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Abstract: We continue our study of colligative properties of solutions initiated in [1]. We focus

on the situations where, in a system of linear dizehe concentration and the chemical potential
scale likec = &/L andh = b/L, respectively. We find that there exists a critical vafusuch

that no phase separation occurs fox ¢& while, for ¢ > &, the two phases of the solvent co-
exist for an interval of values di. Moreover, phase separation begins abruptly in the sense that
a macroscopic fraction of the system suddenly freezes (or melts) forming a crystal (or droplet) of
the complementary phase whbrreaches a critical value. For certain values of system param-
eters, under “frozen” boundary conditions, phase separation also ends abruptly in the sense that
the equilibrium droplet grows continuously with increastmgnd then suddenly jumps in size to
subsume the entire system. Our findings indicate that the onset of freezing-point depression is in
fact a surface phenomenon.

1. INTRODUCTION

1.1 Overview.

In a previous paper (ref. [1], henceforth referred to as Part I) we defined a model of non-volatile
solutions and studied its behavior under the conditions when the solvent undergoes a liquid-solid
phase transition. A particular example of interest is the solution of salt in water at temperatures
near the freezing point. In accord with Part | we will refer to the solute as salt and to the two
phases of solvent as ice and liquid water.

After some reformulation the model is reduced to the Ising model coupled to an extra collection
of variables representing the salt. The (formal) Hamiltonian is

1-0
(X,y) X X
Here we are confined to the sites of the hypercubic laffitavith d > 2, the variablesy €
{+1, —1} marks the presence of liquid water,(= 1) and ice §x = —1) at sitex, while Sy e

{0, 1} distinguishes whether salt is presesf (= 1) or absent§; = 0) atx. The coupling
between the's is ferromagnetic { > 0), the coupling between thes and theS’s favors salt in
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liquid water, i.e.x > 0—this reflects the fact that there is an energetic penalty for salt inserted
into the crystal structure of ice.

A statistical ensemble of direct physical—and mathematical—relevance is that with fluctu-
ating magnetization (grand canonical spin variables) and a fixed amount of salt (canonical salt
variables). The principal parameters of the system are thus the salt concertiatiithe exter-
nal fieldh. As was shown in Part | for this setup, there is a non-trivial region in¢hk)-plane
where phase separation occurs on a macroscopic scale. Specifically, lipin this region, a
droplet which takes a non-trivial (i.e., non-zero and non-one) fraction of the entire volume ap-
pears in the system. (For “liquid” boundary conditions, the droplet is actually an ice crystal.) In
“magnetic” terms, for each there is a unique value of the magnetization which is achieved by
keeping part of the system in the liquid, i.e., the plus Ising state, and part in the solid, i.e., the
minus Ising state. This is in sharp contrast to what happens in the unperturbed Ising model where
a single value oh (namely,h = 0) corresponds to a wholaeterval of possible magnetizations.

The main objective of the present paper is to investigate the limit of infinitesimal salt concen-
trations. We will take this to mean the following: In a system of linear &izge will consider
the above “mixed” ensemble with concentratimand external fieldh scaling to zero as the size
of the systeml_, tends to infinity. The goal is to describe the asymptotic properties of the typical
spin configurations, particularly with regards to the formation of droplets. The salt marginal will
now be of no interest because salt particles are so sparse that any local observable will eventually
report that there is no salt at all.

The main conclusions of this work are summarized as follows. First, in a regular system
of volumeV = LY of characteristic dimensioh, the scaling for both the salt concentration and
external field id~1. In particular, we should write = bL~! andc = £L . Second, considering
such a system with boundary condition favoring the liquid state and kwdhdc enjoying the
abovementioned scalings, one of three things will happen as we sieam O toco:

(1) If bis sufficiently small negative, the system is always in the liquid state.

(2) If bis of intermediate (negative) values, there is a transition, at satyefrom the ice
state to the liquid state.

(3) Most dramatically, for larger (negative) values lof there is a region—parametrized
by &(b) < & < &(b)—where (macroscopic) phase separation occurs. Specifically, the
system holds a large crystalline chunk of ice, whose volume fraction varies from unity to
somepositiveamount ag’ varies from&y(b) to &(b). At & = &(b), all of the remaining
ice suddenly melts.

We obtain analogous results when the boundary condition favors the ice state, with the ice crystal
replaced by a liquid “brine pocket.” However, here there is one new phenomenon: For certain
choices of system parameters, the (growing) volume fraction occupied by the brine pocket re-
mains bounded away from 1 §sncreases frond(b) to &(b), and then jumps discontinuously
to 1 at&(b). Thus, there are two droplet transitions. See Fig. 1.

Thus, we claim that the onset of freezing point depression is, in fattffacephenomenon.
In particular, for very weak solutions, the bulk behavior of the system is determined by a delicate
balance between surface order deviations of the temperature and salt concentrations. In somewhat
poetic terms, the predictions of this work are that at the liquid-ice coexistence temperature it is
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FIGURE 1. The phase diagram of the ice-water system with Hamiltonian (1.1) and fixed salt
concentratiort in a Wulff-shaped vessel of linear site The left plot corresponds to the system
with plus boundary conditions, concentration= ¢/L and field parametdn = b/L, the plot on

the right depicts the situation for minus boundary conditions. It is noted thiatasges in(0, co)

with b fixed, three distinct modes of behavior emerge, inlthes oo limit, depending on the value

of b. The thick black lines mark the phase boundaries where a droplet transition occurs; on the
white lines the fraction of liquid (or solid) in the system changes continuously.

possible to melt a substantial portion of the ice via a pinch of salt whose size is only of the
orderV1-a. (However, we make no claims as to how long one would have to wait in order to

observe this phenomenon.)

The remainder of this paper is organized as follows. In the next section we reiterate the basic
setup of our model and introduce some further objects of relevance. The main results are stated
in Sections 2.1-2.3; the corresponding proofs come in Section 3. In order to keep the section and
formula numbering independent of Part I; we will prefix the numbers from Part | by “I.”

1.2 Basic objects.

We begin by a quick reminder of the model; further details and motivation are to be found in Part I.
Let A c Z9 be afinite set and I&tA denote its (external) boundary. For each A, we introduce

the water and salt variables, € {—1, +1} and Sy € {0, 1}; on A we will consider a fixed
configurations,, € {—1, +1}°?. The finite-volume Hamiltonian is then a function @f,, Sx)
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and the boundary conditiary, that takes the form

1-0
BAA( A, SAloan) == D oxoy—hD ox+r D S 5 ay (1.2)
(X,y) XeA XeA
xeA, yeZd

Here, as usualx, y) denotes a nearest-neighbor pairZhand the parameterd, x andh rep-
resent the chemical affinity of water to water, negative affinity of salt to ice and the difference of
the chemical potentials for liquid-water and ice, respectively.

