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Abstract

In this paper we analyze the bottom of the energy-momentum spectrum of the
translation invariant Nelson model, describing one electron linearly coupled to a sec-
ond quantized massive scalar field. Our results are non-perturbative and include an
HVZ theorem, non-degeneracy of ground states, existence of isolated groundstates in
dimensionsl and2, non-existence of ground states embedded in the bottom of the
essential spectrum in dimensiodsand4, (i.e., at total momenta where no isolated
groundstate eigenvalue exists), and we study regularity and monotonicity properties
of the bottom of the essential spectrum, as a function of total momentum.



The translation invariant massive Nelson model 1

Contents

1 Introduction and results 2
1.1 Non-relativistic QED: Anoverview . . . . ... ... ... ... .... 2
1.2 The translation invariant Nelsonmodel . . . . . .. .. ... ... .... 4
1.3 Mainresults . . . . . . . .. e 6

2 Notation and preliminaries 11

2.1 Thesecond quantizationfuncior. . . . .. .. ... ... ... .... 11

2.2 Basicestimatesinvolving. . . . . . ... ... ... ... ... .... 12
2.3 Theextendedspaceald . . . . . ... ... ... 13
2.4 Basicestimatesinvolving. . . . . .. ... ... ... ... ... ... 14
2.5 Auxiliary spacesandoperators . . . . . .. ..o 15
2.6 Geometric partition of unity and extended operators . . . . . .. ... .. 16
2.7 Thepull-throughformula . . . ... ... ... ... .. ......... 17

3 Spectral theory 18
3.1 Localizationerrors . . . . . . . . . ... 18
3.2 TheHVZ-Theorem . . . . . . . . . . ... ... 22
3.3 Uniqueness, existence, and non-existence of ground states . . . . . . .. 26
3.4 Regularity of — oess(t) « o o o oo 30
3.5 Localextremaof — gess(t) - - o o o oo 34

4 Additional results 36
4.1 Complimentaryresults . . ... ... .. ... .. .. 36
4.2 Interactions withanumbercutoff . . . . . . ... ... ... ... .... 39
4.3 Commentsonproofs . . ... ... .. ... ... ... 41

A Mathematical tools 41
A.1 Almostanalyticextension. . . . . . .. ... ... oo 41
A2 Invariantcones . . . . . . . . ... e e 42



The translation invariant massive Nelson model 2

1 Introduction and results

In this section we introduce the Nelson model and formulate our main results. The nota-
tion we use is standard, but for the sake of completeness we give the basic constructions
in Subsect. 2.1.

1.1 Non-relativistic QED: An overview

In the last decade there has been a surge of interest in non-relativistic QED, sparked

by a string of papers by #ibner and Spohn, and by Bachphlich, and Sigal. See e.g.

[5, 4, 39, 38]. The purpose of this subsection is to give an overview over different aspects

of the problem and place the model we study, as well as the results derived, into context.
The fundamental Hamiltonian in non-relativistic QED, describing one charged par-

ticle, with mass\/ > 0 and charge, coupled to a radiation field, is tmeinimally coupled

one

Hyin = 1 @ dU(|k]) + ﬁ (pe1 - eA(x))Q, onL*(R%) @ I(LA(R})). (1.1)
HeredI'(|k|) is the kinetic energy of the radiation fiejd= iV is the particle momentum
operator, and! is the second quantized (massless) Maxwell field in the Coulomb gauge,
i.e. Vi - A = 0. The Hilbert spacé(L?(RR3)) is the bosonic Fock-space. See [34] and

[5, 41]. In order to make sense of this operator (a priori as a form) one must introduce
an ultraviolet cutoff intoA. We recall that the model is translation invariant, in the sense
that it commutes with the operator of total momentéin= p ® 1 + 1 ® dI'(k). We

remark that often the second quantized Pauli operator is taken as a starting point instead
of (1.1). It is defined by replacinfp — eA)? by (o - (p — eA))?, whereo is the vector

of Pauli matrices. This operator differs from (1.1) by a magnetic terniV, x A) (and

with L2(R2) replaced byl.?(R3) @ C?, thus taking into account the spin of the particle).

The study ofH ,,;,, is a natural starting point in non-relativistic QED. In particular in
the context of scattering theory, where the dynamicd gf,, is a natural choice for "free”
dynamics. Unfortunately there are not many non-perturbative (whisr@ere viewed as
a coupling constant) rigorous results established for the minimally coupled model, as it is
formulated in (1.1). We refer the reader to [35, 40]. Most results obtained in the literature
are for H,;, perturbed by an electric potential, and results then pertain to existence and
properties of ground states for the perturbed model, or localizatidi? (R?) of states
below an ionization threshold. See [29, 30, 41, 42].

There are a number of different ways to obtain simpler problems. Some involve
passing to phenomenological Hamiltonians, which are simpler to analyze than (1.1). We
list some choices typically considered in the litterature:

S1)Consider the problem perturbatively, i.e., in the limitea§mall.

S2) Replace the massless photons by massive photons, which amounts to replacing the
massless dispersion relatién— |k| by a massive oné — k2 +m?2, m > 0. This
removes the infrared problem.

S2’) Set the interaction between soft photons (photons with small momenta) equal to zero.
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S3) Replace the minimal coupling with a linear coupling to a scalar field, i.e. replace
Hpin by H = 1® dU(|k|) + 5370° ® 14 ®(v), where®(v) is a field operator.

S4)Place the system in a confining external electric potemtjahat islim |, V(x) =

oo. This breaks the translation invariance of the problem. An extreme version of this are
the spin-boson and Wigner-Weisskopf models.

S4') Place the system in an external potentiaduch thap? + V' has isolated eigenvalues
below the essential spectrum. Then consifigk, + V' ® 1 in a low energy regime where
states are isolated bound statepdf V dressed with photons.

S5)A combination of the above.

In this paper we consider the massive translation invariant linearly coupled model
in any dimension, which can be viewed as a simplification of the minimally coupled
model, by applyindgs2)andS3)as mentioned above. This model was considered by Nel-
son in [46], and it is distinguished by being renormalizable in a Hamiltonian setting, cf.
also [10, 32, 52]. This model is often referred to asMeson modela convention also
adopted here. The models discussed in this introduction is part of a body of models some-
times referred to aPauli-Fierz modelsin this paper we do not consider renormalized
operators. In addition we note that we work with more general dispersion relations
and( thanv/k2 + m?2 andp? /2M respectively. We emphasize that we are interested in
non-perturbativeresults. See Subsect. 1.2 below for a more detailed description of the
model.

We remark that one can formulate the model and the simplifications discussed above
for multiple particles coupled to a radiation field. For confined versions of the model, cf.
S4)andS4’) above, this makes no difference. However, for translation invariant models,
not much is known.

We pause to remind the reader that translation invariance, the fa¢fthg{ = 0,
gives a direct integral representati¢r (£)d¢ of the Hamiltonian. What we study in this
paper is the bottom of the spectrum and essential spectruid{©f as functions of total
momentumg. The former function is also called tlggound state mass shetr simply
the mass shell. We note that in the massive case isolated excited states could exist and
would give rise to excited mass shells.

We are mainly inspired by papers ofdhlich [19, 20], Spohn [54], and one of
Derezhski and Grard [14]. Fohlich considered non-perturbative properties of the ground
state mass shell for the massless translation invariant Nelson model. Most of his results
hold (suitably translated) also for massive photons. Déaskriand &rard were con-
cerned with confined, in the sense$8) above, massive linearly coupled models. Using
non-perturbative methods they give a geometric proof of a HVZ theorem, thus locating the
essential spectrum. (They furthermore apply Mourre theory and time-dependent scattering
theory to the model.) Spohn proved a HVZ theorem for the translation invariant model,
using in part ideas of Glimm and Jaffe (via a reference to [20]). He furthermore showed,
in dimensionl and2, that the Hamiltonian at fixed total momentum admits an isolated
groundstate. The results of Spohn are for a class of massive and subadditive dispersion
relationsw. The result on existence of groundstates requires an additional assumption
which excludes the dispersion relatigfk2 + m?2, m > 0.

In this paper we prove the following results for the structure of the bottom of the
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spectrum of the massive translation invariant Nelson model: An HVZ theorem, Theo-
rem 1.2 (valid forw which are not necessarily subadditive). The ground state mass shell
is non-degenerate, Theorem 1.3, using a Perron-Frobenius argument of [19]. Existence of
an isolated groundstate for all total momenta, Theorem 1% # (1, 2), thus extending

the result of Spohn to the cas¢k) = v/k? + m?. Non-existence of a ground state em-
bedded in the essential spectrum, Theorem 1.6/ii=(3, 4). Analyticity of the bottom

of the essential spectrum, away from a closed countable set, Theorem 1.11. Maximality
of the spectral gap and analyticity at local minima for the bottom of the essential spec-
trum, Theorem 1.12. See Subsect. 1.3 for a precise formulation of the main results. In
Subsect. 4.2 we discuss how to extend the results to the model with a cutoff in the photon
number operator.

The models considered in this paper only fails to include the socalled (optical mode)
polaron model of an electron in a crystal by the requirementdtiig} — oo, |k| — oo.

This requirement is a consequence of our use of geometric methods to prove the HVZ
theorem, and an adoption of the Glimm-Jaffe approach, as used in [20], might remedy this.
However, the geometric approach is important for future work on Mourre and scattering

theory. For mathematical work on the polaron model see [32, 43, 52, 53, 54], and for a
textbook discussion see [18].

We remark that there are not many non-perturbative results on the translation in-
variant Nelson model, other than what we have already mentioned above. See however
[31], Lemma 4.1 in this paper. In [53] upper and lower bounds on the effective mass are
obtained (the effective mass is the inverse of the Hessian of the ground state mass shell at
zero total momentum). There are more complete results available if one imposes a cutoff
at small photon number, cf. [23] (the massless case with at most one photon).

In the perturbative case there are more results, cf. [11, 21, 47]. See also [33, 36, 37].
(We remark however, that although the photon dispersion relation in [21] is massless, the
interaction is of the type mentioned B2’) above, and the model thus retains massive
features.)

Finally we recall that for confined massive models, ®4) and S4’) above, quite
strong non-perturbative results are available. See, apart from [14] mentioned above, the
papers [2, 3, 22]. As for the massless confined model we refer the reader to [7, 9, 24, 26,
38] for non-perturbative results.

1.2 The translation invariant Nelson model

We consider a particle moving iR” and interacting with a scalar radiation field. We
write x andp = —iV for the particle position and momentum respectively. The particle
Hilbert space is

K = L*RY),
and the Hamiltonian for a free particle is taken to®@), whereQ) : R — Ris a
smooth dispersion relation. We are primarily interested in the standard non-relativistic

and relativistic choices, i.€2(p) = % andQ(p) = /p?+ M?2. HereM > 0 is the
mass of the particle.
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The photon coordinates will be denoted by= iV, andk respectively and the
one-photon space is
bon = L*(RY).

The Hilbert space for the radiation field is the bosonic Fock-space
F = T(bp) = @F™, where 7 =1 () = b5 (1.2)
n=0
We write Q = (1,0,0,...) for the vacuum. The creation and annihilation operators,
a*(k) anda(k) satisfy the canonical commutation relations (CCR for short)
[a*(k),a" (k)] = [a(k),a(K')] = 0, [a(k),a"(K')] = o(k—FK), (1.3)

anda(k)Q? = 0. The free photon energy is the second quantization of the one-photon
dispersion relatiow

dl(w) := ,/,, w(k)a*(k)a(k)dk, where w(k) := Vk? + m?2. (1.4)

Herem > 0 is the mass of the scalar photon. Our methods do not extend to the case of
massless photonsy = 0. The full Hilbert space of the combined system is

H:=K®F.
We will make the following identification
H = L*(RY; F).

The interaction considered here is linear in the field operator and is given by

Vo= / V {eik'xv(k) Ie ® a*(k) + e **p(k) Ix ® a(k)}dk,

where the physical form of the interactionigk) = x(k)/+/w(k) andy is an ultraviolet
cutoff, which ensures that € b,;,. The free and coupled Hamiltonians for the combined
system are

H := Hy + V, where Hy := Q(p) ® 1 + Ix ® dl'(w) . (1.5)
The total momentum for the combined system is given by
P :=p® 1l + Ix ® dl'(k) .

