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ABSTRACT. We study the interfaces of ground states of ferromag-
netic Ising models with external fields. We show that, if the coef-
ficients of the interaction and the magnetic field are periodic, the
magnetic field has zero flux over a period and is small enough, then
for every plane, we can find a ground state whose interface lies at
a bounded distance of the plane. This bound on the width of the
interface can be chosen independent of the plane.

We also study the average energy of the plane-like interfaces as
a function of the direction. We show that there is a well defined
thermodynamic limit and that it enjoys several convexity proper-
ties.

1. INTRODUCTION

The goal of this paper is to study the interfaces of Ising models in
which the material has a periodic structure and is subject to a weak
magnetic field, also periodic, with zero mean flux and not too strong.

Roughly speaking, we will show (see Theorem 2.5 for a precise state-
ment) that such models possess ground states whose interface is plane-
like (i.e., contained between two parallel planes). The orientation of
these interfaces is arbitrary and furthermore the width of the strip
containing the interface can be chosen to be independent of the ori-
entation. We will also show that there is a well defined limit of the
average energy of the interface.

Results of similar to those above have been proved for minimal sur-
faces in [CdILO1]. The results presented here are very similar to those
above because the energy of an Ising model is closely related to the
area of the interface. Indeed, the proofs follow roughly the same lines.

Nevertheless, because of the discrete nature of the model, some of
the technical arguments are easier In particular, the density estimates
needed in the present paper are trivial. Of course, other arguments
related to calculus are not present. And indeed, as we will see, several
of the results that are established for continuous models in [CdIL03a],

[CdILO3b] are false even for the standard Ising model.
1
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2. NOTATION AND STATEMENT OF RESULTS

2.1. Notation on Ising models. We refer to [Rue99],[Isr79], [Sim93]
for more information on statistical mechanics models. Nevertheless, in
this paper, we will consider only ground states — zero temperature —
and we will include most of the notation that we use.

The Ising models we will consider will be defined on a lattice Z¢
which, for convenience in some geometric arguments, we will consider
as contained in R%. We will consider the lattice endowed with the usual
¢! distance.

A configuration s will be a mapping s : Z¢ — {+1,—1}. We will
denote by C the space of configurations.

Given a configuration s, we will denote by Js the interface of the
configuration. That is

(1) Os={i€Z|s;=+1,3j s t.|i—jl=1s=—1}

The behavior of an Ising model is described by a (formal) functional
on configurations.

(2) H(s)= Y Jylsisi — 1)+ Y his;

i,jELY i€zd
li—j|<R
In the classical Ising model, J;; = 1 but in this paper, we want

to consider more general models, in particular, we do not want to
keep translation invariance by all vectors, even if we will assume some
periodicity by some sublattice of vectors.

Given w € R? we denote I, = {z € R¢|w-z = 0}. Clearly, II, = Il
when w is a multiple of w’.

Remark 2.1. Some of the results that we will discuss go through for
somewhat more general models in which the interaction may be three
or more bodies or the lattice does not need to be an Euclidean lattice
but rather in a richer geometric framework considered in [CdIL9S].

We will not discuss such generalizations here, nevertheless, we point
out that these generalizations could be necessary to make contact with
continuum models

The number R is referred to as the range of the interaction. In the
classical Ising models, the range is 1, which corresponds to only nearest
neighbor interactions. In this paper, we will only consider finite range
interactions, but the existence results go through for infinite range
interactions by taking limits.

Given a set I' C Z¢ and a number R we denote I'" the set of points
in I' whose distance to I' is smaller or equal than R. When R is the
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range of the interaction, I'" is the collection of sites that can interact
with the sites in I'.
Given a finite set I' C Z%, we define

HF(S) = Z Jij(SiSj - 1) + Z hisi .
iel, jezd iel
li—j|<R

The most important definition for us is

Definition 2.1.1. We say that a configuration s is a ground state when
Hr(u) = Hr(s)
for all u that agree with s in (Z¢ — '),

Note that Definition 2.1.1 only uses finite sums, so that the formal
character of the sums (2), does not matter. We also note that the notion
of ground state — quite customary in Physics — is also very similar to
the notion of class A minimizer in [Mor24].

We recall that there is an equivalent description of the energy of Ising
models, which makes the connection with geometric questions clearer,
namely, the description of a state in terms of contours.

A configuration can be described by indicating the set

(3) S(s)={jeZ"| s; = +1}

As it is customary in statistical mechanics, the boundaries of the set
S can be described geometrically by placing a unit plaque perpendic-
ularly across each bond joining S with its complement.

Notice that Js, the interface of the configuration s, is very similar
to the boundary of the set S(s).

Remark 2.2. In the language of contours, the theory of ground states
is very similar to the theory of minimal surfaces as formulated in the
language of sets of finite perimeter.

As an illustrative example, when J;; = 1

Z Jij(SiSj — 1) s

|i—j|=1

i,jezd
is twice the area of the contour describing &, and ground states cor-
respond to surfaces whose area cannot be decreased by making local
modifications. Hence, ground states can be considered as discrete ana-
logues of minimal surfaces. The terms h can be interpreted as some
volume terms, so that the ground states are discrete analogues of pre-
scribed curvature.
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For the experts, we also mention that there is a theory of minimal
surfaces based on studying surfaces as boundaries of sets (an account
of this theory can be found in [Giu84] and it was the basic language of
[CdIL01].) The analogue of the sets of finite perimeter in the geometric
theory is the sets S(s) associated to the configurations.