The a priori probability distribution of the paifo 5, Sp) takes the usual Gibbs-Boltzmann
form P{? (g5, Sp) o< e P#An.Salean) | For reasons explained in Part I, we will focus our atten-
tion on the ensemble with a fixed total amount of salt. The relevant quantity is defined by

Na =D S (1.3)

xXeA
The main object of interest in this paper is then the conditional measure

PX@,\,c,h(') _ PXE'A(- |NA = [clAl)), (1.4)

where|A| denotes the number of sitesin We will mostly focus on the situations whef, =
+1oro,p = —1, i.e., the plus or minus boundary conditions. In these cases we denote the above

measure b;P,f’c’h, respectively.

The surface nature of the macroscopic phase separation—namely, the cases when the concen-
tration scales like the inverse linear scale of the system—indicates that the quantitative aspects
of the analysis may depend sensitively on the shape of the volume in which the model is stud-
ied. Thus, to keep this work manageable, we will restrict our rigorous treatment of these cases
to volumes of a particular shape in which the droplet cost is the same as in infinite volume. The
obvious advantage of this restriction is the possibility of explicit calculations; the disadvantage
is that the shape actually depends on the value of the coupling codstalutwithstanding, we
expect that all of our findings are qualitatively correct even in rectangular volumes but that cannot
be guaranteed without a fair amount of extra work; see [17] for an example.

Let V c RY be a connected set with connected complement and unit Lebesgue volume. We
will consider a sequencgV,) of lattice volumes which are just discretized blow-ups\voby
scale factor:

VL ={xeZ% x/L e V}. (1.5)
The sequence df x --- x L boxes(A.) from Part | is recovered by letting = [0, 1)¢. The
particular “shape’V for which we will prove the macroscopic phase separation coincides with
that of an equilibrium droplet—th@v/ulff-shaped volumewhich we will define next. We wiill
stay rather succinct; details and proofs can be found in standard literature on Wulff construction
(2, 8,12, 4, 5, 7] or the review [6]). Readers familiar with these concepts may consider skipping
the rest of this section and passing directly to the statements of our main results.

Consider the ferromagnetic Ising model at couplihng 0 and zero external field and I@T,f’J
denote the corresponding Gibbs measure in finite volume Z9 and plus/minus boundary
conditions. As is well known, there exists a numblgr= J.(d), with J.(1) = oo and J.(d) €
(0, ) if d > 2, such that for every > J. the expectation of any spin ifi with respect tcﬂ?’f’J
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is bounded away from zero uniformly i c Z¢. The limiting value of this expectation in the
plus state—typically called thepontaneous magnetizatierwill be denoted bym, = m,(J).
(Note thatm, = 0 for J < J. whilem, > O0forJ > J..)

Next we will recall the basic setup for the analysis of surface phenomena. For each unit
vectorn € RY, we first define the surface free energy(n) in directionn. To this end let us
consider a rectangular bax(N, M) c RY with “square” base of sid& and heightM oriented
such tham is orthogonal to the base. The box is centered at the origin. V\Eﬁ]ﬁ?} denote the
Ising partition function inv (N, M) N Z9 with plus boundary conditions. We will also consider
the inclined Dobrushin boundary condition which takes vakieat the sitex of the boundary
of V(N, M) n Z4 for whichx - n > 0 and—1 at the other sites. Denoting the corresponding

partition function byzﬁjﬁ;,”, the surface free energy (n) is then defined by
o 1 zZow
B == m M, R 09 7 oo

The limit exists by subadditivity arguments. The quantijyn) determines the cost of an inter-
face orthogonal to.

As expected, as soon as > J, the functionn — z3(n) is uniformly positive [14]. In
order to evaluate the cost of a curved interfagén) will have to be integrated over the surface.
Explicitly, we will let J > J. and, given a bounded sétc RY with piecewise smooth boundary,
we define thavulff functional”; by the integral

Py(V) = ﬁv £3(n) dA, (1.7)

where dA is the (Hausdorff) surface measure anid the position-dependent unit normal vector
to the surface. TheVulff shape Ws the unique minimizer (modulo translation) éf— # (V)
among bounded set$ ¢ RY with piecewise smooth boundary and unit Lebesgue volume. We
let (W,) denote the sequence Wiulff-shapedattice volumes defined frodd = W via (1.5).

2. MAIN RESULTS

We are now in a position to state and prove our main results. As indicated before, we will focus on
the limit of infinitesimal concentrations (and external fields) wheaedh scale as the reciprocal
linear size of the system. Our results come in four theorems: In Theorem 2.1 we state the basic
surface-order large-deviation principle. Theorems 2.2 and 2.3 describe the minimizers of the
requisite rate functions for liquid and ice boundary conditions, respectively. Finally, Theorem 2.4
provides some control of the spin marginal of the corresponding Gibbs measure.

2.1 Large deviation principle for magnetization.

The control of the regime under consideration involves the surface-order large-deviation princi-
ple for the total magnetization in the Ising model. In a finite Aet- Z9, the quantity under
considerations is given by

Ma =D ox. (2.1)

XeA
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Unfortunately, the rigorous results available at presentifor 3 do not cover all of the cases
to which our analysis might apply. In order to reduce the amount of necessary provisos in the
statement of the theorems, we will formulate the relevant properties as an assumption:

Assumption A Letd > 2 and let us consider a sequence of Wulff-shape volumes W_. Let
J > J and recall that IP’ﬁ,’LJ denotes the Gibbs state of the Ising model in W, with +-boundary
condition and coupling constant J. Let m, = m,(J) denote the spontaneous magnetization. Then
there exist functions . 3. [—m,, m,]— [0, co) such that

L 1
lim lim ——

€10 Lo -1 log PE (IML = mLY| < eL?) = —.e 5(m) 2.2)

holds for each m € [—m,, m,]. Moreover, there is a constant w; € (0, co) such that

m, + m)%
wy

2m,

M3 (m) = ( 2.3)

is true for allm € [—m,, m,].

The first part of Assumption A—the surface-order large-deviation principle (2.2)—has rigor-
ously been verified for square boxes (and magnetizationsaggj in d = 2 [8, 12] and in
d > 3[5, 7]. The extension to Wulff-shape domains forralle [—m,, m,] requires only minor
modifications ind = 2 [16]. Ford > 3 Wulff-shape domains should be analogously controllable
but explicit details have not appeared. The fact (proved in [16Hfes 2) that the rate func-
tion is given by (2.3) forll magnetizations in+m,, m,] is specific to the Wulff-shape domains;
for other domains one expects the formula to be true only whens m| is small enough to
ensure that the appropriately-sized Wulff-shape droplet fits inside the enclosing volume. Thus
Assumption A is a proven fact fat = 2, and it is imminently provable faf > 3.