The property of translation invariance is contained in the statement that the Hamilto-
nian commutes with the total momentum. That is, the energy momentum Véttar)
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has mutually commuting coordinates. Translation invariance impliesiHhand H are
fibered operators. We introduce a unitary transformation

Iy = FD(e7 %) : H — LARY; F),

whereF is the Fourier transforn’ : L?(RY; ) — L?(RY; F) andI'(e~'**) restricted
to K ® F(™ is multiplication bye—i(k1+--+kn)x \We have

Iy Ho Iy, = Hy(§) d¢ and Igy, H I, = (€)dg .
RY R¥

The fiber operatorély(£) andH(€), £ € R”, are operators off given by
H(¢) = Hy(&) + ®(v) where Ho(§) = dl'(w) + Q& — dI'(k)) (1.6)

and the interaction is

o) = | {v(k)a*(k) + v(k)a(k)}dk . (1.7)

We will in general use the notatiane b}, to denote a form-factor. In this paper we study
the properties of the bottom of the joint spectrum of the vetibH).

1.3 Main results

In this subsection we will formulate precise conditions and state our main results. Proofs
will be given in Section 3. The first condition is on the particle dispersion relation. We use
the standard notatioft) := (1 + ¢2)'/2.

Condition 1.1. (The particle dispersion relation) LetQ € C'*°(R"). There existsg, €
{0, 1,2} such that

i) There exist€' such that2(n) > C~1{n)** — C.
ii) For any multi-index there exist<”,, such thajo“Q(n)| < C, (n)se~lel,

We note that the standard choideg) = % andQ(p) = /p? + M? satisfy this
condition withs, = 2 andsg = 1 respectively.

Condition 1.2. (The photon dispersion relation)Letw € C'>°(R") satisfy
i) There existsn > 0, the photon mass, such thaf;cgr w(k) = w(0) = m.
i) w(k) — oo, inthe limit|k] — oo.
iii) There exists,, > 0 andC,, such that for any multi-index, with |a| > 1,

w(k) > C5HE)* — C, and |9pw(k)| < Cqlk)se~lol,
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The condition iii) is used in connection with pseudo differential calculus. The phys-
ical choice ofw used in (1.4) satisfies this condition (with = 1), and so does (k) =
k2 4+ m (with s, = 2).

We introduce a space of test functions

C° = Tan(C(RY)). (1.8)

Note that sincéd (&) is a bounded from below multiplication operator on eagbarticle
sector, we find that it is essentially self-adjoint@f?. We recall the following result, cf.
[46], [19], and [20]. For completeness we give a proof in the beginning of Section 3

Proposition 1.1. Letv € L?(R¥). Assume? andw, satisfy Conditions 1.1 and 1.2 i)
respectively. Then
i) D(Hy(¢)) is independent of and we denote it b§p.

i) ®(v)is Hy(&)-bounded with relative boun@ In particular H () is bounded from
below, self-adjoint ofD(H (§)) = D(H(&)), and essentially self-adjoint af§°.

iif) The bottom of the spectrum of the fiber Hamiltonigns; X, () := inf o(H (£)),
is Lipschitz continuous.

We introduce some notation. First the bottom of the spectrum of the full operator:

Yo = inf X > —00.
0 = nf 0(§) 00

Forn > 1 andk = (ki,...,k,) € R™ we often writek(™) = k; + --- + k,,. We
now introduce the bottom of the spectrum for a composite system at total moméntum
consisting of an interacting system at total momentum k(™ andn non-interacting
photons with momenta:

S0 k) = BV (E— kM) + D w(ky) . (1.9)

j=1

The following functions are thresholds due to ground states dressedpbtons, at
critical momenta:

(n) — () (e,
B (€)= inf 3oT(&5k) (1.10)
The bottom of the essential spectrum (see Theorem 1.2 below)
Bess(€) 1= inf ¢7(6). (111)
We have the following elementary properties of the functions introduced above. Namely
0 < Eess(f) - 20(5) <m (112)
o(§) = Bo = Zess(§) = o(§) + m (1.13)
Jim So() = Jim Sess (€) = Jim (M) = o (1.14)
lim £ (¢) = . (1.15)

Our first result is
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Theorem 1.2. (HVZ) Letv € L?(R"). Assume Conditions 1.1, and 1.2. Then
i) Eigenvalues ofi (£) belowX.«(€) have finite multiplicity and can only accumulate
at chs (5)
i) Tess(H(E)) = [Zess(§), 00).

The method of proof for the HVZ theorem is geometric and follows ideas of [14],
cf. Subsect. 3.2. See also [2, 1, 9, 15, 24]. The name "HVZ" (Hunziker-van Winter—
Zhislin) is used because the geometric idea of the proof is quite similar to that employed
in the proof of the standard HVZ theorem fdf-body Schédinger operators, cf. [13,
Theorem 6.2.2]. We recall that there is another method, due to Glimm and Jaffe [28], one
can employ to obtain an HVZ theorem. See [54, Section 4], for the case of subadditive
dispersion relations, and in addition [8, 20].

We have the following result on non-degeneracy of groundstates. This type of result
is not new, cf. [31, Section 6] and [19, Section 3.2].

Theorem 1.3. (Non-degeneracy of ground stateshetv € L?(R”). Assume Condi-
tions 1.1 and 1.2. Suppose furthermore thét) > 0 a.e. Then, ity (&) is an eigenvalue
for H (&), it is non-degenerate.

We note that the result of Gross [31] is for zero total momentum only, and assumed
thatp — exp(—tQ2(p)) is a positive definite function for ail > 0. However, Gross does
not assume to have a sign. This is because one can pass to thé&oler representation
of the Fock-space, whei#, () is positivity improving if and only if¢ = 0.

In the following we will impose

Condition 1.3. w € C*°(R¥) satisfies
i) Subbadditivity: Fork;, ks € R” we havev(k; + k2) < w(k1) + w(ke).
i) Strict subadditivity: Fork,, ko € R” we havev(ki + k2) < w(k1) + w(ka).

The standard dispersion relatianik) = k% + m? satisfies Condition 1.3 i’), but
w(k) = k?+m does not. Below we will discuss consequences of imposing Condition 1.3.
If wis (strictly) subadditive we find, for aff € R",

2076 D @), for n < . (1.16)

We thus get the following supplement to the HVZ Theorem, cf. also [54, Section 4],

Corollary 1.4. Letv € L*(R”). Assume Conditions 1.1, 1.2, and 1.3 i). Theg(¢) =
=M(¢).

The following simple lemma can be used to check for subadditivity.

Lemma 1.5. Letw € C*°(R”) be convex and satisfy: For artye R”, we havev(k) —
k- Vw(k)(;)o. Thenw is (strictly) subadditive.
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We introduce the notation
Zo = {n e R : Eo(n) < Zess(n) }. (1.17)

We prove the following result on the nature of the bottom of the spectrum, at a total
momentum with no isolated ground state eigenvalue.

Theorem 1.6. (Existence/Non-existence of ground states)etv € L?(R”). Assume
Conditions 1.1, 1.2, and 1.3 i"). Suppose furthermore thab > 0 a.e., locally uniformly
in k € R”. We have:

i) If 1 <wv <2 thenZ, = R, thatis; 3¢ (¢) is an isolated eigenvalue df (&) for
any¢ € R”.

i) If3 < v <4and¢ € Iy, thenH (&) has no ground state; i.64(¢) is not an
eigenvalue.

The statement i) above is an extension to the Nelson model of a result of Spohn,
[54, Section 5]. We give a new proof replacing Spohn'’s functional integral approach by
the pull-through formula.

The remaining results are derived under the following condition

Condition 1.4. The function€2,w € C*(R¥) andv € L*(R") and
i) Invariance under rotations: For any € R” andO € O(v) (the orthogonal group),
we have2(0¢) = Q(§), w(0¢) = w(§), andv(Ok) = v(k) a.e.
i) w is convex.
i) ©Q andw are analytic.

The rotation invariance of?, w, andwv, implies that the ground state mass shell

Yo (&) is invariant under rotations, and so zﬁg”(g).
For¢ € R” andn € N we define

() ={k e R™ : ¢ — k™ € Ty}, (1.18)

Our last theorem is concerned with the regularity of the functfons E(()") (&). Our

strategy is to study local minima &f — 26”)(5;5). The following lemma, in conjunc-
tion with (1.16), ensures that under Condition 1.3, the relevant local minima, i.e. global

minima, are located if‘n’é”) (£), where the bottom of the spectrum is smooth.

Lemma 1.7. Letv € L?(R¥). Assume Conditions 1.1 and 1.2 i). léet R, n > 1 and
ke R IS (& k) < infs, B (€), thenk € T30 (€).

The following lemma allows us to restrict the analysis to one dimension.

Lemma 1.8. Letv € L?(R¥). Assume Conditions 1.1, 1.2 i), and 1.4 i),ii). ket R”
andn € N. Any local minimunk € Ié”) (&) of k — Z(()”) (&; k) is of the formky = -+ - =
k, = 0¢, for some) € R.
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Let @ be a unit vector irR”. We write o(t) = X,(tw), for t € R. By rotation
invariance is independent of.. Similarly we writes (™ () := S (i) andoess (t) :=
Yess(t). With a slight abuse of notation we writg(t) = w(t«) andZ, to denote the set
of t’s such that« € Z,. We furthermore use the symbﬁtﬁ”)(t), n > 0 (not necessarily
integer), to denote the sét ¢ R : t — ns € Zp}.

In light of the previous lemma, we introduce now, fer> 0 and not necessarily
integer, the following functions

o™ (t:s) = o(t — ns) + nw(t) and ™ (t) = inf o™ (t;s).
) ‘ER )

Note that by Lemma 1.8 we have, for integers{™ (¢) = o™ (|¢]), and in par-
ticular e (€) = oM (€]). In this connection we mention that a local minimum for
Eé”) (t;-) induces a local minimum far (™ (¢; -). Conversely however, a local minimum
for o(™)(t; ), which is not a global minimum, could be associated with a saddle point for
20 (¢4).

We have, cf. also [19, Lemma 1.6],

Proposition 1.9. Assume Conditions 1.1, 1.2, and 1.4. bek 3. The family of self
adjoint operatorst — (H (ti) — \)~! is analytic of type A. Furthermore, the madp >
t — o(t) is analytic.

We introduce an index for a local minimum of— o™ (¢; s).

Definition 1.10. Letn > 0,¢ € Rands € Ié”)(t). Assumes is a local minimum. We
define the index to bad ™ (¢; s) = min{¢ € N : 92/c("(t; 5) > 0}, with the convention
that the index i if 92/ (t; s) = 0 for all £. For simplicity we definénd™ (; s) = 0
if s € Z3™ (t) is not a local minimum fos’ — 9,0 (t; s').

We have the following regularity result

Theorem 1.11. Assume Conditions 1.1, 1.2, 1.3, and 1.4...et 0. There exists a closed
countable se? ™ c R, and an analytic maR\7™ > t — 0™ (¢) e Z\")(t) with
the property that the maps — o™ (t;s), t € R\7", has a unique global minimum
ats = O (), with Ind™ (£; ©™ (¢)) = 1. In particular R\T (™ 3 ¢ — o™ (¢) is
analytic and

d

ﬁo(")(t) = ow(0™ (1)), for t € R\T™. (1.19)

Our final main result is concerned with the structure of the spectrum near local

minima of the essential spectrum

Theorem 1.12. Assume Conditions 1.1, 1.2, 1.3, and 1.4. 4gdbe a local minimum of
t — 0ess(t). Then the spectral gap &g is maximal, i.eo.ss(to) — o(to) = m, the map
t — o(t) has a local minimum aly, the mapt — o (t) is analytic neatrty, and

2 __9Pw(0) &a(to)
0%0ess(to) = 82w(0) + 820(t0) .
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2 Notation and preliminaries

In this section we recall known facts. The reader is urged to consult in particular [14],
where most of the results pertaining to second quantization can be found.

2.1 The second quantization functol’

Let h be a complex Hilbert space with inner prodygct), which is conjugate linear in the
first variable and linear in the second. We use the standard notgtigrior the associated
bosonic Fock-space, see (1.2). For a (not necessarily dense) suspage we write
I'sn (C) for the subspace df(h) consisting of finite linear combinations of elements of
the algebraic tensor produat§=", n > 0. If C is dense i, thenT's,(C) is dense in
r(h).

We writea*(f) anda(f), f € b, for the creation and annihilation operators. Recall
that foru € T(™ () := h®-", the n-particle sectora*(f)u = vn + 1S, 1f @ u €
'+ (). Here Sy, is the symmetrization operator @y¥*. We furthermore recall that
a*(f) anda(f) are closed and densely defined, and Bga(f)) = D(a*(f)). They
satisfy the CCR:

[a*(f),a"(9)] = [a(f),a(9)] = 0, [a(f),a"(9)] = (f,9) (2.1)

o(f) = a*(f) + a(f) (2.2)

is self-adjoint onD(a*(f)) = D(a(f)) and essentially self-adjoint ofg,(h). In the

caseh = b, we have the relation with (1.34*(f) = [, f(k)a*(k)dk anda(f) =

Jew f(k)a(k)dk. In particular (2.2) and (1.7) coincide. We frequently writé (k) to

denote eithen(k) or a*(k). Similarly for a#(f). Recall thata(k) is well-defined on

Cs° = Tan(C§°(R”)), butitis not closable. The domain of its adjo{at(k))* equals{0}.

