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Abstract We study the asymptotic behavior of scattering amplitudes for the
scattering of Dirac particles in two dimensions when electromagnetic fields with
small support shrink to point-like fields. The result is strongly affected by per-
turbations of scalar potentials and the asymptotic form changes discontinuously at
half-integer fluxes of magnetic fields even for small perturbations. The analysis re-
lies on the behavior at low energy of resolvents of magnetic Schrodinger operators
with resonance at zero energy. The magnetic scattering of relativistic particles ap-
pears in the interaction of cosmic string with matter. We discuss this closely related
subject as an application of the obtained results.

1. Introduction

We consider the relativistic massless particle moving in the two dimensional
space. We denote by z = (21, 2») a generic point in R* and write

2
Z (—i0; — Aj) +V, 0; = 0/0x;,

for the Dirac operator, where A = (A, 4;) : R® — R* and V : R*> — R are

magnetic and scalar potentials respectively, and

01 0 —i 10
(Vo) e (FT) (o h)

are the Pauli spin matrices. The magnetic field b : R? — R is defined by
b:VXA:alAQ—aQAl.

The operator D(A, V) acts on [L?]? = [L?(R*))%. If A and V are bounded, then it
is self-adjoint with domain [H'(R?)]?, where H*(R?) is the Sobolev space of order

s. We also write
L(A,V) = (=iV - A)?+V
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for the Schrodinger operator. If A has further bounded derivatives, then L(A, V)
is self-adjoint with domain H?(R?) in L2. If L(A,V)u = 0 has a bounded but not
square integrable solution, then L(A, V') is said to have a resonance at zero energy.

Let b and V be given magnetic field and scalar potential. We assume that
b, V € C(R? — R) are smooth functions with compact support. We define A(x)
by
A(z) = (=0xp(x), Orp()) | (1.1)
where

o) = (2m)"" [ 1og | =yl bly) dy (12

and the integration without the domain attached is taken over the whole space. By
definition, A satisfies Vx A = Ap = b, and hence it becomes the potential associated
with field b. The function ¢ obeys ¢(z) = a log |z| + O(|x|™!) as |z| — oo, where

a= (2%)*1/b(m) dx

is called the flux of b. The magnetic effect strongly appears when o ¢ Z is not an
integer. We restrict ourselves to the case

O<a<l. (1.3)

We make a brief comment on the the other cases that @ < 0 and o > 1 (Remark
8.1 at the end of section 8). The potential A(z) is not necessarily expected to fall
off rapidly and it has the long-range property at infinity even if b is of compact
support. In fact, it behaves like

A(x) = Aga(2) + O(l2|7?), (1.4)
where Ay, is defined by
Aga(r) = a=z/|2*, 21/]2]*) = a(~0y log |x], 01 log |z]) (1.5)

and it is often called the Aharonov-Bohm potential in physical articles.

Let T'= D(A,V) =Ty + V, where
Ty = D(A,0) = o1y + 0o1a,  (14,10) = =iV — A,

is the Dirac operator without scalar potential V. We sometimes identify the coor-
dinates w = (wy,ws) over the unit circle S with the azimuth angle from the positive
x1 axis. According to this notation, we set

7(w) :t(1,e"w), e = cosw +isinw = wy + iws. (1.6)

We denote by f(w — @; E) the scattering amplitude of T" for scattering from initial
direction w € S to final one @ at energy £ > 0. Roughly speaking, it is defined
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through the behavior at infinity of solution ¥ = ¢(z; E,w) to equation Ty = E,
and the solution takes the asymptotic form

Y(ro) ~ iy + flw — @ E)T(J))eiErT_l/Q, r=lz| — oo,

along direction @ # w, where the first term )y, = 7(w)ef® is the wave incident

from w and the second term denotes the scattering wave. The precise representation
of it is given in section 4. We study the scattering by electromagnetic fields with
small support. We set

A(x) = TA(x/e), b.(x) =e?b(x/e), Vi(x)=e'V(x/e) (1.7)

for 0 < ¢ < 1 small enough. Then A, satisfies V x A. = b.. Our aim here
is to analyze the asymptotic behavior as ¢ — 0 of amplitude f.(w — ©; F) of

T. = D(A., V2).

The problem is closely related to the resonance state at zero energy of magnetic
Schrodinger operators in a natural way. Let R(z; H) denote the resolvent (H —z)™*
of self-adjoint operator H. We write Ty = o1 + 0215 as

T _ 0 v —ivy |\ 0 wv_
0 V1+iV2 0 - vy 0 ’

where (v1,1n) = —iV — A with A = (—dyp(x), 01¢(x)), ¢ being defined by (1.2).

Since vy and vy satisfies the commutator relation
(1, o] = 11y — o1y = b,
a simple computation yields
vive = Vi +v; £b= L(A, +b),

so that T is diagonalized as

o= < L(Aé_b) L(Bl,b) )

The two Schrédinger operators L(A,£b) = viv: > 0 are non-negative, but the

spectral structure at zero energy is different. By (1.1), we have

vy = I + iVQ = —2'81 + 62(,0 + i(-ag — 61(,0)
= — ((@1 + 81(,0) + 1(82 + 82(,0)) = —je ¥ (81 + 182) e’. (18)

Hence L(A, —b)u = 0 has a bounded solution behaving like

pla) = e #D =g (L+O(|z[ ), |z — oo (1.9)



By assumption (1.3), pis not in L?, and hence L(A, —b) has a resonance state at zero
energy. On the other hand, L(A,b) does not have a resonance state. The amplitude
f- is represented in terms of the boundary values

R(E+10;T;) = lglrgl R(E +10;T;)

to the real axis of resolvent R(E + id;7.). We now define the unitary operator
Je: [L*]F — [L]? by
(Jou)(z) = e tu(z/e), (1.10)

then we have T, = e~ ' J.TJ* for T = D(A, V), and hence
R(E+1i0;T.) = eJ.R(k +1i0;T)J:, k=c¢cE. (1.11)
Thus the analysis relies on the behavior at low energy of resolvents
R(k +i0; Ty) = (Tp + k)R(K* + i0; Tp)

and R(k + i0;7T), and a basic role is played by the zero energy resonance of the
magnetic Schrédinger operator L(A, —b). We note that there is no fear of our
confusing the operator J. with the Bessel function J,(z) in the argument below.

We take the limit ¢ — 0 in a formal way. It follows from (1.4) that A. is
convergent to the Aharonov—Bohm potential Ag,(z), and hence

T. = D(A.,V.) = Do = D(Aga, 0) (1.12)

on [C(R*\ {0})]?. However Ay, is strongly singular at the origin, and it has
the d-like field 2rad(x) as a magnetic field. We know ([14, 19, 21]) that D, is
not essentially self-adjoint and it has the deficiency indices (1,1). According to the
Krein theory, we can obtain a family of self-adjoint extensions {H,} with one real
parameter K, — oo < k < co. The element u = *(u1,u2) in the domain D(H,) is
specified by the boundary condition

Uy +iku_g =0 (1.13)

at the origin under assumption (1.3), where

u_q = lll% rYuy (), U_g = ll_r% =0y, (1) (1.14)

in the polar coordinate system (r,60). If kK = oo, then u_s = 0 and the second
component uy(z) has a weak singularity near the origin for u € D(H,,), while the
first component u;(z) has a weak singularity for K = 0. The boundary condition
in which both components remain bounded is not in general allowed ([14, 19]). In
section 2, we explicitly calculate the amplitude of H, after discussing the problem
of self-adjoint extension in some detail.



The amplitude f. in question is expected to converge to that of H, for some
k. We state the obtained results somewhat loosely. All the main theorems are
formulated in section 5. We denote by g.(w — @; F) the scattering amplitude of
H,. As stated above, g, can be calculated explicitly. If the scalar potential V' (z)
vanishes identically, then f. is shown to converge to g, (Theorem 5.1). However
the situation changes as soon as V' is added as a perturbation (Theorem 5.2). It is
interesting that this occurs even for small perturbations. We here deal with only the
simple but generic case that T" has neither bound state nor resonance state at zero
energy. The definition of resonance state is given in section 5. Roughly speaking, it
means that the equation Tu = 0 admits a bounded solution. We note that T" does
not have a resonance state for V' small enough. The obtained result depends on the
flux « of field b. The amplitude f. is proved to converge to g, for 0 < o < 1/2
and to go for 1/2 < o < 1. If a« = 1/2, then f. is convergent to g, for some x
determined from the resonance state p = e=¥ of L(A, —b). A similar problem has
been studied by the physical literature [2, section 7.10] for the scattering outside the
small disk {|x| < e}, and it has shown that the limit takes a different form according
as 0 < @ < 1/2, a =1/20r 1/2 < a < 1. However the argument there is based
on the explicit calculation using the Bessel functions, and the connection with zero
energy resonance has not been recognized.

As stated in the beginning, another motivation of this work comes from the study
on the scattering of Dirac particles in the interaction of cosmic string with matter.
This problem is mathematically formulated as follows (see [7] for the detail on the
physical background). Let A, b. = V x A, and V. be defined by (1.7). We consider
two kinds of particles (for example, lepton and quark) moving in the magnetic field
b. and interacting with each other through the scalar potential V.. If we denote by
w = *(u,v) = *(uy, us, v1,v9) the wave function of these two particles, then w obeys
the equation

T.w=Tyw+ V.w = Fw (1.15)

at energy E > 0, where

_ TOE 0 _ 0 ‘/5 .
T0€_< O T05>7 V6_<‘/E 0 )7 TOE_D(A€70)'

We assume that the wave function w has only u—wave as an incident wave. Then w
behaves like

w ~ (T(w), 0)eFT 4 wyear + o(r~1?), r — 00,
where 7(w) is defined by (1.6), and the scattering wave wgc,; takes the form
Wgeat = (flg(w — @0; E)(7(©),0) + foe(w — @; E)(0, T(@))) =2 (1.16)

along direction @. The amplitude fo.(w — @; E) describes the v—wave produced by
incident u—wave, and it is an important physical quantity in the interaction of cosmic



string with matter. We analyze the asymptotic behavior as ¢ — 0 of fo.(w — ©; F).
The asymptotic form is shown to take the form

faelw — @&, E) = Coel®* 1 (1 + 0(1)), e — 0,

for some constant C,, (Theorem 5.3). The constant is independent of incident and
final directions w and @, but is different according as 0 < a < 1/2, a = 1/2 or
1/2 < a < 1. A similar asymptotic form has been derived by the earlier work [7] in
the special case that A(z) = Apa(z) is the Aharonov—Bohm potential and V'(z) is
the characteristic function of the unit disk. However the calculation there is again
based on the explicit calculation using the Bessel functions, and the important role
of zero energy resonance seems to have been completely hidden behind this explicit
calculation. In this work we make clear from a mathematical point of view how the
leading coefficient C,, is determined and how it is related to the resonance state p
of L(A,—b) at zero energy.

We confine ourselves to the positive energy case £ > 0 for notational brevity,
and we fix £/ > 0 throughout the whole exposition. The dependence on E does not
matter. We end the section by noting that the obtained results easily extend to the
operator o1y + o915 + mos + V with mass m > 0.

