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Abstract. In this paper we study the existence and geometric properties of an optimal

configuration to a nonlinear optimization problem in heat conduction. The quantity to
be minimized is

R
∂D Γ(x, uµ)dσ, where D is a fixed domain. A nonconstant temper-

ature distribution is prescribed on ∂D and a volume constraint on the set where the

temperature is positive is imposed. Among other regularity properties of an optimal
configuration, we prove analyticity of the free boundary.

1. Introduction

In this paper we study a classical optimization problem in heat conduction, which may
briefly be described as follows: given a surface ∂D in Rn, and a positive function ϕ defined
on it (the temperature distribution), we want to surround ∂D with a prescribed volume of
insulating material so as to minimize the loss of heat in a stationary situation.

Mathematically speaking, we want to find a function u, which corresponds to the tem-
perature in DC . The function u is harmonic whenever it is positive and the volume of the
support of u is equal to 1. The quantity to be minimized, the flow of heat, is a continuous
family of convex function of uµ along ∂D.

Our paper was motivated by a series of remarkable papers [1], [2] and [3]. The first two
articles study the constant temperature distribution, i.e., ϕ ≡ C on ∂D. All of them treated
the linear case, i.e, Γ(x, t) = t. The linear setting allows, in [1] and [2], to reduce the quantity
to be minimized to the Dirichlet integral. Even in the linear case the nonconstant temper-
ature distribution, problem studied in [3], presents several new difficulties. The ultimate
goal of this article is to study the nonlinear case with nonconstant temperature distribution.
The nonlinearity treated in this article has physical importance: problems with a monotone
operator like the type we study in this paper arise in questions of domain optimization for
electrostatic configurations.

The nonlinearity over uµ presents several new difficulties as well. For instance, even to
provide a reasonable mathematical model, one faces the problem that it does not make sense
to compute normal derivatives of H1-functions. In [3], this problem could be overcame by
reducing the quantity to be minimized to the total mass of ∆u. The later quantity can be
thought as a nonnegative measure, whenever u is subharmonic. In the case studied here,
there is no integral representation for

∫
∂D

Γ(x, uµ)dσ. To grapple with this difficulty one
has to be careful in balancing the correct regularity of the constraint set; otherwise, classical
functional analysis methods might not work anymore. Typical arguments used in [2] such
as, changing the minimizer in a small ball by a harmonic function with boundary data equal
to u, is not conclusive anymore. Indeed near ∂D, u and the new function agree; therefore,
they have the same normal derivative. To overcome this difficulty, we solve suitable auxiliary
obstacle problems and compare them with the minimizer. Moreover we also inherit all the
difficulties intrinsic to the nonconstant temperature distribution. These difficulties appear
in the results concerning fine regularity results of the free boundary. As noticed in [3], this
is due to the fact that the free boundary condition has a nonlocal character. Inspired by the
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approach used in [3], we overcome such problems by making use of the powerful results on
the behavior of harmonic functions in non-tangentially accessible domains provided in [7].

Our paper is organized as follows: in Section 2 we present the physical problem we are
concerned with. Afterwards, we formulate a penalized version of the variational problem for
the temperature u. As part of our strategy we define suitable constraint sets. These will be
fundamental to overcome some difficulties caused by the nonlinearity. For instance, we shall
initially solve the optimization problem over a weakly closed subset of H1 (the sets Vδ). Un-
like in [3], we shall need to establish all the optimal regularity properties of the minimizers
of these auxiliary problems, i.e. Lipschitz regularity, to be able to prove the existence of a
optimal configuration of the original penalized problem. This is the content of Section 3.
Some basic geometric-measure properties of the optimal configuration such as: linear growth
from the free boundary and uniformly positive density, are contained in Section 4. These
geometric-measure properties allows us to establish a representation theorem in the sense of
[2]. Such a representation theorem turns out to be the right starting point to the journey
of proving fine regularity results to the free boundary. Section 5 is reserved for the optimal
regularity of the free boundary. We initially show the normal derivative of the minimizer
over the free boundary is a Hölder continuous function. This allows us to conclude the free
boundary is a C1,α surface. Furthermore, using the free boundary condition found in the
proof of Hölder continuity of the normal derivative, we shall conclude that the free boundary
is an analytic surface, up to a small singular set. In the last section we recover the original
physical problem from the penalized problem. The strategy here is to show that for ε small
enough, the volume of {uε > 0} automatically adjusts to be 1.

2. Statement of the physical problem

In this section we shall state the physical problem we are interested in. Afterwards, we
will present a penalized version of the original problem, which turns out to be more suitable
from the mathematical point of view. In the last section we shall recover the initial problem
from its penalized version. The (real) problem we are concerned with is:

Let D ⊂ Rn be a given smooth bounded domain and ϕ : ∂D → R+ a positive continuous
function. For each domain Ω surrounding D such that

Vol.(Ω \D) = 1,

we solve the problem  ∆u = 0 in Ω \D
u = ϕ on ∂D
u = 0 on ∂Ω

and compute

J(Ω) :=
∫

∂D

Γ(x, uµ(x))dσ,

where µ is the inward normal vector defined on ∂D and Γ: ∂D × R → R satisfies:
(1) For each x ∈ ∂D fixed, Γ(x, ·) is convex and

lim
t→+∞

∫
∂D

Γ(x, t)dσ(x) = +∞,

(2) For each x ∈ ∂D fixed ∂tΓ(x, t) > 0 is nondecreasing in t,
(3) For each t ∈ R fixed, ∂tΓ(·, t) is continuous,

(4) If Γ(x0, t0) = 0 then Γ(y, t0) = 0 ∀y ∈ ∂D, otherwise,
Γ(y, t)
Γ(x, t)

≤ L, for a universal

constant L > 0.
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Remark 2.1. Notice that if we define h0 to be the harmonic function in DC taking boundary
values equal to ϕ on ∂D and lim

|x|→∞
h0(x) = 0 (see Lemma 3.4), and c0 := inf

∂D
(h0)µ, the

nonlinearity Γ has only to fulfill the above conditions on ∂D × (c0,+∞). It follows from
the Hopf Lemma that, in the constant temperature distribution, c0 > 0. In such a case, the
natural nonlinearity to consider is Γ(t) = tp, for p ≥ 1. Typical nonlinearities in a general
case is of the form Γ(x, t) = ψ(x)γ(t), where ψ is a positive continuous map and γ is a
coercive and convex function fulfilling condition 2.

Our goal is to study the existence and geometric properties of an optimal configuration
related to the functional J . In other words, our purpose is to study the problem:

(2.1) minimize

 J(u) :=
∫

∂D

Γ(x, uµ(x))dσ : u : DC → R, u = ϕ on ∂D,

∆u = 0 in {u > 0} and Vol.(supp u) = 1


2.1. The Penalized Problem. Instead of working directly on problem (2.1) we shall study
a penalized version of it. This grapples with the difficulty of volume constraint. Our first
step toward the right mathematical statement of the penalized problem is to find a suitable
(metric) space to look for minimizers.

Definition 2.2. Let δ > 0 be a fixed small positive number. We shall denote by Dδ :=
{x ∈ DC : dist(x, ∂D) < δ}. We define

Vδ :=
{
u ∈ H1(DC) : u ≥ 0, ∆u ≥ 0, ∆u = 0 in Dδ, and u = ϕ on ∂D

}
.

