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Abstract

In this paper, we review the construction of low-dimensional manifolds of reduced

description for equations of chemical kinetics from the standpoint of the method

of invariant manifold (MIM). MIM is based on a formulation of the condition of

invariance as an equation, and its solution by Newton iterations. A grid-based

version of MIM is developed. Generalizations to open systems are suggested. The

set of methods covered makes it possible to e�ectively reduce description in chemical

kinetics.

The most essential new element of this paper is the systematic consideration of

a discrete analogue of the slow (stable) positively invariant manifolds for dissipa-

tive systems, invariant grids. We describe the Newton method and the relaxation

method for the invariant grids construction. The problem of the grid correction

is fully decomposed into the problems of the grid's nodes correction. The edges

between the nodes appears only in the calculation of the tangent spaces. This fact

determines high computational eÆciency of the invariant grids method.
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1 Introduction

In this paper, we present a general method of constructing the reduced description for dis-

sipative systems of reaction kinetics and a new method of invariant grids. Our approach

is based on the method of invariant manifold which was developed in end of 1980th -

beginning of 1990th [24, 25, 26]. Its realization for a generic dissipative systems was dis-

cussed in [28, 36]. This method was applied to a set of problems of classical kinetic theory

based on the Boltzmann kinetic equation [28, 49, 51]. The method of invariant manifold

was successfully applied to a derivation of reduced description for kinetic equations of

polymeric solutions [79]. It was also been tested on systems of chemical kinetics [35, 32].

In order to construct manifolds of a relatively low dimension, grid-based representations

of manifolds become a relevant option. The idea of invariant grids was suggested recently

in [32].

The goal of nonequilibrium statistical physics is the understanding of how a system

with many degrees of freedom acquires a description with a few degrees of freedom. This

should lead to reliable methods of extracting the macroscopic description from a detailed

microscopic description.

Meanwhile this general problem is still far from the �nal solution, it is reasonable to

study simpli�ed models, where, on the one hand, a detailed description is accessible to

numerics, on the other hand, analytical methods designed to the solution of problems in

real systems can be tested.

In this paper we address the well known class of �nite-dimensional systems known from

the theory of reaction kinetics. These are equations governing a complex relaxation in

perfectly stirred closed chemically active mixtures. Dissipative properties of such systems

are characterized with a global convex Lyapunov function G (thermodynamic potential)

which implements the second law of thermodynamics: As the time t tends to in�nity,

the system reaches the unique equilibrium state while in the course of the transition the

Lyapunov function decreases monotonically.

While the limiting behavior of the dissipative systems just described is certainly very

simple, there are still interesting questions to be asked about. One of these questions is

closely related to the above general problem of nonequilibrium statistical physics. Indeed,

evidence of numerical integration of such systems often demonstrates that the relaxation

has a certain geometrical structure in the phase space. Namely, typical individual tra-

jectories tend to manifolds of lower dimension, and further proceed to the equilibrium

essentially along these manifolds. Thus, such systems demonstrate a dimensional reduc-

tion, and therefore establish a more macroscopic description after some time since the

beginning of the relaxation.

There are two intuitive ideas behind our approach, and we shall now discuss them

informally. Objects to be considered below are manifolds (surfaces) 
 in the phase space

of the reaction kinetic system (the phase space is usually a convex polytope in a �nite-

dimensional real space). The `ideal' picture of the reduced description we have in mind

is as follows: A typical phase trajectory, c(t), where t is the time, and c is an element

of the phase space, consists of two pronounced segments. The �rst segment connects the

beginning of the trajectory, c(0), with a certain point, c(t1), on the manifold 
 (rigorously

speaking, we should think of c(t1) not on 
 but in a small neighborhood of 
 but this

is inessential for the ideal picture). The second segment belongs to 
, and connects the

point c(t1) with the equilibrium c
eq = c(1), ceq 2 
. Thus, the manifolds appearing in
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our ideal picture are \patterns" formed by the segments of individual trajectories, and

the goal of the reduced description is to \�lter out" this manifold.

There are two important features behind this ideal picture. The �rst feature is the

invariance of the manifold
: Once the individual trajectory has started on 
, it does not

leaves 
 anymore. The second feature is the projecting: The phase points outside 
 will

be projected onto 
. Furthermore, the dissipativity of the system provides an additional

information about this ideal picture: Regardless of what happens on the manifold 
, the

function G was decreasing along each individual trajectory before it reached 
. This ideal

picture is the guide to extract slow invariant manifolds.

One more point needs a clari�cation before going any further. Low dimensional in-

variant manifolds exist also for systems with a more complicated dynamic behavior, so

why to study the invariant manifolds of slow motions for a particular class of purely dissi-

pative systems? The answer is in the following: Most of the physically signi�cant models

include non-dissipative components in a form of either a conservative dynamics, or in the

form of external forcing or external 
uxes. Example of the �rst kind is the free 
ight of

particles on top of the dissipation-producing collisions in the Boltzmann equation. For

the second type of example one can think of irreversible reactions among the suggested

stoichiometric mechanism (inverse process are so unprobable that we discard them com-

pletely thereby e�ectively \opening" the system to the remaining irreversible 
ux). For

all such systems, the present method is applicable almost without special re�nements,

and bears the signi�cance that invariant manifolds are constructed as a \deformation" of

the relevant manifolds of slow motion of the purely dissipative dynamics. Example of this

construction for open systems is presented below in section 11. Till then we focus on the

purely dissipative case for the reason just clari�ed.

The most essential new element of this paper is the systematic consideration of a

discrete analogue of the slow (stable) positively invariant manifolds for dissipative systems,

invariant grids. These invariant grids were introduced in the [32]. Here we will describe

the Newton method subject to incomplete linearization and the relaxation methods for

the invariant grids. It is worth to mention, that the problem of the grid correction is

fully decomposed into the problems of the grid's nodes correction. The edges between the

nodes appears only in the calculation of the tangent spaces. This fact determines high

computational eÆciency of the invariant grids method.

Due to the famous Lyapunov auxiliary theorem [60, 54] we can construct analytical

invariant manifolds for kinetic equations with analytical right hand side. Moreover, the

analycity can serve as a \selection rule" for selection the unique analytic positively invari-

ant manifold from the in�nite set of smooth positively invariant manifolds. The analycity

gives a possibility to use the powerful technique of analytical continuation and Carleman's

formulae [1, 38, 39]. It leads us to superresolution e�ects: A small grid may be suÆcient

to present an \large" analytical manifold immersed in the whole space.

The paper is organized as follows. In the section 2, we review the reaction kinet-

ics (section 2.1), and discuss the main methods of model reduction in chemical kinetics

(section 2.2). In particular, we present two general versions of extending partially equilib-

rium manifolds to a single relaxation time model in the whole phase space, and develop a

thermodynamically consistent version of the intrinsic low-dimensional manifold (ILDM)

approach. In the section 3 we review the method of invariant manifold in the way appro-

priate to this class of nonequilibrium systems. In the sections 4 and 5 we give some details

on the two relatively independent parts of the method, the thermodynamic projector, and
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the iterations for solving the invariance equation.

We also describe a general symmetric linearization procedure for the invariance equa-

tion, and discuss its relevance to the picture of decomposition of motions. In the section

6, these two procedures are combined into an unique algorithm. In the section 7, we

demonstrate an illustrative example of analytic computations for a model catalytic re-

action. In the section 8 we introduce the relaxation method for solution the invariance

equation. This relaxation method is an alternative to the Newton iteration method. In

the section 9 we demonstrate how the thermodynamic projector is constructed without the

a priori parameterization of the manifold1. This result is essentially used in the section 10

where we introduce a computationally e�ective grid-based method to construct invariant

manifolds. It is the central section of the paper. We present the Newton method and

the relaxation method for the grid construction. The Carleman formulas for analytical

continuation a manifold from a grid are proposed. Two examples of kinetic equations

are analyzed: a two-dimensional catalytic reaction (four species, two balances) and a

four-dimensional oxidation reaction (six species, two balances).

In the section 11 we describe an extension of the method of invariant manifold to open

systems. Finally, results are discussed in the section 12.

2 Equations of chemical kinetics and their reduction

2.1 Outline of the dissipative reaction kinetics

We begin with an outline of the reaction kinetics (for details see e. g. the book of [77]).

Let us consider a closed system with n chemical species A1; : : : ;An, participating in a

complex reaction. The complex reaction is represented by the following stoichiometric

mechanism:

�s1A1 + : : :+ �snAn 
 �s1A1 + : : :+ �snAn; (1)

where the index s = 1; : : : ; r enumerates the reaction steps, and where integers, �si and

�si, are stoichiometric coeÆcients. For each reaction step s, we introduce n{component

vectors �s and �s
with components �si and �si. Notation 
s stands for the vector with

integer components 
si = �si � �si (the stoichiometric vector). We adopt an abbreviated

notation for the standard scalar product of the n-component vectors:

(x;y) =

nX
i=1

xiyi:

The system is described by the n-component concentration vector c, where the com-

ponent ci � 0 represents the concentration of the specie Ai. Conservation laws impose

linear constraints on admissible vectors c (balances):

(bi; c) = Bi; i = 1; : : : ; l; (2)

where bi are �xed and linearly independent vectors, and Bi are given scalars. Let us

denote as B the set of vectors which satisfy the conservation laws (2):

B = fcj(b1; c) = B1; : : : ; (bl; c) = Blg :
1This thermodynamic projector is the unique operator which transforms the arbitrary vector �eld

equipped with the given Lyapunov function into a vector �eld with the same Lyapunov function (and

also this happens on any manifold which is not tangent to the level of the Lyapunov function).
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The phase space V of the system is the intersection of the cone of n-dimensional

vectors with nonnegative components, with the set B, and dimV = d = n � l. In the

sequel, we term a vector c 2 V the state of the system. In addition, we assume that each

of the conservation laws is supported by each elementary reaction step, that is

(
s; bi) = 0; (3)

for each pair of vectors 
s and bi.

Reaction kinetic equations describe variations of the states in time. Given the stoi-

chiometric mechanism (1), the reaction kinetic equations read:

_c = J(c); J(c) =

rX
s=1



s
Ws(c); (4)

where dot denotes the time derivative, and Ws is the reaction rate function of the step s.

In particular, the mass action law suggests the polynomial form of the reaction rates:

Ws = k+
s

nY
i=1

c�i
i
� k�

s

nY
i=1

c�i
i
; (5)

where k+
s
and k�

s
are the constants of the direct and of the inverse reactions rates of the

sth reaction step. The phase space V is positive-invariant of the system (4): If c(0) 2 V ,

then c(t) 2 V for all the times t > 0.

In the sequel, we assume that the kinetic equation (4) describes evolution towards

the unique equilibrium state, ceq, in the interior of the phase space V . Furthermore, we

assume that there exists a strictly convex function G(c) which decreases monotonically

in time due to Eq. (4)2 :
_G = (rG(c);J(c)) � 0; (6)

Here rG is the vector of partial derivatives @G=@ci, and the convexity assumes that the

n� n matrices

Hc = k@2G(c)=@ci@cjk; (7)

are positive de�nite for all c 2 V . In addition, we assume that the matrices (7) are

invertible if c is taken in the interior of the phase space.

