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Abstract

We consider the problem of solving numerically the stationary incompressible Navier-Stokes equa-
tions in an exterior domain in two dimensions. For numerical purposes we truncate the domain to
a finite sub-domain, which leads to the problem of finding so called “artificial boundary conditions”
to replace the boundary conditions at infinity. To solve this problem we construct — by combining
results from dynamical systems theory with matched asymptotic expansion techniques based on the
old ideas of Goldstein and Van Dyke — a smooth divergence free vector field depending explicitly
on drag and lift and describing the solution to second and dominant third order, asymptotically at
large distances from the body. The resulting expression appears to be new, even on a formal level.
This improves the method introduced by the authors in a previous paper and generalizes it to non-
symmetric flows. The numerical scheme determines the boundary conditions and the forces on the
body in a self-consistent way as an integral part of the solution process. When compared with our
previous paper where first order asymptotic expressions were used on the boundary, the inclusion of
second and third order asymptotic terms further reduces the computational cost for determining lift
and drag to a given precision by typically another order of magnitude.
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1 Introduction
Exterior flows at low Reynolds numbers — of the order of one to several thousand — play an increasingly
important role in applications. Specific examples of situations where such flows occur are the sedimen-
tation of small particles in the context of climate prediction [2], [42] and the engineering of wings in the
design of miniature aircraft [32], [9]. In all cases the forces exerted on the body need do be computed
accurately.
In the present work we limit ourselves to the case of two-dimensional stationary incompressible flows.

Linearized theories (Stokes, Oseen) provide a quantitative description of such situations for Reynolds
numbers less than one [4], and traditional approximation schemes based of some version of boundary
layer theory [36], [11], [12] provide a quantitative description for the case of Reynolds numbers larger
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than some ten thousand. For the intermediate regime, where neither the viscous forces nor the inertial
forces dominate, the full Navier-Stokes equations need to be solved.
So, consider a rigid body that is placed into a uniform stream of a homogeneous incompressible fluid

filling up all of R2. This situation is modeled by the stationary Navier-Stokes equations

−ρ (ũ ·∇) ũ+ µ∆ũ−∇p̃ = 0 , (1)

∇ · ũ = 0 , (2)

in Ω̃ = R2 \ B̃, with B̃ a compact set (the body) containing the origin of our coordinate system, subject
to the boundary conditions

ũ|∂B̃ = 0 , (3)

lim
|x̃|→∞

ũ(x̃) = ũ∞ . (4)

Here, ũ is the velocity field, p̃ is the pressure and ũ∞ is some constant non-zero vector field which we
choose without restriction of generality to be parallel to the x̃-axis, i.e., ũ∞ = u∞e1, where e1 = (1, 0)
and u∞ > 0. The density ρ and the viscosity µ are arbitrary positive constants. From µ, ρ and u∞ we
can form the length c,

c =
µ

ρu∞
, (5)

the so called viscous length of the problem. The viscous forces and the inertial forces are quantities of
comparable size if the diameter A of B̃ is comparable with c, i.e., if the Reynolds number

Re =
A

c
, (6)

is neither very small nor very large. Below, we will study flows with Reynolds numbers in the range
from one to several thousand. Note that for bodies with smooth boundary ∂B̃ and for small enough
Reynolds numbers (6) equation (1), (2) subject to the boundary conditions (3), (4) is known to have a
strong solution [13], [14]. For large Reynolds numbers this is still an open problem [17].
When solving the problem (1)-(4) numerically by restricting the equations from the exterior infinite

domain Ω̃ to (a sequence of) bounded domains D̃ ⊂ Ω̃ (see Figure 2), one is confronted with the necessity
of finding appropriate boundary conditions on the surface Γ̃ = ∂D̃ \ ∂B̃ of the truncated domain. In a
recent paper [6] we have introduced a novel self-consistent scheme that uses on the boundary the vector
field obtained from an asymptotic analysis of (1), (2) and (4) to leading order [47], [49], [23]. Here, by
using matched expansion techniques, we construct a smooth divergence free vector field that satisfies the
boundary condition (4) and solves the stationary Navier-Stokes equations (1) to second and dominant
third order, asymptotically at large distances from the body. This vector field is given in the form of an
explicit expression depending on two real parameters which can be determined from the drag and the
lift exerted on the body. Using this vector field to prescribe artificial boundary conditions on Γ̃ we set
up a self-consistent scheme that determines the two parameters and hence the boundary conditions and
the forces on the body as an integral part of the solution process. For related ideas concerning artificial
boundary conditions see [33], [3], [24].
For the construction of the asymptotic expansion used here we follow closely the old ideas of Goldstein

[22] and Van Dyke [40], supplemented with the more recent ideas from dynamical systems theory [18].
It is these improvements that allow us to use the results as artificial boundary conditions for numerical
purposes, or as the starting point for rigorous mathematical work [23], [48]. In particular, we properly
address questions related with the boundary condition (4) and the regularity of the resulting vector fields
across the x̃-axis within the wake. All the formal work has been done using the computer-algebra system
Maple.
The method presented here improves the scheme introduced in our previous paper [6] and generalizes

it to the situation of non-symmetric stationary flows. In [6], the computation times necessary to determine
the drag with a given precision were typically several orders of magnitude reduced when compared to
using homogeneous Dirichlet boundary conditions. The inclusion of higher order asymptotic terms on the
boundary reduces computational times further, typically by yet another order of magnitude. Figure 1 is
an example of what can be computed with our setup. It shows the flow around the NACA profile 64-915,
inclined by 5◦, at Reynolds number (6) one thousand, with A the chord length of the profile (distance
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from tip to tail) [30]. Our results quite nicely illustrate the scientific potential of a combined use of
modern techniques from analysis and geometry, formal algebraic computation systems and numerical
simulations.

Figure 1. Flow around the NACA profile 64-015 at Reynolds number one thousand as computed with
second order adaptive boundary conditions (top) and experimental flow around the NACA profile 64A015
(bottom). Bottom image: courtesy of ONERA (H. Werlé, 1974, [44]).