As it turns out, the proofs of several of the results will be follow
the strategy for the results in [CdILO1], which were formulated in this
language. Of course the details of the proofs will have to be different
since many methods from calculus are not available. Indeed, as we will
see in Section 5, there are examples that show that the straightfor-
ward analogues of the results in [CdlL03a], [CdILO3b] in this discrete
situation are false.

Remark 2.3. We recall that there are two physical interpretations
that are reasonable for these models. One is that the s; are the states
of spin of an atom at site i. The other — usually called lattice gases
— is that the s; describe whether a site is occupied or not. In the
first interpretation, the average energy of the ground state has the
interpretation of a magnetic energy near a wall. In the second, it is a
surface tension.

The physical interpretation in terms of lattice gases is remarkably
close to being a discrete version of the theory of sets of finite perimeter.

2.2. The assumptions of this paper. We will consider systems of
the form (2) such that they are

H1. Periodic of period N. That is:
Ji-i—e,j-‘,—e = Jz’j Vee NZd
hi+e = hi—i—e Vee NZd
H2. — Weakly ferromagnetic. That is:
— There is a ¢ < 0 such that for each site i, there is one j
such that
Jij S C.
H3. The magnetic field h has zero flux
=0
i€l
where F'is a fundamental domain for Z¢/NZ?. That is, F' =
{0,1,...,N -1} c z%.
H4. sup |h;| sufficiently small.
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Remark 2.4. Sometimes, in statistical mechanics one uses a hypoth-
esis significantly stronger that H2. namely
There is a ¢ < 0 such that for each site ¢, for all the j such that
i —jl =1,
Jij S C

Which is clearly satisfied by the classical Ising model. This hypoth-
esis does not lead to improvements in our results.

The first main result of this paper is the following

Theorem 2.5. Given any Ising model satisfying H1, H2, H3, H4 above
there is M such that for every hyperplane 11, C R? of normal vector
w, we can find a ground state s, whose interface Os,, is contained in a
strip of width M around the plane I1,,.

That is:

(4) d(0s,,11,) < M

As we will see later, there are other properties which we will prove
about the interface of the ground states with appear in the conclu-
sions of Theorem 2.5 notably that the interfaces satisfy a so-called
“Birkhoff property” (see Proposition 3.1.2) which plays an important
role in Aubry-Mather theory. It was introduced in [Mat82], [ALDS83]
and similar properties appear in [Mor24], [Hed32]. As it turns out, the
Birkhoff property for some minimizers does not need even the full H2
and it suffices that the system is weakly ferromagnetic.

Note that Theorem 2.5 only claims that there exists ground states
satisfying the conclusion. As we will see, even for the classical Ising
model in d = 2, when the interface is not oriented along the coordinate
axis, it is possible to obtain ground states which do not satisfy the
conclusions of Theorem 2.5

We will refer to ground states satisfying (4) for some M as plane-like
ground states. Note that in Theorem 2.5 we show that the M can be
chosen uniformly for all orientations.

We will also prove another result giving the existence of an average
interface energy for all the plane like minimizers.

Theorem 2.6. In the assumptions of Theorem 2.5.

Let ¥ be a compact set of R with C' boundary. For A\ € R*, Denote
by A\ = {x € RY(1/\)z € X}.

ForweRY, |w| =1,

Let s be a ground state whose interface lies at a bounded distance
from the plane 11,.
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Then, we have:

(5) Jim Hys(s) /247 = |2 NI 41 A(w)

where | |4-1 denotes the d — 1 surface area.

Note that A(w) is independent of ¥ and s. It is a property only of
the model.

Moreover, the function A, when extended to R? as a positively ho-
mogeneous function of degree 1 (i.e. A(MAw) = AA(w) for A € RY) is
conver.

The limit in (5), is reached very uniformly. If 3 is C1. There exists
a constant 2y, depending on X but independent of w, s such that

(6) [Has(s)/X = 2N I [g-1A(w)] < QeA™Y2

The exponent —1/2 in the remainder in (6) is not optimal. Also it
seems that one can relax the regularity requirements on the surface .
The only thing required is that one can approximate it well by cubes.

The physical meaning of A(w) is the density of magnetic energy of
the interface. In the lattice gas interpretation of the model, A(w) is a
surface tension. The homogeneity is natural if we think of w as being
a “surface element”. That is a vector oriented along the normal and
with modulus the area.

We note that A(w) is also related to the average action in Aubry-
Mather theory or to the stable-norm in the calculus of variations. Note,
however that the discrete nature of the problem makes it impossible to
use many of the arguments customary in these theories. Indeed, some
of the results obtain in the continuous cases are false for the discrete
cases considered here.

3. PROOF OF THEOREM 2.5

The strategy of proof will be very similar to that of [CdAILO1]. We will
establish the existence of some particular minimizers first for rational w
but we will establish enough uniform bounds for the interface of these
special ground states so that we will be able to pass to the limit of
irrational frequencies.

The first step will be to consider minimizers among configurations
which are periodic and which satisfy some constraints. Among them,
we will consider a particular one, which will enjoy special properties.

