
ON THE LOCALIZATION TRANSITION
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THIERRY BODINEAU AND GIAMBATTISTA GIACOMIN

Abstract. In this note we consider the (de)localization transition for random directed
(1 + 1)–dimensional copolymers in the proximity of an interface separating selective sol-
vents. We derive a rigorous lower bound on the free energy. This yields a substantial
improvement on the bounds from below on the critical line that were known so far. Our
result implies that the critical curve does not lie below the critical curve conjectured by
Monthus [11] on the base of a renormalization group analysis. We discuss this result
in the light of the (rigorous and non rigorous) approaches present in the literature and,
by making an analogy with a particular asymptotics of a disordered wetting model, we
propose a simplified framework in which the question of identifying the critical curve, as
well as understanding the nature of the transition, may be approached.
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1. Introduction

1.1. The model. Much effort has been put into understanding the physical properties of
heteropolymers containing hydrophilic and hydrophobic components (in conformity with
a relevant part of the literature, we will call them copolymers). Part of this effort has
focused on the behavior of such polymers in presence of an interface separating two sol-
vents: one which favors the hydrophilic components and one which favors the hydrophobic
components.

From the modelization viewpoint we stay in the line of work initiated by Garel, Huse,
Leibler and Orland [9] and the copolymer is for us a directed random walk whose bonds
have randomly chosen characteristics (the charges): bonds with positive (respectively
negative) charges energetically prefer to lie in the upper (respectively lower) half plane.

Let S = {Sn}n=0,1,... be a random walk with S0 = 0 and Sn =
∑n

j=1Xj , {Xj}j a

sequence of IID random variables and P (X1 = ±1) = 1/2. For λ ≥ 0, h ≥ 0, N ∈ N and
ω = {ωj}j=1,2,... ∈ R

N we introduce the new probability measure

dPλ,h
N,ω

dP
(S) =

1

Zλ,h
N,ω

exp

(
λ

N∑

n=1

(ωn + h) sign (Sn)

)
, (1.1)

where Zλ,h
N,ω is the partition function and sign (S2n) is set to be equal to sign (S2n−1) for

any n such that S2n = 0.
We are going to choose ω as an IID sequence of symmetric random variables and denote

by P its law. We suppose that

M(α) := E [exp (αω1)] <∞ , (1.2)

for α in a neighborhood of zero. By symmetry M(α) = M(−α) for every α.
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Under the previous assumption on the distribution of the charges, it is well known
[13] that, for h = 0, the charge–solvent energy dominates over the random walk entropy
and the polymer lies in a neighborhood of the horizontal axis, that we call interface and
we therefore talk of localization at the interface. This happens regardless of the value
of the temperature 1/λ. For h > 0, a non trivial competition enters the picture and a
de–localization phenomenon is observed for h sufficiently large, with the walk spending
essentially all of its time far from the interface. The simplest way to detect this transition
is on the level of the free energy which is defined as

f(λ, h) = lim
N→∞

1

N
logZλ,h

N,ω. (1.3)

The limit has to be understood in the P ( dω)–almost sure sense or in the L1 (P) sense. A
proof of the existence of such a limit goes along a standard line and we refer to [8] for the
details. We stress that f(λ, h) is non random.

An important elementary observation is that the contribution of the polymers which do
not cross the interface leads to the following lower bound

f(λ, h) ≥ λh. (1.4)

In fact if we set Ω+
N = {S : Sn > 0 for n = 1, 2, . . . , N}

1

N
logZλ,h

N,ω ≥
1

N
log E

[
exp

(
λ

N∑

n=1

(ωn + h) sign (Sn)

)
; Ω+

N

]

≥
λ

N

N∑

n=1

(ωn + h) +
1

N
log P

(
Ω+

N

) N→∞
−→ λh, (1.5)

where the limit has to be understood in the almost sure sense: we have in fact applied the
law of large numbers, along with the well known fact that P

(
Ω+

N

)
behaves like N−1/2 for

N large. In view of (1.3) and of (1.5) we feel entitled to partition the phase diagram in
the following way:

• The localized region: L = {(λ, h) : f(λ, h) > λh};
• The delocalized region: D = {(λ, h) : f(λ, h) = λh}.