The function G is the Lyapunov function of the system (4), and ceq is the point of

global minimum of the function G in the phase space V . Otherwise stated, the manifold

of equilibrium states ceq(B1; : : : ; Bl) is the solution to the variational problem,

G! min for (bi; c) = Bi; i = 1; : : : ; l: (8)

2With some abuse of language, we can term the functional �G the entropy, although it is a di�erent

functional for non-isolated systems. We recall that thermodynamic Lyapunov functions are well de�ned

not just for isolated systems. Such functionals are easily constructed also for systems which exchange

energy and/or matter with a larger equilibrium system (with a thermostat, for example). In such a

case, the thermodynamic Lyapunov function is constructed as the entropy of the minimal closed system

containing the system under consideration [23]. In particular, the free energy and the free enthalpy

(the Gibbs and the Helmholz energies, respectively) can be constructed in this manner. They are are

identical with the entropy of the minimal closed system containing the given system within the accuracy

of multiplication with a factor which remains constant in time, and subtracting a constant.
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For each �xed value of the conserved quantities Bi, the solution is unique. In many

cases, however, it is convenient to consider the whole equilibrium manifold, keeping the

conserved quantities as parameters.

For example, for perfect systems in a constant volume under a constant temperature,

the Lyapunov function G reads:

G =

nX
i=1

ci[ln(ci=c
eq
i
)� 1]: (9)

It is important to stress that ceq in Eq. (9) is an arbitrary equilibrium of the system,

under arbitrary values of the balances. In order to compute G(c), it is unnecessary to

calculate the speci�c equilibrium c
eq which corresponds to the initial state c. Moreover,

for ideal systems, function G is constructed from the thermodynamic data of individual

species, and, as the result of this construction, it turns out that it has the form of Eq.

(9). Let us mention here the classical formula for the free energy F = RTV G:

F = V RT

nX
i=1

ci[(ln(ciVQ i)� 1) + Fint i(T )]; (10)

where V is the volume of the system, T is the temperature, VQ i = N0(2�~
2=mikT )

3=2

is the quantum volume of one mole of the specie Ai, N0 is the Avogadro number, mi is

the mass of the molecule of Ai, R = kN0, and Fint i(T ) is the free energy of the internal

degrees of freedom per mole of Ai.

Finally, we recall an important generalization of the mass action law (5), known as the

Marcelin-De Donder kinetic function. This generalization was developed in [20] based on

ideas of the thermodynamic theory of aÆnity [18]. We use the kinetic function suggested

in [11]. Within this approach, the functions Ws are constructed as follows: For a given

strictly convex function G, and for a given stoichiometric mechanism (1), we de�ne the

gain (+) and the loss (�) rates of the sth step,

W+
s
= '+

s
exp[(rG;�s)]; W�

s
= '�

s
exp[(rG;�s)]; (11)

where '�
s
> 0 are kinetic factors. The Marcelin-De Donder kinetic function reads: Ws =

W+
s
�W�

s
, and the right hand side of the kinetic equation (4) becomes,

J =

rX
s=1


sf'
+
s
exp[(rG;�s)]� '�

s
exp[(rG;�s)]g: (12)

For the Marcelin-De Donder reaction rate (11), the dissipation inequality (6) reads:

_G =

rX
s=1

[(rG;�
s
)� (rG;�s)]

n
'+
s
e(rG;�s) � '�

s
e(rG;�

s
)
o
� 0: (13)

The kinetic factors '�
s
should satisfy certain conditions in order to make valid the dissi-

pation inequality (13). A well known suÆcient condition is the detail balance:

'+
s
= '�

s
; (14)

other suÆcient conditions are discussed in detail elsewhere [77, 23, 46, 47]. For the

function G of the form (9), the Marcelin-De Donder equation casts into the more familiar

mass action law form (5).
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2.2 The problem of reduced description in chemical kinetics

What does it mean, \to reduce the description of a chemical system"? This means the

following:

1. To shorten the list of species. This, in turn, can be achieved in two ways:

(i) To eliminate inessential components from the list;

(ii) To lump some of the species into integrated components.

2. To shorten the list of reactions. This also can be done in several ways:

(i) To eliminate inessential reactions, those which do not signi�cantly in
uence the

reaction process;

(ii) To assume that some of the reactions \have been already completed", and

that the equilibrium has been reached along their paths (this leads to dimensional

reduction because the rate constants of the \completed" reactions are not used

thereafter, what one needs are equilibrium constants only).

3. To decompose the motions into fast and slow, into independent (almost-independent)

and slaved etc. As the result of such a decomposition, the system admits a study

\in parts". After that, results of this study are combined into a joint picture. There

are several approaches which fall into this category: The famous method of the

quasi-steady state (QSS), pioneered by Bodenstein and Semenov and explored in

considerable detail by many authors, in particular, in [10, 14, 68, 21, 66], and many

others; the quasi-equilibrium approximation [62, 23, 74, 21, 46, 47]; methods of sen-

sitivity analysis [64, 56]; methods based on the derivation of the so-called intrinsic

low-dimensional manifolds (ILDM, as suggested in [61]). Our method of invariant

manifold (MIM, [24, 25, 26, 28, 35, 36]) also belongs to this kind of methods.

Why to reduce description in the times of supercomputers?

First, in order to gain understanding. In the process of reducing the description one

is often able to extract the essential, and the mechanisms of the processes under study

become more transparent. Second, if one is given the detailed description of the system,

then one should be able also to solve the initial-value problem for this system. But what

should one do in the case where the the system is representing just a point in a three-

dimensional 
ow? The problem of reduction becomes particularly important for modeling

the spatially distributed physical and chemical processes. Third, without reducing the

kinetic model, it is impossible to construct this model. This statement seems paradoxal

only at the �rst glance: How come, the model is �rst simpli�ed, and is constructed only

after the simpli�cation is done? However, in practice, the typical for a mathematician

statement of the problem, (Let the system of di�erential equations be given, then ...) is

rather rarely applicable in the chemical engineering science for detailed kinetics. Some

reactions are known precisely, some other - only hypothetically. Some intermediate species

are well studied, some others - not, it is not known much about them. Situation is even

worse with the reaction rates. Quite on the contrary, the thermodynamic data (energies,

enthalpies, entropies, chemical potentials etc) for suÆciently rare�ed systems are quite

reliable. Final identi�cation of the model is always done on the basis of comparison with

the experiment and with a help of �tting. For this purpose, it is extremely important
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to reduce the dimension of the system, and to reduce the number of tunable parameters.

The normal logics of modeling for the purpose of chemical engineering science is the

following: Exceedingly detailed but coarse with respect to parameters system! reduction

! �tting ! reduced model with speci�ed parameters (cycles are allowed in this scheme,

with returns from �tting to more detailed models etc). A more radical viewpoint is also

possible: In the chemical engineering science, detailed kinetics is impossible, useless, and

it does not exist. For a recently published discussion on this topic see [57, 58]; [76].

Alas, with a mathematical statement of the problem related to reduction, we all have

to begin with the usual: Let the system of di�erential equations be given ... . Enormous

diÆculties related to the question of how well the original system is modeling the real

kinetics remain out of focus of these studies.

Our present work is devoted to studying reductions in a given system of kinetic equa-

tions to invariant manifolds of slow motions. We begin with a brief discussion of existing

approaches.

2.3 Partial equilibrium approximations

Quasi-equilibrium with respect to reactions is constructed as follows: From the list of

reactions (1), one selects those which are assumed to equilibrate �rst. Let they be indexed

with the numbers s1; : : : ; sk. The quasi-equilibrium manifold is de�ned by the system of

equations,

W+
si
= W�

si
; i = 1; : : : ; k: (15)

This system of equations looks particularly elegant when written in terms of conjugated

(dual) variables, � =rG:

(
si;�) = 0; i = 1; : : : ; k: (16)

In terms of conjugated variables, the quasi-equilibrium manifold forms a linear subspace.

This subspace, L?, is the orthogonal completement to the linear envelope of vectors,

L = linf
s1; : : : ;
skg.

Quasi-equilibrium with respect to species is constructed practically in the same way

but without selecting the subset of reactions. For a given set of species, Ai1
; : : : ; Aik

, one

assumes that they evolve fast to equilibrium, and remain there. Formally, this means

that in the k-dimensional subspace of the space of concentrations with the coordinates

ci1 ; : : : ; cik , one constructs the subspace L which is de�ned by the balance equations,

(bi; c) = 0. In terms of the conjugated variables, the quasi-equilibrium manifold, L?, is

de�ned by equations,

� 2 L?; (� = (�1; : : : ; �n)): (17)

The same quasi-equilibrium manifold can be also de�ned with the help of �ctitious reac-

tions: Let g1; : : : ; gq be a basis in L. Then Eq. (17) may be rewritten as follows:

(gi;�) = 0; i = 1; : : : ; q: (18)

Illustration: Quasi-equilibrium with respect to reactions in hydrogen oxidation: Let

us assume equilibrium with respect to dissociation reactions, H2 
 2H, and, O2 
 2O,

in some subdomain of reaction conditions. This gives:

k+1 cH2
= k�1 c

2
H; k

+
2 cO2

= k�2 c
2
O:
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Quasi-equilibrium with respect to species: For the same reaction, let us assume equilib-

rium over H, O, OH, and H2O2, in a subdomain of reaction conditions. Subspace L is

de�ned by balance constraints:

cH + cOH + 2cH2O2
= 0; cO + cOH + 2cH2O2

= 0:

Subspace L is two-dimensional. Its basis, fg1; g2g in the coordinates cH, cO, cOH, and

cH2O2
reads:

g1 = (1; 1;�1; 0); g2 = (2; 2; 0;�1):

Corresponding Eq. (18) is:

�H + �O = �OH; 2�H + 2�O = �H2O2
:

General construction of the quasi-equilibrium manifold: In the space of concentration,

one de�nes a subspace L which satis�es the balance constraints:

(bi; L) � 0:

The orthogonal complement of L in the space with coordinates � =rG de�nes then the

quasi-equilibrium manifold 
L. For the actual computations, one requires the inversion

from � to c. Duality structure �$ c is well studied by many authors [62, 19].

Quasi-equilibrium projector. It is not suÆcient to just derive the manifold, it is also

required to de�ne a projector which would transform the vector �eld de�ned on the space

of concentrations to a vector �eld on the manifold. Quasi-equilibrium manifold consists

of points which minimize G on the aÆne spaces of the form c + L. These aÆne planes

are hypothetic planes of fast motions (G is decreasing in the course of the fast motions).

Therefore, the quasi-equilibrium projector maps the whole space of concentrations on 
L

parallel to L. The vector �eld is also projected onto the tangent space of 
L parallel to

L.

Thus, the quasi-equilibrium approximation implies the decomposition of motions into

the fast - parallel to L, and the slow - along the quasi-equilibrium manifold. In order to

construct the quasi-equilibrium approximation, knowledge of reaction rate constants of

\fast" reactions is not required (stoichiometric vectors of all these fast reaction are in L,


fast 2 L, thus, knowledge of L suÆces), one only needs some con�dence in that they all

are suÆciently fast [74]. The quasi-equilibrium manifold itself is constructed based on the

knowledge of L and of G. Dynamics on the quasi-equilibrium manifold is de�ned as the

quasi-equilibrium projection of the \slow component" of kinetic equations (4).