We then define
V :=

⋃
δ↘0

Vδ.

The penalized problem is stated as follows: Let ε > 0 be fixed. We consider the function

fε :=

{
1 +

1
ε
(t− 1) if t ≥ 1

1 + ε(t− 1) otherwise.

We shall be interested in minimizing

(2.2) Jε(u) :=
∫

∂D

Γ(x, uµ(x))dσ + fε

(
|{u > 0}|

)
,

among V .
Notice that u is harmonic near ∂D; therefore it makes complete sense to compute normal

derivative of functions in V .

3. Existence of a solution to the penalized problem

In this section we shall find a minimizer for the problem (2.2). The strategy is to study,
for each δ > 0 fixed, the minimizing problem

(3.1) minimize Jε(u) over Vδ.

Afterwards we shall pass the limit as δ goes to zero. The limiting function will be a minimizer
for problem (2.2). In the end of this section we shall not only guarantee the existence of
a minimizer but also show the minimizer uε is a Lipschitz function. This is the most one
should hope, since ∇uε jumps among ∂{u = 0}.

Lemma 3.1. Vδ is a weakly closed set of H1(DC).

Proof. Let un ⇀ u in the H1-sense. We might suppose, up to a subsequence, that
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(1) ∇un ⇀ ∇u in [L2(DC)]n.
(2) un(x) → u(x) for almost every point x ∈ DC .

First of all, u ≥ 0 and u ≡ ϕ on ∂D in the sense of trace. Indeed, the former is due to the
a.e. convergence. The latter is justified as follows: Let T : H1(DC) → L2(∂D) be the trace
map. We have

u− ϕ = T (u− un) ⇀ 0, as n→∞,

since T is a continuous linear map. Let ψ ∈ C∞0 (DC ,R+) be fixed. We compute∫
DC

u∆ψ = −
∫

DC

∇u∇ψ = − lim
n→∞

∫
DC

∇un∇ψ ≥ 0.

This proves u is subharmonic. Furthermore a same computation as above, for ψ ∈ C∞0 (Dδ),
yields ∆u = 0 in Dδ. This finishes the proof. �

We recall that for each u ∈ Vδ, ∆u is a positive Radon measure supported in DC
δ .

Lemma 3.2. For each u ∈ Vδ, there holds∫
DC

∆udx =
∫

∂D

uµdσ.

Proof. Let Dk := {x ∈ DC : dist(x, ∂D) < 1/k}. We build ξk ∈ C∞(DC) such that

ξk ≡ 1 in DC
k

ξk ≡ 0 on ∂D

Let u ∈ Vδ be fixed and k be large enough such that 1/k < δ. We compute∫
DC

∇ξk∇u =
∫

Dk

∇ξk∇u =
∫

Dk

∇ξk∇u+ ξk∆u

=
∫

∂Dk

uηdA(Dk).

Finally,

lim
k→∞

∫
DC

∇ξk∇u =
∫

DC

∆udx = lim
k→∞

∫
∂Dk

uηdA(Dk) =
∫

∂D

uµdσ.

�

Lemma 3.3. The functional Jε is lower semicontinuous with respect to the H1 weak con-
vergence.

Proof. Let {un}∞n=1 ⊂ Vδ be such that un ⇀ u in H1(DC). We first deal with

J(v) =
∫

∂D

Γ(x, uµ)dσ.

Consider for the moment the functional

Φ(v) =
∫

∂D

φ(x, uµ)dσ,

where φ(x, ξ) = max
1≤j≤m

(aj(x)|ξ| + bj(x)), ∀ξ ∈ R. We denote by Aj := {x ∈ ∂D :

φ(x, uµ(x)) = aj(x)uµ(x) + bj(x)}. Then ∂D =
m⋃

j=1

Aj , and we may assume that this

union is disjoint. Moreover, due to the weak convergence assumed, we have that ∆un ⇀ ∆u
in H−1. Therefore∫

∂D

uµdσ =
∫

DC

∆udx ≤ lim inf
n→∞

∫
DC

∆undx = lim inf
n→∞

∫
∂D

(un)µdσ
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We compute

Φ(u) =
∫

∂D

φ(uµ)dσ =
m∑

j=1

∫
Γj

aj(x)uµ + bj(x)dσ

≤ lim inf
n→∞

m∑
j=1

∫
Γj

aj(x)(un)µ + bj(x)dσ

≤ lim inf
n→∞

m∑
j=1

∫
Γj

φ((un)µ)dσ

= lim inf
n→∞

Φ(un).

In the general case, since Γ(x, ·) is convex for each x ∈ ∂D, Γ(x, ξ) = lim
k→∞

φk(x, ξ) where

φk(x, ξ) = max
1≤j≤k

(aj(x)|ξ| + bj(x)). Finally the weak lower semicontinuity of Φ follows by

applying the monotone convergence Theorem.
The weak lower semicontinuity of fε

(
|{u > 0}|

)
follows easily by the general fact that,

up to a subsequence, un → u a.e and then

|{u > 0}| ≤ lim inf
n→∞

|{un > 0}|.

To finish, we observe that fε is a increasing continuous function, therefore

fε

(
|{u > 0}|

)
≤ fε

(
lim inf
n→∞

|{un > 0}|
)

= lim inf
n→∞

fε

(
|{un > 0}|

)
.

�

Lemma 3.4. Let h0 be the harmonic function in DC taking boundary values equal to ϕ on
∂D and lim

|x|→∞
h0(x) = 0 and u ∈ Vδ be fixed. Then∫

DC

|∇u|2dx ≤
∫

DC

|∇h0|2dx+ max
∂D

ϕ

∫
∂D

uµdσ.

Proof. Easily we check that∫
DC

∇u∇(u− h0) =
∫

DC

(h0 − u)∆u

and that ∫
DC

∇h0 · ∇(h0 − u) = 0.

Moreover, by the maximum principle we know 0 ≤ u ≤ h0 ≤ max
∂D

. Hence,∫
DC

|∇u|2dx =
∫

DC

∇u∇h0dx+
∫

DC

(h0 − u)∆udx

=
∫

DC

|∇h0|2dx+
∫

DC

(h0 − u)∆udx

≤
∫

DC

|∇h0|2dx+ max
∂D

ϕ

∫
DC

∆udx.

=
∫

DC

|∇h0|2dx+ max
∂D

ϕ

∫
∂D

uµdσ,

by Lemma 3.2. This finishes the proof. �
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Theorem 3.5. There exists a minimizer uδ
ε ∈ Vδ for Jε over Vδ.

Proof. Let {un}∞n=1 ⊂ Vδ be a minimizing sequence. Let us denote by α := Hn−1(∂D) and
M = max

∂D
ϕ. From Lemma 3.4, there holds

1
2Mα

∫
DC

|∇un|2dx ≤
1

2Mα

∫
DC

|∇h0|2dx+
1
2α

∫
∂D

(un)µdσ.

Thus, from the fact that Γ(y, ·) is increasing and convex for each y ∈ ∂D, we obtain

2 Γ
(
y,

1
2Mα

∫
DC

|∇un|2dx
)

≤ Γ
(
y,

1
α

∫
DC

|∇h0|2dx
)

+ Γ
(
y,

∫
∂D

(un)µ
dσ

α

)
≤ Γ

(
y,

1
α

∫
DC

|∇h0|2dx
)

+
1
α

∫
∂D

Γ
(
y, (un)µ(x)

)
dσ(x).