This phase diagram decomposition does correspond to sharply different behaviors of the
trajectories of the copolymer, in particular strong path localization results are available if
(λ, h) ∈ L, cf. [1], [2] and [13], with the copolymer sticking close to the interface. Proving
precise delocalization path properties when (λ, h) is in D, or at least in the interior of
D, seems to be one of the hardest unsolved challenges on this model. Nevertheless some
results are available ([2] and [8], see Fig. 1)

In [3] it has been proven, for the case P(ω1 = ±1) = 1/2 that there exists a continuous
non decreasing function hc : [0,∞) −→ [0, 1) such that hc(0) = 0 and

D = {(λ, h) : h ≥ hc(λ)} . (1.6)

A number of properties have been proven in [3] about this curve, in particular that

hc(λ) ≤
1

2λ
log cosh(2λ), (1.7)
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Figure 1. Phase diagram of the localization/delocalization transition. We have
sketched inside the region D the expected behavior of a delocalized polymer trajec-
tory on a large scale: the polymer is entropically repelled away from the interface (this
is rigorously understood only in a very weak sense). On the contrary, in region L the
polymer remains close to the interface and the drawing in this case is on a small scale:
the localized polymer typically stays at a distance O(1) no matter how long the chain is.
We stress also that the hc(·) in this figure is the one observed if ω1 is a bounded random
variables. In the unbounded case hc(·) may tend to infinity or even diverge for a finite λ

as it is clear from Theorem 1.1.

and that the slope at the origin is positive, i.e. that there exists

lim
λ↘0

hc(λ)

λ
=: mc ∈ (0, 1]. (1.8)

Of course mc 6 1 follows from (1.7). Moreover limλ→∞ hc(λ) = 1.

The result that we present here is the following:

Theorem 1.1. For a general distribution of the charges such that (1.2) holds, there exists

a non decreasing function hc : [0,∞) −→ [0,∞] such that (1.6) holds. Moreover

h(λ) :=
1

4λ/3
log M (4λ/3) ≤ hc(λ) ≤

1

2λ
log M (2λ) =: h(λ). (1.9)

As a consequence, the slope at the origin belongs to [2/3, 1], meaning by this that the

inferior limit of hc(λ)/λ as λ ↘ 0 is not smaller than 2/3 and the superior limit is not

larger than 1.

We stress that what we are proving in this note is essentially just the lower bound in
(1.9): the upper bound on the critical curve is a very minor modification of the arguments
in [3] . What we are going to show in the next two sections is that

{
(λ, h) : h ≥ h(λ)

}
⊂ D and {(λ, h) : h < h(λ)} ⊂ L, (1.10)

which is a restatement of (1.9) avoiding the issue of the existence of the critical curve
hc(·), defined implicitly in (1.6).
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1.2. On existence and properties of hc(·). The existence of the critical curve, along
with some properties, follows from (1.10) and convexity arguments. We outline them here.

First we change variables introducing F (λ, u) = f(λ, u/λ). Going back to (1.3) one sees
that F (·, ·) is a convex function. This implies in particular that the level set L0 := {(λ, u) :
F (λ, u)−u ≤ 0}, which coincides with {(λ, u) : F (λ, u)−u = 0}, is convex. Moreover one
directly verifies that F (λ, u)−u does not increase as u increases. If we add the immediate
fact that F (0, u) = 0 for every u we see that there exists a convex non decreasing function
uc : [0,∞) → [0,∞], with u(0) = 0, such that L0 = {(λ, u) : u ≥ uc(λ)}. Of course uc(·)
is continuous over [0, l), for some l ∈ (0,∞] (l > 0 because of (1.10)). If l is finite then
uc(λ) = ∞ for λ > l and if uc(l) <∞ then uc(·) is left–continuous in l.

