n?2 4+ 8\n)vVEK(n, ) +1Jo

We first note that
K(n,Am) +1 =T[4\, +n(n—4)]*/(n* +8\p) >0

sincemin{\,,} > 0. In fact, it is easy to show that the strict inequality (4.5) holds under the hypothesis of the
theorem on substituting the values)af, given in§2, namely

)\m:(m+§')2, m € Z, for n = 2;
Am = (m—=V)(m -V +1), meZ, forn=3; (4.6)
Am=(m+W¥)2 -1, meZ", for n=4.

In view of (4.4), the proof is complete. O

Corollary 3 Assume the hypothesis of Theorem 4. TK&n;- V has no eigenvalues if for = 2

< . 20(2 — U)\/3—4U + 202 for U e (0, 1],
/ TSHV(T,')”LOO(Snfl)dT < ( = ) = ~ (1 2] (47)
0 2(1 = U*)V1+202 for ¥ e (5,1);
forn =3
o0 (0 _3 U (D J 1
/ 2|V (r, )l poe (gn-1ydr < |\{/(qj+~l) ,4| 9+8\P@+1~) for ?6[0’2)’ (4.8)
0 |U2 — 30 + 2|1/25 — 240 4+ 802 for ¥ € (1,1);
forn =14

oo 250(24 U)V/2 + 20 + U2 for ¥ € (0, 1],
/ 7"3||V(7“7')||Loo(sn—1)d7“ < { 2% 2 (49)
0

(2=0)2-1)\/1+(2-0)2 for T e (3,1).
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Proof. Define

v/ n? 4+ 8\,.

1
B(Am,n) = 1|4/\m +n(n —4)

Then by Theorem 4 there will be no eigenvalues if

/ r3||V(T7 oo (gn-1ydr < min{B(Ap,n)}
O m

for m € Z further restricted according to (4.6).
It is easy to see that the functiofiyx,n), n = 2, 3,4, are minimized or{0, co) for somez € (0,2) and
accordingly, in order to minimizé(\,,,,n) we may restrict our attention to thoseg, given in (4.6) that lie in

the interval(0, 2). Noting that\,,, = A,,(¥), the estimate (4.7) follows from the fact that

min B(Ap,2) = min {B(\g,2),B(A_1,2)};
meZ ve(0,1)

estimate (4.8) follows from the fact that

minB(\,,3) = min {B(A_1,3),B()\1,3)};
meZ Te0,1)

and estimate (4.9) follows from the fact that

min B(Ap,,4) = min {B(A1,4), B(A_2,4)}.
meZ We(o,1)

5 Additional remarks on embedding results

The following optimal embedding results for the Sobolev spHZER") = W?22(R") are known (see [12],
p.213 and [6], p.263):

LYR"), Vqe[2,2n/(n—4)] for n >4,
L1(R™), Vg€ |[2,00) if n=4,
C™R™), 0<y<l if n=2,

COYR"), 0<vy<3 if n=3,

H*(R") — (5.1)

whereC?7(Q) is the subspace of the space of continuous funct@(?) consisting of functions satisfying a
local Holder condition orf2.
If we denote byH A (R™) the completion oDy = D(A ) with the norm

IFlA = IAafI®+ 11

we then obtain from Theorem 1 the following results which are valid in the limiting cases of (5.1).

Theorem 5

(i) Forall f € Ha(RY), f € L®(R,; L%(S?),dr) and

sup |f (r,w)Pdw<]|| A f]?.
0<r<oo .JS3 ~
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(i) Forall f € Hx(R?), [g f(-,w)dw € C®'(R?), (i.e., Lipschitz) and fob < s < r < oo
‘ f(r7w)_f(37w)dw‘<||AAf||2.
st r—s ~

(iii) Forall f € Ha(R?), [q |f(-,w)[?dw € C*(R?) and

2 2
| /S H )P =11 ) an

r—Ss

Proof. Part (i) is immediate from (2.8).
In part (i) we have fol) < s < r < oo,

[ Jop 2ot a] = i = )7 fou (7 G (ts)d) o]
< fr=s[ T | Ao fauisi) ar
< [aafIP

by (2.8).
In part (i) we have fol0 < s < r < co and anye > 0

PGEIE G T [f( )Qf(uw)]dt
< { 3Pt + 2 7 F)Pr
and, withF (r) := [g, | f(r,w)|?dw

A

S g 0 o
I far |22 )dt+1 L Joo 1£(2) Pdwdt}

IIAAfII

1A

by (2.8).
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