2.4 Model equations

The assumption behind the quasi-equilibrium is the hypothesis of the decomposition of

motions into fast and slow. The quasi-equilibrium approximation itself describes slow

motions. However, sometimes it becomes necessary to restore to the whole system, and

to take into account the fast motions as well. With this, it is desirable to keep intact one

of the important advantages of the quasi-equilibrium approximation - its independence of

the rate constants of fast reactions. For this purpose, the detailed fast kinetics is replaced

by a model equation (single relaxation time approximation).

Quasi-equilibrium models (QEM) are constructed as follows: For each concentration

vector c, consider the aÆne manifold, c + L. Its intersection with the quasi-equilibrium

10



manifold 
L consists of one point. This point delivers the minimum to G on c + L. Let

us denote this point as c�
L
(c). The equation of the quasi-equilibrium model reads:

_c = �
1

�
[c� c�

L
(c)] +

X
slow



s
Ws(c

�

L
(c)); (19)

where � > 0 is the relaxation time of the fast subsystem. Rates of slow reactions are

computed in the points c�
L
(c) (the second term in the right hand side of Eq. (19), whereas

the rapid motion is taken into account by a simple relaxational term (the �rst term in the

right hand side of Eq. (19). The most famous model kinetic equation is the BGK equation

in the theory of the Boltzmann equation [8]. The general theory of the quasi-equilibrium

models, including proofs of their thermodynamic consistency, was constructed in [27, 29].

Single relaxation time gradient models (SRTGM) were considered in [2, 3, 4] in the

context of the lattice Boltzmann method for hydrodynamics. These models are aimed at

improving the obvious drawback of quasi-equilibrium models (19): In order to construct

the QEM, one needs to compute the function,

c
�

L
(c) = arg min

x2c+L; x>0
G(x): (20)

This is a convex programming problem. It does not always has a closed-form solution.

Let g1; : : : ; gk is the orthonormal basis of L. We denote as D(c) the k � k matrix

with the elements (gi;Hcgj), where Hc is the matrix of second derivatives of G (7). Let

C(c) be the inverse of D(c). The single relaxation time gradient model has the form:

_c = �
1

�

X
i;j

g
i
C(c)ij(gj;rG) +

X
slow



s
Ws(c): (21)

The �rst term drives the system to the minimum of G on c + L, it does not require

solving the problem (20), and its spectrum in the quasi-equilibrium is the same as in the

quasi-equilibrium model (19). Note that the slow component is evaluated in the \current"

state c.

The models (19) and (21) lift the quasi-equilibrium approximation to a kinetic equation

by approximating the fast dynamics with a single \reaction rate constant" - relaxation

time � .

2.5 Quasi-steady state approximation

The quasi-steady state approximation (QSS) is a tool used in a huge amount of works.

Let us split the list of species in two groups: The basic and the intermediate (radicals

etc). Concentration vectors are denoted accordingly, cs (slow, basic species), and cf (fast,

intermediate species). The concentration vector c is the direct sum, c = c
s
� c

f . The fast

subsystem is Eq. (4) for the component cf at �xed values of cs. If it happens that this way

de�ned fast subsystem relaxes to a stationary state, cf ! c
f
qss(c

s), then the assumption

that cf = c
f
qss(c) is precisely the QSS assumption. The slow subsystem is the part of

the system (4) for cs, in the right hand side of which the component cf is replaced with

c
f
qss(c). Thus, J = J s � J f , where

_cf = J f(c
s
� c

f); cs = const; c
f
! c

f
qss(c

s); (22)

_cs = J s(c
s
� c

f
qss(c

s)): (23)

11



Bifurcations in the system (22) under variation of cs as a parameter are confronted to

kinetic critical phenomena. Studies of more complicated dynamic phenomena in the fast

subsystem (22) require various techniques of averaging, stability analysis of the averaged

quantities etc.

Various versions of the QSS method are well possible, and are actually used widely,

for example, the hierarchical QSS method. There, one de�nes not a single fast subsystem

but a hierarchy of them, cf1 ; : : : ; cfk . Each subsystem c
fi is regarded as a slow system

for all the foregoing subsystems, and it is regarded as a fast subsystem for the following

members of the hierarchy. Instead of one system of equations (22), a hierarchy of systems

of lower-dimensional equations is considered, each of these subsystem is easier to study

analytically.

Theory of singularly perturbed systems of ordinary di�erential equations is used to

provide a mathematical background and further development of the QSS approximation

[10, 68]. In spite of a broad literature on this subject, it remains, in general, unclear,

what is the smallness parameter that separates the intermediate (fast) species from the

basic (slow). Reaction rate constants cannot be such a parameter (unlike in the case of

the quasi-equilibrium). Indeed, intermediate species participate in the same reactions, as

the basic species (for example, H2 
 2H, H+O2 
 OH+O). It is therefore incorrect to

state that cf evolve faster than cs. In the sense of reaction rate constants, cf is not faster.

For catalytic reactions, it is not diÆcult to �gure out what is the smallness parameter

that separates the intermediate species from the basic, and which allows to upgrade the

QSS assumption to a singular perturbation theory rigorously [77]. This smallness param-

eter is the ratio of balances: Intermediate species include the catalyst, and their total

amount is simply signi�cantly less than the amount of all the ci's. After renormalizing to

the variables of one order of magnitude, the small parameter appears explicitly.

For usual radicals, the origin of the smallness parameter is quite similar. There are

much less radicals than the basic species (otherwise, the QSS assumption is inapplicable).

In the case of radicals, however, the smallness parameter cannot be extracted directly from

balances Bi (2). Instead, one can come up with a thermodynamic estimate: Function

G decreases in the course of reactions, whereupon we obtain the limiting estimate of

concentrations of any specie:

ci � max
G(c)�G(c(0))

ci; (24)

where c(0) is the initial composition. If the concentration cR of the radical R is small

both initially and in the equilibrium, then it should remain small also along the path to

the equilibrium. For example, in the case of ideal G (9) under relevant conditions, for any

t > 0, the following inequality is valid:

cR[ln(cR(t)=c
eq
R )� 1] � G(c(0)): (25)

Inequality (25) provides the simplest (but rather coarse) thermodynamic estimate of cR(t)

in terms of G(c(0)) and ceqR uniformly for t > 0. Complete theory of thermodynamic

estimates of dynamics has been developed in [23]. One can also do computations without

a priori estimations, if one accepts the QSS assumption until the values cf stay suÆciently

small.

Let us assume that an a priori estimate has been found, ci(t) � ci max, for each ci.

These estimate may depend on the initial conditions, thermodynamic data etc. With

these estimates, we are able to renormalize the variables in the kinetic equations (4) in

12



such a way that renormalized variables take their values from the unit segment [0; 1]:

~ci = ci=ci max. Then the system (4) can be written as follows:

d~ci

dt
=

1

ci max

Ji(c): (26)

The system of dimensionless parameters, �i = ci max=maxi ci max de�nes a hierarchy of

relaxation times, and with its help one can establish various realizations of the QSS

approximation. The simplest version is the standard QSS assumption: Parameters �i
are separated in two groups, the smaller ones, and of the order 1. Accordingly, the

concentration vector is split into cs�cf . Various hierarchical QSS are possible, with this,

the problem becomes more tractable analytically.

Corrections to the QSS approximation can be addressed in various ways (see, e. g.,

[72, 70]). There exist a variety of ways to introduce the smallness parameter into kinetic

equations, and one can �nd applications to each of the realizations. However, the two

particular realizations remain basic for chemical kinetics: (i) Fast reactions (under a given

thermodynamic data); (ii) Small concentrations. In the �rst case, one is led to the quasi-

equilibrium approximation, in the second case - to the classical QSS assumption. Both

of these approximations allow for hierarchical realizations, those which include not just

two but many relaxation time scales. Such a multi-scale approach essentially simpli�es

analytical studies of the problem.

The method of invariant manifold which we present below in the section 6 allows to use

both the QE and the QSS as initial approximations in the iterational process of seeking

slow invariant manifolds. It is also possible to use a di�erent initial ansatz chosen by a

physical intuition, like, for example, the Tamm{Mott-Smith approximation in the theory

of strong shock waves [24].

2.6 Methods based on spectral decomposition of Jacobian �elds

The idea to use the spectral decomposition of Jacobian �elds in the problem of separating

the motions into fast and slow originates from methods of analysis of sti� systems [22], and

from methods of sensitivity analysis in control theory [64]. There are two basic statements

of the problem for these methods: (i) The problem of the slow manifold, and (ii) The

problem of a complete decomposition (complete integrability) of kinetic equations. The

�rst of these problems consists in constructing the slow manifold 
, and a decomposition

of motions into the fast one - towards 
, and the slow one - along 
 [61]. The second of

these problems consists in a transformation of kinetic equations (4) to a diagonal form,
_�i = fi(�i) (so-called full nonlinear lumping or modes decoupling, [56, 59, 71]). Clearly,

if one �nds a suÆciently explicit solution to the second problem, then the system (4) is

completely integrable, and nothing more is needed, the result has to be simply used. The

question is only to what extend such a solution can be possible, and how diÆcult it would

be as compared to the �rst problem to �nd it.

One of the currently most popular methods is the construction of the so-called intrinsic

low-dimensional manifold (ILDM, [61]). This method is based on the following geometric

picture: For each point c, one de�nes the Jacobian matrix of Eq. (4), Fc � @J(c)=@c.

One assumes that, in the domain of interest, the eigenvalues of Fc are separated into two

groups, �s
i
and �f

j
, and that the following inequalities are valid:

Re �s
i
� a > b � Re�f

j
; a� b; b < 0:
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Let us denote as Ls
c and Lf

c the invariant subspaces corresponding to �s and �f , re-

spectively, and let Zs
c and Z f

c be the corresponding spectral projectors, Zs
cL

s
c = Ls

c,

Z
f
cL

f
c = Lf

c, Z
s
cL

f
c = Z

f
cL

s
c = f0g, Zs

c + Z
f
c = 1. Operator Zs

c projects onto the

subspace of \slow modes" Ls
c, and it annihilates the \fast modes" Lf

c. Operator Z
f
c does

the opposite, it projects onto fast modes, and it annihilates the slow modes. The basic

equation of the ILDM reads:

Z
f
cJ(c) = 0: (27)

In this equation, the unknown is the concentration vector c. The set of solutions to Eq.

(27) is the ILDM manifold 
ildm.

For linear systems, Fc, Z
s
c, and Z

f
c, do not depend on c, and 
ildm = c

eq + Ls. On

the other hand, obviously, ceq 2 
ildm. Therefore, procedures of solving of Eq. (27) can be

initiated by choosing the linear approximation, 

(0)

ildm = c
eq + Ls

ceq , in the neighborhood

of the equilibrium c
eq, and then continued parametrically into the nonlinear domain.

Computational technologies of a continuation of solutions with respect to parameters are

well developed (see, for example, [55, 65]). The problem of the relevant parameterization

is solved locally: In the neighborhood of a given point c0 one can choose Zs
c(c� c

0) for

a characterization of the vector c. In this case, the space of parameters is Ls
c. There

exist other, physically motivated ways to parameterize manifolds ([24]; see also section

4.1 below).