2 Artificial boundary conditions
In this section we derive the boundary conditions used in later sections. The discussion will be formal.
For the wake region the correctness of the resulting expressions is up to first order proved in [23]. A
complete mathematical proof of the second and third order asymptotics presented here is in preparation
and will be published elsewhere.
There exists an extensive literature on matched asymptotic expansions for laminar flows [5], [10], [40],

[31], [37]. Most of the work is however either limited to symmetric flows or uses as a starting point not the
Navier-Stokes equations but some version of boundary layer theory. As an example, for the symmetric
case, results for the so-called centerline velocity (the velocity on the symmetry axis of the body in the
wake region) up to third order is given in [38], [37]. Our results show that the expansions computed
from the Navier-Stokes equations differ from the ones computed from boundary layer theory already to
second order, so that higher order results based on boundary layer theory are inadequate for modeling
Navier-Stokes flows. An other problem of existing work is that the boundary conditions and the regularity
of the solution are only imposed asymptotically, rather than term by term. For some applications such
an approach may be sufficient, but it is obviously insufficient for the use of such expansions as artificial
boundary conditions. As a result the expressions derived here appear to be new, even on a formal level.
Before proceeding any further we now rewrite the Navier-Stokes equations in dimensionless form.

Let ũ be the velocity field and p̃ the pressure introduced in (1)-(4), and let c be as defined in (5).
Then, we define dimensionless coordinates x = x̃/c, and introduce a dimensionless vector fields u and a
dimensionless pressure p through the definitions

ũ(x̃) = u∞u(x) , (7)

p̃(x̃) = (ρu2∞)p(x) . (8)

In the new coordinates we get instead of (1)-(4) the equations

− (u ·∇)u+∆u−∇p = 0 , (9)

∇ · u = 0 , (10)
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in Ω = R2 \B, where
B =

n
x ∈ R2 | cx = x̃ for some x̃ ∈ B̃

o
,

and the boundary conditions

u|∂B = 0 , (11)

lim
|x|→∞

u(x) = (1, 0) . (12)

In (9)-(10) all derivatives are with respect to the new coordinates.

2.1 The vorticity equation

Let u = (u, v), and let
ω(x, y) = −∂yu(x, y) + ∂xv(x, y) . (13)

The function ω is the vorticity of the fluid. By taking the curl of (9) we get the equation

W (u, v, ω) ≡ − (u ·∇)ω +∆ω = 0 . (14)

Once (10) and (14) are solved for u and ω, the pressure p can be constructed by solving the equation
that we get by taking the divergence of (9) subject to the appropriate boundary conditions.
There is plenty of experimental, numerical and theoretical evidence that the vorticity ω decays

very rapidly (faster than exponential) away from the body except within the wake region [1]. Re-
cent mathematical results [43], [19], [20], [23] suggest the existence of functions ωn with support in
Ω+ = {(x, y) ∈ Ω | x > 0} such that

ω(x, y) ≈
X
n≥1

ωn(x, y) , (15)

asymptotically as x→ +∞, in the sense that for all N ≥ 1

lim
x→∞x

1+N
2 sup

y∈R

¯̄̄̄
¯ω(x, y)−

NX
n=1

ωn(x, y)

¯̄̄̄
¯ = 0 . (16)

More precisely, the functions ωn are conjectured to be of the form

ωn(x, y) =
nX

m=1

ρn,m(x)ϕ
00
n,m(

y√
x
) , (17)

for certain smooth functions ϕn,m with derivatives ϕ0n,m, ϕ
00
n,m decaying at infinity faster than exponential

and

ρn,m(x) =
log(x)n−m

x(1+n)/2
. (18)

The main ideas of a proof of (16) for N = 1 and small enough Reynolds numbers can be found in [23]
and a complete mathematical proof of (15)-(18) up to N = 3 is in preparation. For N > 3 (15)-(18) are
purely conjectural.
Here, we stay on a formal level and explain the construction of the functions ϕn,m for 1 ≤ m ≤ 2 and

1 ≤ n ≤ 3 by asymptotic expansion techniques, using (14) as a starting point. These formal results are
then used for the purpose of prescribing artificial boundary conditions. As a consequence the numerical
experiments of Section 4 not only show the usefulness of asymptotic expressions for simulation purposes,
but at the same time provide interesting quantitative information concerning the convergence of the limits
in (16).
The main problem with (14) is that it involves in addition to the vorticity ω also the velocity u. For

this reason, the traditional approach for constructing an asymptotic expansions is to use an ad hoc ansatz
for the stream function ψ from which one then computes expansions for u and v and ω via

u(x, y) = ∂yψ(x, y) , (19)

v(x, y) = −∂xψ(x, y) , (20)
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and
ω(x, y) = −∆ψ(x, y) , (21)

which are then plugged into (14) and solved order by order. The stream function has however a more
complicated structure than the vorticity and in spite of the efforts of various authors the matched as-
ymptotic expansion for ψ of the traditional ansatz is plagued with all sorts of inconsistencies concerning
the boundary condition (4) and the regularity of the resulting terms across the x-axis in the wake region.
Here we solve this problem by avoiding this ad hoc ansatz. The basic observation is that from the vorticity
ω and its downstream asymptotic expansion (15) an expansion of the stream function can be obtained
simply by using the definitions (see next paragraph). The terms of the old ad hoc ansatz can then be
recovered together with certain new terms that solve the problems concerning the boundary conditions
and the regularity.
So, let ω be given. Then, the stream function ψ has to satisfy (21) in Ω, subject to the boundary

conditions

ψ|∂B = 0 , (22)

∂nψ|∂B = 0 , (23)

lim
x,y→∞−∂xψ(x, y) = 0 , (24)

lim
x,y→∞ ∂yψ(x, y) = 1 . (25)

Equations (22) and (23) are equivalent to (11), and (24) and (25) are equivalent to (12). Note that the
system of equations (21)-(25) is a priori over-determined since for a general problem of the form (21) only
(22) (Dirichlet problem) or (23) (Neumann problem) can be imposed. The fact that the Navier-Stokes
problem (1)-(4) is well posed has the important implication that the vorticity ω is such that (22) and
(23) are equivalent, i.e., lead to the same solution ψ. In any case, let

ψω = −G ∗ ω , (26)

with ∗ the convolution product and

G(x, y) =
1

2π
Re [log(−x− iy)] =

1

4π
log(x2 + y2) .

