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ABSTRACT. The present paper is devoted to the study of spectral properties of random
Schrödinger operators. Using a finite section method for Toeplitz matrices, we prove a
Wegner estimate for some alloy type models where the single site potential is allowed
to change sign. The results apply to the corresponding discrete model, too. In certain
disorder regimes we are able to prove the Lipschitz continuity of the integrated density
of states and/or localization near spectral edges.

1. INTRODUCTION AND MAIN RESULTS

In the present work we consider random Schrödinger operators

(1.1) Hω := H0 +Vω , H0 := −∆+V0 on H = L2(Rd),

where −∆ is the negative Laplacian, V0 a Z
d-periodic potential, and Vω is given by the

Z
d-metrically transitive random field

(1.2) Vω(x) = ∑
j∈Zd

ω j u(x− j).

The bounded random variables ω j, j ∈ Z
d are assumed to be independent and identically

distributed (i.i.d.). The distribution µ of ω0 has a density f of finite total variation. It
is called single site distribution. The probability space Ω = (supp f )Z

d
is equipped with

the product measure P := ⊗ j∈Zd µ . The corresponding expectation is denoted by E. The
function u : R

d →R is called single site potential and is assumed to have compact support.
We assume throughout this paper that V0 and Vω are infinitesimally bounded with respect
to ∆ and that the corresponding constants can be chosen uniformly in ω ∈ Ω. This is
ensured, for instance, if V0,u ∈ Lp

loc,unif(R
d) with p = 2 for d ≤ 3 and p > d/2 for d ≥ 4.

Here a function g is in Lp
loc,unif if there is a constant C such that

∫
|x−y|<1 |g(y)|pdy ≤C for

all x ∈R
d . Without loss of generality we may assume minsupp f = 0 and maxsupp f > 0,

by changing the periodic background potential V0 if necessary.
The present work is devoted to the study of spectral properties of Schrödinger operators

(1.1) with sign-indefinite single site potentials, i.e. with u’s taking on values of both signs.
The main aim of the work is to prove the Lipschitz continuity of the integrated density of
states (IDS) as well as a linear (with respect to the energy) finite-volume Wegner estimate.
The results presented here extend those obtained previously by the second author in [46].
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For energies below the spectrum of the operator H0 the Hölder continuity of the IDS
with exponent arbitrary close to 1 was proved by Hislop and Klopp in [24] for a wide class
of sign-indefinite single site potentials. In the small disorder regime, the results of [24]
also apply to internal spectral gaps of H0. In the case d = 1, Damanik, Sims, and Stolz
proved in [14] that the IDS is Hölder continuous for all energies away from a discrete set.

To describe our results let us introduce some notation: Λl( j) denotes the cube

[−l/2, l/2]d + j ⊂ R
d

of side length l centered at j ∈ Z
d . Let χ j be the characteristic function of Λ1( j). By HΛ

ω
we denote the restriction of the operator Hω to the set Λ with Dirichlet boundary condition
on ∂Λ. Let EHΛ

ω
(B) denote the spectral projection for the operator H Λ

ω associated with a
Borel set B ⊂ R. In particular, if Λ = Λl(0) we will write H l

ω and E
l
ω(B) instead of HΛ

ω
and EHΛ

ω
(B), respectively.

The IDS N(E) is defined as the limit of the distribution functions

N l
ω(E) := l−d #{n|n-th eigenvalue of H l

ω is smaller than E}
= l−d trEl

ω
(
(−∞,E)

)
.

as l tends to infinity. For P-almost all ω ∈ Ω the limit exists and is independent of ω .

Definition 1. Let Lp(Rd) 3 w ≥ κχ0 with κ > 0 and p = 2 for d ≤ 3 and p > d/2 for
d ≥ 4. Let Γ be a finite subset of Z

d , #Γ the number of its elements. A function of the form

(1.3) u(x) = ∑
k∈Γ

ak w(x− k)

will be called a generalized step-function and the vector a∈R
#Γ a convolution vector. We

set ak = 0 for all k ∈ Z
d \Γ and, thus, embed a in c0(Z

d), the space of all finite sequences
with elements indexed by j ∈ Z

d . The set Γ will be called the support of a, supp a = Γ.

Each convolution vector generates a multi-level Laurent (i.e. doubly infinite Toeplitz)
matrix A = {a j−k} j,k∈Zd with the symbol

sa(θ) = ∑
k∈Zd

ak ei〈k,θ 〉, θ = (θ1, . . . ,θd) ∈ T
d := (−π,π]d .

Theorem 1 (Density of states). Let u be a generalized step function. If d ≤ 2 and sa(θ)
does not vanish for any θ ∈ T

d , then

(1.4) E{tr E
l
ω([E − ε ,E])} ≤C eE Var( f ) ε ld, ∀ε ≥ 0,

where C is a constant independent of E, l, f , and ε . Moreover, the density of states n(E) :=
dN(E)/dE exists for a.e. E ∈ R and is locally uniformly bounded: n(E) ≤ CeE1 Var( f )
for all E ≤ E1.

Here Var( f ) denotes the total variation of the function f .
The proof of Theorem 1 heavily relies on the finite section method (also called pro-

jection method) for multi-level Toeplitz matrices. We expect that Theorem 1 holds in
arbitrary dimension. However, we can prove this only under an additional assumption on
the bounded invertibility of certain auxiliary Toeplitz operators, see Corollary 4.2.

Below we will prove a weaker result (Theorem 2), namely a finite-volume Wegner
estimate with super-linear dependence on the volume of the cube Λl(0). This estimate



LIPSCHITZ CONTINUITY OF THE INTEGRATED DENSITY OF STATES 3

is useful in the context of localization but does not allow us to say anything about the
continuity of the integrated density of states.

The symbol sa is called sectorial if there is a φ ∈ (−π,π] such that Re (eiφ sa(θ)) ≥ 0
for all θ ∈ T

d . A fairly simple example of a sectorial symbol is provided by the single
site potential u(x) = χ0(x)− χ0(x−1) for d = 1. Obviously, Re sa(θ) = 2sin2(θ/2) ≥ 0
which has precisely one zero at θ = 0.

Theorem 2 (Wegner estimate). Let u be a generalized step function. Assume that the
symbol sa is sectorial and Re sa(θ) has at most finitely many zeros. Then there is a
number b > 1 such that

(1.5) E{tr E
l
ω([E − ε ,E + ε ])} ≤C eE Var( f ) ε lbd, ∀ε ∈ [0,1]

where C is a constant independent of E, l, f , and ε .

If the symbol sa does not vanish by Theorem 1 in dimension one and two we can even
chose b = 1.

Slightly modifying the proof one can easily extend Theorem 2 to the case, where sa(θ)
is independent of some of the θi-s and, thus, Re sa(θ) may have non-isolated zero s. We
leave the details to the reader.

The proof of Theorem 1 implies the following

Corollary 3. Let u be a generalized step function. Assume there is a k ∈ Γ such that

(1.6) |ak| > ∑
j∈Γ
j 6=k

|a j|.

Then the conclusion of Theorem 1 holds for all d ≥ 1.

Remark that condition (1.6) implies that sa(θ) 6= 0 for all θ ∈ T
d . Under the condition

that the single site distribution µ has a density in the Sobolev space W 1,1(R) this result
was obtained in [46].

Apart from establishing the existence of the density of states our main application of
the Wegner estimate is a proof of strong Hilbert-Schmidt dynamical localization. This
notion means that wavepackets with energies in an energy interval I ⊂ R do not spread
under the time evolution of the operator Hω . More precisely,

(1.7) E

{
sup

‖ϕ‖∞≤1

∥∥∥|X |q/2ϕ(Hω)EHω (I)χK

∥∥∥
2

HS

}
< ∞

holds for all q > 0. Here ‖·‖HS denotes the Hilbert-Schmidt norm, K ⊂R
d is any compact

set, and X denotes the operator of multiplication with the variable x. For the interpreta-
tion of (1.7) as non-spreading of wavepackets one chooses ϕ(y) = e−ity. In particular, in
the present context strong Hilbert-Schmidt dynamical localization implies that the spec-
trum of Hω in I is almost surely pure point with exponentially decaying eigenfunctions
(exponential spectral localization).