There are two drawbacks of the ILDM method which call for its re�nement: (i) \In-

trinsic" does not imply \invariant". Eq. (27) is not invariant of the dynamics (4). If one

di�erentiates Eq. (27) in time due to Eq. (4), one obtains a new equation which is the

implication of Eq. (27) only for linear systems. In a general case, the motion c(t) takes o�

the 
ildm. Invariance of a manifold 
 means that J(c) touches 
 in every point c 2 
.

It remains unclear how the ILDM (27) corresponds with this condition. Thus, from the

dynamical perspective, the status of the ILDM remains not well de�ned, or \ILDM is

ILDM", de�ned self-consistently by Eq. (27), and that is all what can be said about it.

(ii) From the geometrical standpoint, spectral decomposition of Jacobian �elds is not the

most attractive way to compute manifolds. If we are interested in the behavior of trajec-

tories, how they converge or diverge, then one should consider the symmetrized part of

Fc, rather than Fc itself.

Symmetric part, F
sym
c = (1=2)(F y

c + Fc), de�nes the dynamics of the distance be-

tween two solutions, c and c0, in a given local Euclidean metrics. Skew-symmetric part

de�nes rotations. If we want to study manifolds based on the argument about conver-

gence/divergence of trajectories, then we should use in Eq. (27) the spectral projector

Z
fsym
c for the operator F

sym
c . This, by the way, is also a signi�cant simpli�cation from the

standpoint of computations. It remains to choose the metrics. This choice is unambiguous

from the thermodynamic perspective. In fact, there is only one choice which �ts into the

physical meaning of the problem, this is the metrics associated with the thermodynamic

(or entropic) scalar product,

hx;yi = (x;Hcy); (28)

where Hc is the matrix of second-order derivatives of G (7). In the equilibrium, operator

Fceq is selfadjoint with respect to this scalar product (Onsager's reciprocity relations).

Therefore, the behavior of the ILDM in the vicinity of the equilibrium does not alter
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under the replacement, Fceq = F
sym
ceq . In terms of usual matrix representation, we have:

F
sym
c =

1

2
(Fc +H

�1
c F

T

cHc); (29)

where F T

c is the ordinary transposition.

The ILDM constructed with the help of the symmetrized Jacobian �eld will be termed

the symmetric entropic intrinsic low-dimensional manifold (SEILDM). Selfadjointness of

F
sym
c (29) with respect to the thermodynamic scalar product (28) simpli�es considerably

computations of spectral decomposition. Moreover, it becomes necessary to do spectral

decomposition in only one point - in the equilibrium. Perturbation theory for selfadjoint

operators is a very well developed subject [53], which makes it possible to easily extend

the spectral decomposition with respect to parameters. A more detailed discussion of the

selfadjoint linearization will be given below in section 5.2.

Thus, when the geometric picture behind the decomposition of motions is speci�ed,

the physical signi�cance of the ILDM becomes more transparent, and it leads to its mod-

i�cation into the SEILDM. This also gains simplicity in the implementation by switching

from non-selfadjoint spectral problems to selfadjoint. The quantitative estimate of this

simpli�cation is readily available: Let d be the dimension of the phase space, and k the

dimension of the ILDM (k = dimLs
c). The space of all the projectors Z with the k-

dimensional image has the dimension D = 2k(d � k). The space of all the selfadjoint

projectors with the k-dimensional image has the dimension Dsym = k(d� k). For d = 20

and k = 3, we have D = 102 and Dsym = 51. When the spectral decomposition by means

of parametric extension is addressed, one considers equations of the form:

dZs
c(�)

d�
= 	s

�
dc

d�
;Zs
c(�);Fc(�);rFc(�)

�
; (30)

where � is the parameter, and rFc = rrJ(c) is the di�erential of the Jacobian �eld.

For the selfadjoint case, where we use = F
sym
c instead of Fc, this system of equations has

twice less independent variables, and also the right hand is of a simpler structure.

It is more diÆcult to improve on the �rst of the remarks (ILDM is not invariant). The

following naive approach may seem possible:

(i) Take 
ildm = c
eq + Ls

ceq in a neighborhood U of the equilibrium c
eq. [This is also

a useful initial approximation for solving Eq. (27)].

(ii) Instead of computing the solution to Eq. (27), integrate the kinetic equations (4)

backwards in the time. It is suÆcient to take initial conditions c(0) from a dense set on

the boundary, @U \ (ceq + Ls
ceq), and to compute solutions c(t), t < 0.

(iii) Consider the obtained set of trajectories as an approximation of the slow invariant

manifold.

This approach will guarantee invariance, by construction, but it is prone to pitfalls

in what concerns the slowness. Indeed, the integration backwards in the time will see

exponentially divergent trajectories, if they were exponentially converging in the normal

time progress. This way one �nds some invariant manifold which touches ceq + Ls
ceq in

the equilibrium. Unfortunately, there are in�nitely many such manifolds, and they �ll

out almost all the space of concentrations. However, we must select the slow component

of motions. Such a regularization is possible. Indeed, let us replace in Eq. (4) the vector

�eld J(c) by the vector �eld Z
ssym
c J(c), and obtain a regularized kinetic equation,

_c = Z
ssym
c J(c): (31)
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Let us replace integration backwards in time of the kinetic equation (4) in the naive

approach described above by integration backwards in time of the regularized kinetic

equation (31). With this, we obtain a rather convincing version of the ILDM (SEILDM).

Using Eq. (30), one also can write down an equation for the projector Z
ssym
c , putting

� = t. Replacement of Eq. (4) by Eq. (31) also makes the integration backwards in

time in the naive approach more stable. However, regularization will again con
ict with

invariance. The \naive re�nement" after the regularization (31) produces just a slightly

di�erent version of the ILDM (or SEILDM) but it does not construct the slow invariant

manifold. So, where is the way out? We believe that the ILDM and its version SEILDM

are, in general, good initial approximations of the slow manifold. However, if one is indeed

interested in �nding the invariant manifold, one has to write out the true condition of

invariance and solve it. As for the initial approximation for the method of invariant

manifold one can use any ansatz, in particular, the SEILDM.

The problem of a complete decomposition of kinetic equations can be solved indeed

in some cases. The �rst such solution was the spectral decomposition for linear sys-

tems [75]. Decomposition is sometimes possible also for nonlinear systems ([59]; [71]).

The most famous example of a complete decomposition of in�nite-dimensional kinetic

equation is the complete integrability of the space-independent Boltzmann equation for

Maxwell`s molecules found in [9]. However, in a general case, there exist no analytical, not

even a twice di�erentiable transformation which would decouple modes. The well known

Grobman-Hartman theorem [43, 44] states only the existence of a continuous transform

which decomposes modes in a neighborhood of the equilibrium. For example, the analytic

planar system, dx=dt = �x, dy=dt = �2y + x2, is not C2 linearizable. These problems

remain of interest [15]. Therefore, in particular, it becomes quite ine�ective to construct

such a transformation in a form of a series. It is more e�ective to solve a simpler problem

of extraction of a slow invariant manifold [7].

Sensitivity analysis [64, 63, 56] makes it possible to select essential variables and re-

actions, and to decompose motions into fast and slow. In a sense, the ILDM method is

a development of the sensitivity analysis. In particular, the computational singular per-

turbation (CSP) method of [56] includes ILDM (or any other reasonable initial choice of

the manifold) into a procedure of consequent re�nements. Recently, a further step in this

direction was done in [78]. In this work, the authors use a nonlocal in time criterion of

closeness of solutions of the full and of the reduced systems of chemical kinetics. They

require not just a closeness of derivatives but a true closeness of the dynamics.

Let us be interested in the dynamics of the concentrations of just a few species,

A1; : : : ;Ap, whereas the rest of the species, Ap+1; : : : ;An are used for building the ki-

netic equation, and for understanding the process. Let cgoal be the concentration vector

with components c1; : : : ; cp, cgoal(t) be the corresponding components of the solution to

Eq. (4), and credgoal be the solution to the simpli�ed model with corresponding initial con-

ditions. [78] suggest to minimize the di�erence between cgoal(t) and c
red
goal on the segment

t 2 [0; T ]: kcgoal(t)�c
red
goalk ! min. In the course of the optimization under certain restric-

tions one selects the optimal (or appropriate) reduced model. The sequential quadratic

programming method and heuristic rules of sorting the reactions, substances etc were

used. In the result, for some sti� systems studied, one avoids typical pitfalls of the local

sensitivity analysis. In simpler situations this method should give similar results as the

local methods.
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2.7 Thermodynamic criteria for selection of important reactions

One of the problems addressed by the sensitivity analysis is the selection of the important

and discarding the unimportant reactions. [12] suggested a simple principle to compare

importance of di�erent reactions according to their contribution to the entropy production

(or, which is the same, according to their contribution to _G). Based on this principle, [17]

described domains of parameters in which the reaction of hydrogen oxidation, H2+O2+M,

proceeds due to di�erent mechanisms. For each elementary reaction, he has derived the

domain inside which the contribution of this reaction is essential (nonnegligible). Due

to its simplicity, this entropy production principle is especially well suited for analysis of

complex problems. In particular, recently, a version of the entropy production principle

was used in the problem of selection of boundary conditions for Grad's moment equations

[69, 42]. For ideal systems (9), the contribution of the sth reaction to _G has a particularly

simple form:

_Gs = �Ws ln

�
W+

s

W�

s

�
; _G =

rX
s=1

_Gs: (32)

For nonideal systems, the corresponding expressions (13) are also not too complicated.

3 Outline of the method of invariant manifold

In many cases, dynamics of the d-dimensional system (4) leads to a manifold of a lower

dimension. Intuitively, a typical phase trajectory behaves as follows: Given the initial

state c(0) at t = 0, and after some period of time, the trajectory comes close to some

low-dimensional manifold 
, and after that proceeds towards the equilibrium essentially

along this manifold. The goal is to construct this manifold.

The starting point of our approach is based on a formulation of the two main require-

ments:

(i). Dynamic invariance: The manifold 
 should be (positively) invariant under the

dynamics of the originating system (4): If c(0) 2 
, then c(t) 2 
 for each t > 0.

(ii). Thermodynamic consistency of the reduced dynamics: Let some (not obligatory

invariant) manifold
 is considered as a manifold of reduced description. We should de�ne

a set of linear operators, Pc, labeled by the states c 2 
, which project the vectors J(c),

c 2 
 onto the tangent bundle of the manifold 
, thereby generating the induced vector

�eld, PcJ(c), c 2 
. This induced vector �eld on the tangent bundle of the manifold


 is identi�ed with the reduced dynamics along the manifold 
. The thermodynamicity

requirement for this induced vector �eld reads

(rG(c);PcJ(c)) � 0; for each c 2 
: (33)

In order to meet these requirements, the method of invariant manifold suggests two

complementary procedures:

(i). To treat the condition of dynamic invariance as an equation, and to solve it

iteratively by a Newton method. This procedure is geometric in its nature, and it does

not use the time dependence and small parameters.