The underlying reason why (2.2) holds is the existence of multiple states. Indeed, to achieve
the magnetizatiom € (—m,, m,) one does not have to alter the local distribution of the spin
configurations (which is what has to be donerfogz [—m,, m,]); it suffices to create dropletof
one phase inside the other. The cost is just the surface free energy of the droplet; the best possible
dropletis obtained by optimizing the Wulff functional (1.7). This is the content of (2.3). However,
the droplet is confined to a finite set and, once it becomes sufficiently large, the shape of the
enclosing volume becomes relevant. In generic volumes the presence of this additional constraint
in the variational problem actually makes the resulting targter than (2.3)—which represents
the cost of an unconstrained droplet. But, in Wulff-shape volumes, (2.3) holds regardless of the
droplet size as long ds| < m,. An explicit formula for.Z._;(m) for square volumes has been
obtained ind = 2 [17]; the situation ird > 3 has been addressed in [10, 11].

On the basis of the above assumptions, we are ready to state our first main result concerning
the measuré?\iic’h with ¢ ~ ¢/L andh ~ b/L. Using# to denote the fraction of salt on the plus
spins, we begin by introducing the relevant entropy function

— (1_6) |0gw

Y(m,0) = —0lo
(m, 0) 91+m 1-m

(2.4)
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We remark that if we write a full expression for the bulk entrogym, 9; c), see formula (3.5),
at fixedm, ¢ and @, then, modulo some irrelevant terms, the quantitym, ) is given by
(6/0c)E(mM, 8; c) atc = 0. Thus, when we scale ~ £/L, the quantity’ Y (m, 8) represents
the relevant (surface order) entropy of salt withandé fixed. The following is an analogue of
Theorem 1.2.1 from Part | for the case at hand:

Theorem 2.1 Letd > 2and let J > J.(d) andx > O be fixed. Let m= m,(J) denote the
spontaneous magnetization of the Ising model. Supposé22ain Assumption A holds and let
(cL) and(hy) be two sequences such thate O for all L and that the limits

é:LIim Lcc and b= lim Lh_ (2.5)

L—oo

exist and are finite. Then for all @ [—m,, m,],
; ; 1 +,c.,he d d
'!?BL'EQOF'OQPWL (IMg —mL%| < €L
+ H + /
= — m) + inf m’), 2.6
Qp.c(M) o Qp.c (M) (2.6)
where @ .(M) = infyepo,1y 25 (M, 6) with

2y (M, 0) = —bm — &k — &Y (M, 0) + A 5(M), (2.7)

Various calculations in the future will require a somewhat more explicit expression for the rate
functionm — ngg(m) on the right-hand side of (2.6). To derive such an expression, we first
note that the minimizer &f — ngg(m, @) is uniquely determined by the equation

0 1+m
-0 1-m°" (2.8)
Plugging this intaZ;-(m, 6) tells us that
Qp.c (M) = —bm— &g(m) + 4 5 (m), (2.9)
where . .
g(m) = Iog( —2m + € -;m) (2.10)

Clearly, g is strictly concave for any > 0.
2.2 Macroscopic phase separation—"liquid” boundary conditions.

While Theorem 1.2.1 of Part | and Theorem 2.1 above may appear formally similar, the solutions
of the associated variational problems are rather different. Indeed, unlike the “bulk” rate function
Gh.c(m) of Part |, the functionsggfi(m) are not generically strictly convex which in turns leads
to a possibility of having more than one minimizing We consider first the case of plus (that is,
liquid water) boundary conditions.

Letd > 2 and letd > J.(d) andx > 0O be fixed. To make our formulas manageable, for any
functiong: [-m,, m,]— R let us use the abbreviation

. $m) —¢(-m,)
D} = o, (2.11)
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for the slope ofp between—m, andm,. Further, let us introduce the quantity

wl / _ _ * -1
&= 5mq(9=m) = DY) (2.12)
and the piecewise linear functidn: [0, co) — R which is defined by
—5m — <Dy, ¢ <<
&) =1 (2.13)

—Tzlel* —<g'(—m,), ¢ =<
Our next result is as follows:

Theorem 2.2 Letd > 2and let J > J(d) andx > O be fixed. Let the objects gQ &
and by be as defined above. Then there exists a (strictly) decreasing and continuous function
b;: [0, c0) — R with the following properties:

(1) bi(©) > ba($) forall ¢ > 0, and B($) = ba(S) iff & < &.

(2) b is continuous off0, 00), b} (¢) — —g'(m,) as¢ — oo and by is strictly convex offi;, o).

(3) For b # by(¢), ba(&), the function m— Qgg(m) is minimized by a single number m
m, (b, &) € [-m,, m,] which satisfies

—m,, if b > by(&),
my (b, &) { € (—=m,, m,), if ba(&) < b < by(Q), (2.14)
— if b < by(&).

(4) The function b— m, (b, &) is strictly increasing for be [b2(¢), bi(£)], is continuous on the
portion of the line b= b, (&) for which¢ > & and has a jump discontinuity along the line
defined by b= by (¢). The only minimizers at & b;(¢) and b= b, (&) are the corresponding
limits of b~ m,. (b, &).

The previous statement essentially characterizes the phase diagram for the cases described
in (2.5). Focusing on the plus boundary condition we have the following facts: For reduced
concentrationg exceeding the critical valug, there exists a range of reduced magnetic fields
where a non-trivial droplet appears in the system. This range is enclosed by two curves which
are the graphs of functiornts, and b, above. Forb decreasing td,(¢), the system is in the
pure plus—i.e., liquid—phase but, interestingly,bata macroscopic droplet—an ice crystal—
suddenly appears in the system. ®&irther decreases the ice crystal keeps growing to subsume
the entire system whem = b,(¢). Foré < & no phase separation occurs; the transitioh at
b1(&) = be(¢) is directly fromm = m, tom = —m,.

It is noted that the situation faf near zero corresponds to the Ising model with negative
external field proportional to/L. In two-dimensional setting, the latter problem has been studied
in [16]. As already mentioned, the generalizations to rectangular boxes will require a non-trivial
amount of extra work. For the unadorned Ising model (ces 0) this has been carried out in
great detail in [17] fod = 2 (see also [13]) and in less detail in general dimensions [10, 11].

It is reassuring to observe that the above results mesh favorably with the corresponding as-
ymptotic of Part I. For finite concentrations and external fields, there are two cervedy, (C)
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andc — h_(c), which mark the boundaries of the phase separation region against the liquid and
ice regions, respectively. The curge— h, (c) is given by the equation

1 1-04
h,(c) = > log - (2.15)
where(q,, g-) is the (unique) solution of
4y g- 1+ m, 1-m,
H - eﬂl_q_’ CI+ 2 +CI_ 2 =_C. (216)

The curvec — h_(c) is defined by the same equations with the rolesnpfand —m, inter-
changed. Sincé.(0) = 0, these can be linearized around the p¢ht0). Specifically, plug-
gingb/L for h and&/L for cinto h = h.(c) and lettingL — oo yields the linearized versions

b, = h_(0)¢ (2.17)

of hy andh_. Itis easy to check thadt, (0) = —g'(+m,) and so, in the limit — oo, the linear
functionb, has the same slope bBswhile b_ has the same slope bsabove. Theorem 2.2 gives

a detailed description of how these linearized curves ought to be continued into (infinitesimal)
neighborhoods of size/1 around(0, 0).

