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ABSTRACT. We use the concept of the exchange hole introduced by Slater
to bound the energy of atoms, molecules, and other systems interacting by
Coulomb forces from below by one-particle Hamiltonians with an effective
screening potential and an exchange hole around each electron. Interestingly
enough the optimal size of the exchange hole is smaller than Slater proposed:
the best lower bound is obtained when the exchange hole carries charge 1/2
instead of 1. To highlight the quality of our estimate we show that the
Dirac exchange energy with a slightly different constant bounds the exchange-
correlation energy from below, an estimate previously derived by Lieb [5] and
later improved by Lieb and Oxford [6].

1. INTRODUCTION

Slater [12] simplified the Hartree-Fock equations by introducing a ball around
each electron that carries a unit charge modeling the self-interaction and the ex-
change energy of a system of N electrons. This ball, called “exchange hole” for
brevity, replaces the exchange term in the Hartree-Fock equations and thus leads
to a substantial simplification. Because of this importance it has attracted con-
sirable interest since the pioneering work of Slater. We need to restrict ourselves
for brevity but would like to mention the recent works of Buijse and Baerends [2],
Springborg et al. [13], Becke and Roussel [1], and the references therein.

The novelty of our result is that it does not only give an expression for the
exchange-correlation energy of atoms and molecules that becomes exact in the
limit of large (neutral) atoms (see, e.g., Siedentop and Weikard [8, 8, 9, 10, 11]). It
also yields a rigorous lower bound on the exact energy.

The observation relevant for us is due to Hughes [3, 4]. He noted that the classical
Coulomb interaction of N point particles at positions x1, ..., xx with unit charge
can be estimated from below as follows:

1 al o(y)dy a 1
(1) —_— > / —————D(o,0)+ )
lsn;ngzv Xn = Xm| nz::l [y =xa > Ra () Y~ Xnl ,; 2R (xn)

where we use the following notation: given any charge density o in three dimensional
space R® we denote its electrostatic self-energy by D(o,0), i.e.,

@) D(0,0) := %/dex dey%";yl).
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Here and in the following we will assume that the above integral exists even when o
is replaced by its absolute value |o|. We will also assume that [5; dy|o(y)|/|x —y|
is finite for almost all x.

Furthermore, we fix any non-negative density and define R¢(x) to be the radius
of the smallest ball with center at x containing charge ¢, i.e., the smallest R fulfilling

3) /y_x|gR"(Y)dy ¢

We assume, of course, 0 < £ < [o. For Ry/5(x) we write simply R(x).

Let us note the following:

(i) The assumption that the exchange hole contains a unit charge was strongly
influenced by Slater’s heuristic arguments.

(ii) Although the inequality is true for any charge density o, good results will be
only obtained, if it is picked to be a realistic density. In fact, using the Thomas-
Fermi density allows to obtain lower bounds that are correct up to second order in
Z~1/3 (Scott correction) (Siedentop and Weikard [9, 10, 11] and Hughes [3, 4]). —
It is also possible to determine o self-consistently, i.e., setting o := |uq (z)|? + ... +
|un(x)]?> where the u,, are the solutions of the corresponding one-particle problem.

(iii) The Inequality (1) implies strong simplifications for the treatment of inter-
acting systems: it allows to replace two-particle operators by one-particle operators,
since their ground states are known to be Slater determinants. It is therefore of
utmost importance to obtain a bound of this type that is as tight as possible.

The purpose of this paper is exactly this, i.e., to improve the above bound. We
will no longer fix the amount of charge £ in the exchange hole. Instead we will take
it as a variational parameter. It will turn out that the bound on the interaction
energy does not only simplify for £ = 1/2; it will also improve and be tighter
compared to all other values of £ including 1.

As an application we will show in Section 3 that the resulting bound implies an
inequality of Lieb [5] later improved by Lieb and Oxford [6].

2. AN OrpTiMAL LOWER BOUND ON THE COULOMB INTERACTION VIA AN
EXCHANGE HOLE

Our main result is the following inequality:
Theorem 1.

(1) Let o be a charge density with [ o(y)dy > 1/2. Then, for any given number
N of points X1,...XN in space we ha’ue

o(y) oS €12
@ > o —xm|>2/ N e +ZR§ )

1<n<m<N

(2) The right hand side of (4) has its mazimum for € =1/2.