3.1. Notation. First we will develop some notation which will allow
us to work comfortably with translations, periodicities, fundamental
domains, multiplying fundamental domains, etc.
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3.1.1. Translations. We introduce the translation operators 7, k € Z¢
acting on configurations

(T8)irr = 5 Vi

An important property of the models as in (2) satisfying periodicity
is that formally for all configurations s ,

H(Tps) = H(s)V k€ NZ* .

in the sense that all the terms that appear on one side appear on the
other.

A precise form of the above is that, for every finite set I' and for
every configuration s we have

(7) Hp(Tys) = Hpx(s) V k € NZ* .

The equation (7) can be established readily noting that it is just a
change in the dummy variables in the sum.
For sets I', we introduce the notation

T =T+k

Note that this consistent with the application of 7} to the characteristic
function of I'. With this notation, (7) can be written as

Hzr(Ty.s) = Hr(s)

3.1.2. Symmetries. From now on and until further notice, we will con-
sider w € (LN)7'Z%) where N is the period of the model and L € N.
The frequencies of N~'Z% are the frequencies that correspond to planes
in the lattice given by fundamental domains of the symmetries of the
model. The L~! factor is means that we will be considering subhar-
monics.

We will prove our results for frequencies of this type and obtain
estimates which are rather uniform. This will allow to extend the
results to w € RY.

We denote by R,, the module

R, ={k€ NZ*|w-k =0}

where w - k denotes the usual inner product. We note that R, isad—1
dimensional module.

Given a module R C Z? we denote by Fr = Z%/R a fundamental
domain of the translations in R. If R is a d — 1 dimensional module
Fr can be considered as a discrete version of R9™1/R = T%! x R.

In the case of R = R, we will denote simply F, rather than Fg_.
In the case of R = LZ%, L € N, we will denote F;,a as Fr. Note that
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with this notation Fy is just a fundamental domain for the system
under the translations assumed to exists in H1.
If R =LR,, L €N we will denote Frr, = Fr .. The sets

FA=lice F,|0<w- i< Alwl|}
fﬁw:{inL,w|0§w-i§A|w|}

are finite sets. We note that F4, F f,w are invariant under translations
in R, and L'R,,, respectively.

Again, we note that F ﬁw is a covering — in the directions perpen-
dicular to w of Fi.

3.1.3. Symmetric configurations. Given a Z-module R we denote by
Pr the set of configurations which are invariant under translations in

R
'PR:{SEC‘8i+k:8iVi€Zd,k€R}

In the case of R = R, we will denote Pr, = P,. Similarly Pr, =

PLRw
We will also consider

Pﬁw: {SEPL,W }si:—l when w-i > Alw|, s;=+1 Whenw~i<0}

These classes of configurations consist of configurations which are pe-
riodic in the directions parallel to the plane and satisfy boundary con-
ditions on the top and the bottom of the slab of width A parallel to
the plane II.

When L = 1 we will simply write P4.

Note that a configuration in Pﬁw is determined when we prescribe
it in the finite set ]—'ﬁw. (We can determine for all the other points
either by using the periodicity in the translations or by the boundary
conditions.)

Note that the classes P, above involve not only periodicity but also
some boundary conditions. (We have taken the convention that w
is oriented in the sense in which the conditions go from positive to
negative. Of course, since we are considering w an arbitrary vector,
taking the opposite convention just amounts to changing w into —w.

When the magnetic field is not present, it is easy to see that changing
s into —s does not change the energy, hence, all the results will be the
same when we change w into —w nevertheless, when h # 0, in general,
the results could change when w changes into —w.

We will eventually take A to oo but, as it is well known in statistical
mechanics some information about the boundary remains.
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3.1.4. Operations on configurations. We introduce the notation
(s At); = min(s;, t;) i€z
(s Vt); = max(s;, t;) i€ 7.
Given any configurations s,t we can write:
s=sANt+«
(8) t=sAt+f
sVt=sAt+a+0

with o, 3 > 0.

Note that s+t = sVt+sAt. We also note that if s,t € Pﬁw, then
sAt, sVte Pﬁw.

In comparing with [CdIL01] it is useful to observe that if we use the
description of configurations by sets as in (3), we have

S(sVt) = S(s) NS(t)
(9) S(snt)=8(s)US(t)

3.2. Minimizers and infimal minimizers. Now, we turn our at-
tention to the problem of producing minimizers in spaces of periodic
configurations. The goal of this section is to produce a minimizer that
enjoys some remarkable properties.

We call attention to the fact that the results of this section work
under the assumptions of weak ferromagnetism and do not require the
fact that the interaction is non-degenerate.

Since configurations on Pﬁw are determined by the values on a finite

set on P7, it is natural to consider the functional H Fa (9).
Since Fj', is finite it is clear that H F4_ reaches its minimum. It

can well happen that there are several configurations which achieve
the minimum.

Note that the minimizers, minimizes the functional 7', among con-
figurations in Pﬁw. but at this state of the argument, there is not
reason why they should be minimizers with respect to more general
perturbations that have less periodicity or that violate the other con-
straints. Hence, the minimizers could fail to be ground states. This is,
of course, a manifestation of symmetry breaking.

Hence, we will select a particular minimizer (infimal minimizer) that
enjoys special properties. In particular, we will show that this infimal
minimizer does not experience symmetry breaking and that enjoys a
property analogous to the property called Birkhoff property in dynam-
ical systems.
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A good deal of the argument later will be precisely showing that
there is no symmetry breaking for the infimal minimizer. This will
have as a consequence that all the minimizers remain as minimizers
under multiplication of the period. This is not completely obvious
because, as we will see there are more minimizers when we increase
the period. We hope that the examples in Section 5 will clarify this
situation.