2.3 Macroscopic phase separation—"ice” boundary conditions.

Next we consider minus (ice) boundary conditions, where the requisite liquid water, phase sep-
aration and ice regions will be defined using the functibns> b,. As for the plus boundary
conditions, there is a valug > 0 where the phase separation region begins, but now we have
a new phenomenon: For some (but not all) choiced ahdx, there exists a nonempty interval

(&, &) of & for which two distinct droplet transitions occur. Specificallypdscreases, the vol-

ume fraction occupied by the droplet first jumps discontinuously&t) from zero to a strictly
positive value, then increases but stays bounded away from one, and theg, @it(¢), jumps
discontinuously to one; i.e., the ice surrounding the droplet suddenly melts.

For each > J.(d) and each, consider the auxiliary quantities
w1 (d - 1)11)1
= 2m,d _m'
(Note that, due to the concavity propertygfboth; andé; are finite and positive.) The follow-
ing is a precise statement of the above:

(D; — g’(m*))_1 and & =

(2.18)

Theorem 2.3 Letd > 2and let J> J.(d) andx > O be fixed. Then there exist two (strictly)
decreasing and continuous functiobg b,: [0, 00) — R and numbers, & € (0, co) with
& < &, such that the following properties hold:
(1) bi(&) = bp(&) forall & > 0, andby (&) = bp(¢) iff & < & 3
(2) by is strictly concave ofi;, 00), b5(&) - —g'(—m,) asé — oo, by is strictly convex on
(&, &) and, outside this interval,

) o gpr &<,
by ={>™ = °°

4t w : (2.19)
dim _sgm), ¢ =&



10 K.S. ALEXANDER, M. BISKUP AND L. CHAYES

(38) If & > &, thené = &, = & andD, is continuous off0, o).
(3b) If & < & thend < & < & = & and neither b nor b, is continuous ag,. Moreover, there
exists g € (—m,, m,) such that, ag | &,
/ g(m*) - g(mO) g(mO) - g(_m*)
b - and — .
1) — ——— B(¢) — ———
(4) For b # b1(¢), b2(¢), the function m— Qg .(m) is minimized by a single number
m_(b, &) € [—-m,, m,] which satisfies

(2.20)

=m, if b > by(S),
m_(b,¢) 1 € (=m,, m,), if B2(¢) < b < by(©), (2.21)
=—-m,, if b < by(&).

(5) The function b—» m_(b, &) is strictly increasing in b for be [b,(¢), b1(¢)], is continuous
on the portion of the line b= by (¢) for which& > &, and has jump discontinuities both
along the line defined by k& b,(¢) and along the portion of the line & by (&) for which
& < & < &,. There are two minimizers at the points wheresbm_(b, &) is discontinuous
with the exception ofb, &) = (b1(&), &) = (B2(&), &) whené; < &, where there are three
minimizers; namelytm, and my from part (3b).

As a simple consequence of the definitions, it is seen that the question of whethefornHt
is equivalent to the question whether or not

d
g(m,) — 2m,g'(m,) + m(Zm*)zg”(m*) < g(—-m,). (2.22)

We claim that (2.22) will hold, or fail, depending on the values of the various parameters of the
model. Indeed, writing = tanh(x/2) we get

g(m) = log(1 + em) + const. (2.23)

Regarding the quantitym as a “small parameter,” we easily verify that the desired inequality
holds to the lowest non-vanishing order. Thusmif is small enough, then (2.22) holds for
all x, while it is satisfied for alln, whenever is small enough. On the other hand,xatends
to infinity, g(m,) — g(—m,) tends to Iog}f—k, while the various relevant derivatives gfare
bounded independently of,. Thus, asm, — 1, which happens whed — oo, the condition
(2.22) isviolatedfor « large enough. Evidently, the gdp—& is strictly positive for some choices
of J andx, and vanishes for others.

Sinceb; (0) > 0, for & sufficiently small the ice region includes points with- 0 . Let us also
show that the phase separation region can rise dbev®; as indicated in the plot on the right of
Fig. 1. Clearly, it suffices to considér= 0 and establish that for somk x and¢, the absolute
minimum ofm = Qg -(m) does not occur atm,. This will certainly hold if

(Qp)'(m) >0 and Qy.(—m,) > Qp (M), (2.24)
or, equivalently, if
d-1 w1

d 2m,

> &g'(my  and &(g(m,) —g(—m,)) > wy (2.25)
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are both true. Simple algebra shows that the last inequalities hosdfoeZ once

dTl(g(m) - g(-my) > 2m.g'(m,). (2.26)
But, as we argued a moment ago, the differeg®e,) — g(—m,) can be made arbitrary large
by takingx > 1 andm, sufficiently close to one, whilg’'(m,) is bounded in these limits. So,
indeed, the phase separation region pokes above th@ axis oncec > 1 andJ > 1.

Comparing to the linear asymptotic of the phase diagram from Part |, we see that in the finite-
volume system with minus (ice) boundary condition, the lines bounding the phase separation
region are shifted upward and again are pinched together. In this case it is thedibe(¢) that
is parallel to its counterpali = h’, (0)¢ for & > &, while b = by(¢) has the same asymptotic
slope (in the limitf — oo) as the functiorb = h’_(0)¢.

2.4 Properties of the spin marginal.

On the basis of Theorems 2.1-2.4, we can now provide a routine characterization of the typical
configurations in measurlaﬁf“m. The following is an analogue of Theorem 2.2 of Part | for the
cases at hand:

Theorem 2.4 Letd > 2and let J> J.(d) andx > 0 be fixed. Suppose that Assumption A
holds and let(c.) and (h.) be two sequences such that & 0 for all L and that the limits?
and b in(2.5) exist and are finite. Let us define two sequences of Borel probability meagures
on[—m,, m,] by putting

p([—1m]) = P (ML < mLY),  me[-11]. (2.27)

Then the spin marginal of the measur\gisﬁi”hL can again be written as a convex combination of
the Ising measures with fixed magnetization; i.e., for any4set configurationgox)xea, ,

P ™ (A x {0, ) = / pi (dm) P’ (A|ML = [mLY)). (2.28)

Moreover, any (weak) subsequential lipit of measureg;" is concentrated on the minimizers of
m— ngi(m). In particular, for b# by (&), ba(¢) the limitp™ = lim |« p{” exists and is simply
the Dirac mass at m(b, £)—the quantity from Theorem 2.2—and similarly for = lim__, . p,
and b# by (&), b2(&).