The last inequality follows from Jensen’s inequality. We now integrate the above inequality
with respect to y and get:

(3.2)

2
∫

∂D

Γ
(
y,

1
2Mα

∫
DC

|∇un|2dx
)
dσ(y)

≤
∫

∂D

Γ
(
y,

1
α

∫
DC

|∇h0|2dx
)
dσ(y) +

1
α

∫
∂D

∫
∂D

Γ
(
y, (un)µ(x)

)
dσ(y)dσ(x)

≤
∫

∂D

Γ
(
y,

1
α

∫
DC

|∇h0|2dx
)
dσ(y) + L

∫
∂D

Γ
(
x, (un)µ(x)

)
dσ(x)

The above together with the coercivity of the map t 7→
∫

∂D
Γ(y, t)dσ(y) implies ‖∇un‖L2(DC)

is bounded. Lemma 3.1 and Lemma 3.3 complete the proof. �

Now we turn our attention to the minimizing problem (2.2). The idea is to pass from the
minimizers of (3.1) to a minimizer of (2.2). In what follows we shall need some lemmas.

Lemma 3.6. For each w ∈ Vδ,
∫

DC w∆w is meaningful and there holds∫
DC

(
w∆w + |∇w|2

)
dx =

∫
∂D

ϕwµdσ.

Proof. For any compact set Ξ of DC , it follows from the mean value theorem that w can be
approximated by a decreasing sequence of smooth functions and therefore uniformly in Ξ.
Hence

∫
Ξ
w∆w has a meaning. Let ξk be like in Lemma 3.2. We have that∫

DC

ξkw∆w = −
∫

DC

∇(ξkw)∇w.

and ∫
DC

∇(ξkw)∇w =
∫

DC
k

∇(ξkw)∇w +
∫

Dk

∇(ξkw)∇w



A NONLINEAR OPTIMIZATION PROBLEM IN HEAT CONDUCTION 7

If k is big enough such that 1/k < δ, we find∫
Dk

∇(ξkw)∇w =
∫

Dk

∇(ξkw)∇w + ξkw∆w

=
∫

∂Dk

w · wηdA(Dk)

k→∞−→ −
∫

∂D

wµdσ.

Furthermore, ∫
DC

k

∇(ξkw)∇w k→∞−→
∫

DC

|∇w|2.

This finishes the proof. �

Lemma 3.7 (An auxiliary obstacle problem). Let u = uδ
ε be a minimizer of problem (3.1)

and B a ball in DC . Then there exists a unique v ∈ H1(DC) minimizing the energy func-
tional ∫

DC

|∇v|2dx,

such that v = ϕ on ∂D and v = 0 in u−1(0) \B. Such a function satisfies

(1) v ∈ Vδ,
(2) 0 ≤ u ≤ v ≤ sup

∂D
ϕ.

(3)
∫

DC

v∆v = 0.

Proof. Let K := {w ∈ H1(DC) : w = ϕ on ∂D and w ≤ 0 in u−1(0)\B}. One easily verifies
that K is a closed convex subset of H1(DC). The energy functional is strictly convex and
by the Poincaré inequality it is coercive over K. This implies there exists a unique minimal
energy point v ∈ K. Moreover its variational characterization is:

(3.3)
∫

DC

∇(0− v) · ∇(w − v)dx ≤ 0 ∀w ∈ K.

For every ζ ∈ H1
0 (DC ,R+), we have that v − ζ ∈ K, so inequality (3.3) says that∫

DC

∇v · ∇ζdx ≤ 0 ∀ζ ∈ H1
0 (DC ,R+).

It means ∆v ≥ 0 in the sense of distribution.
Claim: ∆v = 0 in (u−1(0) \B)C ⊃ Dδ.

Indeed, let B(y, ε) ⊂ (u−1(0) \ B)C . For all ψ ∈ H1
0 (B(y, ε),R+), we may think it as an

element of H1
0 (DC) just by extending it by zero outside of B(y, ε). Since supp ψ∩ (u−1(0) \

B)C = ∅, we conclude that v + ψ as well as v − ψ lie in K. Then inequality (3.3) implies∫
B(y,ε)

∇ψ · ∇v = 0.

This shows that ∆v = 0 in (u−1(0) \B)C . Once u is subharmonic, we apply the maximum
principle we obtain 0 ≤ u ≤ v ≤ sup

∂D
ϕ. This proves (2). Finally, let us verify item (3). To

this end, let ψ ∈ H1
0 (DC ,R+) and |τ | be small. Hence v+τψv is non positive in (u−1(0)\B)
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and takes the same boundary values as v. That is, v+τψv competes against v in the energy
problem. Thus∫

DC

|∇v|2dx ≤
∫

DC

|∇v|2dx+ 2τ
∫

DC

∇(vψ)∇v + τ2

∫
DC

|∇(ψv)|2dx,

and once τ is arbitrary,

0 =
∫

DC

∇(vψ) · ∇vdx = −
∫

DC

ψv∆vdx.

Taking ψ → 1 yields
∫

DC

v∆vdx = 0, as desired. �

We shall need the following result from [2].

Lemma 3.8. Suppose w ∈ H1(Ω) is a non-negative semicontinuous function. There exists
a constant c > 0, depending only on dimension, such that, whenever B(x, r) ⊂ Ω there holds(

1
r

∫
∂B(x,r)

wdσ

)2

· |{y ∈ B(x, r) : w(y) = 0}| ≤ c

∫
B(x,r)

|∇(w − h)|2dy,

where h is the harmonic function in B(x, r) taking boundary values equal to w on ∂B(x, r).

Lemma 3.8 is the final ingredient we needed to prove:

Theorem 3.9. Let u = uδ
ε be a minimizer to problem (3.1). There exists a constant

M = M(ε) > 0 independent of δ, such that if

1
r

∫
∂B(x,r)

udσ ≥M,

then B(x, r) ⊂ {u > 0}.

Proof. Let v be the function given by Lemma 3.7. Such a function is admissible for problem
(3.1), thus

Jε(u) ≤ Jε(v).

We recall that 0 ≤ u ≤ v ≤ h0, where h0 is the harmonic function defined on Lemma 3.4.
Then, for each χ ∈ ∂D, there holds

c0 ≤ (h0)µ(χ) ≤ vµ(χ) ≤ uµ(χ).

Therefore,

(3.4)
∫

∂D

Γ(x, uµ)− Γ(x, vµ)dσ ≥ min
∂D

Γ
′
(x, c0)

∫
∂D

(uµ − vµ)dσ.

We also have, from Lemma 3.6 and Lemma 3.7 that

(3.5)

sup
∂D

ϕ ·
∫

∂D

(uµ − vµ)dσ ≥
∫

DC

u∆u+
∫

DC

|∇u|2 −
∫

DC

v∆v −
∫

DC

|∇v|2

≥
∫

DC

|∇u|2 −
∫

DC

|∇v|2.

We consider now the harmonic function h in B(x, r) taking boundary values equal to u. We
extend h by u outside of B(x, r). In this way, h ∈ Vδ and 0 ≤ u ≤ h ≤ v. Hence, h is
admissible for problem (3.1) as well as for the energy problem in Lemma 3.7. Then using
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the minimality property of v, we can replace, in the right hand side of (3.5), ∇v by ∇h.
That is,

sup
∂D

ϕ ·
∫

∂D

(uµ − vµ)dσ ≥
∫

DC

|∇u|2 − |∇h|2dx =
∫

B(x,r)

|∇(u− h)|2dx.