This will require that we take advantage of properties of the func-
tional. We start by observing that the functional H defining the models
has a quadratic part, a linear part, and a constant. Namely:

E JijSiSj

iel
jezd
li—jI<R

Zhsl
Cp221

iel
We will also introduce the notation

Qr(s,t) = Zst

i€l
jezd
li—jI<R
so that Qr(s) = Q. (s, s).
With the notations above, we have the following identity
(10) Hr(s At)+ H(sVt) = Hr(s)+ Hr(t) + Qr(a, 5)
where a, 3 are given in (8).
Under the hypothesis of ferromagnetism, for all o, 5 > 0 we have:
(11> QF(aaﬁ) SO
because o;3; > 0, J;; < 0.
Therefore we have:
Proposition 3.0.1. If s,t are minimizers of HfA in P, then so
are s\V't, s At. In particular, there is an infimal minimizer defined by:

(12) s4 = min s
? s€Minimizers

Proof. Note that sVt, sAt are configurations with the same periodicity
as s,t. hence, by s,t being minimizers, we have

HF(S A\ t) Z HF(S) = Hp(t)
HF(S V t) Z HF(S) = Hp(t)
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On the other hand, using (10) and (11), we have:
HF(S A t) + HF(S vV t) S HF(S) + Hp(t)

Therefore,
HF(S VAN t) = HF(S V t) = HF(S) + Hp(t)
and s At, sVt are minimizers. O

Clearly, once we prescribe R, A, the infimal minimizer is unique
since it is given by the formula (12).

This has the important consequence that there is no symmetry break-
ing (Proposition 3.0.2) which in turn will lead to the fact that S4 is a
minimizer against configurations that respect the boundary conditions
(Proposition 3.1.1).

The physical interpretation of the infimal minimizer is that it would
be the minimizer if we introduced a very small magnetic field (or an
small pressure in the lattice gas interpretation) but maintained the
lower constraint.

3.2.1. Absence symmetry breaking. In the following proposition, we
show that for any K € N, if we consider perturbations with K-times
the period, the infimal minimizer is also a minimizer among those.
Indeed, it is the infimal minimizer for functions with K period.

Proposition 3.0.2. Let K, M € N. Denote L=K - M. Let A € R,

Then
(13) ST o = S
Proof. We define
s A Tk
kEMR. /LR

since 0 € MR,,/LR,, we have § < s7 .
It is important to note that 5 € Pjj .
Since 7, sﬁw are minimizers in Pﬁw, we obtain, applying Proposi-
tion 3.1.1, that s is a minimizers in Pﬁw.
From the definition of infimal minimizer we obtain
5> 87,

which with the observation after the definition implies 5 = s7 .

Using that s4  and s4; , are minimizers of their respective function-
als we obtain

H]:f,w (S?,u) S H]:f,w (Sﬁ,w)

H]:A (Sﬁ,w) SH]—-A (S?,w)

M,w M,w
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On the other hand, for configurations s € Py, we have

(14 Hey () = # (T2 ) frg

Using (16) and (14) we obtain
Ay _ A
H]—‘f’w(sL,w) - H]—‘f’w(sM,w)
AN _ A
Hfjc‘{’w(SL,w) - Hfjc‘{,w(SM,w)
. A . o . . . A A .
Hence we obtain that sz, is a minimizer in Py, and sy, is a
minimizer in Pj .
Therefore, using the definition of infimal minimizer, we obtain
A A
SL,w Z SM,w

A A
SM,w Z SL,w

and therefore, the claim of Proposition 3.0.2. U
As a corollary of Proposition 3.0.2, we obtain:
Corollary 3.0.1. All minimizers in Pp_ are minimizers in Pig_

The proof is simply observing that the energy of a minimizer with a
certain period is the same as that of the infimal minimizer.

Hence, if we consider a minimizer u with unit period its energy in
the unit period will be the same as that of the infimal minimizer of
unit period. Since the infimal minimizer of period K is just K¢ copies
of the infimal minimizer, we obtain that the energy of the minimizers
with period K is K¢ times the energy of a minimizer of period 1, which
is the same as the energy of considering v in period K. Hence, u is
also a minimizer in period K. 0

Remark 3.1. The phenomenon that minimizers under perturbations
of one period are not minimizers under perturbations of a longer period
— hence the energy of the minimizer decreases with the period — happens
in many variational problems. It appears already in [Hed32].

This phenonmenon often prevents to take the limit of minimizers
when we change the period to an irrational period.

Note that the argument above implies that if there is a way of se-
lecting a unique minimizer, the Hedlund phenomena does not happen.

The Corollary 3.0.1 is somewhat surprising since we will see in Sec-
tion 5 that, even in the classical Ising model, there are more minimizers
in Pitr_ than in Pj .

Notice that, since K is arbitrary, it immediately follows from Propo-
sition 3.0.2. given any perturbation of sﬁw of bounded support, we can
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find a K large enough so that it can be considered as a perturbation
in a fundamental domain of the KN perturbation. Hence, we have
established:

Proposition 3.1.1. s¢  is a class-A minimizer among the configura-
tions in P2

That is, s4 is a minimizer for all the functions that satisfy the bound-
ary conditions, irrespective of periodicity. Given the fact that S 1L4,w is
independent of L we will just use the notation S2 from now on.