(ii). Given an approximate manifold of reduced description, to construct the projector

satisfying the condition (33) in a way which does not depend on the vector �eld J .
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We shall now outline both these procedures starting with the second. The solution

consists, in the �rst place, in formulating the thermodynamic condition which should be

met by the projectors Pc: For each c 2 
, let us consider the linear functional

M�

c(x) = (rG(c);x): (34)

Then the thermodynamic condition for the projectors reads:

kerPc � kerM�

c; for each c 2 
: (35)

Here kerPc is the null space of the projector, and kerM�

c is the hyperplane orthogonal

to the vector M�

c. It has been shown [24, 28] that the condition (35) is the necessary

and suÆcient condition to establish the thermodynamic induce vector �eld on the given

manifold 
 for all possible dissipative vector �elds J simultaneously.

Let us now turn to the requirement of invariance. By a de�nition, the manifold 
 is

invariant with respect to the vector �eld J if and only if the following equality is true:

[1� P ]J(c) = 0; for each c 2 
: (36)

In this expression P is an arbitrary projector on the tangent bundle of the manifold 
. It

has been suggested to consider the condition (36) as an equation to be solved iteratively

starting with some appropriate initial manifold.

Iterations for the invariance equation (36) are considered in the section 5. The next

section presents construction of the thermodynamic projector using a speci�c parameter-

ization of manifolds.

4 Thermodynamic projector

4.1 Thermodynamic parameterization

In this section, 
 denotes a generic p{dimensional manifold. First, it should be men-

tioned that any parameterization of 
 generates a certain projector, and thereby a

certain reduced dynamics. Indeed, let us consider a set of m independent functionals

M(c) = fM1(c); : : : ;Mp(c)g, and let us assume that they form a coordinate system on


 in such a way that 
 = c(M), where c(M) is a vector function of the parameters

M1; : : : ;Mp. Then the projector associated with this parameterization reads:

Pc(M)x =

pX
i=1

@c(M)

@Mi

(rMi jc(M);x); (37)

where N�1
ij

is the inverse to the p� p matrix:

N(M) = k(rMi; @c=@Mj)k: (38)

This somewhat involved notation is intended to stress that the projector (37) is dictated by

the choice of the parameterization. Subsequently, the induced vector �eld of the reduced

dynamics is found by applying projectors (37) on the vectors J(c(M)), thereby inducing

the reduced dynamics in terms of the parameters M as follows:

_Mi =

pX
j=1

N�1
ij
(M)(rMj jc(M);J(c(M))); (39)
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Depending on the choice of the parameterization, dynamic equations (39) are (or are not)

consistent with the thermodynamic requirement (33). The thermodynamic parameteriza-

tion makes use of the condition (35) in order to establish the thermodynamic projector.

Specializing to the case (37), let us consider the linear functionals,

DMi jc(M) (x) = (rMi jc(M);x): (40)

Then the condition (35) takes the form:

p\
i=1

kerDMi jc(M)� kerM�

c(M); (41)

that is, the intersection of null spaces of the functionals (40) should belong to the null

space of the di�erential of the Lyapunov function G, in each point of the manifold 
.

In practice, in order to construct the thermodynamic parameterization, we take the

following set of functionals in each point c of the manifold 
:

M1(x) = M�

c(x); c 2 
 (42)

Mi(x) = (mi;x); i = 2; : : : ; p (43)

It is required that vectors rG(c);m2; : : : ;mp are linearly independent in each state

c 2 
. Inclusion of the functionals (34) as a part of the system (42) and (43) implies the

thermodynamic condition (41). Also, any linear combination of the parameter set (42),

(43) will meet the thermodynamicity requirement.

It is important to notice here that the thermodynamic condition is satis�ed whatsoever

the functionalsM2; : : : ;Mp are. This is very convenient for it gives an opportunity to take

into account the conserved quantities correctly. The manifolds we are going to deal with

should be consistent with the conservation laws (2). While the explicit characterization

of the phase space V is a problem on its own, in practice, it is customary to work

in the n{dimensional space while keeping the constraints (2) explicitly on each step of

the construction. For this technical reason, it is convenient to consider manifolds of

the dimension p > l, where l is the number of conservation laws, in the n{dimensional

space rather than in the phase space V . The thermodynamic parameterization is then

concordant also with the conservation laws if l of the linear functionals (43) are identi�ed

with the conservation laws. In the sequel, only projectors consistent with conservation

laws are considered.

Very frequently, the manifold 
 is represented as a p-parametric family c(a1; : : : ; ap),

where ai are coordinates on the manifold. The thermodynamic re-parameterization sug-

gests a representation of the coordinates ai in terms of M�

c;M2; : : : ;Mp (42), (43). While

the explicit construction of these functions may be a formidable task, we notice that the

construction of the thermodynamic projector of the form (37) and of the dynamic equa-

tions (39) is relatively easy because only the derivatives @c=@Mi enter these expressions.

This point was discussed in a detail in [24, 28].

4.2 Decomposition of motions: Thermodynamics

Finally, let us discuss how the thermodynamic projector is related to the decomposition

of motions. Assuming that the decomposition of motions near the manifold 
 is true
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indeed, let us consider states which were initially close enough to the manifold 
. Even

without knowing the details about the evolution of the states towards 
, we know that

the Lyapunov function G was decreasing in the course of this evolution. Let us consider

a set of states Uc which contains all those vectors c0 that have arrived (in other words,

have been projected) into the point c 2 
. Then we observe that the state c furnishes

the minimum of the function G on the set Uc. If a state c
0
2 Uc, and if it deviates small

enough from the state c so that the linear approximation is valid, then c0 belongs to the

aÆne hyperplane

�c = c+ ker M�

c; c 2 
: (44)

This hyperplane actually participates in the condition (35). The consideration was entitled

`thermodynamic' [24] because it describes the states c 2 
 as points of minimum of the

function G over the corresponding hyperplanes (44).

5 Corrections

5.1 Preliminary discussion

The thermodynamic projector is needed to induce the dynamics on a given manifold

in such a way that the dissipation inequality (33) holds. Coming back to the issue of

constructing corrections, we should stress that the projector participating in the invariance

condition (36) is arbitrary. It is convenient to make use of this point: When Eq. (36)

is solved iteratively, the projector may be kept non{thermodynamic unless the induced

dynamics is explicitly needed.

Let us assume that we have chosen the initial manifold, 
0, together with the associ-

ated projector P 0, as the �rst approximation to the desired manifold of reduced descrip-

tion. Though the choice of the initial approximation 
0 depends on the speci�c problem,

it is often reasonable to consider quasi-equilibrium or quasi steady-state approximations.

In most cases, the manifold 
0 is not an invariant manifold. This means that 
0 does

not satisfy the invariance condition (36):

�0 = [1� P 0]J(c0) 6= 0; for some c0 2 
0: (45)

Therefore, we seek a correction c1 = c0 + Æc. Substituting P = P 0 and c = c0 + Æc into

the invariance equation (36), and after the linearization in Æc, we derive the following

linear equation:

[1� P 0] [J(c0) +Lc0Æc] = 0; (46)

where Lc0
is the matrix of �rst derivatives of the vector function J , computed in the

state c0 2 
0. The system of linear algebraic equations (46) should be supplied with the

additional condition.

P 0Æc = 0: (47)

In order to illustrate the nature of the Eq. (46), let us consider the case of linear man-

ifolds for linear systems. Let a linear evolution equation is given in the �nite-dimensional

real space: _c = Lc, where L is negatively de�nite symmetric matrix with a simple

spectrum. Let us further assume the quadratic Lyapunov function, G(c) = (c; c). The

manifolds we consider are lines, l(a) = ae, where e is the unit vector, and a is a scalar.

The invariance equation for such manifolds reads: e(e;Le) � Le = 0, and is simply a
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form of the eigenvalue problem for the operator L. Solutions to the latter equation are

eigenvectors ei, corresponding to eigenvalues �i.

Assume that we have chosen a line, l0 = ae0, de�ned by the unit vector e0, and that e0
is not an eigenvector of L. We seek another line, l1 = ae1, where e1 is another unit vector,

e1 = y1=ky1k, y1 = e0+Æy. The additional condition (47) now reads: (Æy; e0) = 0. Then

the Eq. (46) becomes [1 � e0(e0; �)]L[e0 + Æy] = 0. Subject to the additional condition,

the unique solution is as follows: e0 + Æy = (e0;L
�1
e0)

�1
L
�1
e0. Rewriting the latter

expression in the eigen{basis of L, we have: e0 + Æy /
P

i
��1
i
ei(ei; e0). The leading

term in this sum corresponds to the eigenvalue with the minimal absolute value. The

example indicates that the method of linearization (46) seeks the direction of the slowest

relaxation. For this reason, the method (46) can be recognized as the basis of an iterative

method for constructing the manifolds of slow motions.

For the nonlinear systems, the matrix Lc0
in the Eq. (46) depends nontrivially on c0.

In this case the system (46) requires a further speci�cation which will be done now.

5.2 Symmetric linearization

The invariance condition (36) supports a lot of invariant manifolds, and not all of them

are relevant to the reduced description (for example, any individual trajectory is itself

an invariant manifold). This should be carefully taken into account when deriving a

relevant equation for the correction in the states of the initial manifold 
0 which are

located far from equilibrium. This point concerns the procedure of the linearization of

the vector �eld J , appearing in the equation (46). We shall return to the explicit form

of the Marcelin{De Donder kinetic function (11). Let c is an arbitrary �xed element of

the phase space. The linearization of the vector function J (12) about c may be written

J(c+ Æc) � J(c) +LcÆc where the linear operator Lc acts as follows:

Lcx =

rX
s=1



s
[W+

s
(c)(�s;Hcx)�W�

s
(c)(�

s
;Hcx)]: (48)

Here Hc is the matrix of second derivatives of the function G in the state c [see Eq. (7)].

The matrix Lc in the Eq. (48) can be decomposed as follows:

Lc = L
0

c +L
00

c: (49)

Matrices L0c and L00c act as follows:

L
0

cx = �
1

2

rX
s=1

[W+
s
(c) +W�

s
(c)]


s
(


s
;Hcx); (50)

L
00

cx =
1

2

rX
s=1

[W+
s
(c)�W�

s
(c)]


s
(�s + �s

;Hcx): (51)

Some features of this decomposition are best seen when we use the thermodynamic scalar

product (28): The following properties of the matrix L0c are veri�ed immediately:

(i) The matrix L0c is symmetric in the scalar product (28):

hx;L0cyi = hy;L0cxi: (52)
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(ii) The matrix L0c is nonpositive de�nite in the scalar product (28):

hx;L0cxi � 0: (53)

(iii) The null space of the matrix L0c is the linear envelope of the vectors H�1
c bi repre-

senting the complete system of conservation laws:

kerL0c = LinfH�1
c bi; i = 1; : : : ; lg (54)

(iv) If c = c
eq, then W+

s
(ceq) =W�

s
(ceq), and

L
0

ceq = Lceq : (55)

Thus, the decomposition Eq. (49) splits the matrix Lc in two parts: one part, Eq.

(50) is symmetric and nonpositive de�nite, while the other part, Eq. (51), vanishes in the

equilibrium. The decomposition Eq. (49) explicitly takes into account the Marcelin-De

Donder form of the kinetic function. For other dissipative systems, the decomposition

(49) is possible as soon as the relevant kinetic operator is written in a gain{loss form [for

instance, this is straightforward for the Boltzmann collision operator].

In the sequel, we shall make use of the properties of the operator L0c (50) for construct-

ing the dynamic correction by extending the picture of the decomposition of motions.