The "operator’a*(k) should be understood as a form. See the monograph by Berezin [6].
Let b be a bounded operator between Hilbert spdgeandh,. We definel’(b) :

I'(h1) — T'(ho) by its restriction td(™) ()

n times

———
P(b)‘r(n)(bl) = b ® et ® b .

In particular we havé'(b)2 = Q2. Recall thafl’(b) is bounded if and only ifib|| 5, ;p,) <
1.
We introducedl'(a) for operators: : h — b with domainD(a) by

dF(a)mn)(h) =a @ -1 + -+ 1h® -1 ®a, (2.3)

a priori on the domaif's, (D(a)). In particular;dl’(a)2 = 0. The operator§'(b) and
dTl'(a) are related through the formule®) = e4'(@) (suitably interpreted). It is easy to
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see that if2 is closed (or closable) dR(a) thendI'(a) is closable oM, (D(a)). See [24,
Section 3.2] for a simple proof, which applies also to similar situations below. In addition,
if a is self-adjoint, thenil'(a) is essentially self-adjoint oRg, (D(a)), cf. [50, Subsect.
VI111.10, Theorem VI11.33 and Example 2]. For closadve will by dI'(a) understand the
closure of (2.3). Otherwisél'(a) denotes the operator in (2.3) with the a priori domain

Csn(D(a)).

For a quadratic form with form-domainQ(a) we also writeil'(a) for the quadratic
form defined ol's, (Q(a)) by (2.3).

An important operator is the number operator

N = dI(1y), (2.4)

which in the casé = h,;, can be written a8V = [, a*(k)a(k)dk. See also (1.4).

Let e andb be densely defined operatorsipandv € D(a). We have the following
commutation properties, which should be interpreted as fornigifD(a*) N D(b*)) x
Tan(D(a) ND(b)) andT'a, (D(a*)) x T'an(D(a)) respectively.

i[dT(a),dT'(b)] = dI'(i[a,d]),
[a*(v),dT(a)] = —a*(av), [a(v),dl'(a)] = a(av), (2.5)
and i[®(v),dI'(a)] = — ®(iav) .

Letb : h; — b2 be a contraction and : h; — by with domainD(a). We define
dl'(b,a) : T'(h1) — T'(h2) onTs,(D(a)) by

AU (b, a)jr(p) = a@b@ @b+ - + bR - @b@a. (26)

In particular (in the casg; = hy = h) dI'(1y,a) = dI'(a); cf. (2.3). Ifa is closed (or
closable) we find, as above, th#it(b, a) is closable ol's,(D(a)). As for dl'(a) we use
the notationiTI'(b, a) also in the case wheteis a form onhy x b;.

Letd : h; — by be a contractiong; : h; — by andas : ha — by be densely
defined. As a form of's, (D(a3)) X Tan(D(a1)) we have

(T(b)dT(a1) — dT(a)T(b)) = dT(b, (bay — azb)) . 2.7)

2.2 Basic estimates involving
We have the following lemma

Lemma 2.1. For f € hands > 0, we havea”(f) : D(N*+/2) — D(N*®) and the
following holds true

i) Letfy,...,fn €b.Then

(N + 1)k a(f1)--a? (fo) (N +1)7F 5| < Crnllfill - |1 fall -
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i) The map
b 3 (f1,.... fa) = (N+1)Fa®(f1)---a®(f.) (N+1)"27% € BT'(h))

is norm-continuous.

i)y Let{f1:}ien,---,{fn1}ien be uniformly bounded sequences, converging weakly
to zero inh. Then

s— lim (N +1)*a(fi) - a(fo)) (V+ 1757 = 0.

Supposé € B(hy;bs) is a contractiong; : h; — b andas : hy, — h. Definea
as a form orD(az) x D(a1) by (f,ag) := (azf,a1g). Then, forv € T'g,(D(aq)) and
u € Tan(D(az)),

|(u,dl'(b,a)v)| < <u7d1“(a§a2)u>% (v,df(a’{al)v)% . (2.8)

Herea}, a4 denote the obvious forms dy);.. Taking in particulal = by, az = Ty, and
a; = a we get, forv € I'g,, (D(a)),

(N +1)"2 dl(b,a)v|| < (v,dl(a*a)v)? . (2.9)
In connection with this bound we also use the easy property
a <b = dl'(a) <dl'(b), (2.10)

wherea andb are self-adjoint operators (or symmetric forms)ome also make use of
the following estimate, cf. [27, Lemma A.2]. Lét < N and leta andb be self-adjoint
operators ofy. If 0 < a < b’ forall 1 < ¢ < k, with £ € N. Then

(d(a))® < (dT(b)". (2.11)
We note that there are several bounds involving powers of second quantized operators, cf.
e.g. [15, Lemma 3.2] and [24, Section 3.2] for a selection.

2.3 The extended space andl

Let hy and b, be two Hilbert spaces. We will use the standard unitary identification
U :T(ho ® hoo) — I'(ho) @ I'(hoo), Which is determined uniquely by linearity and the
two properties

UQ = Q®0 (2.12)
Ua*((f,g) = (a*(f) ® ]lr(hx) + ﬂr(bo) ® a*(g)) U. (2.13)

Letag : ho — hp andas : hoo — hoo. We have the intertwining property

UdF(ao @aoc) = (dF(ao) ® ]lF(boC) + ]lr(ho) ® dF(aoo)) (]7 (214)
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as an identity o', (D(ag) © D(aco))-

Leth, ho andh, be Hilbert spaces and lét= (b, b, ), Whereby € B(h; ho) and
b € B(h;hoo). We viewb as an element 0B(h; ho @ h.) and define the associated
operator(b) by

F(b) == UT() : T(h) — (o) ® D(bec). (2.15)

In this paper we always requitgby + b3 b = 1y, which implies||b||z¢y.p@p..) = 1
andI'(b) is an isometry: o

D(b) T(b) = Iy - (2.16)
We interprefl’(b) as a partition of unity.

Letd = (bo, b ) be as above, and let= (ao, a) be an operator frohto b, B ho,
with domainD(a) = D(ap)ND(as ). We introduce the operatat’' (b, a) : T'an(D(a)) —
I'(ho) ® I'(hos ) DY )

dl’(b,a) := Udl'(b,a). (2.17)

We use the same notation for forms= (ag, a0 ), Wherea are forms orh x b.
Letr : h — h,qo : ho — ho andq : hoo — hoo, e densely defined operators.
We have the following intertwining relation, viewed as an identity between forms on

{Tan(D(g5)) ® Tan(D(¢5))} X Tan(D(r)):
L(b)dT(r) — (dT(qo) ® Ip..) + Irgpy) ® dl(gso)) I(b) = dl'(b,a), (2.18)
wherea = (bgr — qobo, boo™ — Gooboo) has form-domaidD(gg) © D(gk,)} x D(r).

2.4 Basic estimates involving®

Letb = (b, boo) be @asin (2.17). Letiy 1 : h — by anday s : by — by, wherehy
are auxiliary Hilbert spaces. Heré denoted) andoco. We define a fornu = (ag, ao)
on{D(ap,2) ®D(aco,2)} X {D(ap1) ND(axs,1)} by prescribing the forme, anda, as

follows: (f, axg) := (a of, a%.19) oND(ax 2) X Dlaz 1).
Let Ug € Fﬁn(D(aoﬁg)), Uso € Fﬁn(D(aooyg)), NS Fﬁn(D(ag,l) N D(aooyl)). The
following key estimate follows from (2.14) and (2.8)

[{(uo ® oo, df(b, a)v)]
< {(uo,dT (a0 205 5)u0)* [[use |l + [luol| (oo, dT (a00 205 5 )t1ce) * }

x(v,dI‘(aalao,l +a;71am71)v)% . (2.19)

[N

Againal, ,ay » denote the obvious forms di(ay 2), andag jao,1 + a5, 1a00,1 is @ form
on ’D(CLOJ) n D(am71).
As for (2.9) this implies (hergy = b4, ax 2 = 1y, anday 1 = ay)
I(No + Noo)"2dD (b, a)v]| < (v, dD(aj 10,1 + @ 1a00,1)0) - (2.20)
Here and in the following we use the notation (cf. (2.4))

Ny = dF(]lhO) ® ]lr(hco) and N, = ﬂr(bo) ® dF(]lhoo) (221)
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2.5 Auxiliary spaces and operators

In this subsection we introduce some notation which will be used in the proof of the HVZ
theorem in Subsect. 3.2.
We introduce auxiliary Hilbert spaces for an interacting system accompanied by a
fixed number > 1 of auxiliary photons
HO = FoFr® = L2

sym

(R™; F).

Here the subscriptymindicates that functions are symmetric under permutation, i.e.
f(kray, - kry) = f(k1,..., ke) ae., for anyr € S(¢) the group of permutations
of the sef{1,...,¢}.

For ¢ € N we extend the notation for second quantization as follows

dF(f)(a) = dF(a) Q@ ey + 1 ® dF(a)W@ ,

for operatorsz on h,;,. Again dI'(a) defined onl's, (D(a)) ® D(a)®:* is closable (es-
sentially self-adjoint) ifa is closable (essentially self-adjoint). For the Hamiltonian we
write

HO©) = H(€) + () ® Lrw , (2.22)

where
H(€) = drO(w) + Q6 — drO(k)). (2.23)

We note tharHéZ) (¢) is essentially self-adjoint on
e = c° @ TOCR(RY)) . (2.24)

and writeD*) = D(Hée) (£)), which is independent &f. Observe that there is no inter-
action between thé auxiliary photons, nor are they coupled with the interacting system
(apart from the coupling coming from the dispersive structure). Note that as for Proposi-
tion 1.1,®(v) ® Nz is HY" (¢)-bounded with relative bourt so H®) (¢) is essentially
self-adjoint onc;°”) and self-adjoint orD(®).

Using a direct integral representation we can write the auxiliary Hamiltonian for
each total momenturhas

HY¢) = ¢ HO(&k)dE, (2.25)
REv
where
HOGE) == HE—k) + (D w(ky)) 1z (2.26)
j=1

Hered k = Hf.:ld”kj. We have a similar fibration dﬁfél) (€). The fiber operators, being
spectral translates of a Hamiltonian at a different total momentum, are clearly self-adjoint
onD and essentially self-adjoint atg°.
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We note the following important observations

20 (& k) = inf {o(HO(&K))}, (2.27)
2(¢) = inf {a(HO(€))}. (2.28)

2.6 Geometric partition of unity and extended operators

In the analysis of the many-body problem, a central tool is a geometric partition of unity
in the configuration space; cf. [13]. Here we will need a similar notion, made complicated
by the fact that we have to partition an infinite number of particles. The type of partition
of unity used here was introduced in [14] and subsequently used by many authors, cf.
[2, 1,15, 22, 24, 27].

Hereh = ho = hoo = bpn. L€t jo,joe € C°(RY) be non-negative functions
satisfying:jo = 1on{k : |k| < 1}, 50 = 0on{k : |k| > 2}, and finallyj¢ + j2 = 1. By
j%, R > 1, we understand the operatdf = (jo(z/R), joo(z/R)). Recall thatr = iV},
is a differential operator. We viey/* as a map fron,,;, into b, & b, and the operator
I'(j1) is an isometry, see (2.16),

LG :F - 7> = FeF and D7) () = 1r. (2.29)

The partition of unity is used to decouple photons at infinity from photons near
the electron. In fact the reader should think of the first component as the Fock-space
for interacting photons and the second component as the Fock-space for non-interacting
photons at infinity.