2. Dirac operators with point—like fields

In this section we calculate the scattering amplitude g, (w — @; F) of self-adjoint
extension H,, obtained from D, defined by (1.12) after explaining briefly the Krein
theory on the problem of self-adjoint extension. The problem of self-adjoint exten-
sion for two dimensional Dirac operators with singular magnetic fields has already
been studied by several authors. We refer to [14, 19, 21| for details, and, in partic-
ular, to [21] for the recent references. The argument here follows [23].

The operator

0 =m_

Do = D(Aga, 0) = < 0

) , Ty = T 0T, (2.1)
defined over {C’é’"(R2 \ {O})}2 is symmetric, where (m,m2) = —iV — Ag,. The two
operators 74 are represented as
my =e? (—Z’@T + 7719 — m)) , m_=e " (—z’& — 770y — ia)) (2.2)
in terms of polar coordinates (r, ), and we have
. =mime = =02 —r70, + 172 (—i0p — a)’

for r = |2 > 0, and similarly for 7_7,. We denote by D, and D? the closure and
adjoint of D, respectively, and we set

Yy ={uec[L*?: (D5 Fi)u=0}.
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The pair (ny,n_), ne = dim Xy, is called the deficiency indices of D,. As is well
known, D, has self-adjoint extensions if and only if n, =n_.

We show that ny =n_ = 1. We denote by H,(z) = H{"(z) the Hankel function
of first kind, and all the Hankel functions are understood to be of first kind through-
out. Ifu = *(uy, uy) € [L?)? solves (D, — i) u = 0, then us satisfies (m,m_ + 1) uy = 0
in R*\ {0}, and w; is given by u; = —im_uy. By formula, H,(z) satisfies

(d/dz) {zi“HM(az)] = taz""H 71 (az). (2.3)
The same formula is still true for J,(z). This formula yields
7 (Hyi_alir)e?) = H_o(ir) = € Hy(ir).
Hence we see that >, is the one dimensional space spanned by
uy = Nt (—ie™™ H,(ir), Hi_o(ir)e),

where w4 is normalized as ||u ||z = 1. Similarly ¥_ is also the one dimensional
space spanned by

u_ = N, (i€ H,(ir), H;_o(ir)e”), |u_]|zz = 1.

All the possible self-adjoint extensions are determined by the Krein theory
([8, 20]). Let U : ¥y — X_ be the unitary mapping defined by multiplication
Uuy = e®u_ with —7 < ¢ < 7. Then the self-adjoint extension Hy; associated with
U is realized as the operator

Hyu = Dov + cUy — iceu_
acting on the domain
D(Hy) ={u € [L*) :u=v+cuy +ce“u_, v e D(D,), ceC}.

We examine which boundary condition u € D(Hy) satisfies at the origin. The
Hankel function H,(z) with non-integer y > 0 is represented as

H,(z) = (i/ sin p) (e_””rJu(z) - J_H(z)) (2.4)
in terms of Bessel functions, and it behaves like
Hy(2) = (=i/sinpm) (2*/T(1 = p) 27" (1+O(|z*) + O(|=])) (2.5

as|z| — 0. If v = Y(vy, v2) € D(D,,), then v obeys v; = o(|z|~) and vy = o(|z|~( =)
as |x| — 0, so that u = *(uy,uz) € D(Hy) has the limits u_y and u_o in (1.14). If
we take account of the above asymptotic formula of Hankel functions, then the ratio

K=1iu_1/u_q= (220‘_1F(a)/I‘(1 - a)) tan((/2)
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is calculated as a quantity independent of u. Thus we obtain the family of self—
adjoint extensions {H,} parameterized by real number k, — 0o < k < 00, and the
operator has the domain

D(H,) = {u = (uy,us) € [L*]*: Dou € [L*?, u_; +iku_y = 0}, (2.6)

where D,u is understood in the distribution sense, and u_; and u_o are defined by
(1.14).

We move to calculating the scattering amplitude of H,. It has already been
calculated in the physical articles ([17]) for the special case kK = 0 or kK = co. We
again note that w € S is often identified with the azimuth angle from the positive
T axis.

Proposition 2.1 Let g.(w — @; E), © # w, denote the scattering amplitude of H,
for the scattering from initial direction w into final one © at energy E > 0. Then

i(@-w)/2 2T B2
= — (2miB)" s ¢ - . 2.7
g (2miE) sin a7 <sin((cb YD) + (e B2t — gy ) (2.7)
where
o = 2'720T(1 — o) /T(a). (2.8)

If, in particular, Kk = 0 or kK = 00, then

g = — (2m’E)_1/2 sin am G :
sin((© — w)/2)
—i(@-w)/2
g = —(2miE) Y sinar ‘

sin((@ —w)/2)’

and if « = 1/2, then

i(v—w)/2 9
e K
.= — (2miE)"? .
g (2miE) sin((&—w)/2)+1+m

We need two lemmas to prove the proposition. Before stating the lemmas, we
briefly discuss the problem of self-adjoint extensions for magnetic Schrédinger op-
erator

Lo = L(Aa, 0) = (—i V — Agy)’ (2.9)

with Aharonov—Bohm potential Ag,. We know ([1, 13]) that L, has the deficiency
indices (2,2) as a symmetric operator on C5°(R*\ {0}), and the Krein theory again
yields the family of all possible self-adjoint extensions { Ly} parameterized by 2 x 2
unitary mapping U from one deficiency subspace to the other one. The self-adjoint



operator Ly is realized as a differential operator with some boundary conditions at
the origin. If w is in the domain D(Ly ), then w behaves like

w = (w_or_a + wior® + 0(7“0‘)) + (w_lr_(l_o‘) +wprt T+ o(rl_o‘)) e + o(r)

for some coefficients w4y, k= 0,1, and there exist 2 x 2 matrices B4 for which the
boundary condition is described as the relation

n(z)en(z2)
w-_1 W1

between these four coefficients. We distinguish the two operators by the following
special notation :

D(Lag)={w e L?*: Lw € L? w_o=w_ =0}

D(Lz)={we L?: LweLl?* wyy=w_ =0} (2.10)

among admissible self-adjoint extensions. The first operator L g is known as the
Aharonov—Bohm Hamiltonian ([3]).

We denote by ~y(z;w) the azimuth angle from w. The operator L, defined by
(2.9) admits the polar coordinate decomposition

Lagz@hla

lez
where h; = —(d/dr)? + (v* — 1/4)r2 with v = || — a|. If we define

pi(v; B w) =Y eFrm/2e@ie) 1 (Br) (2.11)

lez

for v = |l—a/, then (. vanishes at the origin and solves (L, — E?) o+ = 0. Thus ¢
becomes the generalized eigenfunction of L4z with eigenvalue E?. The first lemma
is due to [16] (see [3, 10] also).

Lemma 2.1 Let p(z; E,w) be as above. Define
in(z; B, w) = gtbmw gialy(ziw)=m) (2.12)
forx =710, 0 #w. Then p,(x; E,w) obeys
0 (r; B,w) = oin(rf; B,w) + go(w — 0; B)ePr=Y2 (1 4 0(1)), r — oo,

along direction 6, where

(i(0-w)/2

sin((6 —w)/2)

gi(w — 0:E) = — (2miE) Y ?sinar (2.13)



This lemma implies that ¢, (x; E,w) is the outgoing eigenfunction of Lp, and
g+(w — 0; FE) defines the scattering amplitude. This is known as the Aharonov—
Bohm scattering amplitude ([3]). On the other hand, ¢_(z; E,w) is shown to be
the incoming eigenfunction, but its asymptotic form is not required in the argument
below. We move to the second lemma. The proof of this lemma uses the following
formula for the Bessel functions :

ao\ | EiEJ, 1 (Er)eED0 (1>1)
T+ (JV(ET>€ ) - { :FZ'EJV:FI(ET)ei(lil)O (l <0 (214)

~—

for v = |l — ] with 0 < o < 1. This follows from (2.3) after a direct computation.
The same formula remains true for the Hankel H, (Er).

Lemma 2.2 Let my be as in (2.2) and let g, be as in Lemma 2.1. Then
(m404) (r6; B,w) = E“in(r0; E,w) + Ee’g, (w — 0; E)e™ 712 (1 4 0(1))
as r — oo along direction 0, 0 # w.

Proof. We calculate I = (¢, )(z; E,w)/E. Since e!@—%) = ¢lfeil(m=w) for o =
rf, we obtain

J = Z Z'e—iyw/QJV+l(ET) z(l+1)9 i(m—w) ZZG—ZVW/QJ ET’) (l+1)9€il(ﬂ—_w)

>1 1<0
by use of formula (2.14). We use the simple relation

ei(l+1)9 il(r—w) _ _ei(lJrl)’y(a:;fw) iw

€ (&

IfI>1,then v+ 1=[l+1-aland je"®™/2 = —e~lIF1=aI7/2 and if | < —1, then
v—1=|l+1—a|and ie /2 = ¢~ll+1=e7/2 If we take account of these relations,
then we make a change of variables [ +1 — [ to obtain that

] = eiw Z efiwr/Qeil'y(x;fw) J,,(E?“) . €7i(a71)ﬂ/2ja,1(E7")6i9,
1#1

so that it equals
I=e“p,(r;E,w)+ (e_i(l_o‘)”m(]l_a(Er) - e_i(a_l)”m(]a_l(Er)) e
Hence it follows from (2.4) that
I =e“p (2;F,w) + e 2 sinarHy_,(Er)e”. (2.15)
The Hankel function H,(z), p > 0, is known to behave like

H,(z) = (2/im)"/? emitm/2eiz =1/2 (1 + O(|Z|_1)) (2.16)
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as |z| — oo. This, together with Lemma 2.1, implies that
I =e“pi(z; B,w) + §(w — 0; B)e'Prr=12 (1 + 0(1)),

where . .
=g (w— 0;E) —2i (2miE) " siname’.

A simple computation yields
G = (2niE) Y sinar (—e_i(e_”)/Q/ sin((0 —w)/2) + 2/2) ¢? = gi(w— 0; E)e®.