3.2.2. The Birkhoff property. The following property of the infimal
minimizer is quite analogous to a property that is commonly called
“Birkhoff property” in dynamical systems.

In the following Proposition 3.1.2 we prove it for the infimal mini-
mizer.

Proposition 3.1.2. Let s2 be the infimal minimizer as before (in par-
ticular, recall that w € +7Z%)
Let k € NZ% then,

T
T8

<s <0

(15) .

[SB SERS N
[ S SR S

v

k-w

v

S

Proof. Because of (7) TpsZ is a minimizer for Hz za. We note that
Tist € P
We will prove the inequality (15) for w - k& < 0. The other case will
be identical.
Note that i-w < 0 implies (i +k)-w = 0. Hence, (Tps4); = (s2)isn =
+1. Therefore,
sANTst € P2
Similarly, we obtain that
S0V Tiss C TP,
We have therefore
" Hyg (s AN Tis?) 2 Ha(s2)
Hyza(s5 AN Trsl) > Hopa(Tiss)

We note that
FA ¢ FA R/l
TuFL C Fohell
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Moreover, denoting I' = F4*“/l the periodicity and the zero flux
condition imply that

Hr(s) = Hza(s)V s € P

(17) "
HF(S) = HTk]:(ﬁx(S) Vse 7797310

The reason for this equality is that in I' — F, because of the bound-
ary conditions, the quadratic interaction term does not give any con-
tribution. The contribution of the magnetic field term is zero because
of the zero flux condition. Hence (16) becomes:

Hr(si N Tisly) > Hr(s))
Hr (s V Tys) > Hr(Tyss)

Using (11), we obtain:

Hr(s? A Tislh) > Hr(s2)

w

Hr(s V Tisly) > Hr(s))

Using again (17) we obtain:
Hra(sy ATisly) > Hra(s))

Therefore s A Tp.s7 is a minimizer. Since s2 is the infimal minimizer,
we obtain
SAN Tps > s
Therefore
Tisl, > s

which is the desired conclusion.
The case w - k < 0 is proved exactly in the same way:. 0

Remark 3.2. We note that Propositions 11 and 3.1.2 have a natu-
ral geometric interpretation in terms of perimeters of contours. For
example, the conclusion Proposition 11 reads:

Per(Sl U 82) + Per(Sl N 82) S Per(Sl) + Per(Sg)

Such interpretations appear naturally in the geometric measure the-
ory problems considered in [CdILO1].
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3.3. Bounding the oscillation of the infimal minimizer. To finish
the proof of Theorem 2.5, we will just need to show that, if we take
A large enough — but independent of the orientation —, the infimal
minimizer will be an unconstrained minimizer and will not touch the
boundaries.

The basic idea is that a minimizer cannot oscillate too much in an
small scale since this will force it to have a very large energy in this
scale and one can easily produce configurations with smaller energy.
Using the Birkhoff property, we will use this information to control the
large scale limit.

More precisely, our goal is to show

Lemma 3.2.1. There exists an M large enough (independent of w)
such that for any A > M, we have:

M

Lemma 3.2.1 shows that the infimal minimizer s./

constrained.

Indeed, if there was a periodic configuration u such that H(u) <
H(s) and Ou C {i| — Alw| <i-w < Alw|}, we see that for some k € Z4
we have 07, u C {i| — Alw| <7 -w < Alwl|}.

Hence,

is completely un-

H(u) < H(s*>") = H(sM).

w

M

o1 cannot be lowered

In other words, the energy of the configuration s
by compact perturbations.

Once we have that s is a ground state and that its interface is
contained in a strip of width independent of w, we see that, given
w* = lim,_,00 wy, With w, € Q% we can — by passing to a subsequence —
obtain s, = lims,, . This s, will be a ground estate and therefore,
we have established Theorem 2.5 as soon as we prove Lemma 3.2.1.

The rest of this section is devoted to proving Lemma 3.2.1.

We introduce the notation for ¢ € N, z € Z¢
Ct=1{0,....0—1}+2a.
That is C! is a cube of side ¢ with the lower vertex at z.
A corollary of Proposition 3.1.2 is:
Proposition 3.2.1. If (s2); = —1 for all i € C¥, then,

(sYi=-1 Vil|lw-i>z-w+NVd-|w|

w

Proof. By the Birkhoff property
(s0i=-1vie |J ik

keNzd
k-w>0
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FIGURE 1. Illustration of the fundamental domain F2,
the cubes C and the cubes C)’ used in the proof of
Proposition 3.2.2.

The set above is a collection of cubes of size N on a semilattice of size
N. Hence, it contains a semiplane. O

In view of Proposition 3.2.1 to show that the interfaces of the infimal
ground state s’ is contained in a strip of uniform width M it suffices
to show:

Proposition 3.2.2. Assume that A > M (where M can be chosen
independent of w) then there exists an x € Z¢ such that

0<w-z<A—+VdN
(84, =-1 iecl.

Proof. This will be a covering argument very similar to that used in
[CdILO1] but somewhat simpler since the density estimates used in
[CdILO1] are not needed in this case.

We will show that, we can bound the energy of a configuration from
below by the number of cubes it touches multiplied by a constant. We
also note that the energy of a configuration is bounded by the energy
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of a plane, which can be bounded from below by the area of the base of
the strip times a constant. Moreover, the number of cubes in a strip is
proportional to the area of the base of the strip multiplied by the height
of the strip. The upshot of the discussion is that if the width of the
strip is large enough (independent of the orientation), then there has
to be a unit cube that is not touched by the interface. In the following
we give a more formal proof.