From (22)-(25) it then follows using general results from potential theory that

ψ(x, y) = y + ψω(x, y) + h(x, y) , (27)

with h a harmonic function in Ω, satisfying the bound

|h(x, y)| ≤ const.
r

, (28)

where r =
p
x2 + y2. The partial derivatives of h with respect to x and y obey analogous bounds.

Note that the function h depends explicitly on the boundary conditions on ∂B and can therefore not be
determined from large distance asymptotic expansions alone. For the function ψω we will use below for
N ≥ 1 the decomposition

ψω = ψN +RN , (29)

where

ψN = 2bN G−
NX
n=1

G ∗ ωn , (30)

with

bN = b+
1

2

NX
n=1

Z
Ω

ωn(x, y) dxdy ,

and with

b = −1
2

Z
Ω

ω(x, y) dxdy , (31)
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and we will show formally that for N > 3

|RN (x, y)| ≤
const.

r
, (32)

and similar for partial derivatives. On a heuristic level it follows from the bounds (28) and (32) that
one should not hope to be able to determine approximations to ψ from large distance asymptotics alone
for N > 3, and there appears indeed to be no straightforward way to extend the asymptotic scheme
presented here to yet higher order (see [20] for limitations of the same type in a related case).
Basically, the idea is now to use the functions ψN as an approximation to ψ in order to compute

approximations uN and vN for u and v using (19) and (20). These approximations are then plugged
together with (15) into (14) in order to obtain equations for the functions ωn. This way, by construction,
the functions uN and vN are smooth in Ω and decay at infinity as required by (4). This solves the above
mentioned consistency problems of the ad hoc procedures found in the literature at the price of introducing
non-local expressions for uN and vN do to the convolution products in (30). Such non-local expressions
are neither manipulated easily when trying to solve the resulting equations for ωn, nor used easily for the
prescription of boundary conditions for numerical purposes. For N ≤ 3 we have therefore analyzed these
convolution products in detail, and it turns out that, modulo terms bounded again by const./r, local
approximations to these convolution products can be constructed. The resulting expressions are indeed
similar to those used in the ad hoc procedures of earlier work, but additional terms arise which restore
the regularity of the local approximations. Explicitly, we find the following functions for the first couple
of terms in (15), (17) (see Appendix I),

ϕ1,1(z) = d erf(
z

2
) ,

ϕ2,1(z) = bd
1

π3/2
e−

z2

4 ,

ϕ2,2(z) = −d2 f(z) + b c2,2 e
− z2

4 ,

ϕ3,1(z) = −b2d
z

4π5/2
e−

z2

4 . (33)

Here erf is the error function, i.e., erf(z) = 2√
π

R z
0
exp(−ζ2)dζ, and f : R → R is the unique solution of

the third order linear in-homogeneous ordinary differential equation

f 000(z) +
1

2
zf 00(z) + f 0(z) +

1

2π
e−

1
2z

2

= 0 , (34)

satisfying f(0) = 0, f 0(0) = − 1
2π , f

00(0) = 0. Note that f is an odd function and that f 0 and f 00 decay
faster than exponential at infinity. Moreover

f∞ = lim
z→∞ f(z) = − 1√

2π
. (35)

See Figure 3 for a graph of the function f . For the constant b as defined in (31) and for the constant d
we have (see Appendix II),

d =
1

2

1

ρcu2∞
F̃ ,

b =
1

2

1

ρcu2∞
L̃ , (36)

with F̃ the drag and L̃ the lift acting on the body (dimension-full quantities), and c as defined in (5).
The constant c2,2 can not be determined from drag and lift alone, i.e., the expansion of the even part of
the vorticity (with respect to y) can be computed as indicated up to the term ϕ2,1 only. The odd part
of the vorticity can be computed up to the term ϕ3,1. For more details see the Appendix I. In most of
what follows we set c2,2 as well as the functions ϕ3,2 and ϕ3,3 and all higher order terms equal to zero.
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2.2 Asymptotic expansion for u and p

In Appendix I we compute together with (33) the following local approximations to u = (u, v):

uN (x, y) = e1 +
NX
n=1

nX
m=1

un,m(x, y) ,

where e1 = (1, 0). To first order we have

u1,1(x, y) = u1,1,E(x, y)− θ(x)
d√
π

1√
x
e−

y2

4x ,

v1,1(x, y) = v1,1,E(x, y)− θ(x)
d

2
√
π

y

x3/2
e−

y2

4x , (37)

with θ the Heaviside function (i.e., θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0), and

u1,1,E(x, y) =
d

π

x

x2 + y2
+

b

π

y

x2 + y2
,

v1,1,E(x, y) =
d

π

y

x2 + y2
− b

π

x

x2 + y2
. (38)

Note that the vector field (u1,1, v1,1) in (37) is divergence free and smooth in R2 \ {0}. For b = 0 this
is the vector field that has been used for prescribing artificial boundary conditions in our previous paper
[6]. The additional term with amplitude b is the vector field of a point vortex and is responsible for a
nonzero lift (see Appendix II, and see [23] for a proof that this is the dominant asymmetric term far
downstream). To second order we find

u2,1(x, y) = θ(x)
bd

2

1

(
√
π)
3

log(x)

x

y√
x
e−

y2

4x ,

v2,1(x, y) = θ(x)
bd

2

1

(
√
π)
3

1

x3/2

µ
log(x)

µ
−1 + 1

2

y2

x

¶
+ 2

¶
e−

y2

4x , (39)

and

u2,2(x, y) = u2,2,E(x, y) + θ(x)d2
1

x
f 0(

y√
x
)

+ λθ(x)f∞d2
3

8

1

x2

µ
(1 +

|y|√
x
)(1− 1

2

y2

x
) +

|y|√
x

¶
e−

y2

4x ,

v2,2(x, y) = v2,2,E(x, y) + θ(x)
d2

2

1

x3/2

µµ
f(

y√
x
)− f∞sign(y)

¶
+

y√
x
f 0(

y√
x
)

¶
+ λθ(x)f∞d2

3

4

1

x5/2

µ
(1 +

|y|√
x
)
y√
x

µ
1− 1

8

y2

x

¶
+
1

4

y2

x
sign(y)