This proves the lemma. O

Proof of Proposition 2.1. Let D, = D(Apa,0) be as in (2.1). We look for the
solution ¢ = (11, 12) to equation (D, — E)1 = 0 in the form

1 =i (25 B, w) + B Ho(Er),  thy = (1/E) (my4hn) (2; B, w) (2.17)

with some constant (.. If 1 takes the above form, then it is easy to see that 1 solves
the equation. The coefficient (3, is determined so as to satisfy the boundary condition
(1.13) at the origin. Then ¢ = ¢(x; E,w) becomes the eigenfunction of self-adjoint
operator H, and the amplitude g, is determined through the asymptotic form of
(z; E,w). We calculate the limits u_; and u_» defined by (1.14). The eigenfunction
@4 of L,p vanishes at the origin, so that

u_g = lii%ro‘qﬁl = 0. (—i/sinar) (29/T'(1 —a)) B~
by (2.5). Since
Ty Hy(Er) = —iEH, 1 (Er)e” = iEBe ™ H,_,(Er)e®
by (2.14), it follows from (2.15) that
Py = e, (1; B, w) + (e’io”r/z sin am + ie’m”ﬁﬁ) Hy_,(Er)e (2.18)
and hence
U_g = (—i/sinan) (e’io”r/z sin am + ie*m”ﬁﬁ) (21’0‘/F(a)) Bt
Thus [, is determined as
B, = ie"™* sin amw (/@TaE%‘_l/(mTaEm_l — ew”)) : (2.19)

where 7, is defined in (2.8). By Lemmas 2.1 and 2.2 and by (2.16), ¢(z; E,w)
behaves like

Y = 7(w)pim(z; B, w) + gu(w — ©; B)7(0)efrr=1/2 4 o(r~1/?) (2.20)

11



as 7 — oo along direction @ # w, where 7(w) is in (1.6), and
Ge = g1 (w — O} E) 4+ 2(2mi E) " 2e7iom/25, |
This determines the desired amplitude and the proof is complete. O

We end the section by making some additional comments on the outgoing eigen-
function ¢ (z; F,w) and the incoming one ¥_(z; F,w) of H,. These eigenfunc-
tions are used to represent the amplitude f(w — @;F) of T = D(A,V) in sec-
tion 4. The outgoing eigenfunction ¢, = *(¢41,112) is defined by (2.17) with
Boo = 1€'*™/2sin arr, and we have

Vi1 =91 (2; B, w) + B Ha(ET), U2 = €y (a; B, w)
by (2.18). This is expanded as
77[)4_1(1'; E7 w) = Z ef’iuﬂ/Zeil'y(x;fw) ‘]V(ET) + eiaﬂ-/zj—a(ET)u
170
Vio(r; E,w) = > e 2@ 1 (Br). (2.21)
lez
The Hankel function H?(z) of second kind is related to H,(z) through H®(z) =

H,(z) for z € R, and it satisfies Hgi(z) = e " H(?)(z). If we make use of these
relations, a similar argument enables us to construct the incoming eigenfunction

¢—($7 Ea w) = t(wfla ¢72) as
¢71 = 907(% Ea(*))_'—BOOHa(ET): 1#2 = eiw(p*(x; E7w>
with ¢_ defined by (2.11), and it admits the expansion

Yoa(z; Byw) = Y eV e 1 (Br) 4+ e 2 (Br),
10
Voo(z; Bw) = @Y eV g (). (2.22)

lez

3. Resolvent of self-adjoint extensions

We here establish the relation between the two resolvents R(FE + i0; H,) and
R(E +i0; Hy,). We fix several new notation. We denote by ( , ) the scalar
product in L? or [LQ]Q, and write f ® g = (-, g)f for the integral operator with
kernel f(x)g(y). This acts as (f ® g)u = (u,g)f on u € L?. We also use a similar
notation

URV=(Uj ®Vk) g pegr U= Yug,ug), v ="(vy,vy),

for a vector version over [L?]?. We further define the two basic functions
(i (pE) = ° (—ieia”Ha(ET), Hl_a(Er)ew) ,
(. (r;E) = ° (—ie_m”Ha(Er), Hl_a(ET)ew) (3.1)

12



for £ > 0. The second function may be written as

l—«a

E(p;E)=" (—z'e_io”rHo(?)(Er), H? (Er)ew) :

If we repeat almost the same argument as in the previous section, then it is easy
to see that these two functions solve (D, — E)u = 0, and form a pair of linearly
independent solutions. The aim here is to prove the following proposition.

Proposition 3.1 Let {4 = £.(x; E) be as above. Then
R(E +i0; Hy) = R(E +1i0; Hy) — ¢ B (§4 ® ),
where '
cx = sinar/(4(kT B* 1 — o))

with 1, defined by (2.8). If, in particular, o« = 1/2, then ¢, = —1/(4(i — K)).

The proposition is proved at the end of this section. Let L 5 and Lz be defined
in (2.10), and let A. and b. = V x A, be as in (1.9). We again set Tp. = D(A.,0),
which is convergent to D, = D(Apa,0) as e — 0 on [C(R*\ {0})]? by (1.12). We
represent R(E +i0; Hy,) in terms of resolvents of Lap and L. We repeat the same
argument as used in section 1 to obtain

R(2% L_. 0
R(z;To.) = (Toe + 2) < (= ; ) R 1. ) . Li.= L(A., +0b.),

for z, Imz # 0. According to the results in [23, section 3|, we have R(z;Tp.) —
R(z; Hy) and
R(z; Ly.) — R(z; Lag), R(z;L_.) — R(z; Ly),

as € — 0 in norm (in norm resolvent sense). We also have

(3.2)

«_( ER(E®*+i0;Ly) 7_R(E*+i0;Lag)
R(E +10; Heo) = ( 7 R(E? +1i0: Ly) ER(E®+1i0; Lag) |

We now calculate the Green kernels of R(E? + i0; Lag) and R(E? + i0; Lz). To do
this, we decompose L? = L?(0,00) ® L*(S), and we define the mapping U; by
2w

(U f)(r) = (27r)_1/2r1/2/ f(r)e ™ do : L* — L*(0, 00)

0

for [ € Z. Then

(Urg)(x) = (27r)’1/27“’1/2g(7“)e”9 . L?(0,00) — L2,
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and R(E?* +i0; Lag) admits the decomposition

R(E® +1i0; Lap) = > @Ry, R; = U R(E? +i0; hy)U,, (3.3)

lez

where the domain of self-adjoint operator
hy = —(d/dr)* + (V* = 1/4)r™%, v =|l—a,

is specified by the boundary condition lim r~*/2=%) g(r) =0 at the origin. Similarly

r—0

we have

R(E*+i0;Lz) =R ® Y ® R,  Ro=UjR(E®+1i0;ho)Us,  (3.4)
1#£0

and the domain of self-adjoint operator
ho = —(d/dr)? + (a® —1/4)r~2
is specified by the condition

lim 7~/ (g(r) — gor'/?7%) =0

r—0

with go = lim r~ /2= g(r). The two functions r'/2J,(Er) and r'/2H,(Er) are lin-
early independent solutions to (h; — E?)g = 0 for E > 0. By formula, we know

W(Ju, J_u)(2) = —2sin ur /(1)
for the Wronskian of Bessel functions, so that
W(H,, J)(2) = =2if(x),  W(HyJ)(2) = —2ie™" | (x2)
by (2.4). Thus we can construct the Green kernels

Ri(z,y) = (i/4) H(E(rV p)J(E(r A p))e" ),
Ro(w,y) = (i€7/4) Ha(E(r v p))J-a(E(r 1 p)) (3.5)

in the standard way, where r V p = max (r,p) and r A p = min (r, p) for (z,y) =
(re? pe?). We are now in a position to prove Proposition 3.1.

Proof of Proposition 3.1. According to the Krein theory ([8]), the two resolvents
are related to each other through the relation in the proposition. We have only to
calculate the constant c.. We set

t(ul, UQ) = R(E -+ ZO, HK)F
for F'=*t(f,0) with f € C°(R*\ {0}). Then

uy = vy — i€ "coHy(Er), us =vg+ caHl,a(Er)ele, c=—c.F,
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where
"(v1,v2) = R(E +i0; Hoo)F = "(ER(E® +i0; L) f, . R(E® +i0; L) f)

by (3.2), and ¢ = (F,¢_) is the scalar product between F' = *(f,0) and {_. The
constant ¢, is determined by boundary condition u_; + tku_o = 0, where u_; and
u_y are defined by (1.14). We calculate the limits u_; and u_5. Since *(vy,vp) =
R(E +i0; Hy)F, vy obeys vy = o(r~17)e?  and hence it follows from (2.5) that

U_g = co (—i/sinam) (21_0‘/F(a)) Bt
If we use (3.5) and (3.1), then v; behaves like
v = ERyf +0(1) = (0 E/4)J_o(Er) + 0(1), 7 —0,

and hence A
U1 =0 (E/4 — ce"™ [ sin om) 2¢/T(1—a)) B~

by (2.5). Then ¢, is determined as in the proposition. O
4. Scattering amplitudes in the presence of scalar potentials

The aim here is to derive the representation (4.6) below for the scattering ampli-
tude f(w — @; E) of T = D(A,V) with scalar potential V € C°(R?> — R), where
A€ C®°(R? — R?) is defined by (1.1). The derivation requires two lemmas.

Lemma 4.1 Write ¢_(w) for the incoming eigenfunction ¢_(x; E,w), defined by
(2.22), of Hao. Let

F(z) ="(fu(r)e™, fo(r)e'™ %), me Z,
for fi, fo € C§°[0,00). Then
(R(E + i0; Hyo)F)(r&) = (iE/8m)* (F,_(@)) 7(@)eFrr= 2 4 o(r—1/?)

as 1 — oo uniformly in & € S, where (F,9¢_(w)) is the scalar product in [L*)*
between F' and ¢_(w).

Proof. We prove the lemma for the case m = 0 only. A similar argument applies
to the other cases. Set *(uy,us) = R(E +i0; Hy)F for F' as in the lemma. Then

uy = BFvy 4+ m_vs, Uy = T 01 + Evg
by (3.2), where
v = R(E® +1i0; Ly) fi, vy = R(E? +i0; Lag)(f2e™).
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It follows from (3.3) and (3.4) that v; = Rofi and vy = Ry(f2e™). The two operators
Ry and Ry have the kernels (3.5). By assumption, f; and f, have compact support.
Hence we have

v1 = (1" J4) (f1, o) Ho(ET), vo = (1/4)(f2, Ji_o)Hi_o(Er)e®
for |z| > 1. Since
7 (Hi_a(Er)e) = ~iEH_o(Er) = —iEc®" Hy(Er)
by (2.14), it follows from (2.16) that

up = (iEB/4) e ((f1, J_a) —i(fo, Ji—a)) Ho(ET)
= (Z'E/87T)1/2 eionr/2((f17(]_a) _Z.(fQ,Jl_a))eiETT_l/2+0(T’_1/2)

as r — 00. The eigenfunction ¢)_ has the expansion (2.22), and we have
(F7 ¢—(@)) = (fla 77Z)—1((D)) + (eriev 77[)_2((:))) = 6ia7r/2 ((fh J—a) - i(f27 Jl—oc)) :

This yields the desired asymptotic form for u;. We can show in a similar way that
uo also takes the asymptotic form in the theorem. Thus the proof is complete. O

We now introduce the Banach spaces B and B* with norms

00 1/2 1 1/2
ullp = 2j/ w(x)|? de . ||lu||g = su —/ ux2d33> ,
o =3 (2 [ 1P ar) il =sup (5 [ o)

where Qp = {|z| < 1} and Q; = {277! < |z| < 27} for j > 1. The two spaces fulfill
the inclusion relations

L’cBCL},  L*,CB ClL’,

for s > 1/2, where L? = L*(R?; (x)* dx) with (z) = (1 + |z|*)"/2. We use the
notation o, (r~'/?) as r = |z| — oo to denote functions u obeying the bound

1

— |u(z)|* dw — 0, R — c.
R |z|<R

We use the same notation for vector-valued functions. If u(x) = o(r~'/2) at infinity,
then u is of class o,(r~%/2).