As in the previous section we extend the notation for second quantization to these
extended spaces. We will in general call operators constructed this way, extended oper-
ators. The simplest extended operator is the extended number operator, already encoun-
tered in Subsect. 2.4

N™* := Ny + Ny .
This is a particular case of the following notation, which will be used for operators
hphy
dl'**(a) = dl'(a) ® 1 + 1F ® dl(a). (2.30)

As in the previous sectiodl®**(a) is closable (essentially self-adjoint)dfis closable
(essentially self-adjoint). Using this notation we introduce the extended Hamiltonian as

HY() = HF(E) + d(v) ® 1z, (2.31)
where
HE(E) = dT™(w) + Q(g - dFe"t(k)). (2.32)

The free extended Hamiltonian (2.32) is essentially self-adjoinf®n® C5° and we
write D=t = D(H§**(¢)), which is independent of. Note that as for Proposition 1.1,
O (v)@1xis H' (¢)-bounded with relative bourlt] so H**(¢) is essentially self-adjoint
onCy® ® Cg° and self-adjoint orD**t.
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Using the notation introduced in the previous subsection we have

ext _ T (©) _
F f@{@%}, (2.33)
and -
H™(¢) = H(¢ {@H } (2.34)
=1

2.7 The pull-through formula

In the following we use thai(k) makes sense as an operato8n= I's,, (hon NCY(RY)).
HereC?(R”) denotes the space of continuous function®énNote thata(k) : C° — C°,

a(k) : C&¢ — C5°, and under the assumptienc L?(R*) N C°(R¥), we haveH (€) :

Cs° — CU. For the definition of’5°, see (1.8). The type of formula presented here has
been used previously in the study of ground states of translation invariant models, cf. [19],
and confined models, see e.g. [5, 24, 26].

Proposition 2.2. Supposey € L?(R¥) N CO(RY). Leté € R, n > 1, k € R™, and
z € C. For ¢ € C§° we have the identity

a(ky)---alk,) (H(E) — z)w
= (wa’+2 a(ky)---a(kn)

+ Y vk aky) - alks) - alka) v,

1=1
wherek(™ = ki + - + k,.

The notanora( ;) indicates that the terma(k;) is omitted from the product.

Forn = 1 we formulate another pull through formula. Note that foe D(N%),
the mapk — a(k)y is in L%(R¥; F). In general, fory € F we havek — a(k)i in
L?(RY; D(N%)*). The following proposition can be proved directly as in [26, Proposition
3.4], or by using Proposition 2.2 and an approximation argument.

Proposition 2.3. Suppose € L?(R”). Let¢ € R” andz € C, Imz # 0. Fory € D, we
have theL?(R; F)-identity

-1

(H(E — k) + w(k) — z) a(k)(H(E) — 2)¢
— a(k)y + v(k) (HE — k) + wk) —2) 9.
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3 Spectral theory

We start this section by giving a proof of Proposition 1.1. First some simple observations.
Sincel’ < m~‘w(k)¢ for any? > 0, we obtain from (2.11) tha¥* < m~*dl'(w)*,

for k € N. Since0 < dI'(w) < Ho (&) and they commute, we find thdl (w)* < H(£)*

for anyk € N. We thus getN* < m~*Hy(&)*, for k € N. This estimate in particular

shows that fokk € N

k
2

N is Hy(€)* — bounded andNe ? is HE(£)% — bounded (3.2)

Proof of Proposition 1.1We begin by showing thad (H,(¢)) is independent of.
We compute o€5° as an operator identit§f (£) — H(0) = ¢ - j;)l VQ(t& —dI'(k))dt. By
Condition 1.1 i)—ii) and the estimate < a? + b7, ¢~ + p~! = 1 we obtain||(H (¢) —
H(0)y| < €e|QdT (k)| + C(e,&)||v||, for anye > 0 andiyy € C§°. That the domain
is independent of now follows from the Kato-Rellich theorem [48, Theorem X.12].

As for ii), the observation (3.1) (applied with = 1), together with theN'/2-
boundedness @b(v), cf. Lemma 2.1 i), implies the result.

The last part follows from the variational principle and an argument similar to the
one given for i). We leave it to the reader. O

Clearly Proposition 1.1 also holds witfH(£), H ()} replaced by either of the
pairs { Hg™ (&), H™(€)} or {H; (€), HV (§)}.

We note the following consequence, fore {1,2},

E
2

N is H(¢)% — bounded N is H(€)% — bounded (3.2)

k k
NO?is H®O(¢)2 — bounded (3.3)

Here N := dal O (1, ).

3.1 Localization errors

In this subsection we show that localization errors arising when we ajpl) are small
for large R.

Lemma 3.1. Lets € Ny N [0,sq] and f € C°°(RY) satisfy the bound(0* f)(n)| <
C(n)*~1el, for any multi-indexx. Lett = 1, if s = 0, andt = (1 + sq — s)/21if s > 1.
We have as a form a@**t x F,

(H5 (&) = )7 (D) f(€ = dT(k)) — f(€ — D™ (k) (™)) (Ho(§) — 1)~
= (Hg™'(§) =1)"Bu(R) = Bo(R)(Ho (&) —1) ",

whereB; and B, are families of bounded operators which satify; (R) ||+ || B2(R)|| =
O(R~'/?), asR — oo, locally uniformly in¢.
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Proof. As a first step we compute as a form @g° ® C5°) x C5°, forl <p < v,
D(jr) dl(kyp) — d0™ (k;p) D(jr) = dD(G%,s;7) (3.4)

st = ([i§, kypl, 1, k;p))- Clearly sl are bounded operators and

if.ky] = OR™), asR — oo, (3.5)

Here we used the notatidn, to denote the’th coordinate of a vectok € R”. (This
notation should not be confused with the labeliggf a family of vectors:; € R”.)

We consider first the case = 0. Let f € C>(C") denote an almost analytic
extension off. Let y € C§°(R”) be equal tol near0. Write x,,(n) = x(n/n). Then
fn_= X[ has almost analytic extensiorfis satisfying that, for alk € C”: 5fn(z) —
df(z), and the estimates

|5fn(z)\ < Cg(z>_1_é|Imz|L] (3.6)

hold uniformly inn, cf. (A.3). If we take for example the Borel construction (A.2), for
f and thef,,’s, then this property is easy to verify. This well-known approximation tech-
nigue has been used by many authors (in the casd), see e.g. [51, Section 5] and [45,
Section 4].

We use (3.4) to compute as a form @§° @ C5°) x C§°, for Imz # 0,

T(zR) = T(j%)|¢ —dl(k) — 2|* — [§ —dD™(k) — z[*T(j%)

v

= Y {drGR s (€ — dTky) = 2p) + (G — AT (k) + 2) AEGR, 5 |

p=1

Using (2.10), (2.20) (witth = by = by = by, anday; = [jﬁ,k;p]), and (3.5), we
conclude the following estimate

(Nt +1)72|¢ — dD™ (k) — 2| ' T(2; R) |€ — dT(k) — 2| /(N +1)"2
= O(|[Imz|"'R7"). (3.7)

The estimate is valid uniformly i§ andRez = {Rezy, ..., Rez, }.
We proceed to compute

D(57)[€ = dU (k) = 2|7 = |§ = d*™* (k) — 2|7 T (")
= —lg—dr(k) - A7 {T(GR) ¢ - dr(k) — 2

— | = AU (k) — 2 T(®) € = dT (k) — 27

v—1
= =) [¢—dr(k) — 2| > T (2 R) ¢ — dT'(k) — 2| 720FD . (3.8)
7=0
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Combining this identity with (3.7), we obtain the estimate
(Nt 1) D7) ¢ — (k) — 217
— lg— Ut (k) — 2 DGR v + 1)
= [£—dl*(k) — 2|71 O(|[Imz|"**R™")
= O(Imz|"*R7")|¢ —dT(k)—2|7". (3.9)

A small calculation using (3.4) (and again the estimates (2.10), (2.20), and (3.5)) in
conjunction with (3.6) and (3.9) gives the following estimate forlalf p < v and/ > 0

5pfn(z)(NeXt + 1)_% {F(JR) (&p — dl(kyp) + 2p) [ — dT'(K) — z|_2y
— (&p — dFeXt(k;p) + 2;p) [€ — dFeXt(k) - Z‘_QV f(]R)}(N + 1)_%
= O((z) " !Imz|"*R71). (3.10)
By choosingl = 2v, in order to dampen the singularity at the real axis, we get an inte-
grable weight factofz) =2*~1, uniformly in n. We can now invoke the Lebesgue theorem

on dominated convergence, and remove the cutoff by taking co in the representation
formula (A.4). This gives finally

(Vo 1) B {E(R) fl€ —dT(k) — (€ - dT (k) FGR) L + 1)
= O(R™Y).

Note that the term in the brackets above is a bounded operator with norm bounded uni-
formly in R and{. We thus get by interpolation (and since powerg\otan be moved
around as we please) for< p < 1/2.

(Vest 1) DGR (€ = dU(k) = f(§ = D™ () TG N +1)77
= O(R™?). (3.12)

By (3.1), this concludes the proof for the case 0.

Next we consider the case= 1 (and henceg € {1,2}). Use Taylor's formula to
write f(n) = f(0) + n - Fo(n), whereFy(n fo Vf)(tn)dt. It is easy to verify that
Fy's coordinate functions satisfy the assumptlon of the lemma with 0. From (3.4)
(again combined with (2.10), (2.20), and (3.5)) and (3.11) we get, as a form estimate on
(C5° ® C°) x Cg°,

(N 1) {fuR) F(€=dT(k)) — F(§—dT™ () () (N +1)7

1

) + Z — Al (k.,)) O(R™%)

—3) 4+ ZO(R-%(ap —dl(ky)) - (3.12)
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Note that ifsq = 1 thendI'(k) is Ho(¢)-bounded, and i, = 2 thendTI' (k) is Hy(&)/2-
bounded. Corresponding relative bounds for the extended operators hold as well. This
implies the lemma fos = 1.

In the remaining case = 2 (and hence = 2). We proceed in a similar fashion,
writing f(n) = f(0) +n- F1(n), whereF;’s coordinate functions satisfy the assumptions
of the lemma withs = 1. Since in this casel'(k) and F; (¢ — dI'(k)) are Ho(&)'/?-
bounded, the result follows (by a similar argument) from4he 1 case. O

Lemma 3.2. We have as a form ot x F,

(HE () —1) TG H(E) — H™(&)T (") }(Ho(€) —1)~"

= (H&U(€) —1) 2 By(R) = Ba(R)(Ho(€) — 1) % ,

where B; and B, are families of bounded operators satisfyihg; (R)|| + ||B2(R)| =
o(1), asR — oo, locally uniformly in&.

Proof. By Lemma 3.1, applied wittfy = Q ands = sq, we only need to prove the
lemma with H (¢) replaced byil'(w) and®(v), and H***(¢) replaced bydl'***(w) and
®(v) ® 1 respectively.

We begin by computing as a form @f*t x D

D(jr)dl(w) — dP**(w)T(jr) = dL'(j%,77),

wherer® = ([, w], [iE,w]). By Condition 1.2 iii) and pseudo differential calculus, the
components of * satisfies, as operators @hwz)*,

1

w3 [ji‘i,w]w_5 = OR™), for R— 0.

(Alternatively one could also use here the calculus of almost analytic extensions.) The
contribution to B; and B, coming fromdI'(w) thus satisfies the required bounds by
(2.10), (2.19), and (3.1). Here we chodse: b = by, hs = D(w?)*, ay o = w2, and
agq = {w‘%[jﬁ,w}w‘%}w%, when applying (2.19).

It remains to treat the contribution from the perturbation. We compute as a form on
Dt x D, using [14, Lemma 2.14 (iii)]

It ®(v) — o) ® 1T(%)
\%{ (1 —jfw) @ 1r + 1r ® a*(j20)) T ()
+ TGP a1 - i)} -

Eq. (3.1) and Lemma 2.1 i) now yield the result, sisedimp ., j& = s—limp oo (1—
J&) = 0andv € L2(RY). O
We immediately get the following two corollaries.
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Corollary 3.3. We have for any > 1
L(j%) : D — DFy and T(j)* : D™ — Dy,
whereD, ; = D(Ho(£)'/?) and D§¥ = D(H§*(€)'/?) are independent df.

The first part of the following corollary follows from Lemma 3.2 while the second
part follows from the first part and the calculus of almost analytic extensions gwith),
as presented in Subsect. A.1.

Corollary 3.4. We have, in the limiR — oo,
i) The following estimate holds true locally uniformlyg§rand z € C with Imz # 0

D) (H () —2)7" = (H™(§) —2)7'T(j") = [Imz[0(1) .

i) For f € C§°(R), we have uniformly ig
L) FH(E) — FHSNE)T(GT) = o(1) .

3.2 The HVZ-Theorem

In this Subsect. we prove Theorem 1.2.