On the basis of Theorems 2.1-2.4, we can draw the following conclusiond:-diarensional
systems of scale with the total amount of salt proportional td'=2 (i.e., the system boundary),
phase separation occudtsgamaticallyin the sense that all of a sudden a non-trivial fraction of the
system melts/freezes (depending on the boundary condition). In hindsight, this is perhaps not so
difficult to understand. While a perturbation of siz&* cannot influence the bulk properties of
the system with a single phase, here the underlying system is at phase coexistence. Thus the cost
of a droplet is only of ordet.9~1, so it is not unreasonable that this amount of salt will cause
dramatic effects.

It is worth underscoring that the jump in the size of the macroscopic dropbetal, orb =
b, decreases with increasig Indeed, in the extreme limit, when the concentration is finite
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(nonzero) we know that no macroscopic droplet is present at the transition. But, presumably,
by analogy with the results of [4] (see also [3, 15]), there will bm@soscopiaroplet—of

a particular scaling—appearing at the transition point. This suggests that a host of intermediate
mesoscopic scales may be exhibited depending orch@mdh_ tend to zero with the ratib_ /¢,
approximately fixed. These intermediate behaviors are currently being investigated.

3. PROOFS OF MAIN RESULTS

The goal of this section is to prove the results stated in Section 2. We begin by stating a gener-
alized large deviation principle for both magnetization and the fraction of salt on the plus spins
from which Theorem 2.1 follows as an easy corollary. Theorem 2.2 is proved in Section 3.2;
Theorems 2.3 and 2.4 are proved in Section 3.3.

3.1 A generalized large-deviation principle.

We will proceed similarly as in the proof of Theorem 1.3.6 from Part . Aet: Z9 be a finite set
and let us reintroduce the quantity

1+ o0y
QA = st 2 . (31)

XeA

which gives the total amount of salt on the plus spinairRecall thaﬂEf{’J denotes the expecta-
tion with respect to the (usual) Ising measure with coupling congkamd plus/minus boundary
conditions. First we generalize a couple of statements from Part I

Lemma 3.1 Let A c ZY be a finite set. Then for any fixed spin configuration= (6x) €
{—1, 1}*, all salt configurationgSy) € {0, 1}* with the same I\ and Q, have the same prob-
ability in the conditional measure,ﬁF’C’h(-w = ). Moreover, for anys = (Sy) € {0, 1} with
Na = [C|A]J and for any me [—1, 1],

Py °"(S occurs My = [mIA]]) = Z—lAEjAE’J(e’CQA(”’SHhMA(”)l{Mm):mem)a (3.2)
where the normalization constant is given by
Zn= D Lnys)mioay Ex7 (€M), (3.3)
S'e{0,1}A
Proof. This is identical to Lemma 1.3.2 from Part I. O

Next we will sharpen the estimate from Part | concerning the total entropy carried by the salt.
Similarly to the objectAHL’C(a) from Part |, for each spin configuratien= (c4) € {—1, 1}* and
numberg), ¢ € [0, 1], we introduce the set

A%S(0) = {(S0) € (0. 1)*: NL = [clAl], QU = [fc|All}. (3.4)

Clearly, thesizeof A(,’\’C(a) is the same for all with a given value of the magnetization; we will
thus letA’°(m) denote the common value pfi%°(0)| for thoses with M, (6) = [m|A|]. Let
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Z(p) = plogp+ (1 — p)log(1 — p) and let us recall the definition of the entropy function

1+m 20c 1-m 2(1-6)c
5 — 54
2 (1 + m) 2 ( 1-m )
cf formula (1.2.7) from Part I. Then we have:

2(m,f;c) = — ; (3.5)

Lemma 3.2 For eachy > 0 there exist constants;C< oo and Ly < oo such that for all
finite A ¢ Z9 with [A| > LY, all 4, ¢ € [0, 1] and all m withjm| < 1 — # satisfying

20c 2(1-6)c
<1-— d — 2" <1-— 3.6
1+m-™ 7oan 1-m ~ 1 (3.6)
we have
log A%€(m log|A
P92 _ 2 m,0:0) < ¢, 29 (3.7)
|Al |A]

Proof. The same calculations that were used in the proof of Lemma 1.3.3 from Part | give us

A% (m) = (%(w + MA)) (%(|A| = MA))
A Qa Na — Qa

with the substitutiondM, = [m|A|] and Qs = |dc|Al]. By (3.6) andim| < 1 — 5, both
combinatorial numbers are well defined orjeqg is sufficiently large (this definekg). Thus,
we can invoke the Stirling approximation and, eventually, we see that the right-hand side of (3.8)
equals explA|Z(m, 8; ¢)} times factors which grow or decay at most like a power/gf Taking
logs and dividing by A|, this yields (3.7). a

Our final preliminary lemma is concerned with the magnetizations outstdg. [m,] which
are (formally) not covered by Assumption A. Recall the sequence of Wulff sn&pekefined at
the end of Section 1.2. Note théf_ contains, to within boundary correctiorls? sites.

(3.8)

Lemma 3.3 Suppose that 3 J. and let ¢ and h. be such that Lcand Lh_have finite limits
as L — oo. For eache > 0, we have

. 1 h
lim = log P:® ™ (IMy | > (M, + €)LY) = —cc. (3.9)
Proof. This is a simple consequence of the fact that, in the unadorned Ising magnet, the proba-
bility in (3.9) is exponentially small ivolume—cf Theorem 1.3.1—and that withh; andLc,_
bounded, there will be at most a surface-order correction. A formal proof proceeds as follows:
We write

K. (m, o
Py ™ (Qu = [0c L), ML = [mLY)) = % (3.10)
where
KL (m’ 0) — A?/\’/fl_ (m) ehL (mLYj+x(0c, LY] P#\/’L‘] (ML = |m LdJ) (311)

and whereY, is the sum oK (', 8’) over all relevant values aff and¢’. Under the assumption
that bothh, andc, behave likeO(L 1), the prefactors of the Ising probability can be bounded



14 K.S. ALEXANDER, M. BISKUP AND L. CHAYES
d-1 d-1 . . . .
betweere=CL"" ande®l" ", for someC < oo, uniformly in& andm. This yields

1
P ™ (IMw | = (m, + e)LY) < L 1Y_pi3(|MWL| > (m, 4+ e)LY). (3.12)

The same argument shows us tatcan be bounded below kg L times the probability
that My, is near zero in the Ising meaSLIH‘>§;J. Inlight of J > J., Assumption A then gives

I|m|nf L 7logYL > —oo. (3.13)

On the other hand, by Theorem 1.3.1 (and the remark that follows it) we have that
lim Ld -log Py (IMw, | > (M, +€)LY) = —co. (3.14)
Plugging this into (3.12), the desired claim follows. g

We will use the above lemmas to state and prove a generalization of Theorem 2.1.