We prove localization for sign-indefinite single site potentials of generalized step func-
tion form – as long as the positive part stays dominant – in several energy/disorder regimes.
The regimes correspond to situations where localization has been established for fixed
sign single site potentials. We list below several situations, in which this is the case.
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Set u+(x) := max(u(x),0) and consider the auxiliary operator

(1.8) Hω ,+ = H0 +Vω ,+ with Vω ,+(x) := ∑
j∈Zd

ω j u+(x− j).

A number E0 ∈ spec(Hω ,+) is called a spectral edge of the operator Hω ,+ if there exists
a δ > 0 such that either (E0 − δ ,E0) or (E0,E0 + δ ) belongs to the resolvent set of the
operator Hω ,+ almost surely. In particular, the infimum of the almost sure spectrum of the
operator Hω ,+ is a spectral edge.

Hypothesis H1. Assume that E0 is a spectral edge of the operator Hω ,+. Without loss
of generality we will assume that E0 is a lower spectral edge such that P{spec(Hω ,+)∩
(E0 −δ ,E0) 6= ∅} = 0. Assume that any of the following assumptions holds:

(i) E0 is the infimum of the spectrum of Hω ,+ almost surely.

In all subsequent cases assume that the support of the density f is an interval.

(ii) for some τ > d/2, some t0 > 0 and all t ∈ [0, t0] the single site density f satisfies
∫ t

0
f (x)dx ≤C tτ

with a constant C > 0.
(iii) E0 is a Floquet regular spectral edge of the (periodic) operator H0, i.e., there is

an a < E0 such that spec(H0)∩ (a,E0) = ∅ and all Floquet eigenvalues of H0

reaching E0 are locally given by Morse functions. Equivalently, the IDS of the
periodic operator H0 is non-degenerate at E0 (see [30] and [45]).

(iv) u+ is of long range type in the sense of [32], i.e., there exists an exponent d0 ∈
(d,d + 2] and two functions ul ,uu ∈ Lp(Λ1(0)) such that is ul non-negative on
Λ1(0) and strictly positive on some open set and

ul(x) ≤ (1+ |k|2)d0u+(x− k) ≤ uu(x)

for all k ∈ Z
d and all x ∈ Λ1(0).

Theorem 4 (Localization). Let u be a generalized step function. Assume Hypothesis H1.
Assume, in addition, that u ∈ L∞ and the Wegner estimate (1.5) holds with some b > 0 for
all sufficiently large l. Then there exists a γ > 0 and a compact interval I ⊂ R containing
E0 such that, if the negative part u− of the single site potential u satisfies ‖u−‖∞ ≤ γ , then
strong Hilbert-Schmidt dynamical localization holds for Hω in the energy interval I. The
interval I contains almost surely a spectral edge of the operator Hω .

Spectral localization for single site potentials of changing sign in the energy/disorder
regimes (i) and (ii) was established in [46]. In Section 6.2 of [24] localization results
for a larger class of sign-indefinite single site potentials were announced. However, the
non-positive part of the potential still has been assumed to be small.

In [31] Klopp establishes a localization result in the weak disorder regime, i.e. for
random operators H0 + αVω with α > 0 sufficiently small. The result is valid for single
site potentials u with changing sign, as long as

∫
udx 6= 0. The other extreme, the ’limit’

large disorder regime, namely the case where the support of the density f is the whole
real line, Klopp treated in [29].
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Finally let us discuss the discrete analog of the operator family (1.1). It is an Anderson
model on `2(Zd) with a single site potential of finite rank:

(1.9) hω = h0 +Vω , Vω = ∑
j∈Zd

∑
k

akPk+ j,

where h0 denotes the discrete Laplacian, Pk the orthogonal projection onto the k-th site of
the lattice Z

d ,

(h0ψ)(n) = ∑
e∈Zd

|e|1=1

ψ(k + e), (Pkψ)(n) =

{
ψ(n), n = k,

0, otherwise.
(1.10)

The rank of the single site potential obviously equals the number of elements in the set
supp a. Note that Vω acts as a multiplication operator:

(1.11) (Vω ψ)(n) = ∑
j∈Zd

ω j an− j ψ(n)

We define the Laurent matrix A and its symbol as above. The conclusions of Theorems
1 and 2 remain valid for operators hω as in (1.9). The proofs apply verbatim. In particular,
we have

Theorem 5. If d ≤ 2 and sa(θ) does not vanish for all θ ∈ T
d , then

(1.12) E{tr E
l
ω([E − ε ,E])} ≤C Var( f ) ε ld, ∀ε ≥ 0,

where C is a constant independent of E, l, f , and ε . Moreover, the density of states n(E) :=
dN(E)/dE exists for a.e. E ∈ R and is locally uniformly bounded: n(E) ≤ C Var( f ) for
all E ∈ R.

Here E
l
ω is the spectral projection for the operator hω restricted to Λl(0)∩Z

d .
Due to equality (1.11) model (1.9) can be understood as the usual Anderson model

with single site potential of rank one, but with correlated random coupling constants. A
similar interpretation holds for the Schrödinger operators (1.1), but in the discrete case it
is particularly clear. In fact, in the proof of Theorems 2 and 5 we use this dual point of
view on the potential.

We give an outline of the paper. Sections 2 and 3 derive abstract spectral averaging
and Wegner estimates, which are applied in Section 4 to prove Theorems 1 and 2. Section
5 is devoted to the proof of the Localization Theorem 4. In the last section we gener-
alize the results of Hislop and Klopp [24] on the Hölder continuity of the IDS to single
site distributions of bounded total variation. Certain auxiliary issues are deferred to two
appendices.

Acknowledgements. We are indebted to A. Böttcher, F. Gesztesy, K. Makarov, and
R. Schrader for useful and stimulating discussions. The work of I.V. was supported by
the DFG through the SFB 237 “Unordnung und große Fluktuationen” and grants no. Ve
253/1 and Ve 253/2-1. He thanks B. Simon for hospitality at CalTech.

2. MULTI-PARAMETER SPECTRAL AVERAGING

We present an extension of the well known one-parameter spectral averaging result of
Kotani-Simon [35] and Combes-Hislop [10]. It is a directional averaging technique which
applies to multi-parameter families of operators.
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A number of further results on the spectral averaging and its applications to random
Schrödinger operators can be found in [8], [11], [12], [18], [20], [33, Section 3], [39],
[40], [43].

Let H0 be a self-adjoint operator on the separable Hilbert space H. Let V ≥ 0 be an
infinitesimally bounded operator with respect to H0 which satisfies 0 ≤ κB2 ≤V for some
κ > 0 and some bounded non-negative operator B. Let EH(s)(·) be the spectral family for
H(s) = H0 + sV , s ∈ R.

Theorem 2.1 (Spectral Averaging Theorem). For any interval L ⊂ R and for any g ≥ 0,
g ∈ L∞(R) the inequality

∫

R

g(s) BEH(s)(L)B ds ≤ κ−1‖g‖∞|L|

holds in operator sense.

This theorem is proven in [10] for functions g with compact support and bounded V .
In [26] it was observed that one can extend the estimate to g with unbounded support and
in [44] that infinitesimal relative boundedness of V is sufficient.

In Appendix A we give an alternative proof of this result. It is based on the Birman-
Solomyak formula and exhibits the relation of spectral averaging to the theory of the
spectral shift function.

Here is an extension of Theorem 2.1 to multi-parameter families.