Lemma 4.2 Assume that F € [C°(R?))?. Then
(R(E + i0; Ho ) F)(z) = (E/87)" (F,¢_(@)) 7(@)eFrr=2 + o, (r~1/?),
where the leading term on the right side is regarded as a function of v = rQ.
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Proof. According to [5], we know that R(E + i0; Hy) : [B]*> — [B*]* is bounded.
If we expand F' as the Fourier series, then the lemma is obtained as a consequence
of Lemma 4.1. 0O

We proceed to calculating the amplitude f(w — @;E) of T' = D(A,V). We
assume that b and V' have support in {|z| < 1}. According to Lemma 2.1 of [22]
(see (2.2) there), we can construct a smooth magnetic potential a(z) : R* — R?
associated with field b such that

a(x) = (a1,a2) = Aoa = & (—2/|a* 21/ [2*), o] > 2. (4.1)
We define the auxiliary operator K as
K = D(a,V). (4.2)

This is self-adjoint with domain D(K) = [H'(R?))?, and we know ([11, 15]) that
the boundary value R(E + i0; K') to the real axis exists as a bounded operator
from [L?]? into [L%,]? for s > 1/2. We further introduce a basic cut—off function
Xo € C°(R? — R) with the properties

supp xo C {|z| < 2}, Xo=1 on {|z| <1}. (4.3)

We set x1(2) = xo(2/2) and x—(z) = xo(z/4).

We study the behavior at infinity of eigenfunction ¢ (z; E,w) of K. Since K =
D(Apa,0) = D, over {|z| > 2} by (4.1), we have (1 — x4 ) (K — E)¢; = 0 for
the outgoing eigenfunction ¢ (w) = ¥, (z; F,w) of H,. Hence the eigenfunction
¥ = (z; F,w) with incident wave o, (x; F,w) as in Lemma 2.2 is written as

V= (1= x)¥s + R(E +i0; K)IL 9y (4.4)
where I, = [D,, x4]. Similarly ¢, (x; F,w) is represented as
by = (1= X )t + R(E +i0; Ho) T4
with II_ = [D,, x—]. Hence it follows from Lemma 4.2 that
) =y — (iB/8m)2 (¢, (&) (@)™ r 72 + 0.(r7'/2). (4.5)

We insert (4.4) into ¢ on the right side of (4.5). Since II_(1 — x4) = 0 and II* =
—II_, we obtain

(T4, 6 (@) = —(R(E +i0; KTy (), T b ().

We recall that 1, obeys (2.20) with £ = co. Hence the amplitude f(w — @©; E) of
K is given by

f = goo(w — &3 B) + (iE/87)(R(E +i0; K)IL by (), 10— (&), (4.6)
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where ¢, is the amplitude of H,,. The amplitude of T'= D(A,V) is shown to be
represented in the same way. Since A and a have the same field b, we have the
relation

A=a+Vh (4.7)

for some function h € C*°(R?> — R), and T = e"Ke™*. The difference obeys
A —a = O(]z|™?) at infinity, so that h falls off with h = O(|z|™!) and (@) =
1+O(|z|7'). Thus T has the same scattering operator as K and hence the scattering
amplitude of T is also represented as (4.6).

To sum up, the amplitude f(w — @; E) of T = D(A,V) is defined through the
asymptotic form

¥ = 7w)on(r; B,0) + flw = & Eyr(@) 2 4o, (r7?)

as r = |x| — oo of solution ¢ to equation T = (Ty + V)1 = Et, and it has the
representation (4.6). In the mathematical scattering theory, it is standard to define
the scattering amplitudes through integral kernels of scattering matrices after estab-
lishing the basic problems such as the existence and completeness of wave operators
and the limiting absorption principle [9, 15, 18, 24, 25]. However, K has the special
property that it admits the polar coordinate decomposition on {|z| > 2}. If we
make use of this property, the Agmon-Ho6rmander theory ([5]) enables us to define
directly the scattering amplitude through the asymptotic form of eigenfunction. We
can show that these two representations defined in a different way coincide with
each other, but we do not go into the details here.

5. Scattering by electromagnetic fields with small support

In this section we formulate the results on the asymptotic behavior of amplitudes
for the scattering by electromagnetic fields with small support. We obtain the three
main theorems and the remaining four sections (sections 6,7,8 and 9) are devoted
to the proof of these theorems.

Let A. and V. be defined by (1.7). We denote by f.(w — @©; F) the scattering
amplitude of T, = D(A, VZ). If we set

K. = D(a.,V.), a. = e ta(z/e), (5.1)
then a.(x) = Aga(z) over |z| > 2¢, and the amplitude f. has the representation
fe = goolw = &; B) + (1B/87)A(R(E +i0; KT gy (), T (@), (5.2)
where 11y = [D,, x+] with x4 = xo(z/2) and x_ = xo(z/4) again. We have
explicitly calculated the scattering amplitude g,.(w — ©; F) of H, in Proposition
2.1. It admits the representation

G = Goolw — 03 B) + (1B/87) 2 (R(E +1i0; H)lLpy (0), 1y (@) (5.3)
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in terms of resolvent R(E +10; H,). In fact, this is obtained by repeating almost the
same argument as used to derive (4.6). We first deal with the case without electric
fields.

Theorem 5.1 Assume that V = 0 identically. Then
folw—= & F) = goo(w — @5 F), e —0,

forw # .

Next we discuss the case when V € C3°(R* — R) does not vanish identically.
We assume that
V(z) >0, (5.4)

so that the scalar product
o= (Vp,p)>0 (5.5)

is strictly positive for the resonance function p(z) = e=#@) defined by (1.9). The
assumption (5.4) does not matter, but \g # 0 is important to the future argument.
Before stating the second theorem, we define the resonance state of Dirac operator
T = D(A,V) at zero energy. The definition is different according as 0 < o < 1/2
orl/2<a<l.

Definition 5.1. (1) Let 0 < a < 1/2. Assume that the equation Tv = 0 has a
non-trivial solution such that v = *(vy,v9) € L? x L™ and vy(x) = O(|z|~1T*) at
infinity. If vy & L2, then T is said to admit a resonance state at zero energy, and if
vy € L2, then T has an eigenvalue at zero energy.

(2) Let 1/2 < a < 1. Assume that Tv = 0 has a non-trivial solution such that
v ="(v1,v9) € L* x L? and vy (x) = O(|z|™®) at infinity. If v; ¢ L?, then T is said
to admit a resonance state at zero energy, and if v; € L?, then T has an eigenvalue
at zero energy.

In the present work, we deal with only the case that T" has neither eigenstates
nor resonance states at zero energy. This case is simple but generic. Thus we always
assume that

T has neither eigenstates nor resonance states at zero energy. (5.6)

If |V| < 1 is small enough, then it can be shown that 7" fulfills (5.6). The lemma
below plays an important role in proving the remaining two main theorems. This
basic lemma is proved in section 7.

Lemma 5.1 Assume that (5.6) is fulfilled. Then :

(1) Let 0 < o < 1/2. Then there exists a unique solution e € L x L* to
equation Te = 0 such that e = *(eq, e3) obeys

e1 =1+ O(|z|717), ey = O(|z|71) (5.7)
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at infinity, and es(x) behaves like
ea(x) = idgr 1T + O(|z| 72T, |z| — oo, (5.8)

for some real constant As.
(2) Let 1/2 < o < 1. Then there exists a unique solution e € L x L* to
Te =0 such that e = *(eq1, e3) obeys

er = O(|z]™%), eo = ir e + O(|z|72T) (5.9)
at infinity, and e1(x) behaves like
er(x) = \r~* 4+ O(Jz|7+7), |z| — o0, (5.10)

for some real constant A\i.

We are now in a position to state the second theorem. When the scalar potential
V is added as a perturbation, the situation changes even for small perturbation.
The limit heavily depends on the values « of fluxes and it changes discontinuously
at half-integer flux o = 1/2.

Theorem 5.2 Let V € COF(R?) satisfy (5.4), and assume that T fulfills (5.6).
If w # @ for incident and final directions w and @, then one has the following
asymptotic form ase — 0 :

(1) Let0<a<1/2. Then
felw = G E) = goolw — & E).
(2) Let a=1/2 and let \y be as in (5.8) of Lemma 5.1. Then
felw = @ E) = go(w — & E)
for kK =1/Xy (k = o0 provided that Ay = 0).
(3) Letl/2<a<1. Then
felw = @3 E) — go(w — &; E).
The third theorem is concerned with the scattering of Dirac particles appearing
in the interaction of cosmic string with matter. We now consider the 2 x 2 system

(1.15) of Dirac equations. The amplitude fo.(w — @) in question is defined through
the asymptotic form of solution w to equation (1.15). The solution behaves like

w o= "(7(w),0)eun(r; E,w) + fi-lw — & E)(7(©),0)er—1/?
+ for(w — @ YN0, (@) Y2 £ 0,(r7Y?), 1 — o0,

for incident wave *(7(w), 0)pm(z; E,w). The aim of the third theorem is to analyze
the asymptotic behavior as ¢ — 0 of fo.(w — @; E).
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Theorem 5.3 Let V € C°(R* — R) satisfy (5.4), and assume that T fulfills (5.6).
Then the amplitude fo.(w — @; E) behaves like

F 1/2
Joe = <;—) Cope?e1l 4 ol e —0,
7r

where )
(2°E~*/T(1 — a))’ 27Ny, 0<a<1/2,
Co =14 AEVidy(1+ X2)71, a=1/2,
(2Lepelil=e /D (a))? 27y, 1/2 < < 1.

We end the section by making some comments on Theorems 5.2 and 5.3.

(1) As stated in section 1, a result similar to Theorem 5.2 has been obtained by
Afanasiev [2, section 7.10], where the behavior of amplitude has been analyzed for
the scattering by the small obstacle {|z| < €} under a certain impenetrable boundary
condition in the background of the dé-like field 2rad(z). As e — 0, the amplitude
fe is convergent to g, g, With kK = —1 or g according as 0 < a < 1/2, a =1/2 or
1/2<a<l

(2) The assumption that A(x) and V(x) are smooth is not essential. The two
theorems extend to the case of bounded electromagnetic fields, and the extension
is possible even for singular magnetic potentials. For example, the theorems apply
to the case that A(x) = Apa(x) is the Aharonov—Bohm potential and V' (z) is the
characteristic function of unit disk {|z| < 1}. If we consider (1.13) with K = oo as
the boundary condition at the origin, we can calculate \; and A\ explicitly. In fact,
if we set e(x) = *(ey(r), ea(r)e?), then it follows from (2.2) that e solves

el +arte; +iVey =0, eh+ (1 —a)r ey +iVe, =0,

where ¢’ = (d/dr)e. We use the formula (2.14) to solve the equation above. If we take
account of (5.7), then Ay is determined as Ay = —J;1_4(1)/J_4(1) for 0 < a < 1/2,
while (5.9) yields A\; = —J_,(1)/J1_o(1) for 1/2 < o < 1.