5.3 Decomposition of motions: Kinetics

The assumption about the existence of the decomposition of motions near the manifold

of reduced description 
 has led to the thermodynamic speci�cations of the states c 2 
.

This was accomplished in the section 4.2, where the thermodynamic projector was backed

by an appropriate variational formulation, and this helped us to establish the induced

dynamics consistent with the dissipation property. Another important feature of the

decomposition of motions is that the states c 2 
 can be speci�ed kinetically. Indeed, let

us do it again as if the decomposition of motions were valid in the neighborhood of the

manifold
, and let us `freeze' the slow dynamics along the 
, focusing on the fast process

of relaxation towards a state c 2 
. From the thermodynamic perspective, fast motions

take place on the aÆne hyperplane c + Æc 2 �c0 , where �c0 is given by Eq. (44). From

the kinetic perspective, fast motions on this hyperplane should be treated as a relaxation

equation, equipped with the quadratic Lyapunov function ÆG = hÆc; Æci, Furthermore,

we require that the linear operator of this evolution equation should respect Onsager's

symmetry requirements (selfadjointness with respect to the entropic scalar product). This

latter crucial requirement describes fast motions under the frozen slow evolution in the

similar way, as all the motions near the equilibrium.

Let us consider now the manifold
0 which is not the invariant manifold of the reduced

description but, by our assumption, is located close to it. Consider a state c0 2 
0, and

the states c0 + Æc close to it. Further, let us consider an equation

_Æc = L
0

c0
Æc: (56)

Due to the properties of the operator L0c0 (50), this equation can be regarded as a model

of the assumed true relaxation equation near the true manifold of the reduced description.

For this reason, we shall use the symmetric operator L0c (50) instead of the linear operator

Lc when constructing the corrections.
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5.4 Symmetric iteration

Let the manifold 
0 and the corresponding projector P 0 are the initial approximation to

the invariant manifold of the reduced description. The dynamic correction c1 = c0 + Æc

is found upon solving the following system of linear algebraic equations:

[1� P 0]
�
J(c0) +L

0

c0
Æc
�
= 0; P 0Æc = 0: (57)

Here L0c0 is the matrix (50) taken in the states on the manifold 
0. An important

technical point here is that the linear system (57) always has the unique solution for any

choice of the manifold 
. This point is crucial since it guarantees the opportunity of

carrying out the correction process for arbitrary number of steps.

6 The method of invariant manifold

We shall now combine together the two procedures discussed above. The resulting method

of invariant manifold intends to seek iteratively the reduced description, starting with an

initial approximation.

(i). Initialization. In order to start the procedure, it is required to choose the initial

manifold 
0, and to derive corresponding thermodynamic projector P 0. In the majority

of cases, initial manifolds are available in two di�erent ways. The �rst case are the

quasi-equilibrium manifolds described in the section 2.3. The macroscopic parameters

are Mi = ci = (mi; c), where mi is the unit vector corresponding to the specie Ai. The

quasi-equilibrium manifold, c0(M1; : : : ;Mk; B1; : : : ; Bl), compatible with the conservation

laws, is the solution to the variational problem:

G! min ; (mi; c) = ci; i = 1; : : : ; k; (58)

(bj; c) = Bj; j = 1; : : : ; l:

In the case of quasi{equilibrium approximation, the corresponding thermodynamic pro-

jector can be written most straightforwardly in terms of the variables Mi:

P 0x =

kX
i=1

@c0

@ci
(mi;x) +

lX
i=1

@c0

@Bi

(bi;x): (59)

For quasi-equilibrium manifolds, a reparameterization with the set (42), (43) is not nec-

essary ([24]; [28]).

The second source of initial approximations are quasi-stationary manifolds (section

2.5). Unlike the quasi-equilibrium case, the quasi-stationary manifolds must be reparam-

eterized in order to construct the thermodynamic projector.

(ii). Corrections. Iterations are organized in accord with the rule: If cm is the mth

approximation to the invariant manifold, then the correction cm+1 = cm + Æc is found

from the linear algebraic equations,

[1� Pm](J(cm) +L
0

cmÆc) = 0; (60)

PmÆc = 0: (61)
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Here L0cm is the symmetric matrix (50) evaluated at the mth approximation. The pro-

jector Pm is not obligatory thermodynamic at that step, and it is taken as follows:

Pmx =

kX
i=1

@cm

@ci
(mi;x) +

lX
i=1

@cm

@Bi

(bi;x): (62)

(iii). Dynamics. Dynamics on the mth manifold is obtained with the thermodynamic

re-parameterization.

In the next section we shall illustrate how this all works.

7 Illustration: Two-step catalytic reaction

Here we consider a two-step four-component reaction with one catalyst A2:

A1 + A2 
 A3 
 A2 + A4: (63)

We assume the Lyapunov function of the form (9), G =
P4

i=1 ci[ln(ci=c
eq
i
)�1]. The kinetic

equation for the four{component vector of concentrations, c = (c1; c2; c3; c4), has the form

_c = 
1W1 + 
2W2: (64)

Here 
1;2 are stoichiometric vectors,


1 = (�1;�1; 1; 0); 
2 = (0; 1;�1; 1); (65)

while functions W1;2 are reaction rates:

W1 = k+1 c1c2 � k�1 c3; W2 = k+2 c3 � k�2 c2c4: (66)

Here k�1;2 are reaction rate constants. The system under consideration has two conservation

laws,

c1 + c3 + c4 = B1; c2 + c3 = B2; (67)

or (b1;2; c) = B1;2, where b1 = (1; 0; 1; 1) and b2 = (0; 1; 1; 0). The nonlinear system (64)

is e�ectively two-dimensional, and we consider a one-dimensional reduced description.

We have chosen the concentration of the specie A1 as the variable of reduced descrip-

tion: M = c1, and c1 = (m; c), where m = (1; 0; 0; 0). The initial manifold c0(M) was

taken as the quasi-equilibrium approximation, i.e. the vector function c0 is the solution

to the problem:

G! min for (m; c) = c1; (b1; c) = B1; (b2; c) = B2: (68)

The solution to the problem (68) reads:

c01 = c1; (69)

c02 = B2 � �(c1);

c03 = �(c1);

c04 = B1 � c1 � �(c1);

�(M) = A(c1)�
p
A2(c1)�B2(B1 � c1);

A(c1) =
B2(B1 � ceq1 ) + ceq3 (c

eq
1 + ceq3 � c1)

2c
eq
3

:
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C3

C1

Figure 1: Images of the initial quasi-equilibrium manifold (bold line) and the �rst two

corrections (solid normal lines) in the phase plane [c1; c3] for two-step catalytic reaction.

Dashed lines are individual trajectories.
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The thermodynamic projector associated with the manifold (69) reads:

P 0x =
@c0

@c1
(m;x) +

@c0

@B1

(b1;x) +
@c0

@B2

(b2;x): (70)

Computing �0 = [1�P 0]J(c0) we �nd that the inequality (45) takes place, and thus the

manifold c0 is not invariant. The �rst correction, c1 = c0 + Æc, is found from the linear

algebraic system (60)

(1� P 0)L
0

0Æc = �[1� P 0]J(c0); (71)

Æc1 = 0

Æc1 + Æc3 + Æc4 = 0

Æc3 + Æc2 = 0; (72)

where the symmetric 4�4 matrixL00 has the form (we write 0 instead of c0 in the subscript

in order to simplify notations):

L00;kl = �
1k
W+

1 (c0) +W�

1 (c0)

2


1l

c0l
� 
2k

W+
2 (c0) +W�

2 (c0)

2


2l

c0l
(73)

The explicit solution c1(c1; B1; B2) to the linear system (71) is easily found, and we do

not reproduce it here. The process was iterated. On the k + 1 iteration, the following

projector P k was used:

P kx =
@ck

@c1
(m;x) +

@ck

@B1

(b1;x) +
@ck

@B2

(b2;x): (74)

Notice that projector P k (74) is the thermodynamic projector only if k = 0. As we have

already mentioned it above, in the process of �nding the corrections to the manifold, the

non-thermodynamic projectors are allowed. The linear equation at the k + 1 iteration is

thus obtained by replacing c0, P 0, and L
0

0 with ck, P k, and L
0

k
in all the entries of the

Eqs. (71) and (73).

Once the manifold ck was obtained on the kth iteration, we derived the corresponding

dynamics by introducing the thermodynamic parameterization (and the corresponding

thermodynamic projector) with the help of the function (42). The resulting dynamic

equation for the variable c1 in the kth approximation has the form:

(rG jck
; @ck=@c1) _c1 = (rG jck

;J(ck)): (75)

Here [rG jck
]i = ln[cki=c

eq
i
].

Analytic results were compared with the results of the numerical integration. The

following set of parameters was used:

k+1 = 1:0; k�1 = 0:5; k+2 = 0:4; k�2 = 1:0;

c
eq
1 = 0:5; c

eq
2 = 0:1; c

eq
3 = 0:1; c

eq
4 = 0:4;

B1 = 1:0; B2 = 0:2:

Direct numerical integration of the system has demonstrated that the manifold c3 = ceq3
in the plane (c1; c3) attracts all individual trajectories. Thus, the reduced description in

this example should extract this manifold.
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Fig. 1 demonstrates the quasi-equilibrium manifold (69) and the �rst two corrections

found analytically. It should be stressed that we spend no special e�ort on the construc-

tion of the initial approximation, that is, of the quasi-equilibrium manifold, have not used

any information about the Jacobian �eld (unlike, for example, the ILDM or CSP methods

discussed above) etc. It is therefore not surprising that in this way chosen initial quasi-

equilibrium approximation is in a rather poor agreement with the reduced description.

However, it should be appreciated that the further corrections rapidly improve the situa-

tion while no small parameter considerations were used. This con�rms our expectation of

the advantage of using the iteration methods in comparison to methods based on a small

parameter expansions for model reduction problems.

8 Relaxation methods

Relaxation method is an alternative to the Newton iteration method described in section

5. It is a one-dimensional Galerkin approximation for the linearized invariance equation

(46,47). We shall solve the invariance equation (46,47) (or symmetric invariance equation

(60,61) in projection on the defect of invariance (45) � = [1� Pc]J(c):

Let 
0 be the initial approximation to the invariant manifold, and we seek the �rst

correction, c1 = c0 + �1(c0)�(c0); where function �(c0) has a dimension of the time, and

is found from the condition that the linearized vector �eld attached to the points of the

new manifold is orthogonal to the initial defect,

h�(c0); (1� Pc0)[J(c0) + �1(c0)(DcJ)c0�c0 ]ic0 = 0: (76)

Explicitly,

�1(c0) = �
h�c0 ;�c0ic0

h�c0; (DcJ)c0�c0ic0
: (77)

Further steps �k(c) are found in the same way. It is clear from the latter equations that

the step of the relaxation method is equivalent to the Galerkin approximation for solving

the step of the Newton method. Actually, the relaxation method was �rst introduced in

these terms in [52]. An advantage of equation (77) is the explicit form of the size of the

steps �k(c). This method was successfully applied to the Fokker-Plank equation [52].

9 Method of invariant manifold without a priori pa-

rameterization

Formally, the method of invariant manifold does not require a global parameterization of

the manifolds. However, in most of the cases, one makes use of a priori de�ned \macro-

scopic" variables M . This is motivated by the choice of quasi-equilibrium initial approx-

imations.