Plugging these inequalities into (3.4) we obtain

(3.6)
∫

∂D

Γ(uµ)− Γ(vµ)dσ ≥ c(Γ, ϕ)
∫

B(x,r)

|∇(u− h)|2dx.

We recall that fε is a Lipschitz function with Lipschitz constant equal to 1
ε . Using this

together with the key fact that Jε(u) ≤ Jε(v), we end up with

(3.7)

∫
∂D

Γ(uµ)− Γ(vµ)dσ ≤ fε(|{v > 0}|)− fε(|{u > 0}|)

≤ 1
ε
|{y ∈ B(x, r) : u(y) = 0}|.

Finally, by Lemma 3.8 we get

(3.8)

|{B(x, r) ∩ u−1(0)}| ≥ εc(Γ, ϕ)
∫

B(x,r)

|∇(u− h)|2dx

≥ εc(Γ, ϕ)
1
c

(
1
r

∫
∂B(x,r)

udσ

)2

|{B(x, r) ∩ u−1(0)}|.

Hence, if
1
r

∫
∂B(x,r)

udσ >

√
c

εc(Γ, ϕ)
,

|{y ∈ B(x, r) : u(y) = 0}| has to be equal to zero. Observe that in this case, u ≡ h in B(x, r)
and hence u is harmonic in such a ball. �

Corollary 3.10. There exists a constant Kε, independent of δ, such that all minimizers uδ
ε

are Lipschitz functions with ‖uδ
ε‖Lip ≤ Kε. Moreover ∆uδ

ε = 0 in {uδ
ε > 0}.

Proof. Let u = uδ
ε. We will first show that {u > 0} is an open set. To this end, let z ∈ DC

be such that u(z) > 0. Since u is subharmonic, for a small r∫
B(z,r)

udx ≥ u(z) > 0.

Now we take r0 > 0 small enough such that

1
r0

∫
B(z,r0)

udx ≥Mε.

Hence Theorem 3.9 implies B(z, r0) ⊂ {u > 0} and ∆u = 0 in B(z, r0). Let x ∈ Ω ⊂⊂
Ω′ ⊂⊂ DC , with u(x) > 0. Let d = dist(x, ∂Ω′∩{u > 0}) and consider the ball B = B(x, d).
Suppose ∂B touches ∂{u = 0}. Then from Theorem 3.9, for each γ > 0, there holds

1
r + γ

∫
∂B(x,r+γ)

udσ ≤M.

Letting γ → 0, we get
1
r

∫
∂B(x,r)

udσ ≤M.
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Once u is harmonic in B, by the interior estimate of derivatives, we obtain

|∇u(x)| ≤ C(N)
1
r

∫
∂B(x,r)

udσ ≤ C(N, ε).

On the other hand, if ∂B touches ∂Ω
′
, then again by the interior estimate of derivatives for

harmonic functions, we find

|∇u(x)| ≤ N

dist(Ω,Ω′)
.

�

Theorem 3.11. There exists a minimizer uε ∈ V for the problem (2.2). Moreover it is a
Lipschitz function and ∆uε = 0 in {uε > 0}.

Proof. Let D̃ be a smooth domain such that D ⊂ D̃, with |D̃ \D| = 1 and u0 the harmonic
function on D̃ \D, such that u0 ≡ ϕ on ∂D, u0 ≡ 0 on ∂D̃. In this way, u0 competes against
uδ

ε in (3.1) for all ε > 0 and δ > 0. Thus

C = Jε(u0) ≥ Jε(uε) ≥
∫

∂D

Γ
(
x, (uδ

ε)µ(x)
)
dσ, ∀ε > 0, δ > 0.

Combining the above with estimate (3.2) implies that, up to a subsequence, we might assume
that uδ

ε ⇀ uε in the H1-sense, as δ → 0. Furthermore, by Corollary 3.10, we might also
assume that uδ

ε → uε uniformly over compacts. In this way, for each B(x, r) ⊂ {uε > 0},
there exists a δ0 > 0 such that, for all δ < δ0, B(x, r) ⊂ {uδ

ε > 0}. This shows that ∆uε = 0
in {uε > 0}. Finally, Lemma 3.3 implies

Jε(uε) = min
V

Jε,

and thus, since in particular u is a minimizer of a problem (3.1) for any δ such that Dδ ⊂
{u > 0}, uε is Lipschitz, and its Lipschitz constant depends only on ε. �

4. Regularity properties of solutions to the penalized problem

In this section we start the journey of showing regularity properties of an optimal con-
figuration to problem (2.2). Optimal regularity of the minimizer has already been obtained
in the previous section. In this section, as well as in the next section, we shall be concerned
with regularity properties of the free boundary. Throughout this section we will denote uε

by u.

Theorem 4.1. For 0 < τ < 1, there exists a constant mε(τ) such that if

1
r

∫
∂B(x,r)

udσ ≤ mε(τ),

then B(x, τr) ⊂ {u = 0}

Proof. Following the same idea of Lemma 3.7, we assure the existence of a minimizer to
the energy functional,

∫
DC |∇v|2dx, subject to the constraints: v = ϕ on ∂D and v ≤ 0 in

B(x, τr) ∪ {u = 0}. As done in Lemma 3.7, one can show that ∆v ≥ 0, 0 ≤ v ≤ u and∫
v∆v = 0. In particular v competes with u in problem (2.2); therefore

(4.1)
∫

∂D

Γ(x, vµ)− Γ(x, uµ)dσ ≥ ε
(
|{u > 0} ∩B(x, τr)|

)
,
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where we have used that f−1
ε is Lipschitz with Lipschitz constant equal to ε. Also from

Lemma 3.6 we obtain

(4.2) inf
∂D

ϕ ·
∫

∂D

vµ − uµdσ ≤
∫

DC

(
|∇v|2 − |∇u|2

)
dx.

Let δ0 > 0 be a fixed small number. We may assume B(x, r) ⊂ DC \ Dδ0 . Let w be the
harmonic function in Dδ0 taking boundary values equal to ϕ on ∂D and 0 on ∂Dδ0 . For
each χ ∈ ∂D, there holds

uµ(χ) ≤ vµ(χ) ≤ wµ(χ) ≤ C0.

Therefore, ∫
∂D

Γ(x, vµ)− Γ(x, uµ)dσ ≤ max
∂D

Γ
′
(x,C0)

∫
∂D

vµ − uµdσ.

Combining the above inequalities we end up with

(4.3) ε
(
|{u > 0} ∩B(x, τr)|

)
≤ C(Γ, ϕ)

∫
DC

(
|∇v|2 − |∇u|2

)
dx.

Let us consider the auxiliary functions

g(ρ) :=


log
( ρ
τr

)
if N = 2

1
(τr)N−2

− 1
ρN−2

if N ≥ 3,

and h : B(x,
√
τr) → R,

h(y) = min
{
u(y),

s

g(
√
τr)
(
g(|y − x|)

)+}
,

where s := max
B(x,τr)

. Extending h by u outside of B(x,
√
τr) we see that h = 0 in {u =

0} ∩B(x, τr). Hence h competes with v in the energy problem. So we can exchange v by h
in inequality (4.3) and we get

(4.4)
ε

C(Γ, ϕ)
|{u > 0} ∩B(x, τr)| ≤

∫
B(x,

√
τr)

(
|∇h|2 − |∇u|2

)
dy.