(3) As a work related to Theorem 5.3, [7] has dealt with the case that the electric
potential is AV (z) and A(x) is the Aharonov—Bohm potential Ay, (x) with boundary
condition (1.13) with kK = oo or kK = 0, where A > 0 is a small coupling constant and
V still denotes the characteristic function of the unit disk.

6. Behavior of resolvent at low energy

The proof of all the theorems in the previous section is based on the behavior as
e — 0 of resolvent R(FE + i0; K.). We first follow the idea from [6, chapter 1.1.2] to
derive the basic representation for R(F +i0; K.). The derivation is done by repeated
use of the resolvent identity. If we set Ko. = D(a.,0), then K. = K. + V;, and we
have

R(E +i0; K.) = R(E +1i0; Ko.) — R(E + i0; K )VoR(E + 40; Ko:)
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by the resolvent identity. We have assumed that V' (x) > 0. If we further define
Y. = VM2R(E 4 i0; Ko )VY? : [L2)? — [L*?, (6.1)
then the resolvent identity yields the relation
R(E +i0; K.)VM*(1 + Y.) = R(E + i0; Ko ) V22,

The operator 1+ Y has the bounded inverse (1+Y.)™! : [L?]*> — [L?]?, which follows
from the fact that the outgoing solution to equation (K. — F)u = 0 identically
vanishes. Thus R(E + i0; K_) is represented as

R(E +1i0; Ko) — R(E + i0; KooV (1 4 Y2) 'V R(E +i0; Koe)
by the resolvent identity. Let J. : [L%]* — [L%? be again the unitary operator
defined by (J.u) (z) = e 'u(z/e). We set X, = J*Y.J.. Since Ky, = e ' J. Ky J* for
Ky = D(a,0), we have
X, = Y. J. =VYV2R(k +i0; Kg) VY% k=¢cE >0, (6.2)
and hence

R(E +i0; K.) = R(E +i0; Ko.) — e 'T.(E + i0)(1 + X.)"'T[.(E — i0)*,  (6.3)

where

I.(E +i0) = R(E £ i0; Ko.)J.VY2. (6.4)

This is a basic representation. This section is devoted to the analysis on the behavior
as € — 0 of X, as the first step towards proving the three theorems.

By (4.7), the potential a : R — R? takes the form
a=(—0wp(z),01p(x))+ Vh=A+Vh

for some h € C*(R*> — R) falling off like h = O(|z|™") at infinity, and the field
b=V x a has support in {|z| < 1}. We set p = (p1, p2) = —iV — a and write K as

0 p_
Ky=o0ip; +o =
0 1P1 202 <p+ 0 )

in the matrix form, where p. = p; & 1po. We define the Schrodinger operators L4
by
Li=L(a,+b) =p* + p> £ b= (—iV —a)* £ b. (6.5)

These are self-adjoint with domain D(Ly) = H?(R?) in L. Since

i[p1, p2] = i(p1p2 — p2p1) = —b,
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we have L. = pip+ = pips, and R(k +i0; Ko) is represented as

kR(K*+40; L) p_R(k*+i0;Ly) )

PR +i0;L_)  kR(K?+i0: L) (6.6)

R(k +i0; Ky) = <
Thus the problem is reduced to the study on the behavior of R(k?+:0; L) as k — 0.

The two operators Ly = pips+ > 0 are non-negative, and since 0 < o < 1 by
assumption (1.3), it follows by the Aharonov—Casher theorem ([4]) that L. have
no bound states at zero energy. However, the spectral structure at zero energy is
different in the sense that L_ has a resonance state. The resonance state is defined
as a bounded solution u to equation L_u = p_p,u = 0. If w is such a solution, then
a simple calculation using integral by parts shows that p;u and pou are in L2, so
that p,u = 0. By (4.7) (see also (1.8)), we have

py = —iee (0 +i0y) efe ™. (6.7)
Thus L_ has the resonance state behaving like
u(z) = e e = || (1+ O(|2| ™))

at infinity. On the other hand, L, = p,yp_ does not have a resonance state. We
note that if &« > 1, L_ has bound states at zero energy with multiplicity [«] by the
Aharonov-Casher theorem again.

We now introduce the following notation : n € Co(R?) is a continuous function
with compact support and 1y € Cy(R?) is a function compactly supported away from
the origin. We further use the notation Op(e?) and op(¢”) to denote the classes of
bounded operators obeying the bound O(£?) and o(¢?) in norm respectively.

We make a brief review on the behavior at low energy of R(k?+i0; L) obtained

by ([23, Propositions 4.2 and 4.3]). We first consider L_. Let h(x) be as in (6.7).
Then

pol) = e, (6.8)

solves L_py = 0 and behaves like
po(x) = |2~ (14 O(lz| ™)) (6.9)

at infinity. We know ([23]) that L_ has the one dimensional resonance space spanned
by po at zero energy.

Proposition 6.1 Let pg be as above and let vy be the constant defined by
Yo = —2207971(1 — a) /T(a). (6.10)

Then
nR(K* +1i0; L)y = ~v_(k)i**k~*n(po @ po)n + Op(e°)

for some coefficient v_(k) obeying v_(k) = —1/~0 + o(1) as k — 0.
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Remark 6.1. (1) The proposition above corresponds to Proposition 4.3 in [23],
where the resonance function py(x) is normalized as py(x) = (27ra)~"/2e~?e, so that
the constant v_ (k) undergoes a suitable change. (2) By elliptic estimate, VnR(k?* +
i0; L_)n admits a similar asymptotic form under a natural modification.

Next we move to L, which has neither bound states nor resonance states at zero
energy. We set

Lfom ={u e LQ(R2) :suppu C By}, By = {|z| < M},

for M > 1 fixed arbitrarily but sufficiently large. We have shown in [23] that there
exists a limit

com

Gy = lim R(K*440; L) : LA, — L*, (6.11)

as a bounded operator from L2 to L?, = L*(R?; (x)~%dx). We further know that

com
the equation L, = p.p_u = 0 has a unique solution behaving like

wy =1r"e" +0(1), |z| — o0, (6.12)

for [ =0, 1, where v = |l — o] again.

Proposition 6.2 Let the notation be as above. Then there exists vy (k) such that

nR(K* +i0; Ly )n = nGan+ Y vu(k)i >k n(w ® wi)n + Op(e?),
1=0,1

where the two constants v(k), | = 0,1, are bounded uniformly in k = cE > 0.
This proposition has been obtained as Proposition 4.2 in [23]. We can make

precise the behavior as k — 0 of the constant v,,(k), but the argument below does
not require such an asymptotic form.

By (6.7), py = —2ie™e ¥0efe ™ with 9 = (1/2) (01 +1i0,). The Cauchy-
Riemann operator 0 has the fundamental solution (1/7) (2 +ixs)~!. We denote by
9" the convolution operator

9= (1/70) (z1 4 izg) " %

and we define ‘ . ‘
pjrl = —(20)eePD efe

and p~! = (p;l)*. By definition, we have pipi' = 1.

Lemma 6.1 One has the relations

p-Gif=p'f,  Gipif=p_'f

for any bounded function f with compact support.
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Proof. We prove only the first relation. The second one follows by taking the
adjoint of both sides. Let f be as in the lemma, and set wy = p7'f. Then w; € L?
and it solves p,w, = f. If, on the other hand, we set wy = p_G, f, then w, satisfies

pyw2 =pip-Gif = LG f = [.

Since wy € L by (6.11), it follows that wy € L?. In fact, we have ||p_G4 f|lz2 < oo
by a simple use of partial integration. Set w = e?e~ (w; — wy). Then dw = 0, so
that w is an entire function. Note that e¥ = O(|x|*) at infinity for 0 < a < 1. Since
wy — wy € L2, we can easily show that w = 0, and hence w; = w,. Thus the lemma
is obtained. O

Lemma 6.2 Let wyg be as in (6.12). Then one has p_w,o = 0.

Proof. Set vy = e~"e?. Then p_vy = 0 and the difference u = w_ ¢ — vy is bounded.
The function u solves

p+p-u = Liu= Liwyg—pip-vo = 0.
Hence it follows from Lemma 4.3 of [22] (or by the argument used in its proof) that
p_u = 0. This implies that p_w,¢ = 0, and the proof is complete. O

Lemma 6.3 Let wyq be also as in (6.12). Then one has p_wi1 = cpy for some c.

Proof. Set u = p_wyy. Then u obeys the bound v = O(|z|~) at infinity, and it
solves the equation L_u = p_L,w,; = 0. This implies that u is in the resonance
space of L_ at zero energy. Since the resonance space is one dimensional, the lemma
follows at once. O

If we make use of the simple relation
pyR(K* £1i0; L_) = R(kK* £i0; L} )p,,
then we obtain from (6.6) that

2 ; 2 iN-
R(k+z’0;K0):< kR(k*>+140,L_) p_R(k —|—ZO,L+)>

for Kk = ¢E > 0. Thus we combine Propositions 6.1, 6.2 and Lemmas 6.1, 6.2 and
6.3 to get the following proposition.
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Proposition 6.3 Ase — 0, nR(k + i0; Ko)n takes the form
nR(k +i0; Ko)n = 1 {~(€) (o ® fio) ' + Go + O(* =) G } n + Op(e),

where py = *(po,0) and

_ 0 pit _ 0 cpo @ wot
GO_(p_l 0 )’ Gl_<w+1®cpo 0 ’

c being as in Lemma 6.3, and
v(e) =i B2y _(eE) = —i**E'"* (1 /v +0(1)), &—0. (6.13)
In particular, X. defined by (6.2) takes the form
Xo =) (90 @ qo) €' + Zo + O(2 ") Zy + Ople), (6.14)
where

a0 = V*Y?p, po = "(po,0), (6.15)
and Zy = VY2G VY2 and Z, = VV2G VY2,

7. Resonance at zero energy: proof of Lemma 5.1

The second step is to analyze the inversion of (1 + X.)~' which appears in
representation (6.3) for the resolvent R(E + i0; K.) under consideration. We also
prove Lemma 5.1 at the end of the section. As is easily seen from assumption (5.6),
K = D(a,V) = Ko+ V has neither eigenstates nor resonance states at zero energy.

Lemma 7.1 Assume that 0 < a < 1/2. Let Zy be as in Proposition 6.3. If (5.6) is
fulfilled, then Zy : [L*]> — [L?]? has the bounded inverse (1 + Zy)~" on [L?]2.