Theorem 3.4 Letd > 2andlet J> J.(d) andx > O be fixed. Letc € [0, 1]and h. € R be
two sequences such that the limjtand b in(2.5) exist and are finite. For each ra [-m,, m,]
andd e (=1,1), let BL. = B (m,c.,0) be the set of alls, §) € {1, 3" x {0, L}V for
which the bounds

IMy, —mL% <elL? and |Qw, —6dc LY <el9? (3.15)
hold. Then
o log P (B
lim lim WLLd_l L = — 2y :(m,0) + |nf D (M, 0), (3.16)
a/e[o 1]

where2y, :(m, 8) is as in(2.7).

Proof. We again begin with the representation (3.10-3.11) for the chdicé$ ~ bL9-1
andc_ LY ~ £L9-1, Form e [-m,, m,] the last probability in (3.11) can be expressed from As-
sumption A and so the only thing to be done is the extraction of the exponential rA@(—,ch(fn)

to within errors of orden(L9~1). This will be achieved Lemma 3.2, but before doing that, let us
express the leading order behavior of the quartityn, ; ¢, ). Noting the expansiot¥’(p) =
plogp — p + O(p?) for p | 0 we easily convince ourselves that

=c_—c_loge. +c.Y(m,6) + O(CL)

CL

20
2(m. 0; c) = ~0c (log - - +0(c)

(3.17)

whereY'(m, §) is as in (2.4). (The quantit®(c?) is bounded by a constant time& uniformly
in m satisfying|m| < 1 — # and (3.6).) Invoking Lemma 3.2 and the facts that | — L9 =
Oo(L% Y and Lc2 — 0asL — oo we now easily derive that

Al (m) = exp{ rL+ L9 (m, 6) + o(Ld—l)}, (3.18)

wherer. = —L|W_|c_ log(c_/e) is a quantity independent af andé.
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Putting the above estimates together, we conclude that
K.(m, ) = exp{ rL— L919, .(m, 0) + o(Ld—l)} (3.19)

whereo(L%"") is small—relative toL%~*—uniformly in m e [-m,,m,]J and¢ € [0,1]. It
remains to use this expansion to produce the leading order asymptoﬂﬁcb’f‘L(BL,e). Here
we write the latter quantity as a ratio,

Kic(m, 6)

:I: C|_ he
(BLo) =
Yo

(3.20)
where K <(m, 0) is the sum ofK, (M, 8') over all relevant values ~ofn, §") that can con-
tribute to the evenBL <, While, we remind the readey, is the sum 01K|_(m 0" over all rele-
vant(m', 8’)'s regardless of their worth.

It is intuitively clear that the | -factors in the numerator and denominator cancel out and one
is left only with terms of ordet. 91, but to prove this we will have to invoke a (standard) com-
pactness argument. We first note that for each 0 and eaclim, 9) € [-m,, m,] x[0, 1], there
exists are > 0 and anLy < oo—both possibly depending an, 8 andé—such that, fol. > Lo,

(KLe(M, 0)e™) + 2, :(m, 0)| < 6. (3.21)

Ld-1

(Here we also used tha?, :(m, 8) is continuous in both variables or-in,, m,]x[0, 1].) By
compactness offm,, m,] x[0, 1], there exists a finite set @y, 6¢)’s such that the above-
neighboorhoods—for which (3.21) holds with the sasrecover the setfm,, m,]x[0, 1]. In
fact we cover the slightly larger set

R=[-m,—¢€,m, +€]x][0, 1], (3.22)

wheree’ > 0. By choosing the's sufficiently small, we can also ensure that for one oltbethe
quantity 2y, - (my, ) is within ¢ of its absolute minimum. Since everything is finite, all estimate
are uniforminL > LgonR.

To estimateY, we will split it into two parts,Y, 1 andYy », according to whether the corre-
sponding(m’, 8”) belongs toR or not. By (3.21) and the choice of the above coveRoive have
thatﬁ,l_—l log Yy 1 is within, say, 3 of the minimum of(m, ) — 2y (M, ) oncelL is sufficiently
large. (Here the additionalis used to control the number of terms in the coveRof On the
other hand, Lemma 3.3 implies th4t , is exponentially small relative tg_ ;. Hence we get

1
lim sup = —log(YLe™) + inf 2, .(m',0")| < 3. (3.23)
Lo H/e[Onﬁ
Plugging these into (3.20) the claim follows by lettifig, O. O

Proof of Theorem 2.1This is a simple consequence of the compactness argument invoked in the
last portion of the previous proof. a
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3.2 Proof of Theorem 2.2.

Here we will prove Theorem 2.2 which describes the phase diagram for the “liquid” boundary
condition, see the plot on the left of Fig. 1.

Proof of part (1).Our goal is to study the properties of the function— ng(m). Throughout
the proof we will keepJ fixed (and larger thard;) and write.# (-) instead of.Z, ;(-). For
m € [-m,, m,], let us define the quantity

E:(m) = —=&g(m) + .# (m). (3.24)

Clearly, this is justQf .(m) without theb-dependent part, i.eQ; -(m) = —bm+ E:(m). Im-
portant for this proof will be the “zero-tilt” version of this function,

E:(m) = E¢(m) — Es(—m,) — (m+ m,) D¢ , (3.25)

where DE. is the “slope ofE; between—m, andm,,” see (2.11). ClearlyE; and Egv have the
same convexity/concavity properties Hit always satisfie&:(—m,) = E:(m,) = 0.

Geometrically, the minimization oQk‘;é(m) may now be viewed as follows: Consider the
set of points{(m, y): y = E:(m)}—namely, the graph oE:(m)—and take the lowest vertical
translate of the ling = bmwhich contacts this set. Clearly, the minimumQ@j .(m) is achieved
at the value(s) om where this contact occurs. The same of course holds for the grapﬁ}(m)
provided we shifb by D*Eé. Now the derivativel?é(m) is bounded below ah = —m, and above
atm = m, (indeed, asn T m, the derivative diverges te-co). It follows that there exist two
values,—oo < bi(&) < by(&) < oo, such tham = m, is the unique minimizer fob > by (&),
m = —m, is the unique minimizer fob < b,(¢), and neithetm = m, norm = —m, is a
minimizer whenb, (&) < b < by(&).