Given a fundamental domain ' we consider a collection of disjoint
cubes centered in points x

c3N . 2 e3NZ°
N cFl

such that x € 3NZ4, C3N  FA. In each of the cubes C2V, we consider
the cubes CY with the same center x than C3N but well inside C3V.
We note that the cubes C3 do not overlap and cover the fundamental
domain rather completely except for a sliver near the edges.

We make several observations. The first two are purely geometric
about the covering as indicated. The next two are involve the Hamil-
tonians and the properties of the ground states. Note that item i)
below uses the full strength of the assumption H2.

We can find a constant B (geometrically the area of the base of F4)
such that

i) Denote by B the set
B=r)-Jc

T€EY
(the set that is not covered by the cubes).
We have
# B < Ba

where #B denotes the number of sites in B.
This means that we can cover the whole fundamental domain
by the cubes C3V except for a thin sliver near the boundary.
The usual formula for the volume shows that it suffices to
take a = Vd3N.
ii) Given M, we have that

1 Ba
d(e3N, 1y < MY > BM —
#{x‘ (C;h, 1) < }— (3N)?  (3N)d
Once we have item ) this result follows simply by noticing
that each center has associated a cube of volume (3N)?. So
that the number of centers has to be bigger or equal than the

total volume covered divided by the volume of each cube.
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iii) Given any configuration s we have

HcgN(S) >0 HCJ\E )(5) >0

If the cubes do not involve any interfaces, the result is obvious
because we assumed that the flux of the magnetic field is zero,
so that the final result is zero.

If there is an interface, by assumption H2 there is one inter-
action term which is negative and bounded away from zero and
the other interaction terms are positive. The other contribution
to the energy is the the magnetic field over the incomplete box.
By assumption H/, which says that the magnetic field is small
enough, these terms cannot overcome the negative term which
was bounded away from zero.

iv) In this term we make more precise the results before when there
is an interface in the small cube.

Assume that
Then

Hezn(s) = v
Observe that it suffices to take
y= inf J, —3'S|h
li—jl=1
v) Finally, we obtain a bound of the energy associated to the set
B introduced in point i) which is not covered by the cubes.

Hp(s) > —Basup |h;]

This is obvious because of the point i) and the interaction
can be bounded from below by the magnetic field terms, which
can be bounded from below as indicated.

Note that, under the assumption that A is small we have that
the constant v is strictly positive.

Note that the previous remarks give us a lower bound of the number
of cubes (See item 4i)). Note that this number grows with M. We
also obtained a lower bound of the energy of the cubes C3 for which
C3N. Since the energy of the minimizer is bounded from above by a
number independent of M, — by comparing e.g. with a plane — we
obtain that when M is large enough there is a cube that does not
intersect the interface. We proceed to give some more details on the
argument which will allow us to check that the width required is indeed
independent on the orientation of the plane.
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Proposition 3.2.3. Denote by N'(s)™ the number of cubes Cz]/\([r) which
intersect the interface of s and such that d(y(z),7) < M. Then, we
have for A > M

Hra(s) > N (s)y - Ba
The proof of Proposition 3.2.3 is obvious if we realize that

Hpza(s) = Ha(s) + > Hea(s)

TeEX

We note that all the H3*"(s) > 0. Hence, we obtain a lower bound of
the sum if we restrict it only to the cubes such that a Cé\éx) intersects

the interface and d(C3N,7) < M. Moreover, a lower bound of the term
Hp(s) is contained in the point v). O
We also observe that the test configuration s* defined by

. +1 w-i<|w
S. o
! —1 otherwise

satisfies
where 0 < sup |J;;| + sup h;. Therefore:

(18) Hyy(s2) < BS
Comparing (18) with 3.2.3 we obtain
BS B
NM(s) < 4+
v Y

Since the number of cubes at a distance M is bounded from below
in the point ii), we obtain that if

(19) M > (3M)¢ {(l—a)_l [<5J;O‘) +1”

there is one cube at a distance less than M such that it does not
intersect the interfaced of s O

We emphasize that the condition (19) is independent of B and, hence,
independent of w.

Applying Proposition 3.2.1 with Proposition 3.2.2 we obtain that
(s4); = —1 whenever w-i > M|w| independently of A. This establishes
Lemma 3.2.1 and, by the arguments at the beginning of this section, it

proves Theorem 2.5.
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4. PROOF OF THEOREM 2.6

4.1. Existence of the limits. We will first prove the existence of the
limit of the average energy when we consider sequences of cubes.

Once we prove the result with enough uniformity with respect to the
direction and with respect to the ground state, as well as with very
explicit error estimates, the existence of the limits claimed in Theorem
2.6 will follow easily by approximating the domain A\¥ by cubes.

The first result that we will prove that the average energy of a large
cube is largely independent of which cube and which plane-like mini-
mizer we are considering.

This will be the basis of much of the uniformity that we need later.
Note that we establish that for cubes of size L, up to errors which are
much smaller than the area of the boundary, the energy associated to
the cube is determined by the area of the intersection.

Proposition 4.0.4. There exists a constant € independent of the cubes,
the strips and the ground states (it may depend on the model and the
constant M ) with the following property:

Let s, s’ be class-A minimizers, contained in strips I', T of width M
around parallel planes 11, II' respectively.