Theorem 2.2. Let f : R → [0,∞) be a function of finite total variation with compact sup-
port such that ‖ f‖1 = 1. Let V1, . . . ,Vn, n ≥ 1 be operators in H, which are infinitesimally
bounded with respect to H0. For s = (s1, . . . ,sN) ∈ R

n set

V (s) =
n

∑
i=1

siVi, H(s) = H0 +V (s), and F(s) =
n

∏
i=1

f (si)

Assume that there is a nontrivial vector t = (t1, . . . , tn) ∈ R
n and a bounded, non-negative

operator B such that for some κ > 0 the inequality

W :=
n

∑
i=1

tiVi ≥ κB2 ≥ 0

holds in operator sense. Then the operator inequality

(2.1)
∫

Rn

ds F(s) BEH(s)(L)B ≤ κ−1‖t‖`1(Z) Var( f ) |L|

holds. Here EH(s) denotes the spectral projection for the operator H(s).

Recall that Var( f ) denotes the total variation of the function f .

Remark 2.3. (i) In our application f will play the role of a probability density.
(ii) If f is not of bounded total variation we can merely bound the left hand side of

(2.1) by a term containing ‖ f‖n
∞ |supp f |n. Thus, in general the bound grows exponentially

in n.

To prove Theorem 2.2 we need the following well-known result (see, e.g., [48]) on the
mollification of functions of bounded total variation. We sketch its proof for the reader’s
convenience.
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Lemma 2.4. Let f : R → R+ be a function of bounded total variation. Assume, in addi-

tion, that
∫

R

f (x)dx = 1. Then there exists a sequence fk ∈C∞
0 (R) such that

∫

R

fk(x)dx = 1

for all k ∈ N,

(2.2) lim
k→∞

Var( fk) = Var( f ),

and

(2.3) lim
k→∞

∫

R

| fk − f |dx = 0.

Sketch of the proof. Let ϕ(x) be a non-negative function in C∞
0 (R) with suppϕ ⊂ [−1,1]

such that
∫
R

ϕ(x)dx = 1. For any ε > 0 the function ϕε(x) := ε−1ϕ(x/ε) belongs to C∞
0 (R)

and
∫
R

ϕε(x)dx = 1. Now consider the mollification of f ,

f (x;ε) :=
∫

R

ϕε(x− y) f (y)dy.

Obviously, f (·;ε) ∈C∞
0 (R) and by the Fubini theorem

∫
R

f (x;ε)dx = 1. Take a sequence
{εk}k∈N converging to zero and set fk(x) = f (x;εk). For the proof of the relations (2.2)
and (2.3) we refer to Theorems 1.6.1 and 5.3.5 in [48]. �

Proof of Theorem 2.2. Without loss of generality we may assume t1 > 0 and set k = 1.
Denote

(2.4) m = (1, t2t−1
1 , . . . , tnt−1

1 ) ∈ R
n.

Let η = Ms, where M is an invertible n × n-matrix which acts in the following way:
η1 = s1, ηi = si −mis1, i = 2, . . . ,n. We write the integral on the l.h.s. of (2.1) as follows

(2.5)
∫

Rn−1
dη⊥

∫

R

dη1 G(η) BEH(M−1(η))(L)B,

where η = (η1,η⊥) = (η1,η2, . . . ,ηn) and

G(η) = F(M−1η) = f (η1)
n

∏
j=2

f (η j +m jη1).

The operator V (s) in the η-variables is given by

V (s) = V (M−1η) =
n

∑
j=2

η jVj +η1

n

∑
j=1

m jVj =
n

∑
j=2

η jVj +η1t−1
1 W.

By the assumptions on W , the Spectral Averaging Theorem 2.1 applies to the integral
(2.5) and shows that it is bounded in operator sense by

(2.6)
t1
κ
|L|

∫

Rn−1
dη⊥ sup

η1∈R

G(η).

Assume first f ∈C1
0(R). By the fundamental theorem of calculus

sup
η1∈R

G(η) ≤
∫

R

∣∣∣
(
∂1G

)
(η1,η⊥)

∣∣∣dη1,

where ∂1 denotes the derivative with respect to the first variable. A calculation shows

(
∂1G

)
(η) =

n

∑
j=1

m j f ′
(
(M−1η) j

) n

∏
k=1
k 6= j

f
(
(M−1η)k

)
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and, thus,
(
∂1G

)
(Ms) =

n

∑
j=1

m j f ′(s j)
n

∏
k=1
k 6= j

f (sk).

Therefore, the integral (2.6) is bounded by

t1
κ
|L|

∫

Rn−1
dη⊥

∫

R

dη1 |∂1G(η)| =
t1
κ
|L|

∫

Rn
ds|∂1G(Ms)| ≤ t1

κ
‖ f ′‖1 ‖m‖`1(Z) |L|,

which yields the estimate
∫

Rn

ds F(s) BEH(s)(L)B =

∫

Rn
dη G(η)BEH(M−1(η))(L)B ≤

‖t‖`1(Z) ‖ f ′‖1

κ
|L|.

Recall that ∫

R

ds| f ′(s)| = Var( f ).

Thus, (2.1) is proven for f ∈C1
0(R).

Now let f be a function of bounded total variation. By Lemma 2.4 there is a sequence
of C∞

0 -functions { fk} such that (2.2) and (2.3) hold. We have
∫

Rn

ds F(s) BEH(s)(L)B =
∫

Rn

ds
n

∏
i=1

fk(si) BEH(s)(L)B

+

∫

Rn

ds

[
n

∏
i=1

f (si)−
n

∏
i=1

fk(si)

]
BEH(s)(L)B.

(2.7)

A telescoping argument shows that the norm of the second integral is bounded by

n‖B‖2
∫

R

| f (s)− fk(s)|ds,

which by (2.3) tends to zero as k → ∞. By our previous argument the fist integral in (2.7)
is bounded by

κ−1‖t‖`1(Z) Var( fk) |L|.
Applying (2.2) completes the proof of the theorem. �

3. WEGNER ESTIMATE

In this section we prove a Wegner estimate which applies to alloy type models as de-
scribed in Section 1 under the additional Hypothesis H2 below.

We fix some notation: For an open set Λ ⊂ R
d , Λ̃ is the set of lattice sites j ∈ Z

d such
that the characteristic function χ j of the cube Λ1( j) does not vanish identically on Λ. Set

U(Λ) = { j ∈ Z
d| u(x− j) does not vanish identically on Λ}.

Hypothesis H2. (i) Assume that there is a sequence Λn, n ∈ N of subsets of R
d , a se-

quence of finite sets Σn ⊂ Z
d , n ∈ N and a number n0 ∈ N such that for arbitrary n ≥ n0

and every j ∈ Λ̃n there is a vector t( j,n) ∈ R
Σn such that

∑
k∈Σn

tk( j,n) u(x− k) ≥ χ j(x) for all x ∈ Λn.

(ii) Assume sup
n≥n0

max
j∈Λ̃n

‖t( j,n)‖`1(Σn) < ∞.
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In our applications we choose the Λn to be cubes or more general polytopes and the Σn

to be subsets of Z
d containing Λ̃n (see proof of Theorem 4.4).

Theorem 3.1. Assume part (i) of Hypothesis H2. Let L = [E1,E2] be an arbitrary interval.
Then for any n ≥ n0

E
{

tr EHΛn
ω

(L)
}
≤C eE2 Var( f ) max

j∈Λ̃n

‖t( j,n)‖`1(Σn) |L| #Λ̃n

with #Λ̃n the number of elements of Λ̃n, C a constant independent of Λn and L.

Proof. Set Σ ≡ Σn and Λ ≡ Λn. As in [10, Section 4] we estimate

E
{

tr EHΛ
ω
(L)
}
≤ eE2E

{
tr EHΛ

ω
(L)e−HΛ

ω
}

≤ eE2 ∑
j∈Λ̃

‖E
{

χ̃ j EHΛ
ω
(L) χ̃ j

}
‖ sup

ω∈Ω
tr
(

e−H j
ω
)
,

where χ̃ j = χ j χΛ with χΛ the characteristic function of the set Λ. The operator H j
ω is

the restriction of Hω onto Λ1( j)∩Λ with Dirichlet boundary conditions on ∂Λ1 ∩∂Λ and
Neumann boundary conditions on ∂Λ1 \∂Λ. Noting that

C := sup
ω∈Ω

tr
(

e−H j
ω
)

is bounded uniformly in j, we obtain the inequality

(3.1) E
{

tr EHΛ
ω
(L)
}

≤ C eE2 ∑
j∈Λ̃

‖E
{

χ̃ j EHΛ
ω
(L) χ̃ j

}
‖.