Proof. The operator Z; is compact. Set ® = ker (1 + Z;). It suffices to show that
dim® = 0. The proof is done by contradiction. Assume that u = *(uy,us) € ®
does not vanish identically. If we set v = *(vy,v2) = GoV/?u for u as above, then
V1/2y = Zyu = —u, and v satisfies

Kov =V = -V,

so that v solves Kv = (0. We can easily see that v is not identically zero. The first
component v; = p;'V12uy is in L2, Since p=! = (pjrl)* is the integral operator
with kernel

—(2mi) " tereih ((xl —imy) ! *) e e
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the second component vy = p~'V/2u; behaves like
0s() = —(2mi) " i, VI 2p0)eP M (y — i) + O(Ja| ) = Ol +)  (7.1)

as |x| — oo. This implies that K has either eigenstates or resonance states at zero
energy. This contradicts the assumption and the proof is complete. O

By assumption (5.5), Ag = (Vpo, po) # 0. This enables us to define
P =X"(q0® q), o =V""po, (7.2)

as a projection on [L?]?.

Lemma 7.2 Assume that 1/2 <a < 1. Let Q@ =1— P and ¥ = Ran Q. If (5.6) is
fulfilled, then QZyQ : ¥ — % has the bounded inverse (1 + QZOQ)_1 on .

Proof. We again show by contradiction that dimW¥ = 0, where ¥ = {u € ¥ :
QZyQu = —u}. Assume that u not vanishing identically belongs to U. We set

v = "(vy,v3) = GoV'?u — dpy,
where d = A\ ' (Zou, VY25y) = Ay (Zou, qo). Since Kopy = 0 and since
VY2 = Zou — PZyu = QZyu = —u,

we see that v satisfies Kov = V%24 = —Vv, and hence v solves Kv = 0. We also
have that v # 0. The first component v; behaves like

vi(z) = —dpo(x) + O(lz|~7) = O(lz[™*)

at infinity. We claim that vy € L?, which follows from (7.1). In fact, we have only
to note that

(ula V1/2p0> = (u> V1/2ﬁ0> = _<Vv>ﬁ0> = _<V1/2Z0u - dVﬁo, ﬁo) =0

by the choice of constant d. Thus v € L*™ x L? becomes either eigenstate or resonance
state. This proves the lemma. O

Remark 7.1. The converse statements of the two lemmas above are also true,
although we do not prove it here. The proof is easy. Hence, if |V| < 1 is small
enough, then (5.6) is fulfilled.

Lemma 7.3 (1) Let0<a<1/2 and set

q=(1+2Zy) g0 € L* x L*.
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Then q is represented as ¢ = V'/?e with e = (e1,e5) € L™ x L™®, and e uniquely
solves Ke = 0 under the condition that

ep=1r"“+ O(|x|_1_o‘), €y = O(|x|_1+o‘), |z| — oo. (7.3)
(2) Let1/2 <a <1 and set
q=q — (14+ QZsQ) ' QZoqo.

Then q = V2e for some e = *(e1,e3) € L™ x L™, and e uniquely solves Ke = 0
under the condition that

e1 = O(|z|™), ey = —i(No/2m) r 1T 4 O(|z|721%), |z| — o0, (7.4)

Proof. (1) 1If we set e = py — GoV/?q, then it follows that
q=qo— Zoq = ViiZe.
We assert that e has the desired properties. By definition, e satisfies
Ke=-V'"q+V (po— GoV'q) = V' (g0 — ¢ — Zog) = 0

and obeys (7.3). Since K has neither eigenstates nor resonance states, it is easy to
see that e uniquely solves Ke = 0. This proves (1).

(2) This is verified in almost the same way as (1). We set
r=—(14+Q%ZQ)"'QZ.
Then we have
r=—QZr — QZoqo = —Zor — Zoqo + PZor + PZoqo
and hence ¢ is represented as ¢ = qy + r = V'/%e, where
e =dipo — GoVYV2r — GoVV2¢ (7.5)
with constant dy = 1+ (Zo(r + qo), q0)/Xo- A simple calculation yields

Ke = VY (digo— (r +q0) — Zo(r + o))
= V2 (digo — go — PZo(r + qo)) = 0.

It is easy to see that e; = O(|z|~®). We look at the second component eq. If we
note that
(V1/2T7 p~0) = (Qru Vl/QﬁO) - (Qru QO) - 07
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then it follows from (7.1) that the second component of GoV'/?r obeys O(|x|~272).
The second component —p~'V/2¢, of the term —GyV'/2¢y behaves like

—p Vg, = (2mi)tererr e Ny + O (|| 7ET).

This yields the coefficient —i(Ag/27) in (7.4). Thus we can show that e has the
desired properties and the lemma is proved. O

We end the section by proving Lemma 5.1.
Proof of Lemma 5.1. (1) Assume that 0 < a < 1/2. Let

q="(q,q) =1+ Zy) g0 = V12

be as in Lemma 7.3, where e = gy — GoV'/?¢q. Then the second component e, =
—p~'V1/2¢, behaves like

ey = idor 1T + O(|2| 7219, |z| — o0,
for some constant \. We show that \s is real. To to this, we compute
(1 + Zo) " q0,90) = (¢, 90) = (Ve, po) = —(Koe, po) = —(p—e, po)-

Recall the representation (2.2) for m_ in terms of the polar coordinates. Since

p— =m_ on {|z| > 2} and since p;py = 0, we have
+ Zo)"'q0, qo) =1 lim e espyds = =21
1+ Zy)7! i ® eypy d 21\
— J|z|=R

by partial integration. This yields

Ao = —((14+ Zo) "qo0, q0) /27 (7.6)

and \; is real. This implies that e has all the desired properties.

(2) We proceed to proving (2). Assume that 1/2 < o < 1. Let e be defined by
(7.5) in the proof of Lemma 7.3. We calculate the constant d; in (7.5). According
to the argument in the proof of Lemma 7.3, we have

dy = 1+ ((r+q), Zogo)/ Mo = 1+ (V'?e, Zoqo) /Ao
= 14 (¢, Zoqo) /2o = 1+ (q0 — (1 + QZQ) ™' QZogo, Zoqo) /Mo
= 1+ ((QO: Zogo) — (1 + QZQ) ™' QZoqo, QZOQO)) /o

Thus d; is real, and e; behaves like e;(z) = dyr~*+O(]z|~17%). The desired solution
is obtained as —(27/Ao)e, and then

A= —(27/Mo)dy (7.7)
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is also determined as a real number. This completes the proof. O

8. Convergence of resolvent: proof of Theorems 5.1 and 5.2

In this section we prove Theorems 5.1 and 5.2 through a series lemmas. We recall
that 1y € Co(R?) has support away from the origin. We also use the notation o,(1)
to denote remainder terms of which the L? norm obeys the bound o(1) as ¢ — 0.
We start by the following two lemmas.

Lemma 8.1 Let & = & (x5 E) be defined by (3.1). Then
Mo R(E % i0; Hoo)Jon = Bano (6 ® 7o) ne' = + Op(e),

where 7o(x) = *(ro(x),0) with ro(x) = |z|~*, and

Be =% (227/T(1 - a)) B (8.1)

Lemma 8.2 Let the notation be as in Lemma 8.1. Then
noR(E £ i0; Ko ) JJon = B ((no€a + 02(1)) @ po) ne'~* + Op(e)

and, in particular, T'.(E £10) defined by (6,4) takes the form

nole(E £1i0) = B ((noés + 02(1)) @ qo) e~ + Op(e),

where gy = *(VY2py,0) € [L?)? is defined by (6.15).

Proof of Lemma 8.1. We prove the lemma for the + case only. For brevity, we
write

§+ = t(§17£2)7 fl = _ieiaﬂ-Ha(Er), £2 = Hl_a(E’I“)ew.

The resolvent R(E +10; H,) is represented in terms of R(E?+1i0; Lag) and R(E?+
i0; Lz) by (3.2). We first consider R(E? +i0; Lz). This admits the decomposition

R(E*+i0;Lz) =Ry @ Y @R
1£0

with respect to angular momentum (see (3.4)), and the Green kernels of Ry and R
are defined by (3.5). Since 7 has support away from the origin, we can take ¢ so
small that |z| > ¢|y| when x € suppny and y € suppn, and hence nyRy.J.n has the
kernel

G(x,y) = (i’ /4)no(z) Ha(Elz]) J-a(eEly|)n(y)
by a change of variables. This implies that

EnoRoJ.n = Bino(& @ ro)ne' ™" + Op(e).
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A similar argument applies to Ry, [ # 0, and we obtain nyR;J.n = Op(e) uniformly
in [. Thus we have

EnoR(E? +i0; L) Jen = Bimo(& @ ro)ne'~ + Op(e).
Since m& = E& by (2.14), we make use of this relation to obtain that
oy R(E? +10; Lz)Jen = Bymo(& © ro)ne' ™ + Op(e).
Similarly R(E? + i0; Lap) is shown to obey
moR(E? +i0; Lag)Jon = Op(e),  mom-R(E® +10; Lag)Jen = Opl(e).

This proves the lemma. O

Proof of Lemma 8.2. We again prove the lemma for the 4 case only. Set
Ce(z) =((z/e),  ((z) =1-x0(z/2), (8.2)
for the basic cut—off function xo(x) with property (4.3). Then we have
supp (. C {|z| > 2¢}, ¢ =1 on {|z|] > 4e}.
We may assume that (.19 = ny for € small enough, and we have

noR(E +1i0; Ko.)JJ.n = noR(E +10; Hoo)(C:Jen
+ noR(E +i0; H)W.R(E + i0; Ko.) Jon

by the resolvent identity, where W, = H,(. — (. Ko.. By (4.1), Hoo = Ko = D,, over
|z| > 2¢. If we make use of relations (. = J.(J! and D, = e 'J.D,J*, W, equals
the commutator W, = [D,, (] = e ' J.[D,, (]JZ. If we further use the relation

JXR(E +i0; Ko.)J. = eR(k + i0; K,)
with £ = ¢F, then we obtain
noR(E +1i0; Koe) Jen = noR(E + i0; Hoo) Jo(n + F-R(k + i0; Ko)n, (8.3)
where F, = nyR(E + i0; Hy)J:[D,, ¢]. It follows from Lemma 8.1 that F. is of the

o Bem (& @ 7o) [, CJe!
. 0 No (&1 ®@1rg) |-, (e -
Fe = < 0 51770 (& @m) [m-, (le' ™ ) +Op(e)

with & = (&1, &) as in the proof of Lemma 8.1. Next we evaluate F. R(k+10; Ko)n.
The operator nR(k + i0; Ko)n admits the decomposition in Proposition 6.3 for n €
Co(R?). We calculate :

F. (o ® po) ne' =" = (02(1) ® po) m,
F.Gon = Byno (&4 @ Fo)[7—, {lp=tne' = + Op(e),
O(* ") F.G1n = (02(1) ® fo) 1 + Op(e)
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for Gy and G as in Proposition 6.3. We combine these relations with Lemma 8.1.
Then

mo(E +i0; Koc) Jen = By ((noés + 02(1)) @ 71) ne' = + Op(e)

with 71 = *(r1,0), where
r1 = Cro+py (¢, mi]ro, ro(x) = ||~
Since (w19 = 0, it is easy to see that p,r; = 0, and also 71 (x) behaves like
ri(z) = |z~ + O(jz|7"7)

at infinity. By uniqueness, this implies that r; = py, and the proof is complete. O

Theorem 5.1 is obtained as an immediate consequence of the lemma below.