Since h ≡ 0 on B(x, τr) we may rewrite inequality (4.4) as

(4.5)
∫

B(x,τr)

|∇u|2 +
ε

C(Γ, ϕ)
|{u > 0} ∩B(x, τr)| ≤

∫
B(x,

√
τr)\B(x,τr)

(
|∇h|2 − |∇u|2

)
dy.

Notice that |∇h|2 − |∇u|2 = −2∇h · ∇(u− h)− |∇(u− h)|2. In this way we can estimate∫
B(x,

√
τr)\B(x,τr)

(
|∇h|2 − |∇u|2

)
dy ≤ −2

∫
B(x,

√
τr)

∇
(
(u− h)+

)
· ∇hdy

= 2
∫

∂B(x,
√

τr)

u∇h · νdA

≤ C(N, τ)
r

· s
∫

∂B(x,
√

τr)

udA.

Hence,

(4.6)
∫

B(x,τr)

|∇u|2 +
ε

C(Γ, ϕ)
|{u > 0} ∩B(x, τr)| ≤

C(N, τ)
r

· s
∫

∂B(x,τr)

udA.
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On the other hand,

(4.7)
∫

∂B(x,τr)

udA ≤ C(N, τ)

(∫
B(x,τr)

udy +
∫

B(x,τr)

|∇u|dy

)
.

We observe that, being u subharmonic, we have from the mean value theorem that

(4.8) s := max
B(x,τr)

u ≤ c(N, τ)
∫
∂B(x,r)

udA.

Finally combining inequalities (4.6), (4.7) and (4.8) we see that if
1
r

∫
∂B(x,r)

udσ ≤ mε(τ),

with mε(τ) depending only on dimension, ε and τ , then necessarily B(x, τr) ⊂ {u = 0}. �

We shall denote U := {x ∈ DC : u(x) > 0} and F = {x ∈ DC : u(x) = 0}.

Corollary 4.2. Let x ∈ U . There exist constants 0 < c, C <∞ such that

c · dist(x, ∂F ) ≤ u(x) ≤ C · dist(x, ∂F )

Proof. Let us denote by d = dist(x, ∂F ). It follows from Theorem 3.9, Theorem 4.1 and
mean value theorem that

mε(
1
2
) · d ≤

∫
∂B(x,d)

udA = u(x) ≤Mε · d.

�

Corollary 4.3. There exists a constant 0 < c = cε < 1, such that for any x ∈ ∂F there
holds

c ≤ |F ∩B(x, r)|
|B(x, r)|

≤ 1− c,

for each B(x, r) ⊂ DC .

Proof. Follows from Theorem 4.1 that there exists a point y ∈ B(x, r/2) such that u(y) ≥
mε · r. Furthermore, since u is subharmonic, we have, for τ is small enough

1
τr

∫
∂B(x,d)

udA ≥ 1
τr
u(y) ≥ mε

τ
> Mε,

where Mε is the constant given by Theorem 3.9. Thus, Theorem 3.9 implies B(y, τr) ⊂ U .
We have obtained the estimate from above. Let us turn our attention to the lower bound
estimate. We shall use the construction made in Theorem 3.9. Let h be be harmonic function
in B(x, r), with boundary value data equal to u. The same type of computation done in
Theorem 3.9 yields

(4.9)
∫

B(x,r)

|∇(u− h)|2dy ≤ 1
ε
|F ∩B(x, r)|.

By Poisson’s integral formula, we may write, for |y − x| ≤ τr, 0 < τ < 1,

h(y) ≤ (1− c(N, τ))
∫
∂B(x,r)

udA.

Furthermore, since x ∈ F , u(y) = |u(y)− u(x)| ≤ K · τr, where K is the Lipschitz norm of
u. Invoking now Theorem 4.1, we find

h(y)− u(x) ≥ (1− c(N, τ))
∫
∂B(x,r)

udA−K · τr ≥
[
(1− c(N, τ))mε(τ)−Kτ

]
· r.
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Therefore, for τ small enough, we obtain

(4.10) h(y)− u(y) ≥ cr, ∀y ∈ B(x, τr),

where c depends only on the minimizer u. The classical Poincaré inequality tells us
cN
r2

∫
B(x,r)

|u− h|2dy ≤
∫

B(x,r)

|∇(u− h)|2dy.

Combining the Poincaré inequality, (4.9) and (4.10) we finally get
cN
r2
c2r2|B(x, τr)| ≤ 1

ε
|F ∩B(x, r)|,

which finishes the proof. �

We have fulfilled all the hypothesis of the results in [2] section 4. Hence we can state:

Theorem 4.4. Let u = uε be a minimizer for the problem (2.2). Then
(1) The n − 1 Hausdorff measure of ∂F is locally finite, i.e., Hn−1(Ω ∩ ∂F ) < ∞, for

every Ω ⊂⊂ DC . Moreover there exists positive constants cε, Cε, depending on
N,D,Ω and ε, such that for all ball B(x, r) ⊂ Ω with x ∈ ∂F , there holds

cεr
n−1 ≤ Hn−1(F ∩B(x, r)) ≤ Cεr

n−1.

(2) There exists a Borel function q = qε such that ∆u = qHn−1b∂F , that is, for any
ζ ∈ C∞0 (DC), there holds

−
∫

DC

∇u · ∇ζdx =
∫

∂F

ζqdHn−1.

(3) There exists positive constants cε and Cε such that

cε ≤ q(x) ≤ Cε,

for Hn−1 almost all points x ∈ ∂F .
(4) For Hn−1 almost all points in ∂F , an outward normal ν = ν(x) is defined and

furthermore
u(x+ y) = q(x)(y · ν)+ +O(y),

where O(y)
|y| → 0 as |y| → 0. This allows us to define q(x) = uν(x) at those points.

(5) Hn−1(∂F \ ∂redF ) = 0.

5. Regularity of the Free Boundary

In this section, we shall prove that our free boundary is a analytic surface. Our strategy is
to initially show that the normal derivative of the minimizer is a Höder continuous function
along the free boundary. This allow us to conclude that the free boundary is a C1,α surface.
Afterwards, due to a free boundary condition, we shall obtain the analyticity of the free
boundary. This section is based on sections 4 and 5 on [3]. The main tool in our analysis
will be the notion of non-tangentially accessible domains. Our motivation lies in the results
of [7].

Theorem 5.1 (Jerison-Kenig [7]). Let Ω be a non-tangentially accessible domain and let
V be an open set, V and Ω contained in Rn. For any compact set K, K ⊂ V , there exists
a constant α > 0 such that for any positive harmonic functions v and w which vanish
continuously on ∂D ∩ V , the quotient

v

w
is a Hölder continuous function of order α in

K ∩
∣∣∂D. In particular for any x0 ∈ K ∩ ∂D the limit lim

x→x0

v(x)
w(x)

exists.

We now can state the following powerful result:
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Theorem 5.2. Let u = uε be a solution to the problem Pε. Then the set U := {x ∈ DC :
u(x) > 0} is a non-tangentially accessible domain.