Recall the abbreviations = (k1,...,k,) € R™ andk™ = ky 4+ --- + k,,. We
start by establishing three lemmas
Proof of Lemma 1.7Suppose to the contrary thate 7. (¢), that isSe(¢ — k™) >
Yess(€ — kM), cf. (1.18). Then there exiét> 1 andk,, 1, ..., kns, cf. (1.11), such that
(writing k("0 = S0 1y

5676k = To(6 — K™) + Y wlk)
=1
n+4
> o€ - k(nH)) + w(k;)
=1
> 20 > s (k)

which is a contradiction. This proves the lemma. d

Lemma3.5. Letn > 1,andB € L2, (R™; B(F)). SupposeB (k) commute withV for
almost allk € R™. Define fory € C3° the map

aB)v = [ B(k)a(ky)---alk,) v d"k.
R‘VLV

Then(N + 1)~"/2a(B) extends fron€s® to a bounded operator off and there exists
C = C(n) such that

CH(N + 1) 2a(B)|| 5 < I1B] = ( / IB®) 3 k). (313)
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Proof. Lety € C§° andy € F, with ||¢|| = 1. We estimate
|(p, (N +n+1)""?a(B) )|

< / ‘<@a(N+n+1)_%B(E)a(k1)a(kn)qpﬂdnuk
Rnv

= /]R"" ‘<@;B(E) a(kl)...a(kn) (N—|— 1)_%’(/1>’dm’k

< [ IB®lacn ak) - al,) (8 + 1) Hof 4
_n 2 v %
< IIBII(/]R |a(ky) - alk,) (N +1)"%4||"d k)
< B Il
Here we used the representatidn= [, a*(k)a(k)d"k repeatedly in the last step. This
estimate yields the lemma (with = ((n + 1)/2)"/2). O

Lemma 3.6. Lety € C5°(R) and¢ € R¥. Then, forallk, £ > 0, the formN*x (H (¢))N*
extends frongs° to a bounded form o®*.

Remark. We employ the standard tripl® C F C D* continuously and densely.
Proof: Recall from [14, Lemma 3.2] thaV*y(H (¢))N* extends to a bounded form on
F. It remains to prove that it extends further by continuityltt. It is sufficient to verify
that H (&) Nk x(H (€)), viewed as a form 065° x F, extends to a bounded form gn 7.

Lety € C° andy € F. We compute fok > 1,

(H(€) ¥, (N +1)"x(H(€)) ¢)
= (B() 9, (N + DFX(H(©) @) + ((N +1)"p, Ho(€) x(H(E)) @)
= ((N+1)720(v) ¢, (N + 1) 23 (H(€)) 0)
+ ((N +1)%p, H(E) x(H(©) ¢)
— ((N+1)7F20(v) (N + 1), (N + 152 y(H(€))p) -

An application of Lemma 2.1 i) now yields the result. O

Proof of Theorem 1.2:We begin with i). Let¢ € R” and letf € C§°(R) be such that
supp f C (—00, Xess(£)). By definition of X5 (€) (see (1.9-1.11)), (2.21), (2.33), (2.34),
and (2.28), we observe that

o0

H™(&) A(Noo > 1) = P HY(9)
/=1
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Here we used the identificatidh, ) = 1(N. = ¢). The lower bound above, together
with (2.29) and Corollary 3.4 ii), yields

FOH©) = TG fH™(E)I(
= T(jg) f(HE) T ()

+ D) FIH™(€) U(Now > )T (GT) + 0(1)
L(jo)) fUH©))T(jg") + o(1), for R — oo.

The first term on the right-hand side is compact, by a standard argument using Condi-
tion 1.2 i). This implies thayf (H (£)) is a compact operator, and hence; that the spectrum
of H (&) belowX.s (&) is locally finite.

As for i), fix £ € R” and\ > Y.s(€). We wish to show that there exists > 1
andn = (m1,...,Mn,) € R™” such that

3 + o(1)

no

A= o€ =1 + Y wm) and n € 3")(€) | (3.14)

i=1

wheren(m0) = 3710 .

Let ny be given byng + 1 = min{n : A < min,>, Eé"/)(g)}. The minima
exist, andny > 1, due to (1.11) and (1.15). There exigts= (k1,...,kn,) such that
S00(€) = Sol€ — kT)) + 10 wiki) < A, wherek(™) = ky + - + ky,. By
Condition 1.2 i), (1.14), and continuity &t (), cf. Proposition 1.1, we can fingsuch
that the first part of (3.14) is fulfilled. The choice of and Lemma 1.7 implies the last
part.

By i); Zo(¢ — (™)), given by (3.14), is an eigenvalue fdif (¢ — n("0)). We
write ¢, for a corresponding ground statlf;(¢ — n("0))py = B (¢ — n("0))p,. Let
f e C(RY) with £ > 0 and f(0) = 1. Write f; s(k) = ¢*/2f(é(k — n,)). Then
{f1,0}een, - -, {fno,e}een is a family of uniformly bounded sequenceshig,, which all
converge weakly to.

Lete, = a*(fng.0) - - a*(f1,0)0. The rest of the proof is concerned with showing
thaty, is a Weyl sequence for the energyNote that by Lemma 3.6 and Lemma 2.1 i), we
haveypy € D(a*(fny.¢) - a*(f1,¢)). Lemma 2.1 iii) furthermore implies thdt),}sen
converges weakly to zero if.

For ¢, to be a Weyl sequence it must satigfy,|| > 0 uniformly in £. Let S(n)
denote the group of permutationsioklements, and writeok); = ky(;), foro € S(n)
andk € R™.

Letn be such thaqo(") # 0. Pick a compact (and non-empty) get_ R™” with the
following properties: K1) If k£ € K thenck € K, o e S( ). (K2) Fork € K we have

k;«énj,1<z<nand1<j<n0 (ICS)II(k:EIC) 750

Let i be defined byzp,C = 0, forn’ # n, andw,(C") = 1k € K)p, (") By
property (C2), there existd, such thaw(f; ) = 0, foranyl < j < ng, and€ > {.
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By the CCR (2.1) we thus get, fér> £,

<a*(fn0,1€) e a*(fl,é) 1/)167 1/)€> - Z (H;‘lil<fj,fa fo'(j),€>) <1/}’C’ (po>
c€S(ng)
= Y (W fo)) (08 1k € K) o)
c€S(no)

> £k € K) o512

This estimate and propertyCg), implies||¢,|| > 0 uniformly in ¢ > ¢;.

It remains to prove that(H (£) — \)¢y|| — 0 asé — oo.

Letd € L2(R¥)NC(RY). Write H (¢) for the fiber Hamiltonian with the interaction
®(v) replaced byd(v). Compute, as an identity dh,

H(g = k) — H(& —n")
= (K0 — ™)) (VQ)(§ ") — dT (k) (3.15)
+ <(k(n0) _ n(TLO)),T(k(no), n(ng)) (k(n()) _ ,r](no))> + (I)(f} _ ’U) ,
whereT(C1,¢) = [y (1 — )(VQ)(E — t¢ — (1 — )¢ — dU(k))dt. Note that this
operator is continuous and bounded uniformly¢in(and ¢;) and commutes with the

number operator.
Abbreviate

no

Wikm) = ) (wky) — w(ny)) -
j=1
By (3.14), (3.15), and the pull-through formula, Proposition 2.2, we gepfarCg®

{po,alkn) -~ alkn,) (H(E) = M) )
<{FI(£7 KO)) — H(E =) + w(k, 1) }oo,a(ke) - alkn) )

no

+Z QOO, E@a(/ﬂnn)ﬂ)>
= <<I>(17 v)po,a(ky) - alks) ¥) + w”(k,n) (po,alky) - alk,) ¥)
— (k) — (o)) (VQ)(€ — 0™ — dT(k)) o, a(ks) - - - a(kn,) ©)
4 <<(k(n0) — gm0)), (kM) )Y () — (100 o0 (k) - - - aky) ¢>

—

+ 3 (ki) (po,alky) - alk;) - alkn,) 1) .
i=1

Abbreviate
Bl}(ﬁ) = wz(k777) 1f]f( )ﬂf7
B2, (k) = kf£°>—n<£°>>nn°1f7e< RS

(
Bi(k) = (k") =), (k) pmo)) (ko) — o)) TIT0, f0(k)) -
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By construction of thef; ,'s we find (see (3.13) for the definition of the norm)
IBE + Y IBhell + 1B — 0, for £—oo. (3.16)

Using the notation introduced in Lemma 3.5, we can now compute

(e, (H(E) = N)p) = (00, (T — v)a(fi,e) -+ A fg,e)V)
+ (po,a(B) ¥) + {po,a(B})v)

+ Z (9p0& =™ — dT'(k)) po, a(B7 ) ¥)

+ Z Fits 0@ (front) - @ (fie) - 2" (f1.0) 00, 0

By Lemma 2.1 ii) we can take the limit — v in L?(R"). This amounts to replacing
o by v and H(§) by H(£) in the equation above. The resulting identity together with
Condition 1.1, Lemma 2.1 i), and Lemma 3.6 implies that D and

|(H(E) =N || < C|(N+1) SDOH(‘BZ |+ 1B7I)

+ C’Z 12,92(6 = ™) — dT(k)) (N + 1) % ]| [ B2,

# Comget (e o)) [V 4D o] Mol el

i=1

By (3.16) and the fact that — lim,_., f; ¢, = 0, we thus find|(H () — A)y¢|| — 0 as
{ — oo, and hencey, is a Weyl-sequence. This concludes the proof. O

3.3 Uniqueness, existence, and non-existence of ground states

We begin by applying the Perron-Frobenius theorem of Farris, which is presented in Ap-

pendix A.2. See also Bhlich [19].
We writeh,, = bpng @ibpng, Whereh,y, is the real Hilbert space consisting of the

real valued functions if,,. We defineHr := ©52 o hpng *", which is also a real Hilbert
space. We take as a Hilbert cone, cf. Definition A.1,

C = x2,C",
CM = {f € ™™ ¢ (-1)"f > 0}. (3.17)

In this section we assume that the coupling function L2(R") is strictly positive
almost everywhere.
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Clearly f(Hy(£)) is positivity preserving in the sense of Definition A.2 ii), for any
bounded non-negative Borel functign
For i > 0 sufficiently large, the Neumann series

(HE) + )" = Y (Hol€) + w) ™ {(—0(v)) (Ho(&) + u) '} (3.18)
k=0

converge. Note that®(v)(Ho(€) + p) || < Cp~3; cf. Lemma 2.1 i) and (3.1). Since
v > 0 a.e., by assumption, we find from this formula ttiat(¢) + )~ is positivity
preserving. In fact, we find from (3.18) that, the resolvdift¢) + 1) ! is a sum of terms
of the form

(Ho(& —H{a* (v )+ 1) 1}

where all powerg and combinations (}i*(v) anda(v) occur. Furthermore each of these
terms are positivity preserving.

Letu € C\{0}. There exists: > 0 such thatu,, € b,,“*", the projection onto
the n-particle sector, is non-vanishing;, # 0. We wish to prove thatH (£) + p) " tu
is strictly positive in the sense of Definition A.2 i). Lete C\{0}. There exists’ > 0

such thaw,,, € bph s non-zeroy, # 0. We estimate

((HE) + m)  u,v) > (HE) + 1)ty vnr)
({a(v) (Ho(&) + )"} "un, {(Ho(€) + 1) " a(v) } (Ho(€) + 1)~ var)
et / olkr) - v(kn) (<1 (v, s ) dby - g

Y

v

’

X / U(kl) o 'U(kn’) (_1)n Un’(kla . . akn) dky - dk’I/'L :

The right-hand side is strictly positive and hen@d;(¢) +p) ~u is strictly positive. Since

u € C\{0} was arbitrary we conclude th&t7 (¢) + u)~! is positivity improving in the
sense of Definition A.2 iii). The abstract result of Faris, Theorem A.3 now implies that a
ground state, if it exists, is unique and strictly positive in the sense of Definition A.2 i).
This proves Theorem 1.3.

Before continuing with Theorem 1.6 we give the following:
Proof of Lemma 1.5We Taylor expand (k) andw(k-) aroundk; + k2 and estimate the
result using Condition 1.3

W(k'l) + W(kg) = 2(4)(:1{31 + ]CQ) - Vw(k:l + ]{12) . (kl + k’g)
1112I<:V2kk k1, VZiw(ko o)k ) b d
+§/0( ) {< 2, Vw(k1,¢) 2>+<1, w(ka,t) 1>} t
(;) w(kl + kz) .

Herek, ; := k1 + (1 — t)ke andka; = ko + (1 — t) k1. O
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Proof of Theorem 1.6 ii)Let & be such thaE( (&) = Xess(€). AssumeX(€) is an eigen-
value. By Theorem 1.3, the eigenvalue is non-degenerate and we can choose an eigen-
functiony, € C which is strictly positive.

Recall from Corollary 1.4 that. (&) = Z((Jl)(g), under Condition 1.3. LeM :=
{keR": Z(()l)(f; k)= E(()l)(g)} be the set of minimizers. By (1.16) and Lemma I\,

is a compact subset of the open Eé't) (£). There existg, € OM, a unit vectori € R”,
and a number > 0, with the following property: For any > 0 we have

QF = {k eR” : ||k — kol| <r and (k — ko)- @ >6} C IV (€)\ M.