Assume without loss of generality that T +k =T for some k € NZ2.

Let Q, Q' be cubes of side L — L sufficiently large — Assume that

(20) #TNQ) - #I'NQ)| < (/2L
Then,
(21) [Ho(s) — Hoi(s')| < QL™

Note that in Theorem 2.5 we have shown that the constant M can be
taken to be independent of the orientation for the infimal minimizer.
Hence, if we apply Proposition 4.0.4 to the configurations produced in
Theorem 2.5, we get that €2 depends only on the model. Of course,
the way that we formulated it, applies to other ground states provided
that they are plane-like.

The assumption that the strips are congruent under translations can
always be arranged by making them slightly bigger. (so that the in-
terfaces will always be contained) anyway. The amount is not bigger
than Nv/d. Hence, for large L this is rather irrelevant.

Proof. The proof is very simple in the case that the cubes and the
intersections are congruent by translations which are multiple of N,
the period of the interaction. We can produce an configuration s”
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that agrees with s outside of () and whose intersection with @ is a
translation by multiples of N of the intersection of s with Q.

Since s is a ground state, we conclude that Hgr(s") > Hgr(s). But
|Hor(s") — Hpr(s')] < QL*? because the terms in the energy differ
only in the boundary terms. Since the interface is contained in a strip of
width M, the number of affected terms can be bounded by C M RL*!
where C is a constant that depends only on the dimension and the
geometry and R is the range of the interaction.

By exchanging the role of s, s’, we obtain the desired result.

When the cubes are not congruent by translations multiples of IV,
we note that we can discard some points in the cubes, which are at a
distance not more than N from the boundary so that we obtain cubes
Q, Q' that are congruent under translations by V.

Clearly, we have |Hg(s) — Hg(s)| < QL2 -

In view of Proposition 21, from now on, we will speak about the
energy of a plane-like ground state in a cube of length L and we will not
bother specifying which cube or which ground state. As Proposition
4.0.4 shows this is defined up to an additive term of size < QL%2,
which will not affect any of the subsequent arguments.

The following result gives us some crude bounds of a form similar to
that of the desired limit. Later we will refine them.

Proposition 4.0.5. Under the assumptions of Theorem 2.6.
Let s be a plane-like minimizer. Let () be a cube of length L. L.
For some suitable constants 24,8y, €25 depending only on the model
and on M, we have:

(22) Ql|Hw N Q|d—1 — Qng_2 S HQ(S) S QQ|HW N Q|d—1 —|— Qng_2

Proof. The upper bound is very similar comparing with that of a state
with an interface along the plane.

The lower bound follows from noting that the interface is the bound-
ary of a set, so that we can bound the number of points in the interface
by the area of the intersection.

The arguments are very similar to the remarks that lead to a proof
of Proposition 3.2.3. We refer there for more details.

The energy of interaction of a site in the boundary is bounded from
below by a constant. Hence, the energy of the interaction is bounded
from below by a constant times the number of points in the interface.
Hence, by a constant times the area of the intersection of the plane
with the cube.
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By the assumption of zero magnetic flux, the absolute value of the
energy due to the magnetic field can be bounded by the strength of
the magnetic field times the number of N-cubes that contain the some

point in the interface.
O

The following definition will be useful since it selects a particular
class of intersections.

Definition 4.0.1. Given a cube and a strip, we say that the intersec-
tion with the cube is clean if

o Whenever the intersection with one face of the cube is non-
empty, the intersection with the parallel face of the cube is not
empty.

o The intersection does not include any intersection of more than
two faces.

Note that for all the clean intersections between cubes of the same
length and parallel planes have the same area.
Now, we study the limit of the cubes growing larger.

Proposition 4.0.6. Let s be a plane-like minimizer. Let Qr, Qar be
cubes of size L, 2L respectively.

Assume that the plane-like minimizer s intersects cleanly Q; and
that the minimizer s’ intersects cleanly Qs .

Then

(23) 27 Hg, (s) — Ha,, (5)] < QL™

Proof. Given the uniformity properties proved in Proposition 4.0.4, it
suffices to observe that the intersection in the cube (D97, can be covered
by 29471 disjoint cubes with with a clean intersection.

In effect, suppose without loss of generality that the plane of inter-
section is a graph over of a linear function of the first d — 1 variables
to the d one and that the angle with the horizontal is smaller than 1.
(It suffices to reorder the components so that the d component is the
largest one).

Take a dyadic decomposition of the base of Q2z. For each of these
d — 1 cubes @ of size L, we can find an interval I of size L so that the

cube Q x I has a clean intersection with the plane.
O

We define
AT(L) =sup L™ Hg, (s)

2 A™(L) = inf L™ Ho, (s)
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where the sup,inf are taken over all the cubes of size L and all the
plane like s that have a clean intersection with them.

Proposition 4.0.5 tells us that the functions A* are well defined and
that we have

AY(L) - A~ (L) < QL™
Using Proposition 4.0.6 we have

A*(2L) — AH(L)] < QL

From this, it clearly follows that limy_.., A*(L) exists and that it is
equal for both functions.

Moreover, the convergence is rather uniform.

If we approximate the set AX by cubes of size A\'/? we see that we
can cover the intersection of \X N 1I,, except for a set whose measure
can be bounded by \4~2\Y/2,

We have a number of cubes, each of which has an average energy
A(w) up to an error A\7Y/2,

Hence, the desired result follows.