We now go back to the original variables and we have that, for λ > 0, f(λ, h) = λh if
and only if h ≥ uc(λ)/λ. A look at (1.6) suffices to conclude that

hc(λ) =
uc(λ)

λ
, (1.11)

for every λ > 0. But of course hc(0) = 0 and, by (1.10), hc is continuous in zero.
Equation (1.11) is saying more on hc(·), in particular that it is continuous except,

possibly, for an infinite jump. Of course there is no jump whenever M(α) < ∞ for every
α, by (1.10).

The existence of the slope at the origin for hc(·) requires more sophisticated arguments,
but it can be shown by modifying the proof in [3] under more restrictive (but still rather
general) conditions on the law of ω1. This is beyond the purpose of this note.

1.3. The localization/delocalization transition. Besides proving (1.10), our aim is
to discuss various physical conjectures that appeared in the literature and to present, see
Section 4, a connection between the copolymer model and a special limit of a quenched
wetting model.

In the literature one can find a large number of papers on the copolymer near an

interface problem. We make here a very short and biased review, see [8] for a more
exhaustive survey. The problem has been set forth, at least in the terms that we are
stating here, in [9], where replica techniques are used to derive a phase diagram like the
one depicted in Figure 1. In [9] there is a hint to the possibility that h′c(0) = 1 and such
a viewpoint is taken up more seriously in [15]. However in [14] the value of 2/3 appears:
the analysis is still based on replicas and ω1 is standard Gaussian.

Monthus in [11] has applied to the copolymer model a general renormalization scheme
for one–dimensional disordered systems that has been first proposed by Fisher [7], in the
context of the quantum Ising model with transverse random magnetic field, and later
successfully applied to the random walk in random environment by Fisher, Le Doussal
and Monthus [10]. The sharp agreement between the results in [10] and several rigorous
results available for the random walk in random environment inspires confidence in the
method. As a matter of fact, in the context of diffusions in random environments, the
renormalization has been made rigorous by Cheliotis [4]. For the copolymer, the validity
of the scheme as proposed in [11] has not yet been justified. Nevertheless, Theorem 1.1
provides a partial justification by showing that the critical curve predicted by Monthus
coincides with the lower bound (1.9) (our proof strongly relies on her ideas).

Our attention on the slope at the origin h′c(0) is actually due to a very simple reason:
it is expected that such a quantity is largely model independent. This is connected to
the fact that at small coupling the typical length of the excursions, even in the localized
regime, are very long and this should allow replacing sum of random variables by Gaussian
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variables. Such a belief has been put forth by Bolthausen and den Hollander in [3], where
the model with the following free energy is introduced

f̃(λ, h) = lim
t→∞

1

t
log Ẽ

[
exp

(
λ

∫ t

0
sign (B(s)) ( dβ(s) + hds)

)]
, (1.12)

where B = {B(t)}t and {β(t)}t are two independent standard Brownian motions, of law

respectively P̃ and P̃ and the limit in (1.12) is meant in the P̃( dβ) sense. A very relevant

property of f̃ is that it satisfies a scale invariance, inherited from the Brownian scale
invariance:

1

a2
f̃(λa, ha) = f̃(λ, h), for every a > 0. (1.13)

In addition f̃ enjoys very much the same properties as f , in particular one can show

without much effort that f̃(λ, h) ≥ λh and therefore one can partition the phase space,
into a delocalized and localized region, exactly in the same way as for the discrete model.

Along with that one shows also that there exists h̃c : [0,∞) → [0,∞) whose graph separates
the delocalized region (above) from the localized region (below). It is then immediate to

extract from (1.13) that there exists a non negative constant mc such that h̃c(λ) = mcλ.