On the basis of the above geometrical considerations, the region ivhanelb, are the same
is easily characterized:

b1(&) = by(&) ifandonly if ’E}(m) >0 vVme[-m,m,]. (3.26)

To express this condition in terms ¢f let us defineT (m) = .#”(m)/g”(m) and note that
EZ(m) > Oif and only if T(m) > ¢. Now, for some constai@ = C(J) > 0,

d+1

T(m) = C(m, — m)~F (m+ cot(x/2)), (3.27)

which implies thafT is strictly increasing onfm,, m,) with T(m) — oo asm 1 m,. It follows
that eitherﬁg is concave throughout{m,, m,], or there exists & ~1(¢) € (—m,, m,) such
that ’E} is strictly convex on{m,, T~1(&)) and strictly concave ofiT ~1(¢), m,]. Therefore, by
(3.26),b1(¢) < byp(¢) if and only if Eé(—m*) < 0, which is readily verified to be equivalent to
¢ > &. This proves part (1) of the theorem. g

Proof of parts (3) and (4)The following properties, valid fof > &, are readily verified on the
basis of the above convexity/concavity picture:

(@) For allby(&) < b < by(¢), there is a unique minimizen, (b, &) of m — ng(m) in
[—m,, m,]. Moreover,m, (b, &) lies in (—m,, T~%(¢)) and is strictly increasing ib.
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(b) Forb = by(¢), the functionm — Qg’gy(m) has exactly two minimizeran, and a value
mi(¢) € (=m,, T7H(¢)).
(c) We have,(¢) = EL(—m,).
(d) The non-trivial minimizer in (ii)m.(¢), is the unique solution of
E:(m) + (M, — m)EL(m) = E<(m,). (3.28)

Moreover, we have
by (&) = EL(mu(S)). (3.29)
(e) Asb tends to the boundaries of the interyhl (&), by(&)), the unique minimizer in (a) has
the following limits
blLT@ my(b,&) = -m, and leglrpi) m..(b, &) = my($), (3.30)
wherem (&) is as in (b). Both limits are uniform on compact subset&gfoo).

Now, part (3) of the theorem follows from (a) while the explicit formula (2.13)#df) for & > &

is readily derived from (c). Fo& < &, the critical curvel — by(¢) is given by the relation
Qp.: (M) = Qj -(—m,), which gives also thé < & part of (2.13). Continuity ob — m, (b, ¢)
along the portion ob = by(¢) for & > & is implied by (e), while the jump discontinuity at
b = by(¢) is a consequence of (a) and (e). This proves part (4) of the theorem. d

Proof of part (2). It remains to prove the continuity df;(¢), identify the asymptotic ob;
as¢ — oo and establish the strict concavity 6f— by (&). First we will show that the non-
trivial minimizer, my (&), is strictly increasing witht. Indeed, we write (3.28) aB:(m) = O,
whereF:(m) = E:(m,) — Ez(m) — (m, — m)E.(m). Now,

a /
PE (M) = g(m) — g(m,) + (M, — m)g'(m), (3.31)
which is positive for alim € [-m,, m,) by strict concavity ofy. Similarly,

0
S Fe(m) = —E/(m)(m, —m), (3.32)

which atm = my(¢) is negative because; lies in the convexity interval oE;, i.e.,mi (&) €
(—m,, T71(&)). From (d) and implicit differentiation we obtain that, (¢) > 0 for ¢ > &. By
(3.29) we then have
m, —m
which, invoking the strict concavity @ and the strict monotonicity ofi;, implies that; (¢) > 0,
i.e.,by is strictly convex on¢&, oo).
To show the remaining items of (2), it suffices to establish the limits

Immy(¢&) =—-m, and limmy(¢) =m,. (3.34)
¢la E—00

(3.33)

Indeed, using the former limit in (3.33) we get that¢) — —g'(m,) as¢ — oo while the latter
limit and (c) above yield thdt; (&) — b,(&) as¢ | & which in light of the fact thab, (&) = b (&)
for¢& < & implies the continuity ob;. To prove the left limitin (3.34), we just note that, by (3.28),
the slope ofﬁg atm = my(¢) converges to zero as | &. Invoking the convexity/concavity
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picture, there are two points on the graphnof— Egvt(m) where the slope is zerm, and the
absolute maximum oF;. The latter choice will never yield a minimizer @; - and so we must
havem; (&) — m, as claimed. The right limit in (3.34) follows from the positivity of the quantity
in (3.31). Indeed, for eacm € [—-m,, m,) we haveF:(m) > 0 once¢ is sufficiently large.
Hencem; (&) must converge to the endpoimi, as¢ — oo. O

3.3 Remaining proofs.

Here we will prove Theorem 2.3, which describes the phase diagrams for the “ice” boundary
condition, and Theorem 2.4 which characterizes the spin-sector of the distribEPﬁp‘i%"L.

For the duration of the proof of Theorem 2.3, we will use the functiénand E: from (3.24—
3.25) with.# = ./, ; replaced by# = .#_ ;. The main difference caused by this change is
that the functiorm — ’E}(m) may now have more complicated convexity properties. Some level
of control is nevertheless possible:

Lemma 3.5 There are at most two points insiflem,, m,] where the second derivative of func-
tion m— E:(m) changes its sign.

Proof. Consider again the functioh(m) = .#”(m)/g”(m) which characterizeﬁg(m) > 0 by
T(m) > &. In the present cases, this function is given by

A" (m)
g”(m)
whereC = C(J) > 0 is a constant. Clearlyl starts off at plus infinity am = —m, and
decreases for a while; the difference compared to the situation in Theorem 2.2Zlistbatneed
not be monotone. Notwithstanding, taking the obvious extensioh tf all m > —m,, there
exists a valuanr € (—m,, oo) such thafT is decreasing fom < my while it is increasing for
allm > my. Now two possibilities have to be distinguished depending on whethdalls in or
out of the interval Fm,, m,):

(1) my > m,, in which case the equatioh(m) = ¢ has at most one solution for evefy
andm — Eg(m) is strictly concave onfm,, T~1(¢)) and strictly convex o T ~1(¢), m,].

(The latter interval may be empty.)

(2) mr < m,, in which case the equatioh(m) = ¢ has two solutions fof € (T (my), T(m,)].
Thenm — Eg(m) is strictly convex between these two solutions and concave otherwise. The
values of¢ for which there is at most one solution Tdm) = ¢ inside [-m,, m,] reduce to
the cases in (1). (This includés= T (mr).)

We conclude that the type of convexity of — Eg(m) changes at most twice inside the inter-

val [-m,, m,], as we were to prove. O

T(m) = = C(m, +m)~"T (M + cot(x/2))? (3.35)

The proof will be based on studying a few cases depending on the order of the control parame-
tersé; and&, from (2.18). The significance of these numbers for the problem at hand will become
clear in the following lemma:

Lemma 3.6 The derivativesfi\é(m*) and Eg(m*) are strictly increasing functions d@f. In par-
ticular, for &; andé; as defined in{2.18) we have
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(1) EL(m,) < 0if & <& andEL(m,) > 0if & > &
(2) EZ(m,) < 0if & < & andEL(m,) > 0if & > &.