Proof. This result follows from the same analysis as in Theorem 4.8 in [3]. Indeed one should
notice that all the ingredients used to show Theorem 4.8 in [3] were proven to our nonlinear
case. We now follow section 4 in [3] and conclude the proof of Theorem 5.2. �

Corollary 5.3. Let u be a solution to the problem Pε. Let U := {x ∈ DC : u(x) > 0}.
Then there exists a (negative) Green’s function G for the Dirichlet problem in U . Moreover,
there exists an exponent α > 0 such that for any fixed y ∈ U the quotient

G(x, y)
u(x)

is a Cα function of x up to the boundary, taking values

Gν(x, y)
uν(x)

at the regular points of ∂U where the normal vector ν is defined. Thus, for any smooth
function ψ, we have

ψ(y) =
∫

∂U

Gν(x, y)ψ(x)dHn−1(x) +
∫

U

G(x, y)∆ψ(x)dx

Let us move toward the C1,α regularity of the free boundary. The idea is to use suitable
perturbations of the free boundary. These perturbations are motivated by the Hadamard
variational formula. To fix the ideas, consider a function ρ defined in Rn such that

(1) ρ is radial
(2) ρ(r) is non-increasing
(3) ρ(r) ≡ 1 if r < 1

4 , ρ(r) ≡ 0, if r > 1
2

(4) ρ ∈ C∞(Rn).
We denote by I the integral I :=

∫
xn=0

ρ(x)dσ. For δ positive and small real number we
consider the domains

(1) Σ := {x ∈ Rn : xn > 0, |x| < 1}
(2) Σ+ := {y ∈ Rn : y = x− δρ(x)en for some x ∈ Σ}
(3) Σ− := {y ∈ Rn : y = x+ δρ(x)en for some x ∈ Σ}

The following Lemma is a variant of the Hadamard variational formula. Its proof can be
found in [3].

Lemma 5.4. Let v denote the harmonic function in Σ+ (respectively Σ−) taking boundary
values xn on |x| = 1 and zero otherwise. Then

1
δ

∫
Σ+∩{x:xn=0}

vdσ → I and

1
δ

∫
∂Σ−∩Σxn

vνdσ → I,

as δ ↘ 0, where vν is the inward normal derivative at ∂Σ−.

We shall denote by R the reduced boundary of ∂F , i.e., the subset of ∂F for which (3)
and (4) in Theorem 4.4 hold, furthermore

1
rn−1

∫
∂F∩B(x,r)

|ν(y)− ν(x)|dHn−1(y) → 0,
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as r → 0. We know R can be chosen so that Hn−1(∂F \R) = 0. For x ∈ R, it is possible to
find a function φ = φ(r) so that φ is non-decreasing, and if ν = ν(x) is the outward normal
direction to F at x,

(1) |u(x+ y)− uν(x)(y · ν)+| ≤ φ(r) if |y| ≤ r,
(2) If y ∈ B(x, r) and either y · ν < 0 and u(y) > 0, or y · ν > 0 and u(y) = 0, then

|y · ν| ≤ φ(r)

(3)
1

rn−1

∫
∂F∩B(x,r)

|ν(y)− ν(x)|dHn−1(y) ≤ 1
r
φ(r)

(4)
1

rn−1

∫
∂F∩B(x,r)

|uν(y)− uν(x)|dHn−1(y) ≤ 1
r
φ(r)

(5)
1
r
φ(r) → 0 as r → 0.

Suppose now x ∈ R and r > 0. Without loss of generality we may assume x = 0 and
ν(x) = en. We define the sets:

Σ+(x, r) :=
{
y :

y

r
− 2

φ(r)
r
en ∈ Σ+

}
Σ−(x, r) :=

{
y :

y

r
+ 2

φ(r)
r
en ∈ Σ−

}
,

where Σ+ and Σ− were defined above and we take δ = δ(r) =
(
φ(r)
r

)1/2

. Note that

1
δ

φ(r)
r

= δ → 0 as r → 0.

The next two lemmas can also be found in [3].

Lemma 5.5. Let w be the harmonic function in S :=
(
Σ+(x, r) ∪ U

)
∩ B(x, r), taking

boundary values u in ∂S ∩ ∂B(x, r) and zero otherwise. Then

1
δ

1
rn

∫
S∩∂U

wdHn−1 → Iuν(x),

as r → 0.

Lemma 5.6. Let w be the harmonic function in S := U ∩Σ−(x, r), taking boundary values
u in ∂S ∩ ∂B(x, r) and zero otherwise. Then

1
δ

1
rn

∫
U∩∂Σ−(x,r)

uwνdH
n−1 → Iu2

ν(x),

as r → 0, where ν is the inward normal to Σ−(x, r).

Finally we can state the main result of this section.

Theorem 5.7. uν is a Hölder continuous function on R.

Proof. Let x1 and x2 be two generic points in R. Associated to x1 and x2 we have functions
φ1 and φ2 defined above. Without loss of generality we may assume φ1 = φ2 = φ. Suppose
then 0 < r < 1

10 |x1 − x2| and φ(r) < 1. Consider the sets Σ+(x1, r) and Σ−(x2, r). We
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denote by v, v1, v2 the following functions respectively:

(5.1)

∆v = 0 in A0 :=
((
U ∪ Σ+(x1, r)

)
\B(x2, r)

)
∪
(
U ∩ Σ−(x2, r)

)
v = ϕ on ∂D
v = 0 on ∂A0 \ ∂D

∆v1 = 0 in A1 := U ∪ Σ+(x1, r)
v1 = ϕ on ∂D
v1 = 0 on ∂A0 \ ∂D

∆v2 = 0 in A2 :=
(
U \B(x2, r)

)
∪
(
U ∩ Σ−(x2, r)

)
v2 = ϕ on ∂D
v2 = 0 on ∂A0 \ ∂D

By the maximum principle: v2 ≤ v and u ≤ v1. By Corollary 5.3, for any x ∈ U we can
write:

u(x) =
∫

∂D

Gν(x, y)dHn−1(y).

It follows also from Corollary 5.3 that

(5.2) v1(x)− u(x) =
∫

Λ1

Gν(x, y)v1(y)dHn−1(y)

and

(5.3) v2(x)− u(x) = −
∫

Λ2

G(x, y)(v2)ν(y)dHn−1(y)

where Λ1 = Σ+(x1, r) ∩ ∂U , Λ2 = U ∩ ∂Σ−(x2, r) and ν is the outward normal. We also
find

(5.4) v(x) = u(x) +
∫

Λ1

Gν(x, y)v(y)dHn−1(y)−
∫

Λ2

G(x, y)vν(y)dHn−1(y)

We now fix x ∈ ∂D. For each h > 0 consider the point x+hµ(x) ∈ U . Consider the sequence
functions Hh = Hh(x) defined by:

Hh(y) =
G(x+ hµ(x), y)

h
.

Notice, For each y fixed, Hh(y) converges pointwise to Gµ(x, y). This observation allow us
to guarantee, up to a subsequence, the existence of a harmonic function H(x) : U → R such
that:

(5.5) vµ(x) = uµ(x) +
∫

Λ1

Hν(x, y)v(y)dHn−1(y)−
∫

Λ2

H(x, y)vν(y)dHn−1(y).

