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Counting Eigenvalues of Biharmonic Operators with Magnetic Fields
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An analysis is given of the spectral properties of perturbations of the magnetic bi-harmonic operator∆2
A in

L2(Rn), n=2,3,4, whereA is a magnetic vector potential of Aharonov-Bohm type, and bounds for the number
of negative eigenvalues are established. Key elements of the proofs are newly derived Rellich inequalities
for ∆2

A which are shown to have a bearing on the limiting cases of embedding theorems for Sobolev spaces
H2(Rn).
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1 Introduction

Let

D := − ∂2

∂r2
− n− 1

r

∂

∂r
+

1
r2

Λω (1.1)

in L2(Rn), n ≥ 2, where(r, ω) are polar co-ordinates inRn andΛω is a non-negative self-adjoint operator with
domainD(Λω) in L2(Sn−1) with a discrete spectrum. In [7] it was proved that for allf in the set

D0 :={f : f ∈ C∞0 (Rn \ {0}), f(r, ·) ∈ D(Λω) for 0 < r < ∞, Df ∈ L2(Rn)}, (1.2)

we have
∫

Rn

|Df |2dx ≥ C(n)
∫

Rn

|f |2
|x|4 dx (1.3)

where

C(n) = inf
m∈I

{
λm +

n(n− 4)
4

}2

(1.4)

and{λm}m∈I is the set of eigenvalues ofΛω. The celebrated inequality of Rellich (see [15, 16]) is the special
caseD = −∆ andΛω is then the Laplace-Beltrami operator. The main motivation behind [7] was to investigate
the case ofn = 4 when the Rellich inequality fails and the casen = 2 when the function class has to be restricted.
Our approach was reminiscent of that of Laptev and Weidl in [10] for the Hardy inequality which is invalid in
R2. We tookD = −∆A, the magnetic Laplacianassociated with a magnetic potentialA of Aharonov-Bohm
type. The magnetic fieldcurlA is supported on a co-ordinate hyperplaneLn of co-dimension 2 inRn, so that
Rn \ Ln is not simply connected. Problems for Schrödinger operators involving such Aharonov-Bohm type
magnetic fields inR3 with support on thex3 − axis are considered in [11].
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2 W. D. Evans and Roger T. Lewis: Eigenvalues of Biharmonic Operators

Intimately connected with the Rellich inequality forD = −∆ are analogues of the Cwikel-Lieb-Rosenblum
inequalities, namely, for0 ≤ V ∈ Ln/4(Rn) andn > 4, the numberN(∆2 − V ) of negative eigenvalues of
∆2 − V satisfies

N(∆2 − V ) ≤ const.

∫

Rn

V (x)n/4dx. (1.5)

Whenn ≤ 4 andV ∈ Ln/4(Rn), there is no such bound; indeed∆2 − V may not even be bounded below.
Estimates of different types were derived in [5] forn = 3 and [4] forn = 2. There are some results for the case
n = 4 in [3], [4], [19], [20], but the article of greatest relevance to us here is [9] where an upper bound is obtained
for N(∆2 + c

|x|2 − V ) (c a positive constant) which coincides with (1.5) whenV is radial.

In this paper we analyse the spectral properties of perturbations of themagnetic bi-harmonic operator∆2
A,

mainly in the casesn = 2, 3, 4. The perturbations are of the formB+ − B−, where theB± are non-negative
symmetric operators which are small in the form sense relative to∆2

A and are such that the essential spectrum
of ∆2

A + B+ − B− coincides with[0,∞). Upper bounds of Cwikel-Lieb-Rosenblum type are derived for
N(∆2

A + B+ −B−) when the ”magnetic flux”̃Ψ is not an integer. Similar results for the magnetic Laplacian in
R2 were obtained in [1].

To establish our main results, various inequalities are proved which have an interesting bearing on the limiting
cases of embedding theorems for the Sobolev spacesH2(Rn). Denoting the completion ofC∞0 (Rn \ Ln) by
HA(Rn), with norm given by

‖f‖2A := ‖∆Af‖2 + ‖f‖2,

where‖ · ‖ denotes theL2(Rn) norm, it is proved, in particular, thatHA(R4) ↪→ L∞(R+;L2(Sn−1), dr) and
HA(R2) ↪→ {f :

∫
S1 f(·, ω)dω ∈ C0,1(R2)}. These embeddings are not valid whenΨ̃ ∈ Z.

We shall writea<
∼

b to mean thata is bounded above by a constant multiple ofb, the multiple being independent

of any variables ina andb.

2 Some inequalities

We first establish some integral inequalities which play a pivotal role in subsequent analysis.

Theorem 1 For D andD0 defined in (1.1) and (1.2),

‖Df‖2 + max
m
{λm(2− λm)} ∫

Rn

|f(x)|2
|x|4 dx

≥ sup
r∈(0,∞)

{
rn−2

∫
Sn−1 |∂f

∂r |2dω + 2 min
m
{λm}rn−4

∫
Sn−1 |f |2dω

} (2.1)

for f ∈ D0.