Recall that
HΛ

ω = −∆Λ + χΛ ∑
k∈U(Λ)

ωku(·− k)

in the sense of quadratic forms, where ∆Λ is the Laplace operator with Dirichlet boundary
conditions on ∂Λ.

Fix all ω j with j ∈U(Λ)\Σ. By part (i) of Hypothesis H2 we can apply Theorem 2.2
to the multi-parameter operator family

{ωk}k∈Σ 7→
(
−∆Λ + χΛ ∑

j∈U(Λ)\Σ
ω ju(·− j)

)
+ ∑

k∈Σ
ωku(·− k),

thus, obtaining for all j ∈ Λ̃
‖E
{

χ̃ j EHΛ
ω
(L) χ̃ j

}
‖ ≤ Var( f )‖t( j,n)‖`1(Σ) |L|.

From this and (3.1) the claim follows. �

4. GENERALIZED STEP FUNCTIONS

In this section we consider a class of sign-indefinite single site potentials for which it
is particularly simple to verify Hypothesis H2. Throughout this section we assume that
the single site potential is a generalized step functions (see Definition 1).

Each convolution vector generates a multi-level Laurent (i.e. doubly-infinite Toeplitz)
matrix, A = {a j−k} j,k∈Zd whose symbol will be denoted by sa,

sa(θ) = ∑
k∈Zd

ak ei〈k,θ 〉, θ = (θ1, . . . ,θd) ∈ T
d := (−π,π]d .
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For every i = 1, . . . ,d we define the i-th winding number

wni(sa) =
1

2πi

∫

T

d
dt

log sa(θ1, . . . ,θi = t, . . . ,θd) dt.

This number is an integer independent of θ . The vector

wn(sa) := (wn1(sa), . . . ,wnd(sa)) ∈ Z
d

is called also the topological index of the symbol sa.
A translation of the convolution vector a by an arbitrary j0 ∈Z

d leaves the operator Hω
unchanged up to unitary equivalence. Indeed,

Vω(x− j0) = ∑
j∈Zd

ω j ∑
k∈Γ+ j0

a′k w(x− j− k),

where a′k := ak− j0 . Obviously, supp a′ = supp a+ j0 and the symbol of a′ is given by

sa′(θ) = e−i〈 j0,θ 〉sa(θ)

such that by the product rule for winding numbers

(4.1) wn(sa′) = wn(sa)− j0.

Me make now a specific choice of the sequences Λn and Σn.

Hypothesis H3. Let Λ be a compact (connected) polytope in R
d whose vertices belong

to Z
d . Let V(Λ) denote the set of all vertices of Λ. Let Kv denote the cone in R

d which at
v ∈ V(Λ) locally coincides with the polytope Λ, i.e., there is a neighborhood U ⊂ R

d of v
such that Kv∩U = Λ∩U. Set Σn = {nx|x ∈ Λ∩Z

d} and choose a sequence Λn ⊂R
d ,n ∈

N such that Λ̃n ⊂ Σn. In particular, the last condition is satisfied, if Λn is the union of the
unit cubes centered at sites in Σn. Let Tv (respectively Tn) denote the (multi-level) Toeplitz
operator which is the compression of A to the subspace `1(Kv∩Z

d) (respectively `1(Σn)).

Theorem 4.1. Assume Hypothesis H3. If for every v ∈ V(Λ) the operator Tv is continu-
ously invertible in `1(Kv∩Z

d), then Hypothesis H2 is satisfied.

The proof of the theorem uses some results on the finite section method for Toeplitz
operators. For an accessible introduction to this subject see, e.g., [22], [6] and for an
detailed account [7].

Proof. From Kozak’s Theorem [36] (for d = 2 this is Theorem 8.57 in [7]) it follows that
for sufficiently large n ≥ n0 the operators Tn on `1(Σn) are continuously invertible and the
norm ‖T−1

n ‖1,1 is bounded uniformly in n. Thus, for every n ≥ n0 and any j ∈ Σn the
equation

(4.2) Tn t( j,n) = δ j

has a solution. Here δ j denotes the vector whose j-th component equals one and all others
vanish. Thus,

∑
k∈Σn

tk( j,n)u(x− k) = w(x− j) ≥ χ j(x)

for all x ∈ Λ̃n. Moreover, the `1-norms of solutions of (4.2) are uniformly bounded in j
and n. Therefore, the vectors t( j,n) satisfy Hypothesis H2. �

Applying Proposition 3.1 we obtain the following
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Corollary 4.2. Assume there is a polytope Λ satisfying Hypothesis H3 such that for every
v ∈ V(Λ) the operator Tv is continuously invertible in `1(Kv ∩Z

d). Then for all suffi-
ciently large n ∈ N the Wegner estimate

E
{

tr EHΛn
ω

(L)
}
≤C eE2 Var( f )#Λ̃n |L|

holds.

In general it is not easy to decide whether the operators Tv are continuously invertible.
It seems that no general necessary and sufficient conditions are known. However, in low
dimensions there are (partial) simple criteria (see [2], [7], [21], [22]). We state without
proof the following result.

Proposition 4.3. Let d = 1: For the operator Tv to be continuously invertible in `1(Kv ∩
Z) it is necessary and sufficient that sa(θ) 6= 0 for all θ ∈ T and wn(sa) = 0.

Let d = 2: For the operator Tv to be continuously invertible in `1(Kv∩Z
2) it is neces-

sary that sa(θ) 6= 0 for all θ ∈ T
2 and wn(sa) = 0.

That in the case d = 2 the conditions sa(θ) 6= 0 for all θ ∈ T
2 and wn(sa) = 0 are not

sufficient for the invertibility of Tv follows from the following well-known example (see
[15]):

sa(θ1,θ2) = 16e2iθ1 e−2iθ2 −36eiθ1 e−iθ2 +27e−iθ1eiθ2 , (θ1,θ2) ∈ T
2,

where the cone Kv is chosen to be the quarter-plane (R+)2. A number of sufficient con-
ditions can be found in the book [7].

The following result is a criterion for the Lipschitz continuity of the IDS if d ≤ 2.

Theorem 4.4 (implies Theorem 1). Let d ≤ 2. Assume that sa(θ) 6= 0 for all θ ∈ T
d .

Then for all sufficiently large l there exists a constant C independent of l and L such that

E{tr E
l
ω(L)} ≤C eE2 Var( f )|L| ld.

Recall that E
l
ω is a shorthand for E

H
Λl (0)
ω

, where Λl(0) = [−l/2, l/2]d and HΛl(0)
ω denotes

the restriction of the operator Hω to the set Λl(0) with Dirichlet boundary conditions on
∂Λl(0).

Theorem 4.4 implies that the IDS is Lipschitz continuous. Thus, the density of states
n(E) = dN(E)/dE exists for a.e. E ∈ R and is locally uniformly bounded.

Proof of Theorem 4.4. Translating the convolution vector a if necessary we may assume
by (4.1) that wn(sa) = 0.