¶
e−

y2

4x , (40)

where

u2,2,E(x, y) = f∞
d2

2

|y|
r2

µ
1

r2
− r2

r

¶
,

v2,2,E(x, y) = f∞
d2

2

sign(y)

r

µ
− 1
r2
− x

r2r
+

x r2
r2

¶
, (41)

with r =
p
x2 + y2, r2 =

√
2r + 2x, λ = 1, and f∞ as defined in (35). Note that the terms proportional

to λ are higher order and one might be tempted to neglect them, i.e., to set λ = 0. This is not possible,
however, without giving up the regularity of the second order derivatives ∂2yu and ∂

2
yv across the positive

x-axis (see Appendix I). Finally, to third order we find

u3,1(x, y) = θ(x)
b2d

4

1

(
√
π)
5

log(x)2

x3/2

µ
1− 1

2

y2

x

¶
e−

y2

4x ,

v3,1(x, y) = θ(x)
b2d

2

1

(
√
π)
5

log(x)

x2
y√
x

µ
log(x)

4

µ
3− 1

2

y2

x

¶
− 1
¶
e−

y2

4x , (42)
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and we set all the other third order terms equal to zero (they can not be computed from drag and lift
alone). We finally note that once the approximate expressions for the velocity field u are known, similar
approximations can be computed for the pressure. For the computation of drag and lift (see Appendix
II) we only need the first order approximation, i.e., p ≈ p1, where

p1(x, y) = −
1

2

¡
(1 + u1,1,E(x, y))

2 − 1 + v21,1,E(x, y)
¢
, (43)

with the normalization limx,y→∞ p1(x, y) = p(x, y) = 0.

2.3 Adaptive boundary conditions of order N

In order to solve (1) numerically, it is more convenient to set ũ = ũ∞ + ṽ, and to study the equation

−ρ (ũ∞ ·∇) ṽ−ρ (ṽ ·∇) ṽ+ µ∆ṽ−∇p̃ = 0 ,
∇ · ṽ = 0 , (44)

subject to the boundary conditions

ṽ|∂B̃ = −ũ∞ , (45)

lim
|x̃|→∞

ṽ(x̃) = 0 . (46)

The equations (44) are then discretized in a truncated domain D̃, and the boundary condition (46) is
replaced by the boundary conditions

ṽ|Γ̃ = ṽABC , (47)

with ṽABC(x̃, ỹ) = u∞ vN (x, y), where vN (x, y) =
PN

n=1

Pn
m=1 un,m(x, y), x = x̃/c, y = ỹ/c with c as

defined in (5), and where N = 0 (homogeneous Dirichlet data), N = 1 (first order adaptive boundary
conditions; see [6] and below), or N = 2 or 3 (second, respectively third order adaptive boundary
conditions; see below).

3 Solution process
In what follows we give details concerning the discretization procedure and the algorithms that we use
to solve (44), (45), (47) numerically. To unburden the notation we suppress throughout this section the
“tildes”.

3.1 Galerkin finite element discretization

In order to solve equation (44), we consider a discretization based on conforming mixed finite elements
with continuous pressure. This discretization starts from a variational formulation of the system of
equations (44). First, we introduce some notation needed for the derivation of this formulation.
For a bounded domain D ⊂ R2, let L2(D) denote the Lebesgue space of square-integrable functions

on D equipped with the inner product and norm

(f, g)D =

Z
D

fg dx , ||f ||D = (f, f)1/2D .

The pressure is assumed to lie in the space L20(D) := {q ∈ L2(D) |
R
D
q dx = 0}, which defines it uniquely.

The L2(D) functions with generalized (in the sense of distributions) first-order derivatives in L2(D) form
the Sobolev space H1(D), while H1

0 (D) := {v ∈ H1(D) | v|∂D = 0}. Let W = [H1
0 (D)]

2 × L20(D). For
w = {v, p} ∈W and φ = {ϕ, q} ∈W , we define the semi-linear form

A(w;φ) = ρ (((v + u∞) ·∇)v, ϕ)D − (p,∇ · ϕ)D + 2µ
Z
D

D(v) : D(ϕ) dx− (∇ · v, q)D , (48)

which is obtained by testing the equations (44) with φ ∈ W and by integration by parts of the diffusive
term and the pressure gradient (see e.g. [34, 15, 16, 39, 27] for more details). D(v) denotes the deformation

8



tensor, i.e., D(v) = 1
2(∇v+(∇v)T ). Then, a weak form of the equations (44) can be formulated as: find

w = {v, p} ∈W , such that
A(w;φ) = 0 , ∀φ ∈W . (49)

The discretization of problem (49) uses a conforming finite element space Wh ⊂ W defined on quasi-
uniform triangulations Th = {K} consisting of quadrilateral cells K covering the domain D. We consider
the standard Hood-Taylor finite elements [28] for the trial and test spaces, i.e., we define

Wh =
©
(v, p) ∈ [C(D)]3 | v|K ∈ [Q2]2, p|K ∈ Q1

ª
,

where Qr describes the space of isoparametric tensor-product polynomials of degree r (for a detailed
description of this standard construction process see for example [7]). This choice for the trial and test
functions guarantees a stable approximation of the pressure since the Babuska-Brezzi inf-sup stability
condition is satisfied uniformly in D (see [8] and references therein). The advantage, when compared to
equal order function spaces for the pressure and the velocity, is that no additional stabilization terms are
needed. The discrete counterpart of problem (49) then reads: find wh = {vh, ph} ∈ wb,h+Wh, such that

A(wh;φh) = 0 , ∀φh ∈Wh . (50)

Here wb,h describes the prescribed Dirichlet data on the boundary Γ of the domain D. A straightforward
approach consists in considering a domain D which is large enough such that v is vanishingly small in
Ω\D. As shown in [6] this approach, which corresponds to imposing homogeneous Dirichlet boundary
conditions for v on Γ, generally leads to extremely large and intractable discrete problems. Our goal is to
avoid these difficulties by imposing adequate non-homogeneous Dirichlet boundary conditions on Γ. As
explained in Section 2, the proposed artificial boundary conditions are independent of the details of the
geometry of the body but depend explicitly on drag and lift. The accurate determination of these forces
is therefore a key issue in our context. As in [6] we use the approach proposed in [21] which is based on
a reformulation of the expressions for drag and lift in terms of volume integrals by means of integration
by parts. This reformulation allows to attain the full order of convergence for the values of drag and lift.