Let a manifold 
 be de�ned in the phase space of the system, its tangent space in the

point c be Tc
. How to de�ne the projector of the whole concentrations space onto Tc


without using any a priori parameterization of 
?

The basis of the answer to this question is the condition of thermodynamicity (35).

Let us denote E as the concentration space, and consider the problem of the choice of the

projector in the quadratic approximation to the thermodynamic potential G:
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Gq = (g;Hc�c) +
1

2
(�c;Hc�c) = hg;�ci+

1

2
h�c;�ci; (78)

where Hc is the matrix of the second-order derivatives of G (7), g =H
�1
c rG, �c is the

deviation of the concentration vector from the expansion point.

Let a linear subspace T be given in the concentrations space E. Problem: For every

�c+ T , and for every g 2 E, de�ne a subspace L�c such that: (i) L�c is a complement

of T in E:

L�c + T = E; L�c \ T = f0g:

(ii) �c is the point of minimum of Gq on L�c +�c:

�c = arg min
x��c2L�c

Gq(x): (79)

Besides (i) and (ii), we also impose the requirement of a maximal smoothness (analyt-

icity) on L�c as a function of g and �c. Requirement (79) implies that �c is the

quasi-equilibrium point for the given L�c, while the problem in a whole is the inverse

quasi-equilibrium problem: We construct L�c such that T will be the quasi-equilibrium

manifold. Then subspaces L�c will actually be the kernels of the quasi-equilibrium pro-

jector.

Let f 1; : : : ;fk be the orthonormalized with respect to h�; �i scalar product basis of T ,

vector h be orthogonal to T , hh;hi = 1, g = �f1 + �h. Condition (79) implies that the

vector rG is orthogonal to L�c in the point �c.

Let us �rst consider the case � = 0. The requirement of analyticity of L�c as the

function of � and �c implies L�c = L0 + o(1), where L0 = T? is the orthogonal

completement of T with respect to scalar product h�; �i. The constant solution, L�c � L0
also satis�es (79). Let us �x � 6= 0, and extend this latter solution to � 6= 0. With this,

we obtain a basis, l1; : : : ; ln�k. Here is the simplest construction of this basis:

l1 =
�f1 � (� +�c1)h

(�2 + (� +�c1)2)1=2
; (80)

where �c1 = h�c;f 1i is the �rst component in the expansion, �c =
P

i
�cif i. The

rest of the basis elements, l2; : : : ; ln�k form the orthogonal completement of T � (h) with

respect to scalar product h�; �i, (h) is the line spanned by h.

Dependence L�c (80) on �c, � and � is singular: At � + �c1, vector l1 2 T , and

then L�c is not the completement of T in E anymore. For � 6= 0, dependence L�c gives

one of the solutions to the inverse quasi-equilibrium problem in the neighborhood of zero

in T . We are interested only in the limit,

lim
�c!0

L�c = Lin

(
�f1 � �hp
�2 + �2

; l2; : : : ; ln�k

)
: (81)

Finally, let us de�ne now the projector Pc of the space E onto Tc
. If H
�1
c rG 2

Tc
, then Pc is the orthogonal projector with respect to the scalar product h�; �i:

Pcz =

kX
i=1

f ihf i; zi: (82)
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If H�1
c rG =2 Tc
, then, according to Eq. (81),

Pcz =
hf1; zi � hl1; zihf 1; l1i

1� hf 1; l1i
2

f 1 +

kX
i=2

f
i
hf

i
; zi; (83)

where ff 1; : : : ;fkg is the orthonormal with respect to h�; �i basis of Tc
, h is orthogonal to

T , hh;hi = 1,H�1
c rG = �f 1+�h, l1 = (�f1��h)=

p
�2 + �2, hf1; l1i = �=

p
�2 + �2.

Thus, for solving the invariance equation iteratively, one needs only projector Pc (83),

and one does not need a priori parameterization of 
 anymore.

10 Method of invariant grids

Elsewhere above in this paper, we considered the invariant manifold, and methods for their

construction, without addressing the question of how to implement it in a constructive

way. In most of the works (of us and of other people on similar problems), analytic

forms were needed to represent manifolds. However, in order to construct manifolds of

a relatively low dimension, grid-based representations of manifolds become a relevant

option. The Method of invariant grids (MIG) was suggested recently in [32].

The principal idea of (MIG) is to �nd a mapping of �nite-dimensional grids into the

phase space of a dynamic system. That is we construct not just a point approximation of

the invariant manifold, but an invariant grid. When re�ned, in the limit it is expected to

converge, of course, to the invariant manifold, but it is a separate, independently de�ned

object.

Let's denote L = R
n, G is a discrete subset of Rn. A natural choice would be a

regular grid, but, this is not crucial from the point of view of the general formalism. For

every point y 2 G, a neighborhood of y is de�ned: Vy � G, where Vy is a �nite set, and,

in particular, y 2 Vy. On regular grids, Vy includes, as a rule, the nearest neighbors of y.

It may also include next to nearest points.

For our purposes, one should de�ne a grid di�erential operator. For every function,

de�ned on the grid, also all derivatives are de�ned:

@f

@yi

����
y2G

=
X
z2Vy

qi(z; y)f(z); i = 1; : : : n: (84)

where qi(z; y) are some coeÆcients.

Here we do not specify the choice of the functions qi(z; y). We just mention in passing

that, as a rule, equation (84) is established using some interpolation of f in the neigh-

borhood of y in Rn by some di�erentiable functions (for example, polynomial). This

interpolation is based on the values of f in the points of Vy. For regular grids, qi(z; y) are

functions of the di�erence z � y. For some ys which are close to the edges of the grid,

functions are de�ned only on the part of Vy. In this case, the coeÆcients in (84) should be

modi�ed appropriately in order to provide an approximation using available values of f .

Below we will assume this modi�cation is always done. We also assume that the number

of points in the neighborhood Vy is always suÆcient to make the approximation possible.

This assumption restricts the choice of the grids G. Let's call admissible all such subsets

G, on which one can de�ne di�erentiation operator in every point.
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Let F be a given mapping of some admissible subset G � R
n into U . For every y 2 V

we de�ne tangent vectors:

Ty = Linfgig
n

1 ; (85)

where vectors g
i
(i = 1; : : : n) are partial derivatives (84) of the vector-function F :

g
i
=
@F

@yi
=
X
z2Vy

qi(z; y)F (z); (86)

or in the coordinate form:

(g
i
)j =

@Fj

@yi
=
X
z2Vy

qi(z; y)Fj(z): (87)

Here (gi)j is the jth coordinate of the vector (gi), and Fj(z) is the jth coordinate of the

point F (z).

The grid G is invariant, if for every node y 2 G the vector �eld J(F (y)) belongs to

the tangent space Ty (here J is the right hand site of the kinetic equations (4)).

So, the de�nition of the invariant grid includes:

1) Finite admissible subset G � R
n;

2) A mapping F of this admissible subset G into U (where U is the phase space for kinetic

equations (4));

3) The di�erentiation formulas (84) with given coeÆcients qi(z; y);

The grid invariance equation has a form of inclusion:

J(F (y)) 2 Ty for every y 2 G;

or a form of equation:

(1� P F (y))J(F (y)) = 0 for every y 2 G;

where P F (y) is the thermodynamic projector (83).

The grid di�erentiation formulas (84) are needed, in the �rst place, to establish the

tangent space Ty, and the null space of the thermodynamic projector P F (y) in each node.

It is important to realise that locality of construction of thermodynamic projector enables

this without a need for a global parametrization.

Basically, in our approach, the grid speci�cs are in: (a) di�erentiation formulas, (b)

grid construction strategy (the grid can be extended, contracted, re�ned, etc.) The in-

variance equations (45), the iteration Newton method (46,47), and the formulas of the

relaxation approximation (77) do not change at all. For convenience, let us repeat all

these formulas in the grid context.

Let c = F (y) be position of a grid's node y immersed into phase space U . We have

set of tangent vectors gi(x), de�ned in c (86), (87). Thus, the tangent space Ty is de�ned

by (85). Also, one has the thermodynamic Lyapunov function G(c), the linear functional

DcGjc, and the subspace T0y = Ty
T
kerDcGjc in Ty. Let T0y 6= Ty. In this case we have

a vector ey 2 Ty, orthogonal to T0y, DcGjc(ey) = 1. Then, the thermodynamic projector

is de�ned as:

Pc� = P 0c �+eyDcGjc�; (88)
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where P 0c is the orthogonal projector on T0y with respect to the entropic scalar product

h; ix.

If T0y = Ty, then the thermodynamic projector is the orthogonal projector on Ty with

respect to the entropic scalar product h; ic.

For the Newton method with incomplete linearization, the equations for calculating

new node position c0 = c+ Æc are:�
PcÆc = 0

(1� Pc)(J(c) +DJ(c)Æc) = 0:
(89)

Here DJ(c) is a matrix of derivatives of J , calculated in c. The self-adjoint linearization

may be useful too (see section 5.2).

Equation (89) is a system of linear algebraic equations. In practice, it is convenient to

choose some orthonormal (with respect to the entropic scalar product) basis bi in kerPc.

Let r = dim(kerPc). Then Æc =
P

r

i=1 Æibi, and the system looks like

rX
k=1

Ækhbi; DJ(c)bkic = �hJ(c); biic; i = 1:::r: (90)

Here h; ic is the entropic scalar product (28). This is the system of linear equations

for adjusting the node position accordingly to the Newton method with incomplete lin-

earization.

For the relaxation method, one needs to calculate the defect �c = (1�Pc)J(c), and

the relaxation step

�(x) = �
h�c;�cic

h�c; DJ(c)�cic
: (91)

Then, new node position x0 is calculated as

c
0 = c+ �(c)�c: (92)

This is the equation for adjusting the node position according to the relaxation method.

10.1 Grid construction strategy

From all reasonable strategies of the invariant grid construction we will consider here the

following two: growing lump and invariant 
ag.

10.1.1 Growing lump

In this strategy one chooses as initial the equilibrium point y�. The �rst approximation is

constructed as F (y�) = c
�, and for some initial V0 (Vy� � V0) one has F (y) = c

�+A(y�y�),

where A is an isometric embedding (in the standard Euclidean metrics) of Rn in E.

For this initial grid one makes a �xed number of iterations of one of the methods

chosen (Newton's method with incomplete linearization or the relaxation method), and,

after that, puts V1 =
S

y2V0
Vy and extends F from V0 onto V1 using linear extrapolation

and the process continues. One of the possible variants of this procedure is to extend the

grid from Vi to Vi+1 not after a �xed number of iterations, but when the invariance defect

�y becomes smaller than a given � (in a given norm, which is entropic, as a rule), for
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all nodes y 2 Vi. The lump stops growing when it reaches the boundary and is within a

given accuracy k�k < �.

10.1.2 Invariant 
ag

For the invariant 
ag one uses suÆciently regular grids G, in which many points are

situated on the coordinate lines, planes, etc. One considers the standard 
ag R0
� R

1
�

R
2
� ::: � R

n (every next space is constructed by adding one more coordinate). It

corresponds to a succession of grids fyg � G1
� G2::: � Gn , where fy�g = R

0, and Gi

is a grid in Ri.