The notation mc for the slope of h̃c(·) has not been chosen carelessly: it does coincide
with the constant appearing in (1.8) and therefore with the slope at the origin of hc. This
is the main result proven in [3]. It has been proven only for a particular choice of S and
ω. However the (rather involved and delicate) proof, essentially based on repeated use
of (Local) Central Limit arguments, suggests that it should be a very general statement
and, as a matter of fact, as we already remarked is not difficult to generalize it to a wider
class of ω’s. Further generalizations are more delicate and they are under investigation [F.
Caravenna, work in progress]: one possibly expects (1.8) to hold whenever the increments
of S and the sequence ω are in the domain of attraction of the Central Limit Theorem
and, apart for the existence of suitable exponential moments that is unavoidable, the only
expected extra requirement is var (ω1) = 1. If var (ω1) 6= 1, but of course non zero, the
Brownian model has to be modified in an obvious way so that the results may be mapped
back to the var (ω1) = 1 by scaling.

2. Free energy estimates

As we already remarked in § 1.2, Theorem 1.1 boils down to check (1.10), namely that
that f(λ, h) = λh for h ≥ h(λ) and f(λ, h) > λh for h < h(λ).

2.1. Upper bounds on the free energy. It is immediate to see that a direct application

of the quenched to annealed bound, that is E logZλ,h
N,ω 6 log EZλ,h

N,ω does not help to

establish delocalization, since one gets f(λ, h) 6 log M(λ) + λh. One way to produce
performing quenched to annealed estimates is to modify the model in a way that the
quenched free energy does not change, while the annealed free energy does. We observe
then that

f(λ, h) − λh = lim
N→∞

1

N
E

[
log E

(
exp

(
λ

N∑

n=1

(ωn + h) (sign(Sn) − 1)

))]
, (2.1)

which is an immediate consequence of the existence of the free energy in the L1 sense and
that E (ω1) = 0. Apply Jensen inequality and the Fubini–Tonelli theorem at this stage to
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get

f(λ, h) − λh 6 lim inf
N→∞

1

N
log E

[
N∏

n=1

exp ψ̃ (λ (sign(Sn) − 1))

]
, (2.2)

with ψ̃(r) = log M(r) + hr. But sign(Sn) − 1 takes only the values 0 and −2 so that

ψ̃ (λ(sign(Sn) − 1)) 6 0 if h > log M(2λ)/2λ. We have therefore proven the upper bound
in (1.9). �(Upper Bound in(1.10))

Remark 2.1. It is worth pointing out here that this way of establishing free energy upper
bounds dates back to Morita [12] and it actually corresponds to the first order Morita’s
approximation, based on the fact that one adds to the Hamiltonian terms of the type
γ
∑N

n=1 ωn, γ ∈ R, viewed as a Lagrance multiplier inserted to constrain the average of ω
to be zero also in the annealed context.

2.2. Lower bounds on the free energy. It is widely believed (e.g. [9], [11], [14], [15])
that the transition is of order larger than one, which implies that the length of the polymer
excursions diverges approaching the critical curve from inside L. Deriving a lower bound
on the free energy boils down to guess the typical behavior of the polymer close to the
critical curve: a precise control on the free energy would require the proper scaling of
the excursions. Below we present two localization strategies which lead to different lower
bounds.

We start with the rigorous procedure adopted by Bolthausen and den Hollander in [3].
They essentially prove that for small values of λ there is some c > 0 such that

f(λ, 0) ≥ cλ2, (2.3)

and from this it is extracted in a rather straightforward way that f(λ, ελ) ≥ cλ2/2 for ε
sufficiently small, which entails immediately h′c(0) > 0. The bound (2.3) follows from a
relatively accurate entropy/energy argument, carried out via a suitable entropy inequality
with which they compare the polymer measure with the measure of an homogeneous walk
with a constant drift toward zero. Such a walk is finitely recurrent with typical excursion
length of order 1/λ2. The disordered (sum of ω’s) inside a typical excursion is of the
order of 1/λ, by the Central Limit Theorem: the fact that such an energetic contribution
does not have a definite sign actually causes no problem since with probability 1/2 the
sign of the walk in the excursion matches the sign of the energy. The estimate therefore
boils down to comparing the energetic gain with the entropy cost for having changed the
underlying walk.

The key points of such an approach are that it exploits the typical fluctuations of the
disorder and that it keeps much of the entropy of the original walk (as a matter of fact,
no random walk trajectory is neglected). However such a localization strategy is uniform
in space and does not take into account the inhomogeneous character of ω.