Lemma 8.3 One has
o R(E £i0; Koo)no — noR(E £140; Hoo)no, € — 0,

m norm.

Proof. We deal with the + case only. Let (. be defined by (8.2). Since (.19 = no
for € small enough, we have

noR(E +10; Ko )no = noR(E +i0; Heo)1o
+ noR(E 4 10; Koo )WXR(E + i0; Hoo )10 (8.4)

by the resolvent identity, where
We* - (HooC€ - QEKOE)* = CaHoo - KOEC& - 5_1J5[C7 Da]J:‘

We decompose the second term on the right side of (8.4) into the product F}.Fy. Fa.
of three operators, where

Fi. = noR(E +i0; Ko.) Jen,  Foe = nJIR(E +i0; Hoo)no = (noR(E — i0; H) Jon)"

for some 1 € Cy(R?), and Fy. = ¢7![¢, D,]. By Lemmas 8.1 and 8.2, Fi. and Fj,
take the form

ae (G o) e (% %)

and Fp. equals



A simple computation yields Fy.Fo. Fy. = Op(e'~%). This proves the lemma. O

Proof of Theorem 5.1. 1If we recall that f. and g, are represented by (5.2) and
(5.3) respectively, then the theorem follows from Lemma 8.3 at once. O

We proceed to the proof of Theorem 5.2. We first accept the lemma below as
proved to complete the proof of the theorem.

Lemma 8.4 Assume that (5.6) is fulfilled. Recall that P : [L*]* — [L?]* is the
projection defined by (7.2), and set Q =1 — P. Then (1+ X.)™' obeys the following
asymptotic form ase — 0 :

(1) If0 < a < 1/2, then
(1+X.)7'= (14 Zo)~" 4+ Op(e' ).
(2) Ifa=1/2, then
1+ X)) = (1+2Z0)"" +a(qg®q) + op(e"),

where
a=—i/2r+it), T=(¢,q0), q= 14+ Zy) 'q. (8.5)

(3) Ifl/2<a <1, then
(1+X.)" = d(e)P(1+0p(e™ ) P

- 04(5)Q ((Q +QZoQ) " QZy + Op(e*™1) + Op(52(1—a))) p

— 04(e)P <Z0Q<Q +QZyQ) ™+ Op(e®* ™) + Op(em_a))) Q

+ Q((Q+QZQ)™" + 0p(e> ) Q,

where
50(6) = 1pa(e), pile) = L+ (RN, k=cE.  (86)

Proof of Theorem 5.2. The proof is based on the relation
R(E +1i0; K.) = R(E +1i0; Ko.) — e 'To(E +140)(1 + X)) 'T.(E —i0)*
derived by (6.3). By Lemma 8.3, we have
mR(E +i0; Ko )no — mR(E +i0; Heo)o, € =0,

in norm for the first operator on the right side.
We analyze the second operator

R(e) = e 'l (E +i0)(1 + X.)'T.(E — i0)*n,.
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The behavior as € — 0 of R(e) takes a different form according as 0 < o < 1/2, av =
1/20or1/2 <a<1.

(1) Let 0 < a < 1/2. Then it follows from Lemmas 8.2 and 8.4 that
IR()]| = O(e™HO(e* ) = O(e'™),

so that
noR(E + 10; Koz )no — noR(E + i0; Heo)no, e — 0,

and hence f. — g. This proves (1).

(2) If «=1/2, then
B = F2 Y2 EV2 I\

by (8.1), so that f,3_ = —E/8r. By Lemmas 8.2 and 8.4 again, we have

R(e) — aono(&+ ® £-)no,

where
ao = B4B- (7 +ar®) = —(E/4) (i+2m/7) 7"
Since Ay = —7/27 by (7.6), it follows from Proposition 3.1 that

noR(E + 10; Koo )no — noR(E +i0; Hy)no, K= 1/As.

This proves (2).
(3) The final case is 1/2 < a < 1. Recall that

laoll> = 1V*20]1* = (Vipo, po) = A

by (5.5). Since Pgy = qo and Qqo = 0, we have by Lemmas 8.2 and 8.4 that R(¢)
behaves like

R(e) = ai(e)no(éy @ & )no + op(e”),  ai(e) = 7' B, 0-217Yd, () o.
We calculate 3, 3_ = — (2°"2E'*/I'(1 — a))? by (8.1). Since
Y- (k) = =1/30 = T(a)/ (220~70(1 - o))
in Proposition 6.1, it follows that
el M0, (e) = =i TET T Ao
and hence

ai(e) — i **E*! (2‘“‘2E1—a/r(1 _ a))Q
= —(B/4) (r/T(a)T(1 - a)) i = —(E/4) (sinar/e"7).
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This, together with Proposition 3.1, implies that f. — go, and (3) is obtained. Thus
the proof of the theorem is now complete. O

Proof of Lemma 8.4. By Proposition 6.3, we have
14 X. =14 Zy + - (k)i%k' 2% (¢ ® qo) + O(£2179) Z, 4 Op(e)

for k =eE > 0, where v_(k) = —1/70+ o(1) as ¢ — 0.

(1) Assume that 0 < o < 1/2. If K = K+ V has neither bound nor resonance
state at zero energy, then 14 Z : [L?]* — [L?]* admits a bounded inverse by Lemma
7.1, and hence (1 + X.)™! takes the form as in the lemma.

(2) If « =1/2, we have
14+ X, =14 Zo+ (i/27) (g0 ® qo) + op(e).
Let ¢ = (1 + Zy) 'qo and 7 = (q, qo) be as in (8.5). Then
1+ X, = (1+Zo) (1+ (i/27) (¢ ® q0)) + op(£?).
A simple computation yields
(14 (i/2m) (4 © q0)) " =1+ a(q® )

with @ as in the lemma. Hence (14 X.)™' takes the desired form.

(3) We deal with the case 1/2 < o < 1. We employ the method from [12],
which has been applied to the analysis on the behavior at low energy of resolvents
of Schrédinger operators —A + V' in two dimensions. We write p(e) and

d(e) = 1/u(e) =0(*7), =0,
for p(g) and d,(¢) respectively. Then
1+ X. = pu(e)P + Q + Zy + O ") Z; + Op(e)
by Proposition 6.3. If we use the two simple relations
(WP +Q) ' =0E)P+Q, (1+QZP)"=1-Q%P,
then 1+ X, takes the form
1+ X. = (u(e)P+ Q) (1+QZP)G.,

and hence
(1+X.) ™" =G (3(e)(P — QZP) + Q) (8.7)

where (G, is represented in the form

G. =1+ QZyQ +6(e)(1 — QZy)PZy + QOp(*1=2) + Op(e).
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We now set ¥y = Ran P and ¥ = Ran (). The second factor on the right side of
(8.7) has the matrix representation

5(e) (P — QZyP) + Q = < —5?5(;5221;013 g ) : ( v ) - < 3 ) (8.9)

while G = (Gjr(€))y<; <) has the components
Goo = P(L+Op(e** )P, Gor = P(8()Zo + Op(e))Q,

Gro = Q(—6(e)ZoPZy + Op(®I=N)\P, Gi1 = Q(1+ Zy + Op(c*~1))Q.

By Lema 7.2, Q +QZ,Q : ¥ — X has a bounded inverse, so that G7! : ¥ — X exists
for ¢ small enough. If we take account of this fact, then GZ' = E. = (E; (€))o<jn<
can be calculated as -

—1 —1
Eyy = (Goo — G01Gf11010) . By =— (Goo — GmGﬁlGlo) GmGﬁl,

—1 -1 —1 —1 -1
Eip =~ (G = G1oGo Gor)  GuGog,  Eu = (G — GGy Gor) -
Hence (1 + X.)™" takes the form
(]_ + Xe)_l = 6(€>(EO0P — EOlQZOP) + E()lQ + 5(5)<E10P — EHQZ()P) + EHQ
by use of (8.7) and (8.8). Each component Ej;(c) behaves like :

Eyxw = P(1+O0p(e* )P,

By = P(—6(£)ZQ(Q + QZyQ) ™" + Op(e*®* V) + Op(e))Q,

Eiy = Q(6(e)(Q + QZQ) ' QZyPZy + Op(e* V) + Op(e* =) P,
By = QUQ+QZQ)™" +Op(e™")Q.

If we take account of these relations, (1 + X.)™' can be shown to take the form in
the lemma, and the proof is complete. O

We end the section by making a brief comment on the case when o < 0 and
a > 1.
Remark 8.1. If we replace the magnetic potential A(x) by —A(z), the argument
here extends to the case —1 < o < 0 without any essential change. If |o > 1,
then the magnetic Schrédinger operator L(A, —b) has eigenstates at zero energy
besides the resonance state by the Aharonov—Casher theorem [4], so that the norm
convergence of resolvent nyR(E + i0; K.)ny can not be expected ([23]). However
the strong convergence can be expected, and hence Theorems 5.1 and 5.2 seem to
remain true in the case |o| > 1 also.

9. Scattering in the interaction of cosmic string with matter
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The last section is devoted to proving Theorem 5.3. We begin by representing
the amplitude fo.(w — @; E) in question in terms of the resolvent R(E + i0; K.) of

_ [ Ko O 0 Vv
ox (5 )[4

If we decompose V into the product

0V vz 0 V2
VZ(V o>:< 0 v1/2><v1/2 0 >:V1V2’

then almost the same argument as used to derive (6.3) enables us to obtain
R(E +i0;K.) = R(FE +i0; Ko.) — e 'T1.(E 4 i0) (1 + X.) ' Do (F — i0)*, (9.1)
where X, = VoR(k +i0; Ko)V; with k =e¢E > 0, and
I'e(E+140) = R(E 4 i0;Ko.)J-: Vi, Ta(E —i0) = R(E —10; Ko.)J. V.

A direct computation yields

([ TAE+i0) 0 _ 0 Te(B—i0)
Flg— ( 0 Fa(E—i_/l/O) )’ I‘Qs_ ( Fe(E—ZO) 0 >’

where I'.(E £40) is defined by (6.4). We further have

(V) weor=(La B TR

We divide R(E + i0; K.) into the block form
R(E +1i0;K.) = (Rjn(E +1i0;Ke)) o s
where Rji(E +i0; K.) acts on [L?]?. In particular, we have
Ry (E +i0;K.) = —'T.(E +i0)(1 — X3)™'T'.(E —0)*.
We can represent fo.(w — @; F) as
far(w = @3 B) = (iB/8m)"*(Roy (E + i0; K)oy (w), T (D))
by repeating the same argument as in section 4, and hence we have

for = —e M (B /87) A(T(E +i0) (1 — X2)'TL(E — i0) b (), I (@) (9.2)

The argument here is based on this representation.
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Lemma 9.1 The operator Ko — V' has a resonance at zero energy if and only if so
does K = Ko+ 'V, and the same statement is also true for an eigenstate.