¿From (5.3), for x ∈ B(x1, r) ∩ U , y ∈ B(x2, r) ∩ U , we obtain

(5.6) v2(x)− u(x) ≥ − sup
∣∣∣∣G(x, y)
u(y)

∣∣∣∣ ∫
Λ2

u(v2)νdH
n−1 ≥ −c

∫
Λ2

u(v2)νdH
n−1,

by Corollary 5.3. If w2 denotes the harmonic function of Lemma 5.6 (with x = x2), we have
v2 < w2 in U ∩Σ−(x2, r). Therefore, (v2)ν ≤ (w2)ν on Λ2, so from (5.6) and Lemma 5.5 we
obtain

v2(x)− u(x) ≥ −cIδrnu2
ν(x2) ≥ −cδrn.

If w1 denotes the harmonic function of Lemma 5.5 (with x = x1), we have

v ≥ w1 − cδrn in Σ(x1, r) ∪ (U ∩B(x1, r)),
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once v ≥ v2 and w1 = u on (∂B(x1, r)) ∩ U . Therefore,∫
Λ1

Hν(x, y)v(y)dHn−1(y) ≤
∫

Λ1

Hν(x, y)w1(y)dHn−1(y)

− cδrn

∫
Λ1

Hν(x, y)dHn−1(y)

=
∫

Λ1

[
Hν(x, y)−Hν(x, x1)

]
w1(y)dHn−1(y)

− Hν(x, x1)uν(x1)Iδrn +O(δrn).

We also have from Lemma 5.5 that w1 ≤ cφ(r) on Λ1, thus

(5.7)
∫

Λ1

Hν(x, y)v(y)dHn−1(y) ≤ −Hν(x, x1)uν(x1)Iδrn +O(δrn).

Let us turn our attention to estimate
∫
Λ2
H(x, y)vν(y)dHn−1(y) from below. Since v(x) ≤

v1(x) ≤ 1, we obtain from (5.2) that

v(x) < u(x) + crn−1 in U ∩ Σ−(x2, r).

If follows therefore that

v(x) < w2(x) + crn−1w̃(x) in U ∩ Σ−(x2, r),

where w2 denotes the harmonic function of Lemma 5.6 (with x = x2) and w̃ is a non-
negative harmonic function in S := U ∩ Σ−(x2, r) taking smooth non-negative boundary
values equal to 1 on ∂S ∩ ∂B(x2, r) and 0 on ∂S ∩ ∂B(x2, r/2). Then, by the maximum
principle, vν ≥ (w2)ν + crn−1w̃ν on Λ2. Hence

(5.8)

∫
Λ2

H(x, y)vν(y)dHn−1(y) ≥
∫

Λ2

H(x, y)(w2)ν(y)dHn−1(y)

+ crn−1

∫
Λ2

H(x, y)w̃νdH
n−1(y)

=
∫

Λ2

H(x, y)(w2)ν(y)dHn−1(y) +O(δrn).

Applying Theorem 5.1 to H(x, ·) and u, we may write

H(x, y) =
Hν(x, x2)
uν(x2)

u(y) +O(rα)u(y).

Plugging the above into (5.8) and using Lemma 5.6 again we end up with

(5.9)
∫

Λ2

H(x, y)vν(y)dHn−1(y) ≥ −Hν(x, x2)uν(x2)Iδrn +O(δrn).

Finally combining (5.5) with inequalities (5.7) and (5.9) we obtain

vµ(x) = uµ(x)− Iδrn
[
Hν(x, x1)uν(x1)−Hν(x, x2)uν(x2)

]
+O(δrn),

and then,

Γ(x, vµ(x)) = Γ(x, uµ(x))

+ Γt(x, uµ(x))Iδrn
[
Hν(x, x2)uν(x2)−Hν(x, x1)uν(x1)

]
+O(δrn).

Since the volume added to U with Σ+(x1, r) is Iδrn with error O(δrn), and the volume
taken away from U with Σ−(x2, r) is Iδrn with the same error, we conclude by integrating
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the above inequality over ∂D that

0 ≤ Jε(v)− Jε(u)

≤
∫

∂D

∂tΓ(x, uµ(x))Iδrn
[
Hν(x, x2)uν(x2)−Hν(x, x1)uν(x1)

]
+O(δrn)

Dividing by δrn, letting r → 0 and afterwards reversing the roles of x1 and x2 gives

(5.10)
∫

∂D

∂tΓ(x, uµ(x))
[
Hν(x, x2)uν(x2)−Hν(x, x1)uν(x1)

]
= 0.

It provides us the free boundary condition

(5.11)
∫

∂D

∂tΓ(x, uµ(x))
[
Hν(x, ·)uν(·)

]
≡ C

in R. Let us conclude the Hölder continuity of uν on R. We can rewrite (5.10) as∫
∂D

Γt(x, uµ(x))
{
Hν(x, x1)
uν(x1)

(
u2

ν(x1)− u2
ν(x2)

)
+ u2

ν(x2)
(
Hν(x, x1)
uν(x1)

− Hν(x, x2)
uν(x2)

)}
dσ.

and then
(5.12)

u2
ν(x1)− u2

ν(x2) ·
∫

∂D

Γt(x, uµ(x))
Hν(x, x1)
uν(x1)

dσ = uν(x2)
∫

∂D

Hν(x, x1)
uν(x1)

− Hν(x, x2)
uν(x2)

dσ

Let us first analyze the term
∫

∂D

Γt(x, uµ(x))
Hν(x, x1)
uν(x1)

dσ:

Notice H(x, x1) = 0 for all x1 ∈ R and x ∈ ∂D. Thus Hν(x, x1) > 0 on R. Since the
maps x 7→ Hν(x, x1) and x1 7→ Hν(x, x1) are continuous, there exits a constant c such that
Hν(x, x1) > c > 0. Moreover, from Theorem 4.4 there exist constants cε and Cε such that
0 < cε ≤ uν(x1) ≤ Cε. Furthermore, Γt(x, uµ(x)) ≥ Γt(x, c0) ≥ min

∂D
Γt(x, c0) > 0, where c0

is as in Lemma 3.9. We have concluded there exists a constant mε > 0 such that

(5.13)
∫

∂D

Γt(x, uµ(x))
Hν(x, x1)
uν(x1)

dσ ≥ mε > 0.

Let us now analyze the term
Hν(x, ·)
uν(·)

:

We know from Theorem 5.1 for each x ∈ ∂D fixed, the map
Hν(x, ·)
uν(·)

is α-Hölder con-

tinuous. We want to argue that there exists a constant Mε such that
[
Hν(x, ·)
uν(·)

]
α

≤ Mε.

Going back into the proof of Theorem 5.1, we notice that as long as the positive harmonic
functions agree at x0, the Cα norm of the quotient is universally bounded. This fact is due
to the Boundary Harnack Principle (Theorem 5.1 in [7]). Thus we conclude that if a family
of positive harmonic functions satisfying the hypothesis of Theorem 5.1 are comparable in
the sense that they are uniformly bounded below and above, the Cα norm of the quotient
of any two elements of the family is uniformly bounded. In our specific case, let x1 ∈ R
and consider V = B(x1, 2r) and K = B(x1, r). Fix X0 ∈ ∂K ∩ U . All we have to show is

that
∥∥∥∥H(x,X0)

u(X0)

∥∥∥∥
∞
≤Mε. Corollary 4.2 assures u(X0) ≥ cεr > 0. Furthermore, as we have

observed before, one can assure the existence of a universal constant C, depending only on
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ε such that H(x,X0) ≤ C for all x ∈ ∂D. Hence, we finally conclude[
Hν(x, ·)
uν(·)

]
α

≤Mε.