The case d = 1 is proven by combining the results of Corollary 4.2 and Proposition 4.3.
Assume that d = 2. By the Kozak-Simonenko theorem [37] (see Theorem B.3 in Ap-

pendix B below) there is a family Πn ⊂ R
2 of finite convex polygons whose vertices

belong to Z
2 and whose angles are all close to π such that Tn with Σn = Πn∩Z

d is contin-
uously invertible in `1(Σn) and ‖T−1

n ‖1,1 is bounded uniformly in n ∈ N. Thus, for every
n and all j ∈ Σn the equation

Tn t( j,n) = δ j

has a solution and its `1-norm is bounded uniformly in n, i.e. the vector t( j,n) satisfies the
conditions of Hypothesis H2. Moreover, the polygons Πn are monotone increasing and
tend to R

d .
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For any given l ∈N choose an n ∈N such that Λ̃l(0) ⊂ Σn. Noting that both conditions
of Hypothesis H2 are satisfied for cubes Λl(0), Proposition 3.1 implies

E
{

tr E
l
ω(L)

}
≤C eE2 Var( f ) |L| |Λl(0)|

with some C > 0. �

Remark 4.5. In the case d = 2 the conditions sa(θ) 6= 0 for all θ ∈ T
2 and wn(sa) = 0 is

sufficient for the invertibility of the half-plane Toeplitz operators on `1(Z×Z+). Kozak
and Simonenko implicitly use this fact in [37] to construct polygons Πn such that any Tv
is almost a half-plane Toeplitz operator.

We turn now to

Proof of Theorem 2. Since sa is sectorial we may assume without loss of generality that
Resa(θ) ≥ 0 for all θ ∈ T

d . This condition implies that Tl is invertible as a map from `2

to itself for all l ∈ N [4], [5].
First, consider the case when Resa has exactly M ≥ 1 pairwise different (not necessarily

simple) zeros on T
d , which we denote by zm = (θ m

1 , . . . ,θ m
d ), m = 1, . . . ,M. Let δ > 0 be

such that the balls Bδ (zm) ⊂ T
d are disjoint and set

Dm(n)−1 = inf{Resa(θ)|n−1 ≤ ‖θ − zm‖2 ≤ δ},

D̃a(n) =
M

max
m=1

Dm(n).
(4.3)

By estimates obtained by Böttcher and Grudsky in Section 8 of [4] (cf. Theorem 3.4 in
[5] for the case d = 1) we have

(4.4) ‖T−1
l ‖2,2 ≤ C D̃a(2 ·13dM l)

with a constant C > 0 depending on the symbol sa oly. Here ‖ · ‖2,2 denotes the norm of a
linear map from `2 to itself. This implies for the `1 → `1-norm

(4.5) ‖T−1
l ‖1,1 ≤ C Da(l) with Da(l) := ld/2D̃a(2 ·13dM l).

Using the fact that Re sa is a trigonometric polynomial with a finite number of zeros, from
(4.3) for sufficiently large n we obtain

D̃a(n) ≤Cnρ

with ρ ∈N the maximal order of the zeros zm. Combining this with (4.5) proves the claim
for the case when Resa has M ≥ 1 zeros.

Now we turn to the case Re sa(θ) > 0 for all θ ∈T
d . Again since Resa is a trigonomet-

ric polynomial, there is a number µ > 0 such that Resa(θ) > µ for all θ ∈ T
d . Therefore

(see Section 8 in [4]), the estimate (4.4) holds with D̃a ≡ 1. �

5. LOCALIZATION FOR POTENTIALS WITH SMALL NEGATIVE PART

In this section we give a proof of Theorem 4. A box Λl(0) is called E-suitable for Hω
if l ∈ 6N, E /∈ spec(H l

ω), and

‖χout (H l
ω −E)−1χ in‖ ≤ l−2bd.

Here χout denotes the characteristic function of the boundary belt Λl−1(0) \Λl−3(0) and
χ in the characteristic function of the interior box Λl/3(0).

Applying Corollary 3.12 in [16] we obtain the following result:



LIPSCHITZ CONTINUITY OF THE INTEGRATED DENSITY OF STATES 13

Theorem 5.1. There exists a number l1 > 0 such that if for some l̃ ≥ l1 we can verify the
inequality

(5.1) P{Λl̃(0) is not E-suitable for Hω} ≤ 841−d

for all E in some interval I ⊂ R and the inequality

E
{

tr EHl
ω
([E − ε ,E + ε ])

}
≤C ε lbd for all ε ∈ [0,1] and all l ≥ l̃,

for all E in some open interval containing I, then for any compact K ⊂ R
d and any q > 0

E

{
sup

‖ϕ‖∞≤1

∥∥∥|X |q/2ϕ(Hω)EHω (I)χK

∥∥∥
2

HS

}
< ∞,

i.e., strong Hilbert-Schmidt dynamical localization in the energy interval I holds for Hω .

Remark 5.2. The scale l1 in Theorem 5.1 depends on the single site potential only through
its support and Lp-norm (see Theorem 3.4 in [16] and Theorem A.1 in [17]).

Let u = u+ +u−, u+ ≥ 0, u− ≤ 0 be the decomposition of the given single site potential
u in its non-negative and non-positive parts. Choose an arbitrary λ̃ ≥ 1 and consider
ũ = u− + λ̃u−. In the sequel we will work with the following auxiliary operator:

Hω(λ ) := H0 + ∑
k∈Zd

ωk
(
ũ+(·− k)+λ ũ−(·− k)

)
, λ ∈ [0,1],

where ũ+ = u+ and ũ− = λ̃u−. Now {Hω(0)}ω∈Ω is a family of Schrödinger operators
(1.8) with a non-negative single site potential.

Below we will show that condition (5.1) in Theorem 5.1 is fulfilled for the operator
Hω(1/λ̃ ) ≡ Hω provided that ‖u−‖∞ is sufficiently small.

From [27] we infer that the almost sure spectrum of Hω(λ ) consists of bands. By
Hypothesis H1 E0 is a lower spectral edge of the spectrum of the operator Hω(0) for P-
almost all ω ∈ Ω, that is, there is an a < E0 such that (a,E0) is in the resolvent set of
almost every Hω . We have for almost all ω ∈ Ω and all λ ∈ [0,1]

spec(Hω(λ )) =
⋃

l∈N

spec(Hω ,l(λ )),

where

(5.2) Hω ,l(λ ) = H0 + ∑
k∈Zd

ω
k̂
(
ũ+(·− k)+λ ũ−(·− k)

)

with

k̂ ∈ (Zl)
d , k̂ = k mod (lZ)d

is the periodic approximation of Hω(λ ). The potential ∑k∈Zd ω
k̂

ũ−(·− k) is a relatively

bounded perturbation of H l
ω(0) with relative bound equal to zero. The constants appearing

in the relative bound can be chosen uniformly in l ∈N and ω ∈ Ω. Applying the min-max
Theorem to the Floquet eigenvalues of the periodic approximations we conclude that there
exist a number λ0 ∈ (0,1] and a function Ẽ : [0,λ0] → (a,E0) such that

(5.3) (a, Ẽ(λ )) ⊂ ρ(Hω(λ )) for all λ ∈ [0,λ0].
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For every λ ∈ [0,λ0], denote by E(λ ) the supremum over all Ẽ(λ ), for which (5.3)
holds. Then E(λ ) is a spectral edge for Hω(λ ), [0,λ0] 3 λ 7→ E(λ ) is non-increasing,
and limλ↘0 E(λ ) = E0 = E(0).

The following lemma infers the initial scale estimate (5.1) from an estimate on the
distance between the spectrum of the operator H l

ω(λ ) and the reference energy E0.

Lemma 5.3. There exist λ1 ∈ (0,1] and l2 ∈ N such that for λ ∈ [0,λ1] the inequality

(5.4) P

{
dist
(
spec(H l

ω(λ )),E0
)
≤ l2(β−1)/2

}
≤ l−ξ

for any l ≥ l2, ξ > 0 and β ∈ (0,1), implies the estimate (5.1) for all

E ∈ I := [E(λ ), E0 + l2(β−1)/4].