3.2 The solver

The nonlinear algebraic system (50) is solved implicitly in a fully coupled manner by means of a damped
Newton method. Denoting the derivative of A(·, ·) taken at a discrete function wh ∈Wh by A0(wh, ·)(·),
the linear system arising at the Newton step number k has the following form,

A0(wk
h, φh)(ŵ

k
h) = (r

k
h, φh) , ∀φh ∈Wh , (51)

where rkh is the equation residual of the current approximation w
k
h, and where ŵ

k
h corresponds to the

needed correction. The updates wk+1
h = wk

h + αkŵk
h with a relaxation parameter α

k chosen by means
of Armijo’s rule are carried out until convergence. In practice, the Jacobian involved in (51) is directly
derived from the analytical expression for the derivative of the variational system (50).
It is well known that the ability of the Newton iteration to converge at the local rate greatly depends

on the quality of the initial approximation (see e.g. [29]). In order to find such an initial approximation,
we consider a mesh hierarchy Thl with Thl ⊂ Thl+1 , and the corresponding system of equations (50) is
successively solved by taking advantage of the previously computed solution, i.e., the nonlinear Newton
steps are embedded in a nested iteration process (see e.g. [45], chapter 8).
The linear subproblems (51) are solved by the Generalized Minimal Residual Method (GMRES), see

Saad [35], preconditioned by means of multigrid iterations. See [46, 45] and references therein for a
description of the different multigrid techniques for flow simulations. This preconditioner, based on a
new multigrid scheme oriented towards conformal higher order finite element methods, is a key ingredient
of the overall solution process. Two specific features characterizing the proposed scheme are: varying
order of the finite element ansatz on the mesh hierarchy and a Vanka type smoother [41] adapted to
higher order discretization. This somewhat technical part of the solver is described in full details in [26].
Its implementation is part of the HiFlow project (see [25]).
To summarize, the specificity of our approach is to prescribe boundary conditions which depend on

the drag and the lift. These values, and therefore the adequate boundary conditions, are not known at the
beginning of the resolution process. Therefore, the Newton steps previously described are embedded in
an additional fixed point iteration which determines the boundary conditions through successive updates,
based on the previously computed values of drag and lift.
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4 Numerical experiments
The proposed adaptive boundary conditions (37-42) have a complicated structure. Our goal in this section
is to quantify the impact of the various terms of these boundary conditions on the accuracy of the solution.
For that purpose we will consider the five variants of boundary conditions as depicted in Table 1, ranging
from the pure first order boundary conditions to the full second order boundary conditions that include
the nonzero lift effects. See (36) for the expressions relating b to the lift and d to the drag. Throughout
this section we suppress the “tildes” from the notation and we write (u, v) for the components of the
(numerical) solution v of (44).
First, we discuss the case of a symmetric body which consists of a rectangle [−0.1, 0.1] × [−0.5, 0.5]

immersed into a uniform stream of a homogeneous incompressible fluid with density ρ = 1 and dynamic
viscosity µ = 0.1. We impose furthermore u∞ = 0.1. With A = 1 being the length of the rectangle, we
find from (5) that c = 1 and therefore with (6) the Reynolds number Re = 1. This configuration has
already been investigated using first order boundary conditions in [6]. On the basis of this benchmark
configuration our goal is to examine the gain obtained by means of the additional second order terms.
Note that due to the symmetry of the body the lift and therefore b is equal to zero. Therefore, the
variants denoted by (sym/sym), (nonsym/sym) and (nonsym/nonsym) in Table 1 are all equivalent. A
quantity of importance in this context is the so called centerline velocity u(x, 0). It has been extensively
studied (see for example [38] and [37]), as its behavior for (large) positive x reveals information on the
asymptotics of the wake. From (37) we get using (7) the theoretical prediction that in dimension-full
variables to leading order for large x,

u(x, 0) ≈
³
u∞
√
c
´ c

2
√
π

1√
x
, (52)

with c = −2d and d as defined in (36), i.e., c = −F̃ /(ρcu2∞). Numerically we find that F̃ = 0.05029. In
Figure 4 we have plotted the quantity −2

√
π
√
xu(x, 0) as a function of x, where u has been computed

once using first order boundary conditions and once using the second order adaptive boundary conditions.
With second order boundary conditions the plot is closer to the asymptotic value on most of the domain.
The impact of the second order terms is however much more evident when considering the gain with regard
to the relative error of the drag. In the plots of Figure 5, the relative error of the drag as a function of the
domain diameter is plotted considering the homogeneous Dirichlet boundary conditions, the first order
boundary conditions (sym) and the second order boundary conditions (sym/sym). Clearly, the addition
of the second order terms allow to again substantially reduce the size of the computational domain when
compared to the first order approach. This is especially true if a high accuracy is needed for the drag.
Note that the additional computational time needed for the evaluation of the second order boundary
terms is negligible. Therefore, the reduction of the diameter of the computational domain induced by the
second order terms leads to direct and drastic benefits with regard to the overall computation time.
Due to the symmetry of the body leading to zero lift, all terms involving b in the proposed boundary

conditions were inactive in the preceding test case. In order to check their relative role we consider a
second body which consists of the NACA profile 64-015 shown in Figure 1. In order to obtain values of the
lift which are comparable to the drag (so that b is comparable in size to d, see (36)), we consider this setup
at a Reynolds number Re = 1000. The resulting values for drag and lift are given in Table 2. Similarly to
the previous benchmark problem we also plot in Figure 6 the relative error of drag and lift as a function
of domain size considering the different variants of boundary conditions as given in Table 1. The results
show that the terms of the boundary conditions that include the lift effects only marginally influence the
relative error of drag and lift at the level of the absolute error and range of Reynolds numbers computed
here.
To summarize, the use of second order boundary conditions for exterior flows is not of academic value

only but is very relevant in numerical simulations. When compared to the first order boundary conditions
used in [6] their use allows a further important reduction of the computational domain, especially at low
Reynolds numbers. Numerical evidence shows, however, that the boundary terms related to the effects
of the lift which appear for non symmetric bodies do not contribute in an essential way to the accuracy
of the solution when measured in terms of drag and lift.
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First order Second order
Notation Order equations b equations b
sym 1 (37),(38) = 0 - -
nonsym 1 (37),(38) 6= 0 - -
sym/sym 2 (37),(38) = 0 (39),(40),(41) = 0
nonsym/sym 2 (37),(38) 6= 0 (39),(40),(41) = 0
nonsym/nonsym 2 (37),(38) 6= 0 (39),(40),(41) 6= 0

Table 1. Definition of the notation for the different variants of first and second order non homogeneous
adaptive boundary conditions discussed in the paper.