P r o o f. Let Lr := − ∂2

∂r2 − n−1
r

∂
∂r . For allf ∈ D0 set

Fm(r) :=
∫

Sn−1
f(r, ω)um(ω)dω, (2.2)

whereum, m ∈ I, are the normalised eigenvectors ofΛm; sinceΛm is assumed to have a discrete spectrum,
{um}m∈I is an orthonormal basis ofL2(Sn−1). We have on using Parseval’s identity that

∫
Rn |Df |2dx =

∫
Rn |Lrf |2dx + 2<e[

∫
Rn LrfΛωf dx

|x|2 ] +
∫
Rn |Λωf |2 dx

|x|4

=
∑
m
{∫∞

0
|LrFm|2rn−1dr + 2<e[λm

∫∞
0

FmLrFmrn−3dr]

+λ2
m

∫∞
0
|Fm(r)|2rn−5dr}

=:
∑
m
{I1 + 2λmI2 + λ2

mI3}.

(2.3)
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It follows on integration by parts that

I1 =
∫ ∞

0

[
|F ′′m|2 + 2

n− 1
r

<e{F ′′mF ′m}+
(n− 1)2

r2
|F ′m|2

]
rn−1dr

=
∫ ∞

0

[
|F ′′m|2 +

n− 1
r2

|F ′m|2
]
rn−1dr; (2.4)

I2 =
∫ ∞

0

[|F ′m|2r−2 + (n− 4)|Fm|2r−4]rn−1dr; (2.5)

and

I3 =
∫ ∞

0

|Fm|2
r4

rn−1dr.

Thus,

‖Df‖2 =
∑
m

{ ∫∞
0

(|F ′′m|2 + n−1+2λm

r2 |F ′m|2 + 2(n−4)λm+λ2
m

r4 |Fm|2
)
rn−1dr

}
. (2.6)

SinceFm ∈ C∞0 (0,∞),

2<e

∫ r

0

tn−4Fm(t)F ′m(t)dt = rn−4|Fm(r)|2 − (n− 4)
∫ r

0

tn−5|Fm(t)|2dt

and

2<e

∫ r

0

tn−2F ′m(t)F ′′m(t)dt = rn−2|F ′m(r)|2 − (n− 2)
∫ r

0

tn−3|F ′m(t)|2dt,

which imply that

rn−4|Fm(r)|2 ≤
∫ r

0

|F ′m(t)|2tn−3dt + (n− 3)
∫ r

0

tn−5|Fm(t)|2dt

and

rn−2|F ′m(r)|2 ≤
∫ r

0

|F ′′m(t)|2tn−1dt + (n− 1)
∫ r

0

tn−3|F ′m(t)|2dt.

By substituting these inequalities into (2.6) and using Parseval’s identity, we may conclude that, for0 < r < ∞,

‖Df‖2 ≥ ∑
m

{
rn−2|F ′m(r)|2 + 2λmrn−4|Fm(r)|2

+
∫∞
0

λm(λm−2)
r4 |Fm(r)|2rn−1dr

}

≥ rn−2
∫

Sn−1 |∂f
∂r |2dω + 2 min

m
{λm}rn−4

∫
Sn−1 |f |2dω

−max
m
{λm(2− λm)} ∫

Rn

|f(x)|2
|x|4 dx

whence (2.1).

Corollary 1 For all f ∈ D0

∥∥∥rn−2‖∂f
∂r ‖2L2(Sn−1)

+ 2 min
m
{λm}rn−4‖f‖2

L2(Sn−1)

∥∥∥
L∞(0,∞)

≤ ‖Df‖2 + max
m
{λm(2− λm)}‖|x|−2f‖2

≤
(
1 + maxm{λm(2−λm)}

C(n)

)
‖Df‖2

(2.7)

if, for the last inequality, the constantC(n) in (1.4) is not zero.

P r o o f. The proof follows from (1.3) and Theorem 1 above.
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4 W. D. Evans and Roger T. Lewis: Eigenvalues of Biharmonic Operators

Note thatmax{λm(2 − λm)} ≤ 1, with equality attained only if someλm = 1. In particular, whenn = 4
andmin

m
{λm} > 0, then

‖‖f‖L2(S3)‖L∞(0,∞)<∼
‖Df‖2

Hence, for radialf ∈ D0, it follows thatf ∈ L∞(0,∞).
We shall be concerned with the case whenD = −∆A := (∇A)2, where∇A := ∇− iA. We shall assume,

without loss of generality (see [21], Section 8.4.2) thatA · x = 0 (Poincaŕe gauge) andA is of Aharonov-Bohm
type. The associated magnetic fieldcurl A = 0 outside a co-ordinate hyperplaneLn and specifically, in the cases
n = 2, 3, 4, which are our main concern, we have the following from [7],§3:

n=2: Let |x| = r, ω = x/|x| = (cos θ, sin θ) and forx /∈ L2 = {0},

A(r, θ) =
1
r
Ψ(θ)(− sin θ, cos θ), Ψ ∈ L∞(S1), Ψ(0) = Ψ(2π).

Then,

−∆A =− ∂2

∂r2
− 1

r

∂

∂r
+

1
r2

Λω, Λω =
(

i
∂

∂θ
+ Ψ(θ)

)2

.