Proof. The lemma is easy to prove. For brevity, we consider the case 0 < o < 1/2
only. A similar argument applies to the case 1/2 < a < 1. Let vy = (vy,v9) €
L? x L™ be a resonance state of Ko+ V. If we set v_ = (v, —vy), then v_ solves
(Ko —V)v_ =0, and it becomes a resonance by Definition 5.1. The case of eigen-
state is also shown in the same way. O

We keep the same notation as in the previous sections. The lemma above implies
the existence of bounded inverses (1 — Zy)~' : [L?]? — [L?]* and (1 — QZ,Q) " :
3 — Y. The following lemma is verified in exactly the same way as in the proof of
Lemmas 8.4. We skip the proof.

Lemma 9.2 If (5.6) is fulfilled, then (1 — X.)™" has the following asymptotic form
ase —0:

(1) If0<a<1/2, then
(1-X)'=01~-Z) " +0p(e).
2) Ifa=1/2, then
1-X) ' =01~2) " +d(d®q)+op(e"),

where
d=i/2r—i), T=(d.q90) ¢ =01-2Z)"q. (9.3)
(3) If1/2 < a <1, then
(1-X)7 = 6.(e)P(1+0p(e>)) P
+ 0-(e)Q ((Q — QZoQ)'QZy + Op(e** ") + Op(am_a))) P
+ 0-(e)P (ZOQ(Q —QZQ)" + Op(e™ ™) + Op(sm_a))) Q
+ Q((Q-Q%Q) " +0p(e™ ™) Q,

where
6_(e)=1/u_(g), p_(e)=1—~_(k)i**k'""2*)y, k=cE. (9.4)

Lemma 9.3 Let &, be defined by (3.1). Set

Iy = (&, Ty (@), I = (&, iy (W) -

Then A ‘
I, =—4e""?/E, I =4e " ?/E.
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Proof. We calculate I, only. A similar computation applies to I_. For brevity, we
write

§r=6="(&,&), ¥-=v¢="(1,¢), x-(v)=xo(z/4) = x(2).
By (4.3), x has support in {|z| < 8} and x =1 on {|z| < 4}. Since
H—¢ = [DQ7X]¢ = [Doz - E,X]ﬂ} = (Da - E) Xqu)
for x # 0, I, equals

I, =lim (51(7T—X¢2 — Exn) + &a(mixyr — EX%)) dx.

0—0 J|z|>6

Note that (D, — E) & =0, and 7, and 7_ take the form
my = el (=0, +...), m_=e (=0, +..)
by (2.2). We integrate by parts to calculate 7. Since x =1 on {|z| = d}, we have

s i0¢ 7T —i0¢ 7T _
I, =—i }SI_I)I(I) s (e &1y + € é’gwl) ds, ds=9db.

By (2.5) and (2.22), the first term in the integrand obeys
e’ (2)hy(x) = O(r'*) + 0(1), v =la[ =0,
and hence

lim e, ds = 0,
6—0 || =6 &1’%

because 0 < a < 1. On the other hand, the second term behaves like
e ), = (—i/sinar) (1/T(a)l(1 — a)) (Er/2) " e ™2 (1 4+ o(1))

as |x| — 0. Since I'(a)['(1 — ) = 7/ sin ax by formula, we have

—i lim . e~y (x), () ds = —4e™™2 | E.
— 2l=5

This yields the desired value. O
We now define I, by
L= ((1-X2) ") = ((1+X) g0, (1 = X)) '0) .

Lemma 9.4 Let A\ and Ay be as in Lemma 5.1. Then one has the following state-
ments :

(1) IfO<a<1/2, then
I. = =27y + 0(1), e — 0.
(2) Ifa=1/2, then
I = =211+ X)) +0o(1), e—0.
(3) Ifl/2<a <1, then
I, = =2 (M /2m)iT 4 B2 20221 (1 4 5(1)), & —0.
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We complete the proof Theorem 5.3, accepting this lemma as proved. Through-
out the proof of the theorem, we use the notation Oq(¢) to denote remainder terms
of which the L? norm obeys O(e).

Proof of Theorem 5.3. We set ne = 1o+ + 02(1) in Lemma 8.2. The amplitude
foe(w — @; E) is represented as (9.2). If we use Lemma 8.2, then a simple compu-
tation enables us to evaluate the amplitude as follows :

Joe = —(iE/87T)1/25—5+(H+¢+ (W), ) (g, tp_ (D)) Le' >
+ O(™)((1 = X2)7'0a(e), o)
+ OE™)((1 = X2) g0, 02(2)) + O(e). (9.5)

The leading term comes from the first term on the right side of (9.5).

We first consider the case 1/2 < a < 1. If 1/2 < a < 1, then it follows from
Lemmas 8.4 and 9.2 that (1 — X2)~! takes the form

(1-X2)7" = POp(e** V)P +QOp(e")Q
+ P Op(52a_1)Q + Q Op(52a_1)P

and hence we have
(1= X2)710a(e), q0) + (1 = X2) g0, Oa(e))| = O(*),

because (Qqyp = 0. This implies that the three remainder terms on the right side of
(9.5) obey O(e%) = O(e** 1O (') = o(e**~!). Thus we have

foe = _<iE/87T)1/25—5+(H+¢+(W): =) (15, T (@) L' 2% + o(e™* 7).

If we combine Lemmas 9.3 and 9.4, the desired asymptotic form is obtained after a
little tedious computation of the leading constant C,,.

Next we move to the case 0 < a < 1/2. By Lemmas 8.4 and 9.2 again, (1—X2?)"!
is bounded uniformly in €, so that

(1= X2)7'0s(2), qo)| + (1 = X2)"'q0, Oa(e))| = OCe).

Then the remainder terms on the right side of (9.5) obey O(e'™%) = o(e'~2*). Thus
we have

far = =(B/8m) BB (Lt (w), 1) (g, TTtp (&) Lee' 2 + 0! 72).

We again combine Lemmas 9.3 and 9.4 to obtain the desired asymptotic form for
the case 0 < o < 1/2, and the proof is complete. O

It remains to prove Lemma 9.4. The proof requires two auxiliary lemmas. The
first lemma below is proved in the same way as Lemma 7.3. We skip the proof.
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Lemma 9.5 (1) If0<a <1/2, then
¢ =0=Z) g0 =V"

for some e = (e1,e3) € L™ x L™, and e uniquely solves (Ko — V) e = 0 under the
condition that

e =1 %+ O(\x!‘l_o‘), €y = O(\x!‘”o‘), |z| — oo.

(2) If1/2 <a <1, then

¢ =q+(Q—-QZQ) 'QZyq = V12

for some e = *(e1,e3) € L™ x L™, and e uniquely solves (Ko — V) e = 0 under the
condition that

er = O(|2[7), e2 = i(ho/2m)r™ e + O(|2[**), 2| — o0

Lemma 9.6 Assume that 0 < o < 1/2. Let 7 and 7' be the real numbers as in
(8.5) and (9.3) respectively. Then one has

T = (¢,9)= ((1 + Zo)_ICon(Jo) = =27\,
T = (q/:QO> = ((1 - ZO>71QOaQO) = —21\,.

Proof. We write e, = (e, e2) for e in Lemma 7.3 and e_ for e in Lemma 9.5.
Then it follows by uniqueness that e_ is given as e_ = *(e1, —eg) for 0 < a < 1/2.
We prove the first relation only. The second relation is obtained in a similar way.
By Lemma 7.3, 7 = (Ve, py) and e solves Ke = (Ky+ V) e = 0. Hence

T = —(Koe, po) = —(p-€2, o).

Note that p* pg = pypo = 0, and p_ takes the form p_ = e~ (—id,...). Hence we
have ‘
T =1 lim e’leegﬁo ds, ds=Rd0,
R—o0 J|z|=R

by partial integration. Since po(x) = r~*+ O(r~17%) as |z| — oo and since
ea(x) = idger 1T 4 O(r2t)

by Lemma 5.1, the desired relation follows from (7.6). O

Proof of Lemma 9.4. We again write e, = *(eq,e3) for e in Lemma 7.3 and e_ for
e in Lemma 9.5. If 0 < o < 1/2, then e_ = *(e1, —ey), and if 1/2 < o < 1, then
e ="%(—ey,e9).
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(1) Assume that 0 < o < 1/2. By Lemmas 8.4 and 9.2, it follows that
L=(1+2)"0 (1= Z) ") +0(1), -0

We further obtain I. = (Ves,e_) + o(1) by Lemmas 7.3 and 9.5. The leading term
on the right side equals

(Ver,eo) = —((Ko— Vies,e)/2 (9.6)
because (Ko £+ V)er = 0. We assert that
(Ko —V)eq,e_) = 4wy, (9.7)
which implies that I. = —27 s + o(1). We shall show (9.7). By definition,
(Ko —V)eq,e-) = ((p-e2 — Ver),e1) — ((pre1 — Vea), e2).

We recall that pp = e (—i0, ...) for |x| > 1. Hence we have

(Ko —V)er,e) =—i lim (e Doy, — € 6162) ds, ds= Rd#,

R—o0 J|z|=R
by integration by parts. Thus Lemma 5.1 yields (9.7).
(2) Assume that « = 1/2. According to Lemmas 8.4 and 9.2, we have
(14+X) o= 1+ar)g+0:(1), (1—X"go=14d7)g +0s(1).

Hence
L=>0+ar)(1+d7)(q,q)+o(1), e — 0.

We repeat the same argument as used in proving (1) to obtain that
(¢.4) = (1 + Zo) "0, (1 — Zo) ' q0) = —27Na.
On the other hand, Lemma 9.6, together with (8.5), implies that
l+ar =1—ir/2n +it) =21/27 +i7) = (1 — i)},

and similarly 14 a7’ = (1 +iXg) ™" (see (9.3)). This proves (2).

(3) Let 1/2 < a < 1. (3) is verified in almost the same way as (1). Since
Qqo = 0 and Pqy = qo, it follows from Lemmas 8.4 and 9.2 that

(14+X.) "0 ~ d4(e) (CIO -Q(Q+ QZOQ)_IQZOQO) ;
(1=X)"q ~ 6-(2) (a0 +QQ— Q%Q) Q%) ,
and hence we have

I. = 6-}-(5)5_ (5)(V€+, 6_) + 0(52(20‘_1))
—64(2)0- () (Ko — V)ey,e-) /2 + o(e2*7D)
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by Lemmas 7.3 and 9.5. Note that e; behaves like
e1(z) = —(Ao/2m)r* + O(Jz| 179, |z| — o0,

for the real number A; as in Lemma 5.1. Hence the scalar product ((Ko—V)ei,e_)
is calculated as

(Ko —V)eq,e_) = —i I%im o (—e‘igegél + €i6€1€2) ds = -\ /7 (9.8)
—0 J|z|=R

by use of partial integration. As is seen from (8.6) and (9.4),
0x(e) = 1/px(e) = F(0/Xo)i **E**1e** (1 + o(1)),

because y_(k) — —1/7y0 as k = e — 0. This, together with (9.8), yields the desired
asymptotic form. O
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