Configuration drag lift
homogeneous Dirichlet 6.691 9.046
sym 6.626 8.925
nonsym 6.624 8.923
nonsym/sym 6.609 8.888
nonsym/nonsym 6.607 8.894

Table 2: Computed values of the drag and lift on a domain of diameter 10 for the configuration
depicted in Figure 1 (Re = 1000). An approximation of the exact values as determined by a large scale
computation are: drag ≈ 6.58 and lift ≈ 8.81.

5 Appendix I
In this appendix we give some more details concerning the construction of the asymptotic expansion. We
start by explaining the procedure to first order. From (17) and (18) we have for ω1,

ω1(x, y) =
d

x
ϕ001,1(

y√
x
) . (53)

We have that
R∞
0

dx
R
R
dy ω1(x, y) = 0, and therefore

b1 = b+
1

2

Z
Ω

ω1(x, y) dxdy = b− 1
2

Z
B+

ω1(x, y) dxdy ,

where B+ = {(x, y) ∈ B | x > 0}. Next, sinceZ
Ω

G(x− x0, y − y0) ω1(x0, y0) dx0dy0 =

Z ∞
0

dx0

Z
R

dy0 G(x− x0, y − y0) ω1(x0, y0)

−
Z
B+

G(x− x0, y − y0) ω1(x0, y0) dx0dy0 ,

we have for ψ1,

ψ1(x, y) = 2b G(x, y)−
Z ∞
0

dx0

Z
R

dy0 G(x− x0, y − y0) ω1(x0, y0)

−
Z
B+

(G(x, y)−G(x− x0, y − y0)) ω1(x0, y0) dx0dy0 . (54)
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The term in the second line in (54) is bounded by const./r and will be neglected. Using (53) and
integrating twice by parts and using (33) leads to

ψ1(x, y) ≈ 2b G(x, y)− d

Z ∞
0

dx0

Z
R

dy0 G(x− x0, y − y0)
1

x0
ϕ001,1(

y0√
x0
)

= 2b G(x, y)− d

Z ∞
0

dx0

Z
R

dy0 ∂yG(x− x0, y − y0)
1√
x0

ϕ01,1(
y0√
x0
)

= 2b G(x, y)− d

Z ∞
0

dx0

∙
∂yG(x− x0, y − y0)(erf(

1

2

y0√
x0
) + 1)

¸0
−∞

− d

Z ∞
0

dx0

∙
∂yG(x− x0, y − y0)(erf(

1

2

y0√
x0
)− 1)

¸∞
0

− d

Z ∞
0

dx0

Z
R

dy0 ∂
2
yG(x− x0, y − y0)(erf(

y0√
x0
)− sign(y0)) .

Since
¡
∂2x + ∂2y

¢
G(x− x0, y − y0) = δ(x− x0)δ(y − y0), we therefore find that

ψ1(x, y) ≈ 2b G(x, y)− 2d
Z ∞
0

∂yG(x− x0, y) dx0 − d θ(x)(erf(
y√
x
)− sign(y))

+ ∂2x

µ
d

Z ∞
0

dx0

Z
R

dy0 G(x− x0, y − y0)(erf(
y0√
x0
)− sign(y0))

¶
.

The last term is again bounded by const./r. We have that

∂yG(x− x0, y) =
1

2π

y

(x− x0)
2 + y2

,

an therefore that Z ∞
0

∂yG(x− x0, y) dx0 = −H(x, y) ,

where
H(x, y) =

1

2π
Im[log(−x− iy)] =

1

2π
arctan(

y

x
)− 1

2
θ(x)sign(y) .

Modulo terms bounded by const./r we therefore find the following local approximation ψ1,loc of ψ1

ψ1,loc(x, y) = 2b G(x, y) + 2d H(x, y)− d θ(x)(erf(
1

2

y√
x
)− sign(y)) ,

from which (37) follows using (19) and (20), respectively.
Next we compute local approximations for the second and third order terms. Let x+ > 0 be “to

the right of B”, i.e., x+ > supx{x ∈ R | (x, y) ∈ B for some y} and let B+,∞ = {(x, y) ∈ R2 | 0 <
x < x+}. Using the definitions we have, for i = 1, 2, that

R∞
x+

dx
R
R
dy ωi(x, y) = 0, and therefore that

bi = bi−1 + 1
2

R
B+,∞

ωi(x, y) dxdy. Therefore,

ψi(x, y) = ψi−1(x, y) +
Z
Ω

(G(x, y)−G(x− x0, y − y0))ωi(x0, y0) dx0dy0

= ψi−1(x, y)−
Z ∞
x+

dx0

Z
R

dy0G(x− x0, y − y0)ωi(x0, y0) dx0dy0

+

Z
B+,∞

(G(x, y)−G(x− x0, y − y0))ωi(x0, y0) dx0dy0 . (55)

The last term in (55) is bounded by const./r and will be neglected. For the contribution of ϕ2,1 to ψ2
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we have

−
Z ∞
x+

dx0

Z
R

dy0 G(x− x0, y − y0)
log(x0)

x
3/2
0

ϕ002,1(
y0√
x0
)

= −
Z ∞
x+

dx0

Z
R

dy0 ∂yG(x− x0, y − y0)
log(x0)

x0
ϕ02,1(

y0√
x0
)

= −
Z ∞
x+

dx0

Z
R

dy0 ∂
2
yG(x− x0, y − y0)

log(x0)√
x0

bd

π3/2
e−

y20
4x0

= −θ(x− x+)
log(x)√

x

bd

π3/2
e−

y2

4x

+ ∂2x

ÃZ ∞
x+

dx0

Z
R

dy0 G(x− x0, y − y0)
log(x0)√

x0

bd

π3/2
e−

y20
4x0

!