The eigenvalues ofΛω areλm = (m + Ψ̃)2,m ∈ Z, whereΨ̃ = 1
2π

∫ 2π

0
Ψ(θ)dθ is the magnetic flux. By

gauge invariance, we may assume thatΨ̃ ∈ [0, 1). It follows that the constantC(2) in (1.4) is

C(2) = inf
m∈Z

{(m + Ψ̃)2 − 1}2

=
{

(Ψ̃2 − 1)2 if Ψ̃ ∈ [ 12 , 1)
Ψ̃2(Ψ̃− 2)2 if Ψ̃ ∈ [0, 1

2 ).

n=3: Forω = (cos θ1, sin θ1 cos θ2, sin θ1 sin θ2), θ1 ∈ (0, π), θ2 ∈ (0, 2π) and forx /∈ L3 = {x : r sin θ1 = 0}

A(r, ω) =
1

r sin θ1
Ψ(θ2)(0,− sin θ2, cos θ2),

with Ψ ∈ L∞(S1), andΨ(0) = Ψ(2π). In this case, we have

−∆A =− ∂2

∂r2
− 2

r

∂

∂r
+

1
r2

Λω

and

Λω =− ∂2

∂θ2
1

− cot θ1
∂

∂θ1
+

1
sin θ2

1

(
i

∂

∂θ2
+ Ψ(θ2)

)2

.

The eigenvalues ofΛω can be enumerated as

λm = (m− Ψ̃)(m− Ψ̃ + 1),m ∈ Z′,

whereZ′ = {m ∈ Z : (m− Ψ̃)(m− Ψ̃ + 1) ≥ 0}. It follows that

C(3) = inf
m∈Z′

{
(m− Ψ̃)(m− Ψ̃ + 1)− 3

4

}2

.

Note thatC(3) = 0 if Ψ̃ = 1/2.
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n=4: In this caseω = (cos θ1, sin θ1 cos θ2, sin θ1 sin θ2 cos θ3, sin θ1 sin θ2 sin θ3), whereθ1, θ2 ∈ (0, π), θ3 ∈
(0, 2π). Forx /∈ L4 = {x : r sin θ1 sin θ2 = 0},

A(r, ω) =
1

r sin θ1 sin θ2
Ψ(θ3)(0, 0,− sin θ3, cos θ3),

with Ψ ∈ L∞(S1), Ψ(0) = Ψ(2π). Now,

−∆A =− ∂2

∂r2
− 3

r

∂

∂r
+

1
r2

Λω

and

Λω =− ∂2

∂θ2
1

− 2 cot θ1
∂

∂θ1

+
1

sin θ2
1

[
− ∂2

∂θ2
2

− cot θ2
∂

∂θ2
+

1
sin θ2

2

(
i

∂

∂θ3
+ Ψ(θ3)

)2
]

.

The eigenvalues ofΛω can be enumerated as

λm = (m + Ψ̃)2 − 1, m ∈ Z
′′
,

whereZ
′′

= {m ∈ Z : (m + Ψ̃)2 ≥ 1}. It follows that

C(4) = min{(1 + Ψ̃)2 − 1, (−2 + Ψ̃)2 − 1}}.

From above we see that forn = 2, 4, C(n) > 0 andmin{λm} > 0 if Ψ̃ ∈ (0, 1). Forn = 3, min{λm} > 0 if
Ψ̃ ∈ (0, 1) andC(3) > 0 if Ψ̃ ∈ [0, 1

2 ) ∪ (1
2 , 1). A consequence of Corollary 1 is therefore

Corollary 2 If Ψ̃ ∈ (0, 1) whenn = 2, 4 andΨ̃ ∈ (0, 1
2 ) ∪ ( 1

2 , 1) whenn = 3, we have

∥∥rn−2‖∂f/∂r‖L2(Sn−1)

∥∥
L∞(0,∞)

,
∥∥rn−4‖f‖L2(Sn−1)

∥∥
L∞(0,∞)

<
∼
‖∆Af‖2 (2.8)

for all f ∈ D0.

3 Forms and operators

We shall assume hereafter thatn = 2, 3, or4, adopt the notation of Section 2, and make the assumptions necessary
for Corollary 2 to hold.

LetD′
0 = C∞0 (Rn \ Ln) and letSA denote the Friedrichs extension of the restriction of−∆A toD′

0. Clearly
D′

0 ⊆ D0 and so Corollary 2 holds onD′
0. The form domain ofSA,Q(SA), is the completion ofD′0 with respect

to [‖∇Af‖2 + ‖f‖2] 1
2 . LetH(SA) be the Hilbert space defined by the inner product

(ϕ,ψ)SA
= ((SA + i)ϕ, (SA + i)ψ)L2(Rn)

= (SAϕ, SAψ)L2(Rn) + (ψ, φ)L2(Rn), ϕ, ψ ∈ D(SA),

which induces the graph norm associated withSA : D(SA) → L2(Rn).