Monthus [11] proposes instead an inhomogeneous localization strategy based on an
Imry-Ma type argument. Moreover the key estimates are provided by large deviations
of the disorder and not by the fluctuations. We outline now the Monthus localization
strategy with our notations and organizing the argument in such a way that it can be
exploited later in the proof of Proposition 3.1.

Let us restart from the idea that the phase transition is of order larger than the first, so
that then f ∈ C1 and therefore the expected empirical average of the number of excursions
must be o(N) (immediate consequence of the fact that ∂f(λ, h)/∂h = λ on the critical
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line). In other words the expected average size of the excursions must diverge approaching
the critical line from inside the localized region L. Therefore in L, but close to the critical
line, it is reasonable to expect that the typical configurations of the polymer are constituted
by very long excursions in the upper half–plane with occasional, mostly short, excursions
to the negative half–plane. These short negative excursions most probably correspond to
atypical (and therefore rare) stretches in ω. Let us therefore consider one of these short
excursions, without being too fussy with definitions: it will be surrounded by two long
positive excursions, see Figure 2. We call QL, respectively QR, the sum of the ωn’s in the
left positive excursion, respectively in the right positive excursion. We call instead Q the
sum of the ωn’s in the middle excursion. The length of the three excursions are, in order,
`L, ` and `R. Notice that there are many more polymer trajectories that stay positive on
the whole stretch `L + ` + `R, than trajectories that change sign in the middle interval.
Therefore, unless an atypical stretch of ωn’s corresponds to the negative excursion, there
would be no compelling reason for the polymer to visit the negative half plane (that would
entail an energy loss of about 2λ`h on top of the entropy cost). However (arbitrarily large)
atypical ω–stretches do exist, in particular with ω̃n = ωn + h and q < h (but we have in
mind q < 0)

P

(
∑̀

n=1

ω̃n < q`

)
� exp (−`Σh(q)) , (2.4)

as ` tends to infinity (� denotes the asymptotic equivalence of the logarithms of both
sides). Σh(·) is the Large Deviations functional (or Cramer functional) for sums of IID
random variables. It is well-known [5] that it can be expressed as the Legendre (or Fenchel–
Legendre) transform of the logarithmic moment generating function of ω̃1:

Σh(q) = sup
x∈R

(
xq − log E [exp (xω̃1)]

)
= sup

x>0

(
x(h− q) − log M(x)

)
. (2.5)

We remind that Σh(·) is a convex function, which is possibly unbounded outside an interval.

`L � exp(`Σh(q)) `R � exp(`Σh(q))`

Figure 2. The Monthus argument identifies L as the region of parameters for which
the configuration configuration switch is unfavorable on the base of an energy–entropy
comparison, with the ` interval selected because of its atypical property that the empirical
average of the eω variables is about q.

In view of (2.4), a rare `–stretch, with charge Q = `q, will happen approximately every
exp (`Σh(q)) monomers. Therefore both `L and `R are of this order and so log `L(R) ≈
`Σh(q).

At this point we are in the position to compare the two configurations in Figure 2 via
energy and entropy estimations: the free energy contribution of configurations making a
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negative excursion in correspondence of the atypical ω–stretch is

λ (QL +QR −Q) −
3

2
log `L −

3

2
log `R −

3

2
log `, (2.6)

in which of course we used the asymptotic of the probability of returns of the walk. On the
other hand the free energy contribution of configurations making no negative excursion in
the stretch of length `L + `+ `R is

λ (QL +QR +Q) −
3

2
log (`L + `+ `R) . (2.7)

Notice that if Q ≈ `q the difference of these two expressions is, to leading order in `→ ∞,
equal to

∆f := 2λ|q|`−
3

2
`Σh(q). (2.8)

In view of the steps we have outlined it seems reasonable to tune the quantity q in
order to find the most favorable negative excursions: this amounts to maximizing ∆f
with respect to q. According to this, the localization should be characterized by the rule

sup
q>0

(
4

3
λq − Σh(−q)