We also use this notation with= 0.
For anyé > 0 there exists” () such that

Jnf Bo(§ = k) + wlk) — Bo(§ — ko) > C()7". (3.19)

Recall thatZ (£ — k), k € Qf, are isolated eigenvalues and, again by Theorem 1.3,
they are non-degenerate and we can choose eigenfungtionse C which are strictly

positive. SinceZ(()l)(g) > k — 1¢_y, is continuous, we find

kiGIggWg—k, Ye) > 0. (3.20)

Let Ny := dl'(1(k € Q) = ng a*(k)a(k)d”k. Note that0 < Ns < N, and
hencey: € D(Ns) with || Nsye|| < [[Niye|| < oo uniformly iné > 0. Using Propo-
sition 2.3, (3.19), and the Lebesgue theorem on dominated convergence (to replace
Imz # 0, by 2 = £4(€)), we get

(the, Nsve)
> [~ B + k) — Sol€) el i

)

> / o(k)? (So(€ — k) + w(k) — Do) 2| Wemb)Pdk (3.21)

r
3§

Y

i {10 ve) P02} [ (Salé =) + w(b) = Zo(©)) " dk.

keQy

SinceXy (¢ — k) is a smooth function of in Iél)(g) andky is a global minimum of the
functionk — Xo(¢ — k) + w(k), we find that there existS' > 0 such that

0 < Sol€ — k) + wk) — S(€) < Clk — kol?, for ke Q.

This estimate together with (3.20), (3.21), and the assumgtienhr < 4 implies that

|(1¢, Nstbe)| — oo, @asé — 0. This contradicts): € D(N), and henceXy(§) is not an

eigenvalue. O
The first step in the proof of Theorem 1.6 i) is the following Lemma.
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Lemma 3.7. Let{ € RY andz < 3¢ (§). Then
Q) — 2 — / v(k)*(Q, (H(E — k) + w(k) —2)"'Q)dk > 0.

Proof. Let P, := |Q)(Q|, andPq := 1 — Pq. Using the Feshbach projection method,
cf. e.g. [4, Section 1], we find

(Q,(H(E) — 2)7'Q) = (Q(g) — 2 — (v, (H () _z)*lv>RanFQ) . (322

HereH (&) = PoH (£)Pg as an operator oRan Pg, andv is viewed as an element of the
one-particle space which is containedRan Pg,. By the spectral theorem the left-hand
side of (3.22) is strictly positive and hence

Q&) — 2 — (v,(H(E) — z)—1v>Ranﬁﬂ > 0. (3.23)

Viewing (H (¢) — z)~'v as an element of we write

(0. (O =) ")y, = [

. v(k) (Q,a(k)(H(E) — 2)'v) dk . (3.24)

Applying the pull-through formula, Theorem 2.3, with= (H(¢) — z)~!v € D, yields
as anL?(R”; F) identity
a(k) (H(€) - 2) v B
= (H(E—k)+w(k)—2)" a(k) (H(E) —2) (H(E) —2) v
1

— (k) (H(& = k) +w(k) —2) Y (H(E) —2)" 1. (3.25)
We now make two observations. The first is the identity
a(k) (H(€) — 2) (H() — 2) "' = a(k)v = v(k) Q. (3.26)

The second observation is thal (£) — 2)~! is positivity preserving, with respect to
the coneC introduced in (3.3) (after extending it by zero to the vacuum sector). This
follows by a Neumann expansion, as {af (¢) + x)~! in (3.18), and Lemma A.4. Since
(H (& — k) +w(k) — z)~ 1 is also positivity preserving we find that, for akec R,

(Q, (H(E k) +w(k) —2) " (H(E) —2)""v) < 0. (3.27)
Combining (3.25)—(3.27) we get the following estimate a.e.
o(k) (2 a(k) (F(€) — 2) " v) > (k) (Q (H(E ~ k) +w(k) — 2)7'9Q).
This estimate in conjunction with (3.23) and (3.24) concludes the proof. d

Proof of Theorem 1.6 i)Assume that the statement is falsg€ ate. X (£) = Yess(£).
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The aim is to show that the equation
Q) -2z = / v(k)*(Q, (H(€ — k) + w(k) — 2)7'Q) dk

has a solution < Y.s(£), which would by Lemma 3.7 provide a contradiction.

In the limit 2 — —oo the left-hand side dominates the right-hand side. A solution
exists (and is necessarily unique by monotonicity) if we can show that the righthand side
diverges ag approache&.(£) from below.

As in the proof of Theorem 1.6 ii) we choose a minimiZgr € R” satisfying
Eél)(g; ko) = Eél)(g) = Yess(€). Then, by (1.16) and Lemma 1.7y € Iél)(g) and
there exists a neighbourhodd Iél)(g) of kg satisfyinginfrco (ve—x, ) > 0. Here
Ve € C, k € O, are the strictly positive ground state eigenfunction#f¢f — k). We
thus get

| o), (HE = k) +w(k) - 2)7'Q) dk

> inf (e, %(k)’) /O (So(€ — k) + w(k) — 2)"\dk.

Since the righthand side diverges in dimensicend2, asz — .4 (£) from below, we
conclude the result. O

3.4 Regularity of t — 0e(t)

We begin with

Proof of Lemma 1.8Let k be a local minimum ofZ{™ (¢) 3 k — S\ (& k). That
the k;’s must be equal follows from strict convexity of Assumen > 2. Letk;, =
(1—s)k; + s%(kl + k2),j =1,2and0 < s < 1. Note thatk; s + ko s = k1 + k2, SO
that substitutings; , k2 s for k1, k2 only changes the contribution fo(()") (&; k) coming
from w. We compute

@ ol + @k} = Lk — k) (Vi) — Vlho,)}.

2
Since Vw(ki) — Vw(ks) = (fy VZw(ths + (1 — t)ks)dt(k1 — ko), we find that the
derivative is strictly negative at= 0, unlessk; = k.

Write ky = --- = k,, = ©. We proceed to argue thétis a multiple of¢. A local
minimum is in particular a critical point, i.e. it satisfi®g X (") (& k) = — VX (6 kM) +
Vw(k;) = 0,1 < j < n. By rotation invariance, this implies thét- n© is a multiple of
©. This completes the proof. O

Proposition 3.8. Letn > 0, ¢t € R ands € Z")(t) be such thafind™ (t;s) > 1.

There exist neighbourhood?, > t andO, > s, with O, C UtleotI((,”)(t’), such that the
following holds
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1) If Ind™(t;s) = 1, then there exists an analytic m&p : O, — O, such that:
Ind™ (#;0(')) = 1 andInd™ (#';s') = 0, if ' # O(t').

2) If Ind™(t; s) = 2, then: Fort’ € O, s’ — o™ (t'; s') has either one or two local
minima inO,. For t’ # t, they have index.

3) If Ind™(t;5) = ¢ € [3,00), then there exists a countable sétc O,\{t}, with
K U {t} closed, such that: Fot' € Oy, s’ — o™ (t'; s') has between and/ local
minima inO,. Fort’ € O,\(K U {t}), they all have index. For ¢ € K all local
minimas’ € O, satisfiednd™ (¢';s') < ¢ — 1.

4) If Ind™ (t;5) = oo, then fort’ € O,\{t}, we havelnd™ (¢;s') = 0, for all
s’ e O,.

Proof. 1) follows by analyticity int ands of 92¢(™ (t; s), and the implicit function theo-
rem.

As for 2) and 3), we writ¢ = Ind™ (¢; s). We again invoke the implicit function
theorem to construct an analytic functiénfrom a neighbourhoo®; of ¢, into a neigh-
bourhood®; of s, with the property thad?‘~ o) (¢;©(¢')) = 0, t' € O,. Note that by
choosing?®; small enough we havé — nO(t') € Z,.

We begin by showing that neano local minima can disappear to the same order as
att. We note that nearwe may have at mogtlocal minima, but there is at least one. Let
O; >t; — tandOy > s; — s be such that; is a local minimum of- — o™ (¢;,r).
Assumed®o (™ (t;,s;) = 0 for k < 2¢ — 1. Then necessarily, we must have= O(t;).
Forl < k < 2¢ — 2, the functiont’ — 9¥¢(™ (¢, ©(t')) is analytic inO; and vanishes
on the sequencg; }, hence it is identically zero i®;.

We can now compute

a4

O =
dt’

{922t 0(t)} = n* 20 To(t —nO(t))) .

This implies that?*~w(O(t')) = 0. The functiond? ~'w(s) has only isolated zeroes,
since it is a analytic (and not identically zero). Herigg') = O, is a constant function
on O;. Sincet’ — o(t' — nOg) + nw(Oy) is thus linear neat, we find thato is linear
neart — ns. This implies in particular thad?c(™ (¢; s) = nd*w(s) = 0. Recalling thatv

is strictly convex we arrive at a contradiction.

The statement 2) is now proved. The statement 3) follows from an induction argu-
ment in/, starting with? = 2.

As for 4) we note that we must haveé™ (t;s') = C, for some constan®. In
other wordso (t — ns') = C — nw(s’), for s’ nears. Computes (t' — ns’) + nw(s’) =
ot —n(s"+ (t—t')/n)) +nw(s’) = C+n{w(s’) —w(s' + (t —t')/n)}. This gives
5™ (t';8") = n{Vw(s') — Vw(s' + (t — t')/n)}. This expression can only vanish if
t=t. g
Proof of Theorem 1.11We argue first that for a giveh) the setM of global minima of
s — o™ (t; 5) is finite. Note that by Lemma 1.7 we havel C Z\™ (t). Suppose to the
contrary thatM is infinite. Then eithetM contains a connected componentZiéfL) (t)

or there is a sequence il converging to@I(()") (t). In either case, this is a contradiction
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sinceM is closed andfé”)(t) is bounded and open. We remark that this also implies that
a global minimum has finite index.

By Proposition 3.8 2)-3), we find that the s&t of ¢ for which at least one of the
global minima for the map — ¢ (t; s) has index strictly larger thah, is closed and
countable. It remains to show that the sett dbr which there is more than one global
minimum, all with indexl1, is countable and can accumulate onlyat

Supposé is such that the map — o(™)(t; s) has¢ global minima all with index
1. Note that fort’ neart these minima will persist at least as local minima, and any
global minima will be found amongst these. There existalytic maps’ — ©,(t'),
which parameterize these local minima. they are all defined in a neighbourhooainof
satisfiesnd ™ (#'; ©,(t')) = 1.

We estimate the rate of change of the global minima theasing twice the critical
equation(dsc™)(¥';0;(t')) = 0,

%U(”)(t'; 0;(t)) = do(t' —nO;(t)) = dw(0;(t)). (3.28)
Sincedw is monotonically increasing we find that that there exists a neighbouréiod
of ¢ such that fort’ € 0;\{t}, the maps — o™ (t'; s) has a unique global minimum,
with index1.

A compactness argument now concludes the proof. Note that (1.19) is implied by
(3.28) sincer™ (t) = o™ (t; 0™ (1)), fort € T, O

We proceed to study the dependence of local minima, and to prove Proposi-
tion 1.11. (This material is in the preprint version of the paper only.)

Proposition 3.9. Letn > 0, ¢ € R ands € Z\™ (t) be such thaind™ (¢; s) > 1. There
exist neighbourhood®,, 5 n and O, 3> s, with O C Un/eonIé"/)(t), such that the
following holds
1) If Ind™ (¢;5) = 1, then there exists an analytic m&p: 0, — O,, such that:
Ind(nl)(t; o)) =1 andInd("/)(t; s')=0,if s’ # O(n’).
2) If Ind™(t; s) = 2, then: For Forn/ € O, s' — o(™)(t; ') has either one or two
local minima inO,. For n’ # n, they have index.
3) If Ind™(t;5) = £ € [3,00), then there exists a countable $&tc O,,\{n}, with
K U {n} closed, such that: For’ € O,, s’ — ¢)(t;s') has between and ¢
local minima inO;. Forn’ € O, \(KU{n}), they all have index. Forn’ € K, all
local minimas’ € O, satisfiesnd ™ (t;s') < ¢ — 1.
4) If Ind™ (t; 5) = oo, then forn’ € O,\{n}, Ind"™)(t;s') = 0, for all s’ € O,.

Proof. As for 1) and 4), we refer the reader to the proof of the corresponding statements
in Proposition 3.8.