Lemma 1 Suppose that the hypothesis of Corollary 2 is satisfied and letB+ be the operator of multiplication
by the functionb+, where

0 ≤ b+ ∈ L1(R+;L∞(Sn−1); r3dr) ≡ L1(R+; r3dr)⊗ L∞(Sn−1).

Then,B
1
2
+ : H(SA) → L2(Rn) is bounded andB

1
2
+(SA + i)−1 is compact onL2(Rn).
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6 W. D. Evans and Roger T. Lewis: Eigenvalues of Biharmonic Operators

P r o o f. Forϕ ∈ D′0 = C∞0 (Rn \ Ln)

|(B+ϕ,ϕ)| = ∫
Sn−1

∫∞
0

b+(r, ω)|ϕ(r, ω)|2rn−1drdω

≤ ∫∞
0
‖b+‖L∞(Sn−1)r

3dr sup
0<r<∞

(
rn−4

∫
Sn−1 |ϕ|2dω

)

<
∼

‖b+‖L1(R+;L∞(Sn−1);r3dr)‖SAϕ‖2
(3.1)

by Corollary 1. Thus,D(SA) lies in the form domain ofB+ andB
1
2
+ : H(SA) → L2(Rn) is bounded.

Let ϕ` ⇀ 0 in L2(Rn) and setψ` = (SA + i)−1ϕ`. Then,ψ` ∈ D(SA) andψ` ⇀ 0 inH(SA). Givenε > 0,
choosẽb+ such that

b̃+ ∈ C∞0 (R+; L∞(Sn−1)), suppb̃+ ⊂ Ωε = B(0; kε) \B(0; 1/kε),

‖b̃+‖L∞(Rn) < kε, and
∥∥‖b+ − b̃+‖L∞(Sn−1)

∥∥
L1(R+;r3dr)

< ε

for somekε > 1.
For some constantC > 0

‖B
1
2
+(SA + i)−1ϕ`‖2 = ‖B

1
2
+ψ`‖2 = (B+ψ`, ψ`)

=
∫
Rn b̃+|ψ`|2dx +

∫
Rn(b+ − b̃+)|ψ`|2dx

≤ kε

∫
Ωε
|ψ`|2dx

+‖‖b+ − b̃+‖L∞(Sn−1)‖L1(R+;r3dr) sup
0<r<∞

{
rn−4

∫
Sn−1 |ψ`|2dω

}

≤ kε

∫
Ωε
|ψ`|2dx + εC‖SAψ`‖2

(3.2)

by (2.8).
Foru ∈ D′0 = C∞0 (Rn \ Ln)

( ∂

∂xj
|u|

)
(x) =

{ <e
(

u
|u|

∂
∂xj

u
)
(x), u(x) 6= 0

0, u(x) = 0.

Since<e[u ∂
∂xj

u] = <e[u( ∂
∂xj

+ iAj)u], then we have the diamagnetic inequality

∣∣∇|u(x)|∣∣ ≤ ∣∣∇Au(x)
∣∣ (3.3)

as in [12], p. 193. Since

‖∇Aψ`‖2 = (SAψ`, ψ`) ≤ ‖(SA + i)ψ`‖2/2
= ‖φ`‖2/2

it follows from (3.3) that the sequence{|ψ`|} must be bounded inH1(Rn). SinceH1(Ωε) is compactly embed-
ded inL2(Ωε), it follows thatψ` → 0 in L2(Ωε). The result now follows from (3.2) and the fact thatε can be
chosen arbitrarily small.

Remark 1 The compactness ofB
1
2
+(SA + i)−1 : L2(Rn) → L2(Rn) established in Lemma 1 implies that

B
1
2
+ is SA-compact, and consequently, by[6] (Corollary III.7.7), B

1
2
+ hasSA-bound zero. This implies that the

form (B+u, u) is relatively bounded with respect to the form(SAu, SAu) with relative bound zero. Therefore,
∆2

A + B+ is defined in the form sense and has form domainD(SA), cf. Kato[8] Theorem VI.1.33.

Copyright line will be provided by the publisher



mn header will be provided by the publisher 7

Lemma 2 Letn = 4 and suppose that the hypothesis of Corollary 2 is satisfied. For

0 ≤ V ∈ L1(R+; L∞(S3), r3dr),

let B− be a nonnegative self-adjoint operator with form domainD(SA) which is such that, givenε > 0,

(B−ϕ,ϕ) ≤ ε

∫ ∞

0

∫

S3
r
∣∣ ∂

∂r
ϕ(r, ω)

∣∣2dωdr + k(ε)
∫ ∞

0

∫

S3
V (r, ω)|ϕ(r, ω)|2r3dωdr. (3.4)

for all ϕ ∈ D(SA) and some constantk(ε). ThenB
1
2−(SA + i)−1 is compact onL2(R4).

P r o o f. As in the proof of Lemma 1, givenδ > 0, chooseṼ such that for somekδ > 1

Ṽ ∈ C∞0 (R+; L∞(S3)), suppṼ ⊂ Ωδ = B(0; kδ) \B(0; 1/kδ),

‖Ṽ ‖L∞(R4) < kδ, and
∥∥‖V − Ṽ ‖L∞(S3)

∥∥
L1((0,∞);r3dr)

< δ.