Proof. By monotonicity, if we chose λ1 sufficiently small, depending on d, V0, f , u, R
there is a lower bound Cgap for the length of the spectral gap below E(λ ), uniform in
λ ∈ [0,λ1]:

Cgap ≤ dist(E(λ ),E−(λ )), where E−(λ ) := sup
(
−∞,E(λ )

)
∩ spec

(
Hω(λ )

)

for almost all ω ∈ Ω. Choose l sufficiently large such that l2(β−1)/2 ≤Cgap.
If we restrict the operator Hω(λ ) to a cube Λl using periodic boundary conditions, the

spectrum of the resulting restriction H l
ω(λ ) is contained in spec(Hω(λ )), see (1.1) in [28]

and Remark 5.2.2 in [46]. Hence, the length of the spectral gap below E(λ ) is not dimin-
ished by imposing periodic boundary conditions. Choose λ ≤ λ1 ≤ l2(β−1)/2cgω+‖u‖∞,
then E(λ ) ≥ E0 − l2(β−1)/2. Thus, for a subset of Ω of measure at least 1− l−ξ , the
interval [E−(λ ),E0 + l2(β−1)/2] contains no spectrum of Hω .

We use the Combes-Thomas estimate [1], [13] to deduce the decay estimate of the
sandwiched resolvent in (5.1) from the assumption (5.4) on the distance between E ∈ I
and the spectrum. We use a formulation of this bound as it is given in Theorem 2.4.1 in
[42]. It suits our purposes because there the dependence of the constants on the quantities
we are interested in is explicitly given. It implies

(5.5) ‖χout(H l
ω(λ )−E)−1χ in‖ ≤C l2−2β exp

(
− 1

C

√
Cgap lβ

)

for all E ∈ [E(λ ),E0 + l2(β−1)/4] and ω in a subset of measure greater or equal to 1− l−ξ .
The dependence of the constant C on Vω is through supx ‖χΛ1(x)Vω‖Lp only, so it can be
chosen independently of λ ∈ [0,1].

Choose l2 sufficiently large so that the r.h.s. of (5.5) is bounded by l−2bd for l ≥ l2. The
scale l2 depends on d, C, Cgap, β , and b only. In particular, it can be chosen uniformly
for λ ∈ [0,λ1]. If necessary, enlarge l2 such that l2 ≥ 841d/ξ , and, thus, the probability
estimate in (5.1) becomes valid. �

Lemma 5.4. Under Hypothesis H1 there exist ξ > 0, β ∈ (0,1) and l3 > 0 such that for
all l ≥ l3 the inequality

(5.6) P
{

dist
(
spec(H l

ω(0)),E0
)
≤ l2(β−1)

}
≤ l−ξ

holds.
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Proof. Note that, since the random potential of Hω(0) is non-negative, and minsupp f = 0,
E0 is a common lower spectral edge of both the unperturbed, periodic operator H0 and of
the random one Hω(0). Theorem 2.2.1 in [42] proves (5.6) under assumption (ii) and
Proposition 1.2 in [45] under assumption (iii). In the energy/disorder regime (i) and the
additional assumption that supp f is an interval, the estimate is proven in Proposition 4.2
of [28]. If the support of f has several components we still have Lifshitz tails at the bottom
of the spectrum and the statement of Proposition 1.2 in [45] holds with the same proof.

In the disorder regime (iv) we assume without loss of generality E0 = 0 by adding a
constant to the potential. Denote by Nω ,l the integrated density of states of the periodic
approximation Hω ,l(0) (5.2) and by N0 the integrated density of states of Hω(0). The
following statement is a special case of Theorem 2.21 in [32]: For arbitrary E ∈ R there
exists a ν0 > 0 and an ε0 > 0 such that for all ε ∈ (0,ε0) and N 3 l ≥ ε−ν0 one has

(5.7) E{Nω ,l(E + ε/2) − Nω ,l(E − ε/2)} ≤ N0(E + ε) − N0(E − ε) + e−1/ε .

Theorem 1.1 in [32] establishes the existence of Lifshitz tails at spectral band edges
for the IDS of an alloy type model with long range single site potentials. In particular, it
implies: There exists a δ > 0 such that for ε ∈ (0,δ ) we have

(5.8) N0(ε)−N0(0) ≤ e−ε
− 1

2
d

ν0−d ≤ e−ε−d/4
.

Choose ε1 > 0 sufficiently small such that ε1 < δ and

(−ε1/2,0) ⊂ ρ(Hω) ⊂
⋃

l∈N

ρ(Hω ,l)

almost surely. Combining estimates (5.7) and (5.8), we obtain

E{Nω ,l(ε/2)−Nω ,l(0)} = E{Nω ,l(ε/2)−Nω ,l(−ε/2)} ≤ e−1/ε + e−ε−d/4 ≤ 2e−ε−1/4

for all ε ≤ ε1 and all l ≥ ε−ν0 .
Lemma 5.2 in [45] implies that there are positive constants c,C depending only on the

dimension d and supx ‖χΛ1(x)Vω‖Lp such that

P{spec(H l
ω(0))∩ [0,E) 6= ∅} ≤C ld

E
{

Nω ,l(E + cl−1)−Nω ,l(0)
}
.

Set now ν1 < min{1,ν−1
0 }, E := l−ν1 , ε := 4l−ν1 , then we have for sufficiently large l:

ld
E
{

Nω ,l(E + cl−1)−Nω ,l(0)
}
≤ ld

E
{

Nω ,l(ε/2)−Nω ,l(0)
}
≤ 2 ld exp

(
− lν1/4

√
2

)
.

This implies (5.6) for any ξ > 0 and β = ν1
2 +1, if l is large enough. �

Since the single site potential is compactly supported, there exists a constant cg < ∞
such that

0 ≥ ∑
k∈Zd

ωkũ−(x− k) ≥−cgω+‖ũ−‖∞

1Actually, there is a misprint in inequality (2.5) in the statement of Theorem 2.2 in [32]. The middle term
should read N(E + ε)−N(E − ε), not N(E + ε)−N(E).
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Lemma 5.5. If λ ≤ l2(β−1)/2cgω+‖ũ−‖∞, then

P{dist(spec(H l
ω(λ )),E) ≤ l2(β−1)/2} ≤ P{dist(spec(H l

ω(0)),E) ≤ l2(β−1)}
for any E ∈ R.

Proof. By the min-max Theorem for eigenvalues

H l
ω(0)− l2(β−1)/2 ≤ H l

ω(0)− cgω+λ‖ũ−‖∞ ≤ H l
ω(λ ) ≤ H l

ω(0)

in the sense of quadratic forms. This implies the inclusion

{ω |dist(spec(H l
ω(λ )),E) ≤ l2(β−1)/2} ⊂ {ω |dist(spec(H l

ω(0)),E) ≤ l2(β−1)}.
�

Proof of Theorem 4. Let l4 be the smallest number in 6N such that l4 ≥ max{l1, l2, l3}
(see Remark 5.2). Set γ = λ1‖ũ−‖∞. Obviously, if ‖u−‖∞ ≤ γ , then λ1λ̃ ≥ 1. Therefore,
the conclusions of Lemmata 5.3, 5.4, and 5.5 are valid for λ = 1/λ̃ . Now, Theorem 5.1
implies Theorem 4. �

6. HÖLDER CONTINUITY OF THE IDS

In this section we revisit the main result of the paper [24] by Hislop and Klopp - the
Hölder continuity of the IDS below the spectrum of the operator H0 for sign-indefinite
single site potentials. Assuming that the density of the conditional probability distribu-
tion is piecewise absolutely continuous (see Hypothesis (H4) in [24]) Hislop and Klopp
proved the finite-volume Hölder-Wegner estimate (Theorem 1.1) with linear dependence
on the volume of the domain. This estimate immediately implies that the IDS is Hölder
continuous.

We will prove that this hypothesis on the density of the conditional probability distri-
bution can be relaxed: It suffices to require that this density is of bounded total variation.

We will need the following elementary

Lemma 6.1. Let φ and g be real-valued functions of bounded variation on the interval
[m,M]. Assume that φ(m) = 0 and g is continuous. Then

∣∣∣∣
∫ M

m
φ(t)dg(t)

∣∣∣∣ ≤ 2Var(φ)‖g‖∞

with Var(φ) the variation of φ on the interval [m,M].