As for 2) and 3), again assume there exists a sequencg such thatn; — n,
s; — s, t —njs; € I, andInd™) (t;s;) = £. Recalll = Ind™ (t; 5). By the implicit
function theorem we get an analytic functi@hmapping a neighbourhood af into a
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neighbourhood of with the property that2‘~1o(")(¢;©(n’)) = 0. Necessarily we
must haves; = ©(n;), andInd ™" (t; ©(n')) = ¢ in a neighbourhood of. We compute
— d 20— 2
0 = -1 " (t0(n'))}
= —()*29* ot —n'O(n)O(n') + 0*tw(O(n)))
= 0¥ lwOMm))em) + 0¥ 2wem)).

In the last step we used thag‘~1¢(")(t;©(n’)) = 0. Taking a second derivative we
arrive at the equation

= —0Pw(O() /(W) B) = 1 Fw(O()) o (O(n)?

This equation implies thad(n') = © = s is a constant function.

If ©® # 0 we argue as in the proof of Proposition 3.8. Thein — ) is a linear
function of - nearns. Henced?o") (t;s') = n’'d%w(s’) > 0, which is a contradiction.
If s = ©p = 0theno(t) = C — n'w(s’) for n’ nearn ands’ near0. This is also a
contradiction.

The statement 2) is now proved. The statement 3) follows from an induction argu-
ment in/, starting with? = 2. O
Proof of Proposition 4.4As in the proof of Theorem 1.11 we only need to study £he
local minima ofs — o(")(t; s), n’ nearn, which comes front global minima at’ = n.
They are parameterized yanalytic functionsy’ — ©("). We compute, using twice the

critical equationgd,o™))(t; @E”/)) -0,
oo (HO) = —ao(t-nel) el + w(ef”)

= w0 + w(el) . (3.29)

Note that the functions — w(s) — sOw(s) is reflection invariant and, by Condi-
tion 1.3, strictly positive. We furthermore note thel(w — sdw) = —s20%w, so the
function is monotonically decreasing away from

Suppose first that no pair#£ j satisfies@E") = —6§"). Then the preceding para-
graph and (3.29) implies that there exigdy > n such that we have a unique global
minimum forn’ € O, \{n}.

Now suppose tha®{™ = —0{" £ 0. Since the maps’ — o™ (t; @;”,)) are
analytic they are either identical or there exists a neighbourhoedvdiere they differ
(for n’ # n). It hence remains to treat the case whefe) (t; (")) = o) (t; 00",
for n’ nearn. We argue below that this can only occuﬂf”/) = 795”,) for n’ nearn.

Assume that the functioﬁ)Y”l) differs from — @("/). Since they are analytic, there

existsly > 1suchthatfon < ¢ < ¢, we have ¢ ,@(" = d,, ,6(" andd‘}O”, §"’> #
— 4 ey, By (3.29) this implies thaghrr— o) (£;0(")) # L0 5 (;0("),

contradicting the assumption.
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Write 0) = 0" = —0{""). We can now conclude that(t — n’€@")) =
o(t +n'©™)). It remains to prove that the analytic functieh — n’©(") is strictly
monotone nean.

We compute first

d / /
= = 9.0m) - 0m)
0 e 050\ (t; 0\ )
= 920" (t;00) %@("/) + n' ot —n'0")) e
This implies
i (n')2820(t _ n/@(n’))

< 1.

o) — l/(l)("') 0™ | where ") =
n

dn’ 820 (£, 00

Using this identity we find-4 {n’0")} = (1 — ®))0"). Since@™) #£ 0, we
conclude that (t — r) = o(t + r), for r nearns. O

3.5 Local extrema oft — o.(t)

We begin with
Proof of Theorem 1.12:et ¢, be a local minimum of — o (¢) and letd > ¢, be an
open set such that,ss(t) > oess(to), t € U.
The functionR” > s — oM (ty; s) has finitely many global minim@'" (t) <
.- < 0 (1), all in ZM) (ty) and with finite index, cf. the proof of Theorem 1.11.
Assume there exists < j < ¢ such thatsg := @gl)(to) > 0. By Proposition 3.8

there exisQ;,, O,,, andiC, with tg € Oy, C U, sp € O, C (0,00) N (UteotoIél)(t)),
and/C C U is countable withlC U {to} closed, such that: Fare O, \(K U {to}) all
local minima ofO,, > s — (1) (t;s) has indexi (and at least one such local minimum
exist). Furthermore, the sé,,\ (K U{to}) can be written as a countable union of disjoint
open intervald . On each of these intervals we get from the Implicit Function Theorem,
that the number of local minimé, > 1, is independent of € I, and the local minima,
©,,(t),1 <j </{,, are analyticinly.

As for (3.28) we compute

07 (1:025(1) = Ow(©x;(1) , for tE Iy (3.30

Let 7 (t) := infico,, oM (t;5). Note thatr(!) is continuous or®,, and on anyl, we
haver()(t) = min; <;j<¢, o (t; 0, ;(t)). Since®, ;(t) > 0 we conclude from (3.30)
that7(1) is monotonely strictly increasing on aidly and hence by continuity 0@, .
We now arrive at a contradiction with the assumption thas local minumum for
Zﬁs) (? ;7(1) as follows. Estimate for € (—oco,t9) N Oy,: oM () < 7MW () < 7D (tg) =
0)-
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We conclude from the argument above that any global minirﬁﬁ'ﬁ(to) must be
less than or equal to zero. Similarly one can show@ﬁé)c(to) > 0, thus leaving only the
possibility:¢ = 1 andO (tg) = 6(11)(150) = 0. This implies the first part of the theorem,
namely thabess (t()) = 0(1) (t(); 0) = O'(t()) + m.

Since the gap is» atty, ando.ss has a local minimum dt, we find from (1.12) that
o also has a local minimum &$. In particulare has a critical point aty, with 920 (¢y) >
0, which yields the bound?s (" (to; 5)j.—o > 9°w(0). HenceInd™ (ty;0) = 1. By
Proposition 3.8 1), this implies that., is analytic neat, anddos(t) = dw(©M (1))
neart, cf. (3.28). Computing = 9;(9;,0) (-; 1) (1)), nearty, yields the formula

25(t — O
dt 020 (t; 0 (t))
From this identity, the equation fé?o (t,) now follows. O

In the rest of this subsection we describe the shape of local maxima.pand of
points with maximal gap, i.€. with o.s(t) — o(t) = m. We give no formal proofs, but
the reader can consult the proof above where most of the needed ingredients are put to
use.

Let ¢y be a local maximum of — o.(t). Then we are in one of the following
situations:

1) oess fOrms a wedge aty. That is, it is the maximum of two Lipschitz functions with
slopes bounded away frofn(and coinciding at,). This occurs if and only if there is at
least one negative and one positive global minimum ef o) (t4; ).

II) 0. forms a half-wedge afy. That iso.s has its derivative bounded away frahon
one side of, and is bounded from below by, (to) — C(to — t)?, for t neart, and on
the other side of,. This occurs if and only if: The spectral gapris and besides, the
functions — o¢(to; s) has at least one more global minimum, all with the same sign.
Furthermore, is either a saddle point far or a local maximum. (this includes the case
whereo, is constant on one side &f.)

lll) o.ss does not form a wedge (or a half-wedge)@t That is,o.s is bounded from
below byc.s(to) — C(to — t)?, for t neart,. This occurs if and only if: The spectral gap
ism and the function — (1) (4; s) hass = 0 as a unique global minimum. Furthermore
o has alocal maximum &p. (This includes the possibility that; is locally constant, in
which casé is also a local minimum.)

In both casedl) andlil) we must necessarily hawo(ty) > —0%w(to), in order
to have a local minimum at= 0.

Now suppose, is such thats(to) — o(tg) = m. We have already discussed how
this can occur at local extrema. But there are two other possibilities where this may occur.

IV) oess is the minimum of two curves, intersectingtgt One with slope bounded away
from 0 (increasing or decreasing), and one which is analytic, non-decreasing away from
to, and bounded from above by (to) + C(to —t)2. This occurs if and only if: the func-
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tion s — oM (ty; s) has a global minimum 4t and at least one more global minimum,
all with the same sign. Furthermore has a saddle point or a local minimum¢gt

We end this section with a comment on jump discontinuities of the bounded function
D0 oss(t) = Ow(©M (t)). Whent increases (away from), global minima are a priori not
monotone, but when they jump, they jump from lakg® smallers. Passing to large,
can only happen analytically (whetgo(t — s) > 0, and hence a local minimum has
index1). This implies that

V) Jump discontinuities afo.s always decrease the derivative.

We note that a wedge can only coincide with a maximal spectral gap, at a local
maximum foro., i.e, where the derivative jumps from being positive to negative.

4 Additional results

In this section we collect some additional results, most of which have appeared elsewhere
in some form. They serve to give a more complete picture of the bottom of the joint energy
momentum spectrum. In addition we explain how to extend the results described in this
paper to models with a number cutoff in the interaction.

4.1 Complimentary results

In this section we recall some known and partly known related results on the structure of
the ground state mass shell. The first is due to Gross [31, (6.30)].

Lemma 4.1. (Gross)Letv € L*(R¥) andw(k) = Vk2 + m2, m > 0. Assume Condi-
tion 1.1 and that, for any > 0, the mapp — e~ **(?) is positive definite. Then

Eo(§) = 20(0).

The second result we mention is an extension of a result of Hiroshima and Spohn.
See [36, Lemma 3.1] and its proof.

Lemma 4.2. Letv € L*(R¥) satisfyv > 0 a.e., and assume Conditions 1.1 and 1.2. Let
& € Ty, write ¢¢ for a normalized ground state eigenfunction, afd:= 15 — [1¢) (1|
Then

{V2S0(O)}is = (e, 0:0;QE — dT(k))ie)
— (P 0;Q(& — dT(k)) e, (H(E) — £0(€)) ! Pe 9;Q(& — dT'(k)) e ) .
In particular V*%(¢) < sup, o(V*Q(p)) lgv.

Note that by Theorem 1.37(¢) — X (¢) is bounded invertible on the range Bf.
If £ € 7y is a critical point forg. — ¥ (€), thend; %o (&) = (ve, 0, —dT'(k))ve) = 0,
1 < j < v, and hence thé’, in the formula above for the Hessian is superfluous. This
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is the case considered in [36] (see also [53]). We leave the proof to the reader. In the case
Q(p) = p*/2M, Lemma 4.2 implies a lower bountl.z > M on the effective mass,
whereMe‘ﬂg1 := 02%0(0) (assuming rotation invariance). In [53] an upper bound for the
effective mass is derived, implying in particular th#t>(0) > 0. This is still an open
problem forQ(p) # p?/2M.

We note that similarly one can prove the following statement: Replabg gv,
whereg € R is a coupling constant. Let and¢ be such that € Z,, which is ag-
dependent set. TheXj,(¢) is an analytic function of the coupling constant in a neigh-
bourhood ofy, £ %(£) = (¢, ®(v)¢), and

d? — —
g 20(6) = — (Pe®(v) v, (H(E) = Zo(€)) ™" Pe B(v) v) -
In particular, the functiog — Xo(€) is concave in the sdly : £ € Zy}.

Thirdly we formulate a result, which follows from the proof of [20, Theorem 3.2].
We give a short proof of the statement here becausklieh concentrated on the massless
case, and the proof simplifies for massive bosons. We remark that the infraredcrtoff
in [20] can be viewed as a mass.

Theorem 4.3. Letv € L?(R¥). Assume Conditions 1.1, 1.2, and that the following
bounds hold for alp, k € R”
[VQ(p)| <1 and w(k) — |k| > 0. (4.1)

ThenZ, = R”.

Remark. This theorem implies in particular that in the case of relativistic electrons, i.e.

Qp) = V/p?>+ M2 (M > 0), andw(k) = VEk? +m? (m > 0), we have an isolated
ground state mass shell for all total momenta. This type of result was an important ingre-
dientin [21].

Proof. Suppos€, # R”, and let¢ € R\Z,.
Define, foré, k € R” with k £ 0,

F(& k) := k| 7H{Q(€ — dT'(k)) — Q€ — k —dD(k)} .

This self adjoint operator extends fraffj® to a bounded operator af, and by (4.1) it
satisfies the bound

|1F(ER)llsF) < 1. (4.2)

Let
n:=max{n > 1 : 2 = Sess() } - (4.3)

By Theorem 1.2 and (1.15) this choicewfis well defined. Fok € Ié”)(g), we write
Ye_pm € D for the ground state eigenfunction at total momentum k(™). Note that



The translation invariant massive Nelson model 38

k(™) =£ 0. For suchk we use (4.2) and the Rayleigh-Ritz variational principle to estimate

Yo(€) < ek, H(E) Ye_pm)
= o€ — k™) + K™ ey, FEK ) e_pm)  (4.4)
20(5_ k(n)) + |k’("’)|.