Let ϕ` ⇀ 0 in L2(R4) with ‖ϕ`‖ ≤ 1 and setψ` = (SA + i)−1ϕ`. Then,ψ` ⇀ 0 inH(SA) and, on using (3.4)

‖B
1
2−(SA + i)−1ϕ`‖ ≤ ε

∫∞
0

∫
S3 r

∣∣ ∂
∂r ψ`(r, ω)

∣∣2dωdr

+k(ε)
{
kδ

∫
Ωδ
|ψ`(x)|2dx + δC sup

0<r<∞

∫
S3 |ψ`(r, ω)|2dω

}

≤ ε
∫∞
0

∫
S3 r

∣∣ ∂
∂r ψ`(r, ω)

∣∣2dωdr

+k(ε)
{
kδ

∫
Ωδ
|ψ`(x)|2dx + δC‖SAψ`‖2

}

by (2.8). Now note that from (2.4) for the casen = 4,

3
∫ ∞

0

∫

S3
r
∣∣ ∂

∂r
ψ`(r, ω)

∣∣2dωdr ≤
∑
m

I1 ≤ ‖SAψ`‖2

by (2.3). Consequently,

‖B
1
2−(SA + i)−1ϕ`‖ ≤ ε

3‖ϕ`‖2 + k(ε)
{
kδ

∫
Ωδ
|ψ`(x)|2dx + δC‖ϕ`‖2

}
.

On allowing` →∞ we may conclude as in the proof of Lemma 1 that the last line is bounded by

ε + Ck(ε)δ.

Sinceδ andε are arbitrary, the lemma follows.

Examples of multiplication operatorsB− which satisfy the hypothesis of Lemma 2 are given by

Lemma 3 Let b(r) ≥ 0 on (0,∞) and
∫ ∞

0

∫ ∞

r

b(s)s2dsdr < ∞,

∫ ∞

0

r
( ∫ ∞

r

b(s)s2ds
)2

dr < ∞. (3.5)

Then there is a functionW ∈ L1((0,∞); r3dr) such that for anyε > 0,

∫ ∞

0

b(r)|ϕ(r)|2r3dr ≤ ε

∫ ∞

0

r|ϕ′(r)|2dr + k(ε)
∫ ∞

0

W (r)|ϕ(r)|2r3dr (3.6)

for all ϕ ∈ C∞0 (0,∞) and some constantk(ε). We can take

r3W (r) = r
( ∫ ∞

r

b(s)s2ds
)2

+
∫ ∞

r

b(s)s2ds. (3.7)
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8 W. D. Evans and Roger T. Lewis: Eigenvalues of Biharmonic Operators

P r o o f. Let

r
3
2
√

ω(r) =
∫ ∞

r

b(s)s2ds. (3.8)

According to Opic and Kufner [13], Theorem 5.9, p.63, the inequality
∫ ∞

0

b(r)|ϕ(r)|2r3dr ≤ c

∫ ∞

0

d

dr
(r|ϕ(r)|2)r 3

2
√

ω(r)dr (3.9)

is satisfied for somec > 0 if and only if

C := sup
0<r<∞

[ ∫ ∞

r

t2b(t)dt · sup
0<t<r

{
[t

3
2
√

ω(t)]−1
}]

< ∞

with c = C the best possible constant for (3.9). On choosing (3.8) it follows thatC ≤ 1. From (3.9) withc ≤ 1

∫∞
0

b(r)|ϕ(r)|2r3dr ≤ 2
∫∞
0

r|ϕ(r)ϕ′(r)|r 3
2
√

ω(r)dr +
∫∞
0
|ϕ(r)|2r 3

2
√

ω(r)dr

≤ ε
∫∞
0

r|ϕ′(r)|2dr + 1
ε

∫∞
0
|ϕ(r)|2ω(r)r4dr +

∫∞
0
|ϕ(r)|2r 3

2
√

ω(r)dr.

The choice (3.7) yields (3.6) withk(ε) = ε−1 + 1 andW ∈ L1((0,∞); r3dr) in view of (3.5).

Theorem 2 Assume the hypothesis of Lemma 1, and whenn = 4 assume the hypothesis of Lemma 2. Then
we have the following.

(i) The form(SAu, SAv) is closed with coreD′0 andS2
A is the associated self-adjoint operator.

(ii) The symmetric formtA[u, v] = (SAu, SAv) + (B+u, v) is closed and bounded below with coreD′0. Let
T 2
A = S2

A + B+ denote the operator associated withtA. It has form domainQ(T 2
A) = Q(S2

A) = D(SA)
andσess(T 2

A) = σess(S2
A) = [0,∞).

(iii) For TA defined as the positive square root ofT 2
A andn = 4, B

1
2−(TA + i)−1 is compact onL2(R4) and

T 2
A −B− is defined in the form sense with form domainD(SA). Moreover,

σess(S2
A + B+ −B−) = σess(S2

A) = [0,∞).

P r o o f. (i) The proof of (i) follows as in [8], Examples VI.2.13 & VI.1.23.
(ii) The first part follows from Remark 1. The fact thatQ(T 2

A) = Q(S2
A) = D(SA) is a consequence of the

second representation theorem, [8], p.331.