We now come back to expression (5.12) with these facts discussed above and conclude u2
ν is

a α-Hölder continuous and thus uν is α
2 -Hölder continuous. �

It follows now from [2] that the free boundary is a C1,α surface in a neighborhood of any
point of R. We observe furthermore that, if we call

h(y) :=
∫

∂D

Γt(x, uµ(x))H(x, y)dσ(x),

one easily verifies that h is a positive harmonic function in U . Moreover h vanishes on ∂F
and for any y ∈ R,

hν(y) =
∫

∂D

Γt(x, uµ(x))Hν(x, y)dσ(x).

Finally we observe that it follows from our free boundary condition (5.11) that

hν · uν ≡ C on R.

We have verified all the hypothesis of Theorem 7.1 in [3] which provides the analyticity of
the free boundary.

6. Recovering the original physical problem

In this section we shall relate a solution to the penalized problem (2.2) to a (possible)
solution to our initial problem (2.1). The idea is that for ε > 0 small enough, any minimizer
of Jε actually satisfies |{u > 0}| = 1. Hence, any solution of problem (2.2) is a solution to
our original problem.

Lemma 6.1. There exist positive constants c and C, independent of ε, such that

c ≤ |{uε > 0}| ≤ 1 + Cε

Proof. As we have already done before, let D̃ be a smooth domain such that D ⊂ D̃, with
|D̃ \ D| = 1 and u0 the harmonic function on D̃ \ D, such that u0 ≡ 1 on ∂D, u0 ≡ 0 on
∂D̃. Therefore

(6.1) C = Jε(u0) =
∫

∂D

Γ
(
x, (u0)µ

)
dσ + 1 ≥ Jε(uε), ∀ε > 0.

Thus
1
ε
(|{uε > 0}| − 1) ≤ fε(|{uε > 0}| ≤ C.

This proves the estimate from above. Let us turn our attention to the estimate from below.
It also follows from (6.1) that ∫

∂D

Γ
(
x, (uε)µ

)
dσ ≤ C.

This together with Lemma 3.4 yields∫
DC

|∇uε|2dx ≤ C.

As usual let us denote Dδ := {y ∈ DC : dist(y, ∂D) < δ}. If δ is small enough, we can
integrate along lines from ∂D and get

|∂D|2 ≤ C(δ)|Dδ ∩ {uε > 0}| ·
∫

Dδ

(
|∇uε|2 + u2

ε

)
dx.
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This gives an estimate of |{uε > 0}| from below. �

Lemma 6.2. There exists a universal constant C, such that inf
Rε

(uε)ν ≤ C, for all ε > 0.

Proof. As we have shown in the previous Lemma, there exists a universal constant C such
that C ≥ Jε(uε), for all ε > 0. In particular, using Jensen’s inequality we get like in Theorem
3.5

(6.2)
∫

∂D

Γ
(
y,

∫
∂D

(uε)µ(x)dσ(x)
)
dσ(y) ≤ L

∫
∂D

Γ
(
x, (uε)µ(x)

)
dσ(x).

Moreover

(6.3)
∫

∂D

(uε)µdσ = −
∫

∂F

(uε)νdH
n−1

We recall that the isoperimetric inequality together with Lemma 6.1 gives a universal bound
by below for Hn−1(∂Fε). Combining this with (6.2) and (6.3) we conclude

inf
Rε

(uε)ν ≤ C.

�

Lemma 6.3. There exists a universal positive constant c > 0, such that (uε)ν ≥ c, for all
ε > 0.

Proof. Let x0 ∈ ∂F . Going back into the proof of Theorem 4.1 we conclude, by balancing τ
and ε, that there exists a universal constant κ > 0 such that∫

∂B(x0,r)

uεdσ ≥ κ · r,

for all ε > 0. Let us, hereafter, write u instead of uε. Consider the harmonic function,
v0, in B(x0, r), taking boundary values equal to u. We extend v0 by u outside of B(x0, r).
Applying Lemma 3.8 we find∫

Br(x0)

(
|∇u|2 − |∇v0|2

)
dx ≥ c|B(x0, r) ∩ {u = 0}|,

where c is universal. Let x1 be a regular free boundary point away from x0, i.e., ∂F is smooth
in B(x1, r0), for some r0 > 0. Following the idea of the Hadamard variational principle, near
x1 we make an inward smooth perturbation of the set {u > 0}, decreasing its volume by δr,
where

δr := |B(x0, r) ∩ {u = 0}|.
Let P denote the perturbed set. Let v1 be the harmonic function in P vanishing on its
boundary and equal to u on ∂B(x1, r0). Then by the Hadamard variational principle,∫

B(x1,r0)

(
|∇v1|2 − |∇u|2

)
dx = u2

ν(x1)δr + o(δr).

Let v be the minimizer of the energy functional, subject to the constraints: v = 1 on ∂D
and v ≤ 0 in

(
{u = 0} \Br(x0)

)
∪
(
P ∩ {u > 0}

)
. In this way, |{v > 0}| = |{u > 0}| and it

competes with u in problem (2.2). Also we consider the function

v̂ :=

 v0 in B(x0, r)
v1 in B(x1, r0)
u elsewhere.



A NONLINEAR OPTIMIZATION PROBLEM IN HEAT CONDUCTION 21

We observe that v̂ competes against v in the energy problem. Moreover, the balls B(x0, r)
and B(x1, r0) are far from ∂D. Thus,

0 ≤
∫

∂D

Γ(x, vµ)− Γ(x, uµ)dσ ≤ CΓ

∫
∂D

vµ − uµdσ

≤ CΓ

∫
DC

|∇v|2 − |∇u|2dx

≤
∫

B(x0,r)

(
|∇v0|2 − |∇u|2

)
+
∫

B(x1,r0)

(
|∇v1|2 − |∇u|2

)
≤ −cδr + u2

ν(x1)δr + o(δr).

This implies a universal lower bound for u2
ν(x1), i.e., uν ≥ c. �

Combining the two previous results we obtain

Theorem 6.4. If ε is small enough, then any solution to problem (2.2) is a solution to
problem (2.1).

Proof. Suppose |{uε > 0}| > 1. We can make a inward perturbation of the set {uε > 0}
with volume change V , in such a way that the set of positivity of the new function, ũε is
still bigger than 1. Thus

fε(|{ũε > 0}|)− fε(|{uε > 0}|) = −1
ε
V.

Such a inward perturbation is made around a point x ∈ R such that uν(x) < 2 inf
R
uν . By

Hadamard’s variational principle and Lemma 6.2 we have∫
DC

|∇ũε|2 − |∇u|2 = u2
ν(x)V + o(V )

≤ C2V + o(V ).

Hence,

0 ≤
∫

∂D

Γ
(
x, (ũε)µ

)
− Γ(x, uµ)dσ + fε(|{ũε > 0}|)− fε(|{uε > 0}|)

≤ CΓ

∫
DC

|∇ũε|2 − |∇u|2dx−
1
ε
V

≤ C2
ΓV + o(V )− 1

ε
V.

Therefore, ε > εΓ. If |{uε > 0}| < 1, we argue similarly, and again we get an lower bound
for ε. Thus if ε is small enough |{uε > 0}| automatically adjusts to be equal to 1. �
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