Proof. Using the integration by parts formula for Riemann-Stieltjes integrals we obtain
∣∣∣∣
∫ M

m
φ(t)dg(t)

∣∣∣∣ =
∣∣∣∣φ(M)g(M)−

∫ M

m
g(t)dφ(t)

∣∣∣∣
≤ |φ(M)g(M)|+Var(φ)‖g‖∞

≤ ‖φ‖∞ ‖g‖∞ +Var(φ) ‖g‖∞.

Observing that ‖φ‖∞ ≤ Var(φ) completes the proof. �

A similar idea is applied to Hölder continuous measures in [25].
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Hypothesis H4. Let Hω = H0 +Vω , where H0 =−∆+V0 and V0 is a Z
d-periodic potential

infinitesimally bounded with respect to ∆. The single site potentials {uk}k∈Zd ⊂C0(R
d) of

Vω(x) = ∑
k∈Zd

ωk uk(x− k)

do not vanish at the origin 0 ∈ R
d and satisfy uniformly the bound

∑
k∈Zd

‖uk‖Lp(Λ1(k)) ≤Cu < ∞.

The conditional probability measures µk of ωk with respect to ω⊥k := {ω j| j ∈ Z
d , j 6= k}

admit a conditional density fk(ω⊥k, ·) ∈ L∞
c (R) such that

(6.1) sup
k∈Zd

sup
ω⊥k

Var [ fk(ω⊥k, ·)] ≤C f < ∞

and there exist m,M ∈ R such that supp fk(ω⊥k, ·) ⊂ [m,M] for all values of ω⊥k and all
k ∈ Z

d .

If the {ωk}k∈Zd form an i.i.d. sequence, condition (6.1) simplifies to Var f0 < ∞. Note
that the condition on the bounded total variation of the densities fk is in particular satisfied
if they are piecewise absolutely continuous.

Here is the extension of Theorem 1.1 of [24] to densities with bounded total variation:

Theorem 6.2. Let Hω satisfy Hypothesis H4 and E0 be such that δ := inf spec(H0)−E0 >
0. For any q < 1 there exists Cq ∈ (0,∞) such that for all ε > 0 one has

P{ω |spec(H l
ω) ∩ [E0 − ε ,E0] 6= ∅} ≤Cq εq|Λ|.

The constant Cq depends only on d, q, the periodic background potential V0, the condi-
tional measures µk, the single site potentials uk, and the distance δ .

Proof. We follow the arguments of the proof of Theorem 1.1 in [24] up to the bound (3.15)
there, which applies only to compactly supported, bounded, locally absolutely continuous
densities. Like in [24], we assume for simplicity of notation that we are in the i.i.d. case
and m = 0.

We estimate the l.h.s. of (3.15) using Lemma 6.1 with φ(λ ) := λ f (λ ) compactly sup-
ported and

(6.2) g : ωk 7→ ∑
n

ρ(EΛ
n (ω)),

where EΛ
n (ω) denote the eigenvalues of the compact Birman-Schwinger type operator

Γ(ωk) = ∑ j∈Λ̃ ω j (H0 −E)−1/2 u j (H0 −E)−1/2. Here E is an energy below the spectrum
of H0 and ρ ∈ C∞

0 (R \ {0}). The operator Γ depends analytically on ωk and so do its
eigenvalues. Since ρ is a smooth function and there are only finitely many eigenvalues in
the support of ρ , the sum in (6.2) consists of finitely many terms and the assumptions of
Lemma 6.1 on g are satisfied.

The rest of the proof goes through as in Section 3 of [24] with the constant2 max{‖φ ′‖1,
φ(M)} replaced by Var(φ). �

2Note that there are missprints in (3.15) and (3.16) of [24]: The L∞-norm ‖h̃′0‖∞ has to be replaced there
by the L1-norm ‖h̃′0‖1.
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APPENDIX A. SPECTRAL AVERAGING THEOREM

Here we give an alternative proof of Theorem 2.1. This proof exhibits a relation of
the spectral averaging to the theory of the spectral shift function and, in particular, to the
operator-valued version of the Birman-Solomyak formula [18].

First we need the following

Lemma A.1. Let A1,A2, and C be bounded operators. If A1 and A2 are self-adjoint,
non-negative and satisfy A2

2 ≥ A2
1 ≥ 0 then

‖A1CA1‖ ≤ ‖A2CA2‖.
Proof. For t > 0 consider

‖(A1 + t)C(A1 + t)‖
≤ ‖(A1 + t)(A2 + t)−1‖ · ‖(A2 + t)C(A2 + t)‖ · ‖(A2 + t)−1(A1 + t)‖.

Note that (A2 + t) ≥ t > 0 has a bounded inverse and

‖(A1 + t)(A2 + t)−1‖2 = ‖(A2 + t)−1(A1 + t)‖2

= ‖(A2 + t)−1(A1 + t)2(A2 + t)−1‖.
(A.1)

From the assumption A2
1 ≤ A2

2 by the Heinz-Löwner inequality [23], [38] it follows that
A1 ≤ A2 and, therefore, (A1 + t)2 ≤ (A2 + t)2. Thus, the r.h.s. of (A.1) is bounded by one.
This proves the inequality

‖(A1 + t)C(A1 + t)‖ ≤ ‖(A2 + t)C(A2 + t)‖
for any t > 0. Both norms are continuous in t. Taking the limit t ↓ 0 completes the proof
of the lemma. �

Proof of Theorem 2.1. First we pull the density g out of the integral
∥∥∥∥
∫ t2

t1
g(s)BEH(s)(L)Bds

∥∥∥∥= sup
φ

∫ t2

t1
g(s)〈φ ,BEH(s)(L)Bφ〉ds

≤ ‖g‖∞ sup
φ

∫ t2

t1
〈φ ,BEH(s)(L)Bφ〉ds = ‖g‖∞

∥∥∥∥
∫ t2

t1
BEH(s)(L)Bds

∥∥∥∥ .

Now we write ∫ t2

t1
BEH(s)(L)B ds = B

∫ t2

t1
EH(s)(L)ds B

and apply Lemma A.1 with A1 = B, A2 = κ−1/2V 1/2, and C =
∫ t2

t1 EH(s)(L)ds, thus, ob-
taining

(A.2)

∥∥∥∥
∫ t2

t1
BEH(s)(L)Bds

∥∥∥∥≤ κ−1

∥∥∥∥
∫ t2

t1
V 1/2

EH(s)(L)V 1/2ds

∥∥∥∥

The rest of the proof follows the line of [18]. For an arbitrary invertible dissipative
operator T we define its logarithm via

log(T ) = −i
∫ ∞

0
dλ
(
(T + iλ )−1 − (I + iλ )−1)

with I the identity operator.
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We claim that the equality

(A.3)
∫ t2

t1
V 1/2(H(s)− z)−1V 1/2ds = log(I +(t2 − t1)V

1/2(H(t1)− z)−1V 1/2)

holds for all z∈C with Imz > 0. For r > 0 we set Cr,+ = {z∈C| Imz > r}. For sufficiently
large r and all z ∈ Cr,+

V 1/2(H(s)− z)−1V 1/2 =
∞

∑
k=0

(t1 − s)kV 1/2(H(t1)− z)−1 [V (H(t1)− z)−1]k V 1/2

in the operator norm. Integrating this expression with respect to s we obtain
∫ t2

t1
V 1/2(H(s)− z)−1V 1/2ds = ∑

k=1

(−1)k+1

k
(t2 − t1)

k
[
V 1/2(H(t1)− z)−1V 1/2

]k

= log(I +(t2 − t1)V
1/2(H(t1)− z)−1V 1/2).

Since I +(t2 − t1)V 1/2(H(t1)− z)−1V 1/2 is an invertible dissipative operator and since the
l.h.s. of (A.3) is analytic in z for all Imz > 0, this proves equation (A.3) for all Imz > 0.