)
> 0. (2.9)

Since λ ≥ 0, this condition does not change if the supremum is taken for q ∈ R. Therefore
the expression in the right–hand side of (2.9) is the Legendre transform of Σh(·), computed
at −4λ/3. So that, by (2.5) and by the duality property of the Legendre transform (see
e.g. [5, §4.5.2]), the expression in the left–hand side of (2.9) is the logarithmic moment
generating function of ω̃1 computed in −4λ/3. In other words, the localization condition
(2.9) is equivalent to

log E [exp (−4λω̃1/3)] = log M(4λ/3) − (4λh/3) > 0, (2.10)

which is exactly h < h(λ).

We conclude this section by commenting on the Imry–Ma argument we have just out-
lined. First we recall that the lower bound h(λ) coincides with Monthus prediction of the
critical curve. Moreover the Imry–Ma argument is just the first step in [11], namely the
step that sets the parameters for the Fisher renormalization model that is supposed to
catch the essential features of copolymers close to criticality. We have not been able to
prove whether this Imry–Ma argument catches or not the correct behavior of the polymer
and whether it predicts the right expression for the critical curve. Nevertheless we should
point out that the renormalization group strategy does not apply when h = 0: the rig-
orous result (2.3) is in contradiction with the results in [11]. By accepting the Imry–Ma
argument one is implicitly considering only a very small subset of trajectories, while the
first localization strategy [3] that we have considered accounts for all the trajectories and
in this way it catches the contribution of fluctuations in a much more efficient way, in fact
optimal, in the sense that f(λ, 0) is of the order of λ2 for λ small (the upper bound follows
immediately from an annealed estimate).

3. A lower bound on the critical curve

We now elaborate on the ideas presented in §2.2 to show

Proposition 3.1. h(λ) ≤ hc(λ) for every λ ≥ 0.
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Proof. As we are looking for a lower bound on ZN,ω, we are entitled to restrict the
expectation defining ZN,ω to a suitable set of trajectories. We choose a large even number

`, we assume for ease of exposition that N/` ∈ N and we set Qj(ω) =
∑(j+1)`

n=j`+1 (ωn + h).

Of course {Qj}j=0,...,(N/`)−1 is a family of IID variables. We set also

Yj = 1{Qj≤−q`}, (3.1)

where q is the q for which the expression in (2.9) achieves the maximum. By Cramer’s
theorem as ` tends to infinity

pY := P (Y1 = 1) � exp (−`Σh(−q)) . (3.2)

Given ω we consider the random set of indexes A(ω) = {j ∈ {1, . . . , (N/`)−1} : Yj = 1}
and the random set G`,N (ω) of trajectories {Sn}n=1,...,N such that for n ∈ {1, 2, . . . , N}

• Sn = 0 if and only if either n/` or (n/`) − 1 are in A;
• Sn < 0 if and only if bn/`c ∈ A (b·c denotes the integer part of ·).

We set ι(ω) = max{j ∈ N : j` ≤ N and Yj−1(ω) 6= Yj(ω)}, with ι(ω) = 0 if the set is
empty.

0

Sn

`

N
n

Figure 3. The lower bound strategy is obtained by restricting to polymer trajectories
that make negative excursions only in correspondence of rare stretches (four in the figure)
of ` monomers.

We introduce also

fN,ω(λ, h) :=
1

N
log E

[
exp

(
λ

N∑

n=1

(ωn + h) sign (Sn)

)]
−
λ

N

N∑

n=1

(ωn + h) . (3.3)

By the law of large numbers the second term in the right–hand side converges P( dω)–a.s.
to λh and so fN,ω(λ, h) converges in the same sense to f(λ, h) − λh. We have

fN,ω(λ, h) ≥
1

N
log E

[
exp

(
λ

N∑

n=1

(ωn + h) sign (Sn)

)
; G`,N (ω)

]
−
λ

N

N∑

n=1

(ωn + h)