SinceB
1
2
+(SA + i)−1 is compact inL2(Rn) by Lemma 1, then Theorem IV.4.4 of [6] applies (withp2 = 0)

showing that (vi) of Theorem IV.4.2 of [6] holds. (Equivalently, we have that the form(B+·, ·) is relatively
form compact with respect to the form(SA·, SA·) - see Reed and Simon [14], p. 369.) This fact implies that
σess(T 2

A) = σess(S2
A).

(iii) For f ∈ D(SA)
‖SAf‖2 ≤ ‖TAf‖2 = ‖SAf‖2 + (B+f, f)

implying that we have for someC > 0

‖(SA + i)f‖2 ≤ ‖(TA + i)f‖2 = C‖(SA + i)f‖2

by (3.1). Then forf = (TA + i)−1g, we have that

‖(SA + i)(TA + i)−1g‖ ≤ ‖g‖,

so that from Lemma 2 we have thatB
1
2−(TA + i)−1 is compact onL2(R4). The remainder of the proof for part

(iii) follows as in the proof for part (ii) given above.
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4 Estimating the number of eigenvalues

Theorem 3 Let the hypothesis of Lemma 2 be satisfied. Then

(i) LA := S2
A + B+ −B− is a self-adjoint operator defined in the form sense;

(ii) B
1
2−(TA + i)−1 is compact inL2(R4), whereT 2

A = S2
A + B+;

(iii) σess(LA) = [0,∞);

(iv) if Ψ̃ ∈ (0, 1), there exists a positive constantC = C(Ψ̃) such that the numberN(LA) of negative eigenval-
ues ofLA satisfies

N(LA) ≤ C(Ψ̃)
∥∥‖V ‖L∞(S3)

∥∥
L1((0,∞);r3dr)

(4.1)

whereV is given in (3.4) andC(Ψ̃) depends on the distance ofΨ̃ from{0, 1}.
P r o o f. Parts (i)-(iii) are included here for completeness. We refer the reader to Theorem 2 for proofs.
For part (iv), we see from (2.6) that forn = 2, 3, 4,

‖∆Af‖2 =
∑
m

∫ ∞

0

FmDmFmrn−1dr

whereFm is given by (2.2) and

Dm =
1

rn−1

d2

dr2

(
rn−1 d2

dr2

)− (n− 1) + 2λm

rn−1

d

dr

(
rn−3 d

dr

)
+

2(n− 4)λm + λ2
m

r4
. (4.2)

Define
W (r) := ‖V (r, ·)‖L∞(S3).

Thus, whenn = 4, since

B− ≤ − ε

r3

d

dr
(r

d

dr
) + k(ε)W (r)

from (3.4), we have

∆2
A + B+ −B− ≥ ∆2

A −B−
≥ ⊕

m∈Z′′

{[
Dm + ε

r3
d
dr (r d

dr )− k(ε)W (r)
]⊗ Im

}
(4.3)

where
Z′′ := {m ∈ Z : (m + Ψ̃)2 ≥ 1},

Im is the identity on the orthonormal basis{um}m∈Z′′ , of L2(S3), andλm = (m+Ψ̃)2−1; see Section 2 above.
In (4.3)

Dm +
ε

r3

d

dr

(
r

d

dr

)
=

1
r3

d2

dr2

(
r3 d2

dr2

)− 3 + 2λm − ε

r3

d

dr

(
r

d

dr

)
+

λ2
m

r4
.

We also have that
∆2 +

c

r4
= ⊕
|m|≥1

{
[D0

m +
c

r4
]⊗ Im

}

in which

D0
m +

c

r4
=

1
r3

d2

dr2

(
r3 d2

dr2

)− 3 + 2λ0
m

r3

d

dr

(
r

d

dr

)
+

(λ0
m)2 + c

r4

with λ0
m = m2 − 1. If m ∈ Z′′, then eitherm ≥ 1, in which case

λm ≥ λ0
m + Ψ̃2, λ2

m ≥ (λ0
m)2 + Ψ̃4,
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or m ≤ −2 implying that

λm ≥ (m + 1)2 − 1 + (1− Ψ̃)2 = λ0
m+1 + (1− Ψ̃)2,

λ2
m ≥ (λ0

m+1)
2 + (1− Ψ̃)4.

As a consequence, form ≥ 1

Dm +
ε

r3

d

dr

(
r

d

dr

)
≥ D0

m +
c

r4

if ε < 2Ψ̃2 andc < Ψ̃4. Form ≤ −2

Dm +
ε

r3

d

dr

(
r

d

dr

)
≥ D0

m+1 +
c

r4

if ε < 2(1− Ψ̃)2 andc < (1− Ψ̃)4. Hence, ifε < 2min{Ψ̃2, (1− Ψ̃)2} andc < min{Ψ̃4, (1− Ψ̃)4}, then

N
(
⊕

m≥1

[
Dm + ε

r3
d
dr

(
r d

dr

)− k(ε)W (r)
]⊗ Im

)

≤ N
(
⊕

m≥1

[
D0

m + c
r4 − k(ε)W (r)

]⊗ Im

)

and
N

(
⊕

m≤−2

[
Dm + ε

r3
d
dr

(
r d

dr

)− k(ε)W (r)
]⊗ Im

)

≤ N
(

⊕
m≤−1

[
D0

m + c
r4 − k(ε)W (r)

]⊗ Im

)
.