We would like to remark that we can replace o(x)dx by any signed measure
du(x) with the above requirements on its interaction energy and its potential. Qur
main result would still be true. We leave this to the interested reader.

Our proof depends on a well known formula that goes back to Newton [7]: for
any spherically symmetric charge density p one has

/ p(y)dy _ [ 4mxr?p(r)dr
R

s [x -yl Jo max{r[x]}

(5)

which is easily verified by integration in spherical coordinates.
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Proof. 1. It is convenient to introduce a charge density of total charge one which
is smeared out uniformly on a sphere of radius R centered at y € R3:

(1% — y| - R)dx

©) duny(x) = Y

We begin with the crucial observation, that the Coulomb kernel is positive as an
operator, i.e.,

(7) D(p, ) >0

for any complex measure g on the three dimensional space provided the correspond-
ing integral is absolute convergent, i.e., [osd|u|(X) [psd|u|(y)|x — |~ is finite.
Now, we choose

d/,l/(fl') =0 — d/'l’Rg(xl),x1 e dIU/Re(xN),XN'

Rearranging the terms in (7) gives

(8) 2 Z D(1Re (x)50n s LR (xm )36 )

1<n<m<N
N N
> =D(0,0) = > D(firg(xn) ns HRe (xn)ixn) T2 D D0, R () x0)-
n=1 n=1

We evaluate and estimate the occurring expressions. By explicit computation using
Newton’s formula (5) we find

(9) 2D(IU/RE(xn),xn y MR, (xm),xm) < |Xn - Xml_l

which is also obvious from the physical point of view: it costs energy to contract the
smeared out unit charge to a point. This means, that we can estimate the left hand
side of (8) from above by >, ., c,n<n [Xn —Xm|™!. Computing, the self-interaction
of a unit charge smeared out on a sphere of radius R yields

1
(10) D(ppx; Prx) = 3R

Finally, the summands of last term of the right side of (8) are again computed
explicitly:

1 a(y) ¢
(11) D(U’, MR, (x ,x) = —/ dy + )
< 2 |y —x|>Re(x) |y - X| 2R§(X)

Inserting the estimates gives the desired first inequality
(12)

N
Z 7|Xn_1xm|22/ o(y) ——=—dy — D(o,0) +Z£_17/j.

n=1 " |¥y—%n|>R¢(xn) |y—Xn|
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2. To prove the second part of the theorem we compare the right hand side rhs
of (4) at £ = 1/2 with all other values of £ = 1/2 + e: we have — assuming € > 0 —

N
(13) rhs(1/2+e)—rhs(1/2)=2/ R 0 4 Do)
|y —xn 1/2+4e Xn

y_xnl

+ Z R1/2+e Xn) Z/ = W+ Do)

—Xn|>Ry/2(xn) ly - xnl
"— 1~/R1/2(xn)<y Xn|<Rij24e(Xn) |y _Xn| R1/2+e Xn

N
a(y) _
< _Z/ )dy " Z R1/2+6(Xn) =0

= Ry o) <[y —%n | <Bijape(xn) B1/24¢(X

N

since the annulus of integration contains exactly charge e by definition of R¢(z).
The case of negative € is analogous. |

To emphasize the charge optimized bound we state it explicitly:

o(y)dy oo
14) X —xm|>2/ R ~ Do)

1<n<m<N |y —Xn|

which holds for arbitrary charge density o fulfilling merely the general requirements
of the introduction.

3. THE CORRELATION BOUND OF LIEB AND OXFORD

We would like to show that the Inequality (14) implies an exchange-correlation
bound in terms of the Dirac exchange term that goes back to Lieb and Lieb and
Oxford.

The main technical tool will be the Hardy-Littlewood maximal function (M f)(x)
of a function f. It is defined to be the biggest spherical average of f over balls of
radius R, i.e.,

Sy i<r [ ¥)ldy
sup ix 03 .
R>0 TR

(15) (Mf)(x) :=

It is a classical fact that the L? norm of the maximal function can be estimated
in terms of the LP norm of the function itself (Stein [15]) . We will need this fact
in the case that p = 4/3. This estimate reads

(16) [ 0eneo e < a3f; [ 156012,

(Note that best constant A,z in this inequality is not exceeding 17.57 (Stein and
Stromberg [14]). We also need an inequality that appears in the spherical symmetric
case in Lieb [5]:

Lemma 1. If f is an integrable function, then

[ ssoises (S0rn©) ([ reor)
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Proof. Obviously, it is enough to prove the result for non-negative spherically sym-
metric functions. Integrating by parts we get

_ 1 —1
08) [ soorie= g [ axixt [ ays)
1 J dyfly) 1
_1 il -1y < VI 1 el A p
3/x<R xlx] o |x[? T /|x|>R Xl /|y<x i)

< FRMHO+ [ dviw)/R

Picking R = {‘/ 3 Joedy f(y)/(4m(M £)(0)) yields the desired inequality. O
Lemma 2. Let o be as required in the introduction. Then
1/3
(19) / ay T < O (g0 .
[x—y|<R(x) |X - y| 2

Proof. We set ox(y) := 0(x +¥)Xr(x)(Y) Where xg(x)(y) is one, if |y| < R(x) and
vanishes otherwise. We apply Lemma 1 with f = o, and get

U(Y) _ Ux(y)
(20) /yx|<R(x) dy |X - Y| B /R3 dy |Y|

< (g”(Max)(o>)l/3 (/) loxtviay) " (gﬂMU)(X))” ’ G)/

where the last inequality holds because of the definition of R(x). The last term of
the above chain of inequalities is easily seen to give the claim. a

Assume 1) to be a normalized wave function of N particles with spin ¢ each,
i.e., 1 depends on the variables & := (z1,,...,2n) where each =, = (x,,7,) is a
space-spin variable, i.e.,

/|¢ |da:—/ dxlz /dethf

T1=1

We do not assume that ¢ fulfills any symmetry requirements but we do assume

that
L= Y /cr"” < o0
_Xm|

1<n<m<N
and that the one-particle density py of the state 1) is integrable when raised to the

power 4/3, ie., [ p?/ ® < 00. Note that all these requirements are naturally fulfilled
for quantum states with finite kinetic energy. Then

(21) Iy >2D(py,0) — D(o,0) — L (/Rs p¢(x)4/3dx> 3/4 (/]R3U(X)4/3dx> 1/4

with L = (97)"/ 3Ai§g /2. (Using the above upper bound of Stein and Strémberg
on Ag/s shows that L < 3.96.) Picking o = py, yields the inequality of Lieb [5] and
Lieb and Oxford [6]

(22) o 2 Dlpopy) = L [ | polo0*%ax.

Note that Lieb [5] estimated L by 8.52 using also the maximal inequality and Lieb
and Oxford [6] estimated L by 1.68 using a somewhat more involved but elementary
technique. That our result implies this inequality with a relatively good constant
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highlights the quality of our exchange-correlation estimate using the idea of the
exchange hole.

We start the proof of Inequality (21) by multiplying both sides of Inequality (14)
by | (%)|*> and integrate and sum over all space-spin variables:

29) 1> 2D(p0.0) - [ dspo /| o )‘f}fy_)?l' ~ D(0,0)
(9m)1/3

> 2D(py,0) — D(0,0) -

— [ pel)(0) (0

where we have used (19) of Lemma 2. Applying the Holder inequality followed by
the maximal inequality (16) gives

(24) I, > 2D(py,0) — D(0,0) — % (/m pf/3>3/4 (/RS(M”)W)

97r)1/3 3/4 1/4
> 2D(p0.0) - Do) - D =aifs ([ o) ([ o)
R3 R3

which proves Inequality (21).

1/4

4. APPROXIMATE DENSITY FUNCTIONAL

The Inequality (14) reduces the interacting N-particle problem to an approxi-
mate non-interacting one whose energy is a strict lower bound on the exact energy.
Picking in addition the occuring arbitrary density ¢ appropriately, allows us to
construct a Kohn-Sham type density functional for the ground state energy which
is not only an approximation but gives a rigorous lower bound: we denote the
Kohn-Sham orbitals of the IV electrons by ¢1, ..., ¢n. Next we pick

o(x) = p(x) = |1 (X)|* + ... + [on ().

The approximate Kohn-Sham functional becomes in this case

N
x
Exsltr, - on] = Z/W%P +D(p:p) - /dx/d)’l)’—ka(x) p|(x )_p(y)?
v=1
+ [ Vepxx
where V is the external electric potential. The corresponding Kohn-Sham equations
are
d
—Ag, + (Vi) + / LA I
x—y|>R(x) [X =Y
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