≥
2λ

N
|A(ω)|`q +

1

N
log P (G`,N (ω)) ,

(3.4)

where the notation | · | denotes the cardinality of the set · and we have used the fact
that the Boltzmann weight takes a constant value on G`,N (ω) and this value differs from

λ
∑N

n=1 (ωn + h) only for the contribution of the negative excursions. Let us evaluate
the probability term: we denote by K(2n) the probability that the simple random walk,
starting from S0 = 0, stays positive for 2n − 1 steps and comes back to zero at the 2nth
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step: it is well known [6, Ch. III] that logK(2n) = −(3/2) log n + O(1) for n large.
Therefore

1

N
log P (G`,N (ω)) =

|A(ω)|

N
logK (`) +

1

N

|A(ω)|∑

k=1

logK (Vk`)

+
1

N
log P (Sn > 0, n = 1, 2, . . . , N − `ι(ω)) , (3.5)

where the variables {Vk(ω)}k=1,2,...,|A(ω)| count how many groups of ` sites are inside each
of the |A(ω)| excursions in the upper half–plane (in Figure 3 we have |A| = 4 and V1 = 7,
V2 = 7, V3 = 4 and V4 = 7). The term containing the variable ι(ω) accounts for the last
excursion of the polymer: note immediately that the term containing ι(ω) is non positive
and bounded below by a term which is O((logN)/N) and therefore it is irrelevant in the
limit of N → ∞. In order to evaluate the other two terms it is convenient to introduce
{Vk(ω)}k∈N, defined by letting the S–chain run indefinitely, which is an IID sequence of
geometric random variables of parameter pY . By the law of large numbers one has

lim
N→∞

|A(ω)|

N
=
pY

`
, P( dω)–a.s.. (3.6)

Furthermore from the asymptotics of K there exists c > 0 such that
∣∣∣∣∣∣
1

N

|A(ω)|∑

k=1

logK (Vk`) +
|A(ω)|

N

3

2|A(ω)|

|A(ω)|∑

k=1

log (Vk`)

∣∣∣∣∣∣
≤ c

|A(ω)|

N
, (3.7)

for every `, N and ω. From Jensen inequality, we get

−
3

2|A(ω)|

|A(ω)|∑

k=1

log (Vk`) > −
3

2
log


 1

|A(ω)|

|A(ω)|∑

k=1

Vk`


 > −

3

2
log

(
N

|A(ω)|

)
. (3.8)

Combining the previous inequalities with (3.6), we see that P( dω)–a.s.

lim
N→∞

1

N
log P (G`,N (ω)) > pY

(
3

2
log(pY ) −

3

2
log `− 2c

)
. (3.9)

We are now ready to go back to (3.4). By the asymptotics (3.2), we obtain for large `

f(λ, h) − λh ≥ pY `

(
2λq −

3

2
Σh (−q) + o(1)

)
. (3.10)

We have already observed, recall (2.8)–(2.10), that if h < h(λ) then the non vanishing
term inside the parentheses in the right–hand side of (3.10) is positive (for some ` large
enough). Therefore f(λ, h) − λh > 0 and the proof is complete. �

4. A link with wetting phenomena

4.1. Diluted disordered wetting. The proof of Proposition 3.1 suggests a simplified
model in which it might be easier to establish free energy upper bounds and test the
validity of the approach in [11]. Consider the model

dP+,β
N,ξ

dP+
N

(S) =
1

Z+,β
N,ξ

exp

(
β

N∑

n=1

ξn 1{Sn=0}

)
, (4.1)
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where β ≥ 0, ξ = {ξn}n∈N is an IID sequence of variables taking values either 0 or 1 with

P(ξ1 = 1) = p and P+
N ( · ) = P

(
· |Ω̃+

N

)
, with

Ω̃+
N = {S : Sn ≥ 0 for n = 1, 2, . . . , N} . (4.2)

P+,β
N,ξ is of course a wetting model with random liquid–substrate interaction (for the vast

literature on wetting models we refer to the references in [8]). We will consider it in the
quenched setting and introduce the free energy

f(β, p) = lim
N→∞

1

N
logZ+,β

N,ξ , (4.3)

where the limit has to be understood in the P( dξ)–a.s. sense or in the corresponding
L1–sense. The existence of such a limit, as well as the self–averaging property, can be
established by any of the methods in [8, Ch. 2]. Moreover by mimicking (1.5) one imme-
diately sees that f(β, p) ≥ 0. Thus, it is natural to talk about the delocalized phase space
region as the subset of values (β, p) in [0,∞) × [0, 1] such that f(β, p) = 0. The localized
region is defined as the complementary set.