≈ −θ(x) log(x)√
x

bd

π3/2
e−

y2

4x , (56)

where the last approximation sign means that we have again neglected terms bounded by const./r.
Similarly we find for the contribution of ϕ3,1 to ψ3,

−
Z ∞
x+

dx0

Z
R

dy0 G(x− x0, y − y0)
log(x0)

2

x20
ϕ003,1(

y0√
x0
)

≈ θ(x)
log(x)2

x

b2d

4π5/2
y√
x
e−

y2

4x . (57)

We finally discuss the contribution of ϕ2,2 to ψ2. We have (we only treat the case c2,2 = 0)

−
Z ∞
x+

dx0

Z
R

dy0 G(x− x0, y − y0)
1

x
3/2
0

ϕ002,2(
y0√
x0
)

= −
Z ∞
x+

dx0

Z
R

dy0 ∂yG(x− x0, y − y0)
1

x0
ϕ02,2(

y0√
x0
)

= d2
Z ∞
x+

dx0

∙
∂yG(x− x0, y − y0)

1√
x0
(f(

y0√
x0
) + f∞)

¸0
−∞

+ d2
Z ∞
x+

dx0

∙
∂yG(x− x0, y − y0)

1√
x0
(f(

y0√
x0
)− f∞)

¸∞
0

+ d2
Z ∞
x+

dx0

Z
R

dy0 ∂
2
yG(x− x0, y − y0)

1√
x0
(f(

y0√
x0
)− f∞sign(y0))

= 2d2f∞
Z ∞
0

dx0√
x0

∂yG(x− x0, y) + θ(x)
d2√
x
(f(

y√
x
)− f∞sign(y))

+ 2d2f∞
Z x+

0

dx0√
x0

∂yG(x− x0, y)+

− ∂2x

Ã
d2
Z ∞
x+

dx0

Z
R

dy0 G(x− x0, y − y0)
1√
x0
(f(

y0√
x0
)− f∞sign(y0))

!
. (58)

The last two terms are again bounded by const./r, and we might be tempted to neglect them as in the
previous cases. In contrast to all the other terms considered so far the remaining local approximation is
however not sufficiently differentiable in y at y = 0 and x > 0. Namely,Z ∞

0

dx0√
x0

∂yG(x− x0, y) dx0 =
1

2
H2(x, y) ,

where
H2(x, y) = Im[

1√
−x− iy

] =
1

2
sign(y)

r2
r

,
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with r =
p
x2 + y2and r2 =

√
2r + 2x. For x > 0 fix and y small we have,

H2(x, y) =
sign(y)√

x
(1− 3

8
(
y

x
)2 +O((y

x
)4) , (59)

and it is now easy to see using (19) and (20) that the contribution of H2 to the local approximation of
u2 and v2 is not twice differentiable. We are therefore forced to extract in (58) an additional term that
compensates the contribution proportional to sign(y)y2 in (59), and we finally get from (56)-(58) the
following local approximations ψ2,loc and ψ3,loc of ψ2 and ψ3,

ψ2,loc(x, y) = ψ1,loc(x, y)− θ(x)
log(x)√

x

bd

π3/2
e−

y2

4x

+ d2f∞H2(x, y) + θ(x)
d2

x
(f(x, y)− f∞sign(y))

+ λ θ(x) d2f∞
3

8

1

x3/2
y√
x
(1 +

|y|√
x
)e−

y2

4x

ψ3,loc(x, y) = ψ2,loc(x, y) + θ(x)
log(x)2

x

b2d

4π5/2
y√
x
e−

y2

4x ,

from which (39)-(42) follow using (19) and (20), respectively.
We still have to check that with the above choices for ϕi,j the equation (14) is satisfied asymptotically

as claimed in (32). To first order one can show (using the computer-algebra system Maple for example)
that

lim
x→∞x2 W (1 + u1, v1, ω1)(x,

√
xz) = 0 ,

because L1(ϕ1,1)(z) = 0, where for n ∈ N,

Ln(f)(z) = f 0000(z) +
1

2
zf 000(z) +

1 + n

2
f 00(z) .

The function ϕ1,1 is the (up to a constant) unique solution of L1(f) = 0 with derivatives decaying
faster than exponential at infinity. At order N of the expansion the operator LN has to be discussed.
The second order operator L2 contains in its kernel the function z 7→ e−z

2/4, and for this reason the
equation L2(f) = g with g a smooth function of rapid decrease, say, has typically a solution f whose
even part decays only algebraically at infinity (see [22], [40]). This is not acceptable in our case since
the vorticity is supposed to decay faster than exponential transversal to the wake. This means that the
correct asymptotic expansion has a logarithmic second order term ϕ2,1 (see [40] for a description of the
ideas). This additional term permits to adjust the inhomogeneity g in the equation for ϕ2,2 such that
the solution is of rapid decrease. It turns out that in our case the logarithmic correction term ϕ2,1 can
be chosen such that the equation for ϕ2,2 has no even inhomogeneous term. More precisely we have

lim
x→∞x5/2 W (1 + u1 + u2, v1 + v2, ω1 + ω2)(x,

√
xz) = 0 , (60)

because L2(ϕ2,1)(z) = 0 and L2(ϕ2,2)(z) = −ze−z
2/2/(2π) (this is the derivative of equation (34)).

Finally, to third order we have to discuss L3. This time the problem is that L3 contains in its kernel
the function z 7→ ze−z

2/4, and for this reason the equation L3(f) = g has typically a solution f whose
odd part decays only algebraically at infinity. In our case, because of the logarithmic second order term,
this problem already arises at the level of the equation for ϕ3,2. The correct asymptotic expansion
therefore contains a quadratic logarithmic third order term ϕ3,1. This additional term permits to adjust
the inhomogeneity g in the equation for ϕ3,2 such that the solution is of rapid decrease. It turns out that
in our case the logarithmic correction term ϕ3,1 can be chosen such that the equation for ϕ3,2 has no odd
inhomogeneous term. Finally, ϕ3,2 has to be chosen such that ϕ3,3 is of rapid decrease. More precisely,
we have

lim
x→∞

x3

log(x)
W (1 + u1 + u2 + u3, v1 + v2 + v3, ω1 + ω2 + ω3)(x,

√
xz) = 0 , (61)

because L3(ϕ3,1)(z) = 0 and L3(ϕ3,2)(z) =
³
e−

1
2 z

2

/(2π2)
´00
. Explicitly we find,

ϕ3,2(z) = −
d2

2π3/2
(1− d

4
√
3
) ze−

z2

4 − c2,2b
2 z

2π
e−

z2

4 + f3,2(z) ,
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with f3,2 satisfying f3,2(0) = −1/(2π2), f 03,2(0) = f 003,2(0) = f 0003,2(0) = 0. Note that f3,2 is an even function
decaying faster than exponential at infinity. See Figure 3 for a graph of the function f3,2.