AN

Let = ZSV(€) N {n € R™ : 56 — n™) < %4(¢)}. The bound (4.4),
Lemma 1.7, and the choice (4.3)nfimplies

keRm

M) = if DGk = inf {o(¢ ~ E) > w(k
k =

vV

N (J(n)

) + jnf { > wlky) — KM}
J=1

By (1.14) there exist€y, > 0, independent of., such thatk(™)| < Cy, k € U. Now

chooseR such thato(k) > Cy; + 1 for |k| > R. Since|k™)| < |ky| + -+ + |kn|, we

arrive at the following estimate, cf. (4.3),

Do(€) = Tew(6) = T(V(€) 2 To() + min{l, inf (k) — K]}
By (4.1) this is a contradiction. O

In addition to Theorem 1.11 we have a complimentary result which is concerned
with the regularity of=(™)(¢) as a function of.. The proof is at the end of Subsect. 3.4

Proposition 4.4. Assume Conditions 1.1, 1.2, 1.3, and 1.4. tet R. There exists a
closed countable s€f(t) C (0, 00), and an analytic mag0, co)\7 (t) > n — 0 (t) €
Z$™ (t), with the property that the maps— o™ (t;s), n € (0,00)\7 (¢), has a global
minimum ats = O (t), with Ind™ (£; 8™ (¢)) = 1. Let (a,b) C (0,00)\7 (¢). The
global minimum is either unique for all € (a, b), or it is accompanied by another global
minimum sitting at = —©(™)(t), for all n € (a, b). The case of two global minima can
occur if and only ifo(t — r) = o(t + r) for r in a neighbourhood 0f©™)(t). We
furthermore have

% o™ (t) = w(OM™ (1)) — dw(@™(t)) 6™ (t), for n € (0,00)\T(t). (4.5)
The functionz — w(x) — zow(x) appearing on the right-hand side of (4.5), is the
one from Lemma 1.5. The identity (4.5) can be used to estimate the spﬁléﬁﬁ“gl) €3

Eé”) (£). (In the submitted version of this paper, the proof of Proposition 4.4 is left to the
reader.)
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4.2 Interactions with a number cutoff

In this subsection and the next we consider models of the form, cf. (1.5),
Hy := Hy + Ig @ (N <N) VI @ UV <N).

HereN € Z is the cutoff parameter. Clearly these operators also commute with the total
momentum and The corresponding fiber Hamiltonians are, cf. (1.6),

Hy(€) == Ho(€) + ®x(v), where dy(v) i= 1(N < N)(u) I(N < N .

Note that the notation is consistent sinkg(v) = 0. For N’ < 0 we clearly also have

Hye(€) = Ho(6).

We remark that fol" = 1 a complete picture can be obtained, cf. [23], (mass zero
case). We note that the spin-boson model has been studied perturbativaly=fog in
[44]. See also [25, 38, 39].

We now formulate our main results from Subsection 1.3 in the context of the cutoff
models. We impose for brevity of exposition Conditions 1.1, 1.2, 1.3, and 1.4 throughout
this subsection. We furthermore impose the following additional condition

Condition 4.1. The form factor satisfies that> 0 a.e. locally uniformly.

Let N > 1. We introduce some notation. First the bottom of the spectrum of the full
operator:

Envo = Yn0(E), where Xy (&) := info(Hp(§))

Forn > 1andk = (k1,...,k,) € R™ we introduce
SN0 k) = Sw—no(§ = k™) + D wik
Jj=1

and

SVo() = inf SER).

The bottom of the essential spectrum is
Sessn (§) 1= SWp() = inf S(€ k).
€RrR¥
We furthermore write

IN70 = {g € R : ZN,o(f) < Eess,./\/(g) }a
I = {k € R™ : €= k(" € Ty_no} .

The energieE(N”?O(f), n > 1, are bottoms of branches of essential spectrum correspond-
ing to having stripped ofi photons to infinity, and having the interacting systems in a



The translation invariant massive Nelson model 40

groundstate. Lemma 1.5, Condition 4.1, and the Rayleigh-Ritz variational principle en-
sures that the thresholds are ordered:

Se(©) > ZRAE)

forall n > »n’ > 1. This is where the assumptian> 0 comes in. It ensures that the
thresholds appear in an ordered fashion as in the full model.

Note that the properties (1.12) and (1.13) do not hold for the cutoff model. The gap
Yess N (&) —Znr,0(€) may exceedn. However, we do have thaless ar(§) —2a—1,0(§) <
m (it may be negative).

We introduce, as in Subsect. 1.3, the following notation. i & a unit vector in
R”. We writeo (t) = X n (%), fort € R. By rotation invariances v is independent of
i. Similarly we write, forn € N, 0\F (t; 5) := ox_n ((t — n.8)@) + nw(sii), o\ (t) =
S5 (4), BNA0egs A (1) 1= Sess (t0).

With a slight abuse of notation, we use the same syrfipg} to denote the set of
t's such thatu € Zy . We furthermore use the symbajszf(t), n € N, to denote the set
{seR:t—nse€Iyn}

We now list a number of results, which we do not prove here. See however the
following subsection. In each case the reader can readily mimic the proofs, given in Sec-
tion 3, of the corresponding results for the full model.

- ForeachV > 1and¢ € R”, @ (v) is Hy(&) bounded with relative bound zero. In
particularH s (€) is essentially self-adjoint 065°, andD(Hs(€)) is independent
of &.

- (HVZ) The bottom of the essential spectrumBf, (&) is Yess, A (§). Eigenvalues
belowX s ar(€) have finite multiplicity and can only accumulatedats o (§). See
also [25, 38] for the cutoff spin-boson model.

- The ground state is non-degenerate, and in addition<fv < 2 thenZr, = R".
If 3 < v < 4then the bottom of the spectruij, o (€) is an eigenvalue if and only
if £ € Iy 0. As a consequence of the non-degeneracy, theZpnap> t — oar(t)
is analytic.

- Letn € N. There exists a closed countable §'§f) C R, and an analytic map
R\TA(/") S5t— @(Nn) (t) € Z,(\%(t) with the property that the maps— oj(\’})(t; ),
t € R\T.™, has a unique global minimum at the point= @(N") (t), with in-
dexInd™ ;0 ()) = 1. In particularR\T," 3 ¢ — o\ (t) is analytic and
4o (t) = 0wl (1)), fort € R\T\". Recallo\ () = o'i) (t).

- Let ¢ be alocal minimum of — oess A (t). Then the 'spectral gap’ &g is maxi-
mal, i.e.0ess A (o) — oar—1(to) = m, the mapt — oxr—1(¢) has a local minimum
atty, the mapt — oess a(t) is analytic neat, and

0%w(0) 0?0 pnr_1(to)
2 —
0% 0ess N (t0) = 02w(0) + O?opn_1(to)
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4.3 Comments on proofs

The key difference between the cutoff models and the full model, lies in the self-similarity
of the full model. By self-similarity we mean that after removing a number of bosons to
infinity, the remaining interacting system has the same Hamiltonian as the original system,
albeit at a different total momentum. For the cutoff model the interacting system, after
removing bosons to infinity, has a different cutoff. This is manifested in two instances, in
the extended Hamiltonian and in the pull-through formula.

For the cutoff model(s) one should replace the extended Hamiltonian, cf. (2.31) and

(2.34), by
HRF(€) = {@ H(©)},

whereH\ (€) = [0 H\Y (& k)d*k and

14
HP(&E) = Hy—o(e — k9) )+ D wlky)

With this choice of extended Hamiltonian, the localization estimates derived in Sub-
sect. 3.1 applies. This is one of the inputs to the HVZ theorem.

The second manifestation of the lack of self-similarity is in the pull-through formula
which should be replaced by

a(k) (Hy(§) — 2)¥ = (Hy-1(§ — k) + w(k) — z)a(k)y
+o(k) (N <N 1)

Itis now left as an exercise to the reader to verify that the proofs go through. We just
remark that when applying the Perron Frobenius argument, as in Subsect. 3.3, one should
work only in the sub Hilbert spaC@/\COF (hpn) of F. Any eigenfunction will vanish
in n-particle sectors witm > N, wh|ch is reflected in the fact that the cutoff resolvents,
(Hpr(€) 4+ p)~1, are not positivity improving in the full Hilbert cone.

Acknowledgments: The author thanks Z. Ammari, V. Bach, Johfich, and C. @rard,

for useful discussions, and Dokuz BEyMniversity for hospitality. This work was sup-
ported in parts by Carlsbergfondet and by a Marie-Curie individual fellowship from the
European Union.

A Mathematical tools

A.1 Almost analytic extension

In this subsect. we briefly recall the functional calculus provided by almost analytic ex-
tensions. In particular we will use a version which handles functions of a vector of com-
muting operators. See the monographs by Davies [12] and Dimassi @stde®Bjd [16] for
details.
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Below o will denote multi-indices. Les € R and f € C*>°(R¥) satisfy
Ya : 3C, such thatd® f(z)| < C, (x)*~1l. (A1)

We define an almost analytic extensigne C*>(C") of f, through a Borel construc-
tion. Fix a functiony € C§°(R) to be equal tal in a neighbourhood of), and a se-
quence{ A }ren, , going sufficiently fast to infinity. The following choice will doy, :=
max{max|q|=; Ca, Ak—1 + 1}, for k > 1, and )y = Cy. Here the constant§', are
coming from (A.1). Then, writing = u + iv € R” & iR”,

fo) = 5 L e L) (#2)
«@ j=1

Note that there exist§' > 0 such that

supp(f) C {u + iv : u € supp(f), [v| < C{u)} .
We furthermore have the property that

Ve > 0:3C, suchthaldf(z)| < Cp(2)* ¢! [Imz|*. (A.3)

Hered = (04,...,0,), 0j := 0y, +10,,, andlmz = (vy,...,v,).
If s < 0 we have the following representation,

fz) = 2|52y—1|—1/ <é§f(z), (x+2) >d2uz’

v | — 2|2
whered®”z = IT_, du;dv; is the Lebesgue measure @, and|S* | is the volume
of the unit ball inR?”. (Note that fors < 0 the integral is absolutely convergent.)
For a vector of pairwise commuting self-adjoint operatdrs- (4,,...,4,), and
a function f satisfying (A.1) withs < 0, the almost analytic extension thus provides a
functional calculus via the formula

f(A) = 2|87y ) 0;f(2) (Aj + z) |[A— 27> d*z. (A.4)
j=1"t"

In the caser = 1 this reduces to

£A) = %/Cgf(z) (A — =) dudo.

A.2 Invariant cones

In this subsect. we recall a result of Faris, cf. [17], which will be used to show non-
degeneracy of the ground state. It is an abstract version of the Perron-Frobenius Theorem
in L2-spaces, cf. [49, Theorem XII1.43], which together with thespace representation

of Fock-space, has been used frequently to show non-degeneracy of the ground state, cf.
[5, 28, 31].
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Definition A.1. LetHg be a real Hilbert space. We s& C Hg, C # {0}, is a Hilbert
cone if:

i) u,ve Cimpliesu+ v € C.
i) uwe C,\>0implieshu € C.
i) CN(—-C)=1{0}.
iv) Cis closed.
V) u,v € Cimplies(u,v) > 0.
vi) For all w € Hy there existsi, v € Cs. t.w = v — v and{u,v) = 0.

An important example of a Hilbert cone is, as mentioned above, the subset of real
non-negative functions ih?(Q, du), whereQ is a measure space.

Definition A.2. LetHy be a real Hilbert spaceC C Hg a Hilbert cone and4 a bounded
operator onHp.
i) We sayu € C is strictly positive if(u, v) > 0 for anyv € C\{0}.
i) A is positive preserving ilC C C.
i) A is positivity improving ifAw is strictly positive for allu € C\{0}.
iv) Ais ergodic if for anyu,v € C\{0} there exists: > 0s. t.(A"u,v) > 0.

Note that a positivity improving operator is in particular ergodic. The following
theorem is due to Faris

Theorem A.3. (Faris) Let Hy be a real Hilbert spaceC C Hgk a Hilbert cone and4
a bounded positive self-adjoint operator k. Suppose furthermore that is positivity
preserving and that A|| is an eigenvalue fod. ThenA is ergodic if and only if| A|| is an
eigenvalue of multiplicity one and there exists a strictly positive C with Au = || A||u.

The lemma below follows from the identities * = lim,, (£ +1) ™" ands™! =

Jo~ e <ds, for s > 0, in conjunction with the first resolvent formula.

Lemma A.4. Let A be a bounded from below self-adjoint operator on a real Hilbert
space. Assume that there existda< inf o(A) such that(A — \)~! is positivity pre-
serving (improving) for all\ < )\g. Then(A — \)~! is positivity preserving (improving)
forall A < info(A).
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