Another elementary observation is that f(β, ·) in non decreasing: this is an immediate
consequence of a coupling argument for ξ sequences with different values of p (of course
f(·, p) is also non decreasing). This implies that there exists pc(β) such that the delocalized
region is characterized by p ≤ pc(β), and the localized region by p > pc(β).

It turns out that pc(β) tends to zero as β tends to infinity. In fact performing the
annealed bound (Jensen’s inequality and Fubini–Tonelli’s Theorem) we obtain

E

[
1

N
logZ+,β

N,ξ

]
≤

1

N
log EZ+,β

N,ξ =
1

N
log E+

N

[
exp

(
β̃

N∑

n=1

1{Sn=0}

)]
, (4.4)

with β̃ = log (p exp(β) + (1 − p)). Take the limit N → ∞ in (4.4) to obtained that f(β, p)
is bounded above by the free energy of a standard (i.e. non disordered) wetting model

at inverse temperature β̃. The latter is an exactly solvable model [8] and one knows that

such a model is delocalized, i.e. its free energy is zero, if β̃ ≤ log 2. This immediately
implies in particular that

− lim inf
β→∞

1

β
log pc(β) ≤ 1. (4.5)

Notice that for such a limit the value log 2 of the critical β̃ is irrelevant: it suffices to know

that there exists a positive critical β̃ and our argument applies therefore to more general
random walk models, in particular to any symmetric non trivial walk with independent
increments and jumps in {−1, 0, 1}.

By repeating the strategy of the proof of Proposition 3.1, that is by restricting the
evaluation of the free energy to S–trajectories that visit every single site n such that ξn
(of course n must be even), one immediately gets

− lim sup
β→∞

1

β
log pc(β) ≥ 2/3. (4.6)

Needless to say, we are facing the same difficulty that we have been facing for the copolymer
model of the first three sections.

Remark 4.1. It is natural to ask whether clarifying the exponential asymptotics of pc(β)
gives more than just a suggestion on the value of mc, recall (1.8). The answer is: any
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lower bound one can get on the quantity in the left–hand side of (4.6) is a lower bound
on mc.

4.2. Comparison of strategies. In the light of the simplified model we just introduced,
it is worth rethinking the copolymer localization strategies discussed in Section 2. It should
be clear that such a reduced model has been built on the following belief: the charges (ω)
drive the copolymer in the sense that the copolymer has no choice but visiting the lower
half–plane only in correspondence of atypical stretches in the environment. However this
may happen in a variety of different ways: for our lower bound we have chosen a fixed
large scale `, but one should in principle consider all scales at the same time. In this sense
the reduced model may appear to be a poor reduction of the copolymer model, since it
has only one scale (β → ∞ corresponds to looking at p of the order of exp(−mβ), m > 0).
In reality the reduced model has a hidden multi-scale structure that is very close to the
one of the original model: if for β large we are going to observe charges (we say that there
is a charge in n if ξn = 1) at typical distance 1/p ≈ exp(mβ), somewhat atypical events of
clumps of charges do happen with positive density along the chain. To these clumps the
procedure outlined in Figure 2 does not apply directly: in the renormalization language,
one can deal with these clumps only after several renormalization steps. In order to show
that one can replace 1 with 2/3 in (4.5) one has (directly or indirectly) to show that, in
spite of the enormous variety of clumps of charges that we are going to observe along the
infinite chain, these clumps cannot ally in a fancy way that is not caught by the scheme
in Figure 2.
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