Applying now Lemma 2.8 in [18] to r.h.s. of (A.3) we obtain that

(A.4) 0 ≤ Im
∫ t2

t1
〈φ ,V 1/2(H(s)− z)−1V 1/2φ〉ds ≤ π‖φ‖2

for arbitrary φ and arbitrary z ∈ C with Imz > 0. From Stone’s formula it follows that

〈φ ,V 1/2
EH(s)(L)V 1/2φ〉 ≤ 1

π
lim
ε↓0

Im
∫

L
〈φ ,V 1/2(H(s)−λ − iε)−1V 1/2φ〉dλ .

Hence, from (A.4) by the Fubini theorem it follows that

(A.5)
∫ t2

t1
〈φ ,V 1/2

EH(s)(L)V 1/2φ〉ds ≤ |L|‖φ‖2.

Combining this with (A.2) completes the proof. �

Remark A.2. The integral on the l.h.s. of (A.5) is related to the spectral shift operator
Ξ(λ ) (see [9], [18], [19]),

(A.6)
∫ t2

t1
V 1/2

EH(s)(L)V 1/2ds =
∫

L
Ξ(λ )dλ .

For trace class perturbations V the trace of this operator equals the spectral shift function
for the pair of operators (H(t2),H(t1)) such that from (A.6) the Birman-Solomyak formula
[3] follows. An application of the Birman-Solomyak formula to spectral averaging can be
found in Section 3 of [33].

APPENDIX B. KOZAK-SIMONENKO POLYGONS

A subset M ⊂ Z
2 is called a canonical discrete half-space if M and Z

2 \M are closed
with respect to addition. A set M is called discrete half-space if there is j ∈ Z

2 such that
M + j is a canonical discrete half-space.

Let B(x,r) ⊂ R
2 denote an open ball of radius r centered at the point x. By a convex

lattice polygon we will understand the convex hull in R
2 of an arbitrary finite subset of

Z
2.
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Definition B.1. Let M(r,R) be the set of all convex lattice polygons Π in R
2 satisfying

the following conditions

(i) for any x ∈ R
2 there is a discrete half-space M such that Π∩B(x,r)∩Z

2 = M∩
B(x,r),

(ii) Π ⊃ B(0,R).

The following fact has been stated in [37] without proof.

Lemma B.2. For any r > 0 and R > 0 there is a sequence Πn ∈ M(r,R) tending to R
2.

Proof. First we prove that for arbitrary r > 0 and R > 0 the set M(r,R) is nonempty.
Choose an arbitrary integer q > 2r. The proof is based on the following trivial observation:
The interval [0,1] contains a finite set Sq of rational numbers ` which can be represented
in the form

(B.1) ` =
m
n

with m ∈ N0, n ∈ N such that n ≤ q.

Ordering the elements of the set Sq in increasing order we get a finite strictly increasing
sequence of rational numbers {λk}K

k=1 such that λ1 = 0 and λK=1. Set

τk = sk

(
1
λk

)
∈ N

2

where sk ≥ q is the smallest integer number such that skλk ∈ N. Take the point

j0 =

(
0
0

)
∈ Z

2

and consider the walk w = { j0, j1, . . . , jK} defined by the following recurrent relation:
jk = jk−1 + τk (see Fig. 1). Consider the walk ŵ = { ĵ0, ĵ1, . . . , ĵK} obtained from w by a
translation:

ĵk = jk +

(
0

− j(1)
K − j(2)

K

)
, where jK =

(
j(1)
K

j(2)
K

)
.

The initial vertex ĵ0 of the walk ŵ lies on the vertical coordinate axis. The terminal vertex

ĵK =

(
ĵ(1)
K

ĵ(2)
K

)
of the walk ŵ lies on the diagonal such that ĵ(1)

K = − ĵ(2)
K .

Let w′ = { ĵk}2K
k=0 be the continuation of the walk ŵ obtained by the mirror reflection of

the walk with respect to the diagonal,

ĵk =

(
− ĵ(2)

2K−k

− ĵ(1)
2K−k

)
, k ∈ {K +1, . . . ,2K}.

Observe that the vertices ĵK−1, ĵK , and ĵK+1 lie on the same line.
By means of mirror reflection with respect to the coordinate axes the walk w ′ can be

completed to the closed walk from ĵ0 to ĵ0. Observe that the closed walk crosses the
coordinate axes perpendicularly. Let Π ⊂ R

2 denote the convex hull of this closed walk.
We claim that the polygon Π satisfies condition (i). Assume first that x is a vertex of

the polygon Π. Let L1 ⊂ R
2 and L2 ⊂ R

2 denote the lines such that the boundary ∂Π in
a vicinity of the vertex x is a subset of L1 ∪L2. Let C+ and C− denote the open cones
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j0

jK

FIGURE 1. A walk from j0 to jK for q = 3.

spanned by L1 and L2 chosen such that each of C+ and C− touch precisely one side of the
polygon Π. By the above construction of the walk the sets

C+∩B(x,2r) and C−∩B(x,2r)

do not contain points of Z
2. Indeed, suppose on the contrary that either of these sets

contains a point z ∈ Z
2. Without loss of generality we can assume that x ∈ ŵ. Then, the

line passing through the points x and z has a rational slope 0 < m/n < 1 with n ≤ q such
that m/n 6= λk for all k ∈ {1, . . . ,K}. Thus, there is a rational number of the form (B.1)
which does not belong to the set Sq. A contradiction.

Choose an arbitrary line L with a rational slope such that L ⊂ C+ ∪C−∪{x}. The line
L divides R

2 into two open half-planes LL and L
′
L such that LL has at least one common

point with Π and LL ∪L
′
L ∪L = R

2. The set Mx = (L∪LL)∩Z
2 is obviously a discrete

half-space satisfying condition (i).
Let now x ∈ ∂Π but is not a vertex. Let I 3 x be the edge of the polygon Π, v1,2 its

endpoints. Set

I0 = {y ∈ I| dist(y,v1) > r and dist(y,v2) > r},
I1 = {y ∈ I| dist(y,v1) ≤ r},
I2 = {y ∈ I| dist(y,v2) ≤ r}.

If x ∈ I0, then the discrete half-space generated by the edge I satisfies condition (i) of Def-
inition B.1. Assume that x ∈ I1. The discrete half-space Mv1 constructed above obviously
satisfies condition (i) for the point x. A similar statement holds for x ∈ I2.

Further, assume that x∈Π but x /∈ ∂Π. If dist(x,v) < r for some vertex v of the polygon
Π we choose M = Mv. If dist(x,∂Π) < r but dist(x,v) ≥ r for all vertices v of the polygon
Π we choose M to be a half-space generated by an edge I having a distance to the point
x less that r. Finally, if dist(x,∂Π) > r we choose M to be an arbitrary appropriately
translated half-space. In all these cases the half-space M obviously satisfies the condition
(i).

Choosing q sufficiently large we can satisfy condition (ii) for any given R > 0. Thus,
the set M(r,R) is nonempty.



22 V. KOSTRYKIN AND I. VESELIĆ

Now consider an arbitrary monotone increasing sequence {Rn}n∈N such that R1 ≥ R
and limn→∞ Rn = ∞. Let Πn ∈ M(r,Rn) be arbitrary. Obviously, Πn ∈ M(r,R) and Πn →
R

2 as n → ∞. �

Here is the main result of the paper [37] in the form we need it for our application. Let
Pn be the projection in `1(Z2) associated with the set Πn,

(Pnφ)(k) =

{
φ(k), if k ∈ Πn,

0, otherwise.

Theorem B.3. Let T be a Toeplitz operator on `1(Z2) with non-vanishing symbol s(θ).
If s(θ) is a trigonometric polynomial and its topological index is zero, then there exist
positive numbers r, R, c and polygons Πn ∈ M(r,Rn), n ∈ N such that the associated
projectors Pn satisfy ‖(PnTPn)

−1‖ ≤ c for all n ∈ N.
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