Now, Theorem 1.2 of Laptev and Netrusov [9] and the last two inequalities imply (4.1).

Theorem 4 Let Ψ̃ ∈ (0, 1) for n = 2, 4 andΨ̃ ∈ [0, 1
2 ) ∪ ( 1

2 , 1) for n = 3. LetV (x) ≥ 0 and

V ∈ L1(R+; L∞(Sn−1), r3dr).

Then, the operatorS2
A − V is defined in the form sense and has essential spectrum[0,∞). Moreover, forλm

given in§ 2 andn = 2, 3, 4,

N(S2
A − V ) ≤

∑ ′ 4
|4λm + n(n− 4)|√n2 + 8λm

∫ ∞

0

r3‖V (r, ·)‖L∞(Sn−1)dr

where
∑ ′

indicates that all summands less than1 are omitted.

P r o o f. The fact thatS2
A − V is defined in the form sense and has essential spectrum[0,∞) follows from

Lemma 1 and Theorem 2.
For allf ∈ D′0 = C∞0 (Rn \ Ln) and

Fm(r) :=
∫

Sn−1
f(r, ω)um(ω)dω,

we have from (2.6) withn = 2, 3, 4,

‖∆Af‖2 =
∑
m

{ ∫∞
0

(|F ′′m|2 + n−1+2λm

r2 |F ′m|2 + 2(n−4)λm+λ2
m

r4 |Fm|2
)
rn−1dr

}

≥ ∑
m

{ ∫∞
0

( 1
4 (n−2)2+n−1+2λm

r2 |F ′m|2 + 2(n−4)λm+λ2
m

r4 |Fm|2
)
rn−1dr

}

by Hardy’s inequality. Making the substitutions

c(n, λm) := n2 + 8λm and ϕm(r) :=

√
c(n, λm)

2
r(n−3)/2Fm(r)

Copyright line will be provided by the publisher



mn header will be provided by the publisher 11

we have that

‖∆Af‖2 ≥ ∑
m

∫∞
0

[|ϕ′m|2 + (n−3)(n−5)+16λm(λm+2(n−4))c(n,λm)−1

4r2 |ϕm|2
]
dr.

Therefore, forf ∈ D′0 and

K(n, λm) := (n− 3)(n− 5) + 16λm(λm + 2(n− 4))(n2 + 8λm)−1

it follows that

((∆2
A − V )f, f) ≥ ∑

m

∫∞
0

[|ϕ′m|2 + K(n,λm)
4r2 |ϕm|2 − 4r2

n2+8λm
W (r)|ϕm|2

]
dr (4.4)

with W (r) := ‖V (r, ·)‖L∞(Sn−1). Bargmann’s bound for the number of negative eigenvalues (see [2] and [18])
applies to the Sturm-Liouville operator associated with the integral on the right-hand side of (4.4), i.e.,

τ(n,m) := − d2

dr2
+

K(n, λm)
4r2

− 4r2

n2 + 8λm
W (r), n = 2, 3, 4,

if

K(n, λm) > −1. (4.5)

In that case,

N(τ(n,m)) <
4

(n2 + 8λm)
√

K(n, λm) + 1

∫ ∞

0

r3W (r)dr.

We first note that
K(n, λm) + 1 = [4λm + n(n− 4)]2/(n2 + 8λm) ≥ 0

sincemin{λm} > 0. In fact, it is easy to show that the strict inequality (4.5) holds under the hypothesis of the
theorem on substituting the values ofλm given in§2, namely

λm = (m + Ψ̃)2, m ∈ Z, for n = 2;
λm = (m− Ψ̃)(m− Ψ̃ + 1), m ∈ Z′, for n = 3;
λm = (m + Ψ̃)2 − 1, m ∈ Z′′, for n = 4.

(4.6)

In view of (4.4), the proof is complete.

Corollary 3 Assume the hypothesis of Theorem 4. Then,S2
A − V has no eigenvalues if forn = 2

∫ ∞

0

r3‖V (r, ·)‖L∞(Sn−1)dr <

{
2Ψ̃(2− Ψ̃)

√
3− 4Ψ̃ + 2Ψ̃2 for Ψ̃ ∈ (0, 1

2 ],
2(1− Ψ̃2)

√
1 + 2Ψ̃2 for Ψ̃ ∈ ( 1

2 , 1);
(4.7)

for n = 3

∫ ∞

0

r3‖V (r, ·)‖L∞(Sn−1)dr <

{
|Ψ̃(Ψ̃ + 1)− 3

4 |
√

9 + 8Ψ̃(Ψ̃ + 1) for Ψ̃ ∈ [0, 1
2 ),

|Ψ̃2 − 3Ψ̃ + 5
4 |

√
25− 24Ψ̃ + 8Ψ̃2 for Ψ̃ ∈ ( 1

2 , 1);
(4.8)

for n = 4

∫ ∞

0

r3‖V (r, ·)‖L∞(Sn−1)dr <

{
2

3
2 Ψ̃(2 + Ψ̃)

√
2 + 2Ψ̃ + Ψ̃2 for Ψ̃ ∈ (0, 1

2 ],

2
3
2 ((2− Ψ̃)2 − 1)

√
1 + (2− Ψ̃)2 for Ψ̃ ∈ ( 1

2 , 1).
(4.9)
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P r o o f. Define

B(λm, n) :=
1
4
|4λm + n(n− 4)|

√
n2 + 8λm.