Proof. This follows by a straightforward calculation. O
Now we are ready to prove the properties of the phase diagram for minus boundary conditions:

Proof of Theorem 2.3Throughout the proof, we will regard the graph of the functior> ’E}(m)

as evolving dynamically—the role of the “time” in this evolution will be taken‘byVe begin by
noting that, in light of the strict concavity of functianfrom (2.10), the valueﬁf(m) is strictly
decreasing i for all m € (—m,, m,). This allows us to define

= inf{¢ > 0: E:(m) < 0 for somem e (—-m,, m,)}. (3.36)

Now for & = 0 we haveE;(m) > 0 for allm € (—m,, m,) while for & > &, the minimum ofE;
over (—m,, m,) will be strictly negative. Hence, we haveQ¢&; < &.

We will also adhere to the geometric interpretation of finding the mimizens e Q, .(m),
cf proof of part (1) of Theorem 2.2. In particular, for eath- 0 we have two valueb; andb,
with b, < by such that the extremesm, andm, are the unlque minimizers fdr < b, andb >
by, respectlvely, while none of these two are minimizers when< b < b;. Here we recall
thatb; is the minimal slope such that a straight line with this slope touches the gra@mm
and at some other point, but it never gets above it, and simitariy the maximal slope of a line
that touches the graph @; at—m, and at some other point, but never gets above it.

As a consequence of the above definitions, we may already conclude that (1) is true. (Indeed,
for & < & we haveEgz(m) > 0 and so the two slopeta andb, must be the same. Fér> & there
will be anm for which Ef(m) < 0and sd; # by.) The rest of the proof proceeds by considering
two cases depending on the ordegpinds,. We begin with the easier of the twé, > &:

CASE & > &: Here we claim that the situation is as in Theorem 2.2 and, in particilar¢;.
Indeed, consider & > & and note thaﬁg(m) > 0 by Lemma 3.6. Sincég(m) IS negative
nearm = —m, and positive neam = m,, it changes its sign an odd number of times. In light
of Lemma 3.5, only one such change will occur and-sm[, m,] splits into an interval of strict
concavity and strict convexity ah — ’E}(m). Now, if & is not equaks;, we may choosé&
between? and¢; so thatEL(m,) < 0. This implies thatE;(m) > 0 for allm < m, in the
convexity region; in particular, at the dividing point between concave and convex behavior. But
then a simple convexity argumeﬁg(m) > 0 throughout the concavity region (exceptan,).
ThusE:(m) > 0 for allm e (—m,, m,) and so we havé < &. It follows that = ¢&;.

Invoking the convexity/concavity picture from the proof of Theorem 2.2 quickly finishes the
argument. Indeed, we immediately have (4) and, Ietzﬁng: &, also the corresponding portion
of (5). It remains to establish the propertiesbpfandb,—this will finish both (2) and (3a). To
this end we note thdt, is determined by the slope &: atm,, i.e., foré > &,

by (&) = EL(m). (3.37)
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This yields the second line in (2.19); the first line follows by taking the sloge-dfetween—m,
andm,. As for b,, here we note that an analogue of the argument leading to (3.33) yields

By(e) — —IM) Z M) L s (3.38)

m; + m,

wherem; = my(¢) is the non-trivial minimizer ab = b,(&). In this case the argument analogous
to (3.31-3.32) givesn;(¢) < 0. The desired limiting values (and continuity) lgf follow by
noting thatmy (&) — m, as¢ | & andmy (&) » —m, asé — oo.

CASE & < &: Our first item of business is to show that < &. Consider the situation
when¢é = & andm = m,. By Lemma 3.6 and continuity, the derivatifegl(m*) vanishes, but,
since we are assuming < &, the second derivatiVEgl(m*) has not “yet” vanished, so it is
still negative. The upshot is that, is a local maximum fom — ’E}l(m). In particular, looking

atm slightly less thamn,, we must encounter negative value@j and, eventually, a minimum
of E; in (—m,, m,). This implies that; < &.

Having shown thaf; < & < &, we note that foe e (&, &), the functionm — E:(m)
changes from concave to convex to concaveramcreases from-m, to m,, while for & >
&, exactly one change of convexity type occurs. Ind@dis always concave nearm, and,
when¢é < &, it is also concave amn,. Now, since¢ > &, its minimum occurs somewhere
in (—m,, m,). This implies an interval of convexity. But, by Lemma 3.5, the convexity type can
change only at most twice and so this is all that we can have. For thecaséswe just need to
realize thalﬁg is now convex neam = m, and so only one change of convexity type can occur.
A continuity argument shows that the borderline situatios; &, is just likeé > &.

The above shows that the cages & are exactly as fof; > & (or, for that matter, The-
orem 2.2) while < & is uninteresting by definition, so we can focus dre [&, &). Sup-
pose first that® > & and letl: denote the interval of strict convexity (E}. The geomet-
rical minimization argument then shows that,bat= by, there will be exactly two minimiz-
ers,m, and a valuem;(¢) € I, while atb = b,, there will also be two minimizers-m,
and a valuany(¢) e ;. Forb; < b < by, there will be a unique minimizem_ (b, &) which
varies betweem;, (&) andmy (). Sinceﬁg is strictly convex inl;, the mapb — m_(b, ¢) is
strictly increasing with limitsm,(¢) asb 1 b1(¢) andmy(¢) asb | b.(¢). Bothm; andm,
are inside(—m,, m,) som_ undergoes a jump at both andb,. Clearly,m;(&) # my(&) for
all¢ e & &).

At ¢ = &, there will be an “intermediate” minimizer, but now there is only one. Indeed,
the limits of my(¢) andmy(¢) as¢ | & must be the same because otherwise, by the fact that
[m1(), ma(&)] is a subinterval of the convexity intervéi, the functionﬁgl would vanish in a
whole interval of m’'s, which is impossible. Denoting the common limit by we thus have
three minimizers af = &; namely,+m, andmg. This proves part (4) and, letting = &, also
part (5) of the theorem. As for the remaining parts, the strict concavity ahd the limits (2.20)
are again consequences of formulas of the type (3.33) and (3.37—-3.38) and of the monotonicity
properties ofn; andm,. The details are as for the previous cases, so we will omit them. [
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Proof of Theorem 2.4.As in Part |, the representation (2.28) is a simple consequence of the
absence of salt-salt interaction as formulated in Lemma 3.1. The fact that any subsequential
(weak) limit p~ of pf has all of its mass concentrated on the minimizer@@; is a consequence

of Theorem 2.1 and the fact that can only takeO (L) number of distinct values. Moreover, if

the minimizer is unique, which for the plus boundary conditions happens lwkeh, (¢), by (¢),

any subsequential limit is the Dirac mass at the uniqgue minimum (whieh , &) for the plus
boundary conditions anah_ (b, &) for the minus boundary conditions). O
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