It seems that, if one used coverings more efficient than the covering
by uniform cubes, one could get better estimates for the remainder,
but we will not pursue this here. O

4.2. Convexity properties of the averaged energy. To prove the
convexity of the averaged energy, the argument used in [CdILO1] works
without modification. For the convenience of the reader we repeat here
the most salient steps. The argument is illustrated in Figure 4.2 which
is reproduced from [CdILO1].

Given the uniformity properties established in the previous subsec-
tion, we can compute approximations of A(w) just by taking a very
large set and computing the energy of the intersection of this set with
any of the plane-like ground states whose interface lies in a neighbor-
hood of the plane 11,

By the homogeneity, it is enough to show that

A(wl) + A(WQ) Z A(wl + w2)

There is only anything to prove in the case that w; is not parallel to
wa.

By the uniformity of the limits, it is enough to take very large sets.
We just take very large cylinders sets whose transversal section is in-
dicated in the figure. We see that taking the joining of the sets cor-
responding to w; and ws as comparisons with the infimal minimizer
corresponding to ws and noting that for all of them, the error from
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i

FIGURE 2. Mlustration of the argument to show that A is convex

the average is uniformly small if the size is big enough, we obtain the
desired result.

Since A is sublinear, it follows that it is Lipschitz. As we will see in
Section 5 for the Ising model, it is not C*.

5. SOME EXAMPLES

5.1. The classical Ising model. This corresponds to taking .J;; = 1
when |i — j| = 1 and 0 otherwise. In particular, this satisfies the very
strong non-degeneracy assumption alluded to in Remark 2.4.

It is easy to see that the minimization problem in a periodic class
admits minimizers that are not Birkhoff. For dimension d = 2, some
of them are depicted in Figure 3.

Non-Birkhoff minimizers can be constructed by fixing two points in
the interface as required by the periodicity. The interface consists of a
path that joins these two points and consists of a horizontal segment
and a vertical segment. (The fact that these are minimizers is obvious
because if we consider the interface as a path, the length is just the
taxicab distance.)

It is clear that if we multiply by K the periodicity allowed in the
configurations, a similar construction will give an interface that recedes
from the plane by an amount K times larger. Hence, in the classical
Ising model, there is symmetry breaking for the ground states.

Note that in any dimension, including d = 2, given a box of size K,
for periodic conditions which are not along the direction of the axis,
it is possible to find ground states that are at a distance greater that
¢(w)K from the boundary imposed by the boundary conditions.

Notice also that it is possible to chose a sequence of these minimizers
so that their oscillations diverge, hence, it is impossible to make them
converge to a limit even after translating them.
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FiGURE 3. Non-Birkhoff minimizers and the infimal
minimizer for two dimensional classical Ising models.

In contrast, we see that the infimal ground state can be obtained by
removing squares with two sides in the interface from the minimizer
above (this is a modification that does not change the energy of the
interface) as much as possible compatible with the constraint that the
interface should lie above the line {w - x = 0}. The interface of these
infimal ground states indeed, does not recede more that a fixed constant
for the plane and, if we double the period, the minimizer is the same.

Note, however that for some special periodicities — when the plane I1,
is a coordinate plane, all the minimizers consist only of straight lines.
These minimizers are Birkhoff and do not exhibit symmetry breaking.
Hence, for the classical Ising model, the symmetry breaking and the
Birkhoff property for all periodic minimizers happen or not depending
on the orientation of the boundary conditions.

The considerations here should serve as a counterpoint with the
analogies with the theory of minimal surfaces mentioned in Remark
2.2. In [CdILO3b], is is shown all the periodic minimal surfaces are
Birkhoff and in [CdIL03a] it is shown that all periodic minimizers in
spin systems and in Dirichlet problems are Birkhoff and that there is
no symmetry breaking.

This raises the question of whether there are discrete spin models
for which the property that there is no symmetry breaking in ground
states and that all ground states are Birkhoff is true. The results of
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the above papers suggest that this should be true for models which
resemble more the continuous models. This suggests that absence of
symmetry breaking for ground states could be true for models with a
longer range interaction (or with several body interactions).

We also note that since the minimizers for a given period are just
segments in the horizontal and vertical directions, the average energy
can be readily computed and it is

AIsing(‘”) = ‘W1| + |W2|
This function is, clearly Lipschitz but it is not C*.

Remark 5.1. A classical problem in statistical mechanics is the study
of the interfaces in Ising models for low temperature and the surface
tension as a function of the temperature. A collection of classical papers
in this area is [Sin91].

In comparing the results of the papers in [Sin91] with the results
here, one has to note that that all the studies in [Sin91] are carried
out for the case, in our notation, that the w is oriented around one
of the coordinate axis. Indeed, many of the papers in [Sin91] use as
a starting assumption that the number of ground states satisfying the
boundary condition is uniformly bounded as the size goes to infinity.
This is clearly not the case for interfaces with other periodicities.

5.2. Layered material. Another example for which it is much easier
to create complicated ground states is a layered material in which the
layers do not interact.

That is J;; = —1if |[i — j| = 1 and e4 - (¢ — j) = 0 where eq4 is the
unit vector along the d coordinate. Otherwise, J; ; = 0.

Clearly, a ground state can be obtained by choosing any ground state
in each of the layers. Hence, it is possible to chose ground states which
are not Birkhoff and which do not converge.
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