Then by Theorem 4 there will be no eigenvalues if
∫ ∞

0

r3‖V (r, ·)‖L∞(Sn−1)dr < min
m
{B(λm, n)}

for m ∈ Z further restricted according to (4.6).
It is easy to see that the functionsB(x, n), n = 2, 3, 4, are minimized on[0,∞) for somex ∈ (0, 2) and

accordingly, in order to minimizeB(λm, n) we may restrict our attention to thoseλm given in (4.6) that lie in
the interval(0, 2). Noting thatλm = λm(Ψ̃), the estimate (4.7) follows from the fact that

min
m∈Z

B(λm, 2) = min
Ψ̃∈(0,1)

{B(λ0, 2), B(λ−1, 2)};

estimate (4.8) follows from the fact that

min
m∈Z

B(λm, 3) = min
Ψ̃∈[0,1)

{B(λ−1, 3), B(λ1, 3)};

and estimate (4.9) follows from the fact that

min
m∈Z

B(λm, 4) = min
Ψ̃∈(0,1)

{B(λ1, 4), B(λ−2, 4)}.

5 Additional remarks on embedding results

The following optimal embedding results for the Sobolev spaceH2(Rn) ≡ W 2,2(Rn) are known (see [12],
p.213 and [6], p.263):

H2(Rn) ↪→





Lq(Rn), ∀q ∈ [2, 2n/(n− 4)] for n > 4,
Lq(Rn), ∀q ∈ [2,∞) if n = 4,

C0,γ(Rn), 0 < γ < 1 if n = 2,
C0,γ(Rn), 0 < γ < 1

2 if n = 3,

(5.1)

whereC0,γ(Ω) is the subspace of the space of continuous functionsC(Ω) consisting of functions satisfying a
local Hölder condition onΩ.

If we denote byHA(Rn) the completion ofD0 = D(∆A) with the norm

‖f‖2A := ‖∆Af‖2 + ‖f‖2

we then obtain from Theorem 1 the following results which are valid in the limiting cases of (5.1).

Theorem 5

(i) For all f ∈ HA(R4), f ∈ L∞(R+; L2(S3), dr) and

sup
0<r<∞

∫

S3
|f(r, ω)|2dω<

∼
‖∆Af‖2.
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(ii) For all f ∈ HA(R2),
∫
S1 f(·, ω)dω ∈ C0,1(R2), (i.e., Lipschitz) and for0 < s < r < ∞

∣∣∣
∫

S1

f(r, ω)− f(s, ω)
r − s

dω
∣∣∣<∼‖∆Af‖2.

(iii) For all f ∈ HA(R3),
∫
S2 |f(·, ω)|2dω ∈ C0,1(R3) and

∣∣∣
∫

S2

|f(r, ω)|2 − |f(s, ω)|2
r − s

dω
∣∣∣<∼‖∆Af‖2.

P r o o f. Part (i) is immediate from (2.8).
In part (ii) we have for0 < s < r < ∞,

∣∣∣
∫
S1

f(r,ω)−f(s,ω)
r−s dω

∣∣∣ =
∣∣∣(r − s)−1

∫
S1

( ∫ r

s
∂
∂tf(t, ω)dt

)
dω

∣∣∣
≤ |r − s|−1

∫ r

s

{ ∫
S1

∣∣ ∂
∂tf(t, ω)

∣∣2dω|S1|}
1
2 dt

<
∼

‖∆Af‖2

by (2.8).
In part (iii) we have for0 < s < r < ∞ and anyε > 0

|f(r,ω)|2−|f(s,ω)|2
r−s = 1

r−s

∫ r

s
2<e

[
f(t, ω) ∂

∂tf(t, ω)
]
dt

≤ 1
r−s

{
ε
∫ r

s
t
∣∣∂f

∂t

∣∣2dt + 1
ε

∫ r

s
1
t |f(t)|2dt

}

and, withF (r) :=
∫
S2 |f(r, ω)|2dω

∣∣F (r)−F (s)
r−s

∣∣ ≤ 1
r−s

∫
S2

{
ε
∫ r

s
t
∣∣∂f

∂t

∣∣2dt + 1
ε

∫ r

s
1
t |f(t)|2dt

}
dω

= 1
r−s

{
ε
∫ r

s
t
( ∫

S2

∣∣∂f
∂t

∣∣2)dt + 1
ε

∫ r

s
1
t

∫
S2 |f(t)|2dωdt

}

<
∼

‖∆Af‖

by (2.8).
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