6 Appendix II
In this appendix we recall the computation of drag and lift through surface integrals. We also recall the
relation between the lift and the average vorticity, i.e., the fact that b is given by (31). Let u, p be a
solution of the Navier-Stokes equations (9), (10) subject to the boundary conditions (11), (12), and let e
be some arbitrary unit vector in R2. Multiplying (9) with e leads to

− (u ·∇) (u · e) +∆ (u · e)−∇ · (pe) = 0 . (62)

Since

∇ · ((u · e)u) = u · (∇ (u · e)) + (u · e) (∇ · u) = (u ·∇) (u · e) ,

∆ (u · e) = ∇ · ( [∇u+(∇u)T ] · e) ,

equation (62) can be written as ∇ ·P(e) = 0, where

P(e) = − (u · e)u+ [∇u+(∇u)T ] · e− pe , (63)

i.e., the vector field P(e) is divergence free. Therefore, applying Gauss’s theorem to the region ΩS (see
Figure 2) we find that Z

∂Ω

P(e) · n dσ =

Z
S

P(e) · n dσ , (64)

with the choice of normal vectors as indicated in Figure 2. We have that P(ẽ) · e = P(e) · ẽ for any two
unit vectors e and ẽ, and therefore, since e is arbitrary, it follows from (64) thatZ

∂Ω

P(n) dσ =

Z
S

P(n) dσ . (65)

Since u = 0 on ∂Ω, we finally get from (65) and (63) that the total force the fluid exerts on the body is

F =

Z
∂Ω

Σ(u, p)n dσ =

Z
S

³
− (u · n)u+ [∇u+(∇u)T ]n− pn

´
dσ ,

with Σ(u, p) = ∇u+(∇u)T − p the Stress tensor. In dimension-full variables we have

F̃ =

Z
S̃

³
−ρ (ũ · n) ũ+ µ[∇̃ũ+ (∇̃ũ)T ]n− p̃n

´
dσ̃ = ρu2∞c F . (66)

The force F is traditionally decomposed into a component F parallel to the flow at infinity called
drag and a component L perpendicular to the flow at infinity called lift. Note that F is independent
of the choice of S. This has the important consequence that F and L can be computed from the
dominant terms u1 and p1 of the velocity field and the pressure. Also, since lim|y|→∞ u(x, y) = (1, 0) and
lim|y|→∞ p(x, y) = 0, we can replace S by two vertical lines, one at −x < 0 to the left of the body and
one at x > 0 to the right of the body. Therefore we have, modulo terms that vanish as x goes to infinity,

F = lim
x→∞

Z
R

µ
−(1− d√

π

1√
x
e−

y2

4x + u1,1,E(x, y))
2 + (1 + u1,1,E(−x, y))2

¶
dy

+
1

2
lim
x→∞

Z
R

³
(1 + u1,1,E(x, y))

2 − 1 + v1,1,E(x, y)
2
´

dy

− 1
2
lim
x→∞

Z
R

³
(1 + u1,1,E(−x, y))2 − 1 + v1,1,E(−x, y)2

´
dy

=

Z
R

µ
2d√
π

1√
x
e−

y2

4x − 4 d
π

x

x2 + y2

¶
dy +

1

2

Z
R

µ
4
d

π

x

x2 + y2

¶
dy = 2d (67)
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and

L = − lim
x→∞

Z
R

µ
1− d√

π

1√
x
e−

y2

4x + u1,1,E(x, y)

¶µ
− d

2
√
π

y

x3/2
e−

y2

4x + v1,1,E(x, y)

¶
dy

+ lim
x→∞

Z
R

(1 + u1,1,E(−x, y))v1,1,E(−x, y) dy

= −
Z
R

µ
− b

π

x

x2 + y2

¶
dy +

Z
R

µ
− b

π

−x
x2 + y2

¶
dy = 2b , (68)

and equation (36) now follows using (66). Finally, in order to show identity (31), we use Stokes’ theorem
which relates the average vorticity to a line integral along ∂B and a line integral along S in the limit
when S goes to infinity. The integral along ∂B is zero since u|∂B = 0 and the limit of the integral along
S can be computed as above by first taking the limit where S is replaced by two vertical lines and then
the limit when x goes to infinity.
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Figure 2. The body B̃, the exterior domain Ω̃, the computational domain D̃ and the artificial boundary
Γ̃ (left) and the surface S used in the the theorems of Gauss and Stokes and the definition of normal
vectors on ∂Ω and S (right).
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Figure 3. The graph of the function f (left) and f3,2 (right).
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Figure 4. The scaled centerline velocity to first and second order (left) and zoom on the same quantities
(right).
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Figure 5. Plot of the relative error of the drag as a function of the domain diameter considering
homogeneous Dirichlet boundary conditions and the adaptive boundary conditions to first and second
order. From left to right and top to bottom the quantities are plotted in semilog plots un-zoomed and
zoomed and in log/log plots un-zoomed and zoomed.

2 4 6 8 10 12
10-3

10-2

10-1

100

Diameter of the computational domain

R
el

at
iv

e 
er

ro
r o

f t
he

 d
ra

g

Order 0
Order 1(sym)
Order 1(nonsym)
Order 2(sym/sym)
Order 2(nonsym/sym)

2 4 6 8 10 12
10-3

10-2

10-1

100

Diameter of the computational domain

R
el

at
iv

e 
er

ro
r o

f t
he

 li
ft

Order 0
Order 1(sym)
Order 1(nonsym)
Order 2(sym/sym)
Order 2(nonsym/sym)

Figure 6. Plot of the relative error of the drag (left) and the lift (right) as a function of the domain
diameter considering homogeneous Dirichlet boundary conditions and the adaptive boundary conditions
to first and second order.
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