First, y� is mapped in c� and further F (y�) = c
�. Then an invariant grid is constructed

on V 1
� G1 (up to the boundaries U and within a given accuracy k�k < �). After the

neighborhoods in G2 are added to the points V 1, and, using such extensions, the grid

V 2
� G2 is constructed (up to the boundaries and within a given accuracy) and so on,

until V n
� Gn will be constructed.

We must underline here that, constructing the k-th grid V k
� Gk, the important role

of the grids of smaller dimension V 0
� ::: � V k�1

� V k embedded in it, is preserved. The

point F (y�) = x� is preserved. For every y 2 V q (q < k) the tangent vectors g1; :::; gq are

constructed, using the di�erentiation operators (84) on the whole V k. Using the tangent

space Ty = Linfg1; ::; gqg, the projector P F (y) is constructed, the iterations are applied

and so on. All this is done to obtain a succession of embedded invariant grids, given by

the same map F .

10.1.3 Boundaries check and the entropy

We construct grid mapping of F onto the �nite set V 2 G. The technique of checking

if the grid still belongs to the phase space U of kinetic system (F (V ) � U) is quite

straightforward: all the points y 2 V are checked to belong to U . If at the next iteration

a point F (y) leaves U , then it is returned inside by a homothety transform with the center

in x�. Since the thermodynamic Lyapunov function is a convex function, the homothety

contraction with the center in x� decreases it monotonously. Another variant is cutting

o� the points leaving U .

By the way it was constructed (83) the kernel of the thermodynamic projector is

annulled by the entropy di�erential. Thus, in the �rst order, steps in the Newton method

with incomplete linearization (46,47) as well as in the relaxation methods (76),(77) do

not change the entropy. But, if the steps are quite large, then the increasing of the

thermodynamic Lyapunov function can become essential and the points are returned on

their level by the homothety contraction with the center in the equilibrium point.

10.2 Instability of �ne grids

When one reduces the grid step (spacing between the nodes) in order to get a �ner grid,

then, starting from a de�nite step, it is possible to face the problem of the Courant

instability [16]. Instead of converging, at the every iteration the grid becomes entangled

(see Fig. 2).

The way to get rid o� this instability is well-known. This is decreasing the time step.

Instead of the real time step, we have a shift in the Newtonian direction. Formally, we can

assign for one complete step in the Newtonian direction a value h = 1. Let us consider
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Iteration 1
Iteration 2
Iteration 3
Iteration 4

Figure 2: Grid instability. For small grid steps approximations in the calculation of grid

derivatives lead to the grid instability e�ect. On the �gure several successive iterations

of the algorithm without adaptation of the time step are shown that lead to undesirable

\oscillations", which eventually destruct the grid starting from one of it's ends.
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now the Newton method with an arbitrary h. For this, let us �nd Æc = ÆF (y) from (89),

but we will change Æc proportionally to h: the new value of cn+1 = Fn+1(y) will be equal

to

Fn+1(y) = Fn(y) + hnÆFn(y) (93)

where the lower index n denotes the step number.

One way to choose the h step value is to make it adaptive, controlling the average

value of the invariance defect k�yk at every step. Another way is the convergence control:

then
P

hn plays a role of time.

Elimination of Courant instability for the relaxation method can be made quite anal-

ogously. Everywhere the step h is maintained as big as it is possible without convergence

problems.

10.3 What space is the most appropriate for the grid construc-

tion?

For the kinetics systems there are two distinguished representations of the phase space:

� The densities space (concentrations, energy or probability densities, etc.)

� The spaces of conjugate intensive quantities, potentials (temperature, chemical po-

tentials, etc.)

The density space is convenient for the construction of quasi-chemical representations.

Here the balance relations are linear and the restrictions are in the form of linear inequal-

ities (the densities themselves or some linear combinations of them must be positive).

The conjugate variables space is convenient in the sense that the equilibrium condi-

tions, given the linear restrictions on the densities, are in the linear form (with respect to

the conjugate variables). In these spaces the quasi-equilibrium manifolds exist in the form

of linear subspaces and, vise versa, linear balance equations turns out to be equations of

the conditional entropy maximum.

The duality we've just described is very well-known and studied in details in many

works on thermodynamics and Legendre transformations [13, 73]. In the previous section,

the grids were constructed in the density space. But the procedure of constructing them

in the space of the conjugate variables seems to be more consistent. The principal argu-

ment for this is the speci�c role of quasi-equilibrium, which exists as a linear manifold.

Therefore, linear extrapolation gives a thermodynamically justi�ed quasi-equilibrium ap-

proximation. Linear approximation of the slow invariant manifold in the neighborhood of

the equilibrium in the conjugate variables space already gives the global quasi-equilibrium

manifold, which corresponds to the motion separation (for slow and fast motions) in the

neighborhood of the equilibrium point.

For the mass action law, transition to the conjugate variables is simply the logarithmic

transformation of the coordinates.
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10.4 Carleman's formulas in the analytical invariant manifolds

approximations. First pro�t from analyticity: superreso-

lution

When constructing invariant grids, one must de�ne the di�erential operators (84) for every

grid node. For calculating the di�erential operators in some point y, an interpolation

procedure in the neighborhood of y is used. As a rule, it is an interpolation by a low-

order polynomial, which is constructed using the function values in the nodes belonging

to the neighbourhood of y in G. This approximation (using values in the closest nodes)

is natural for smooth functions. But, for the systems (4) with analytical right hand side

we are looking for the analytical invariant manifold (due to Lyapunov auxiliary theorem

[60, 54]). Analytical functions have much more \rigid" structure than the smooth ones.

One can change a smooth function in the neighborhood of any point in such a way, that

outside this neighborhood the function will not change. In general, this is not possible

for analytical functions: a kind of \long-range" e�ect takes place (as is well known) .

The idea is to use this e�ect and to reconstruct some analytical function fG using

function given on G. There is one important requirement: if these values on G are

values (given in the points of G) of some function f which is analytical in the given

neighborhood U , then if the G is re�ned \correctly", one must have fG ! f . The

sequence of reconstructed function fG should should converge to the \proper" function

f .

What is the \correct re�nement"? For smooth functions for the convergence fG ! f

it is necessary and suÆcient that, in the course of re�nement, G would approximate the

whole U with arbitrary accuracy. For analytical functions it is only necessary that, under

the re�nement, G would approximate some uniqueness set 3 A � U . Suppose we have

a sequence of grids G, each next is �ner than previous, which approximates a set A.

For smooth functions, using function values de�ned on the grids, one can reconstruct the

function in A. For analytical functions, if the analyticity area U is known, and A is a

uniqueness set in U , then one can reconstruct the function in U . The set U can be essen-

tially bigger than A; because of this such extension was named as superresolution e�ects

[1, 38]. There exist constructive formulas for construction of analytical functions fG for

di�erent areas U , uniqueness sets A � U and for di�erent ways of discrete approximation

of A by a sequence of �ned grids G [1]. Here we provide only one Carleman's formula

which is the most appropriate for our purposes.

Let area U = Qn

�
� C

n be a product of strips Q� � C, Q� = fzjImz < �g. We will

construct functions holomorphic in Qn

�
. This is e�ectively equivalent to the construction

of real analytical functions f in whole Rn with a condition on the convergence radius

r(x) of the Taylor series for f as a function of each coordinate: r(x) � � in every point

x 2 Rn.

The sequence of �ned grids is constructed as follows: let for every l = 1; :::; n a �nite

sequence of distinct points Nl � D� be de�ned:

Nl = fxljjj = 1; 2; 3:::g; xlj 6= xli for i 6= j (94)

The uniqueness set A, which is approximated by a sequence of �ned �nite grids, has

3Let's remind to the reader that A � U is called uniqueness set in U if for analytical in U functions

 and ' from  jA � 'jA it follows  = '.
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the form:

A = N1 �N2 � :::�Nn = f(x1i1 ; x2i2 ; ::; xnin)ji1;::;n = 1; 2; 3; :::g (95)

The grid Gm is de�ned as the product of initial fragments Nl of length m:

Gm = f(x1i1 ; x2i2 :::xnin)j1 � i1;::;n � mg (96)

Let's denote � = 2�=� (� is a half-width of the strip Q�). The key role in the con-

struction of the Carleman's formula is played by the functional !�

m
(u; p; l) of 3 variables:

u 2 U = Qn

�
, p is an integer, 1 � p � m, l is an integer, 1 � p � n. Further u

will be the coordinate value in the point where the extrapolation is calculated, l will be

the coordinate number, and p will be an element of multi-index fi1; :::; ing for the point

(x1i1 ; x2i2 ; :::; xnin) 2 G:

!�

m
(u; p; l) =

(e�xlp + e��xlp)(e�u � e�xlp)

�(e�u + e��xlp)(u� xlp)e�xlp
�

mY
j=1j 6=p

(e�xlp + e��xlj )(e�u � e�xlj )

(e�xlp � e�xlj )(e�u + e��xlj )
(97)

For real-valued xpk formula (97) becomes simpler:

!�

m
(u; p; l) = 2

e�u � e�xlp

�(e�u + e�xlp)(u� xlp)
�

mY
j=1j 6=p

(e�xlp + e�xlj )(e�u � e�xlj )

(e�xlp � e�xlj )(e�u + e�xlj )
(98)

The Carleman's formula for extrapolation from GM on U = Qn

�
(� = ��=2) has the

form (z = (z1; :::; zn)):

fm(z) =

mX
k1;:::;kn=1

f(xk)

nY
j=1

!�

m
(zj; kj; j); (99)

where k = k1; ::; kn, xk = (x1k1 ; x2k2 ; :::; xnkn).

There exists a theorem [1]:

If f 2 H2(Qn

�
), then f(z) = limm!1fm(z), where H2(Qn

�
) is the Hardy class of

holomorphic in Qn

�
functions.

It is useful to present the asymptotics of (99) for big jRezjj. For this we will consider

the asymptotics of (99) for big jReuj:

j!�

m
(u; p; l)j =

����� 2�u
mY

j=1j 6=p

e�xlp + e�xlj

e�xlp � e�xlj

�����+ o(jReuj�1): (100)

From the formula (99) one can see that for the �nite m and jRezjj ! 1 function

jfm(z)j behaves like const �
Q

j
jzjj

�1.

This property (null asymptotics) must be taken into account when using the formula

(99). When constructing invariant manifolds F (W ), it is natural to use (99) not for the

immersion F (y), but for the deviation of F (y) from some analytical ansatz F0(y).

The analytical ansatz F0(y) can be obtained using Taylor series, just as in the Lya-

punov auxiliary theorem [60]. Another variant is using Taylor series for the construction

of Pade-approximations.
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It is natural to use approximations (99) in dual variables as well, since there exists

for them (as the examples demonstrate) a simple and very e�ective linear ansatz for the

invariant manifold. This is the slow invariant subspace Eslow of the operator of linearized

system (4) in dual variables in the equilibrium point. This invariant subspace corresponds

to the the set of \slow" eigenvalues (with small jRe�j, Re� < 0). In the initial space (of

concentrations or densities) this invariant subspace is the quasi-equilibrium manifold. It

consist of the maximal entropy points on the aÆne manifolds of the x+Efast form, where

Efast is the \fast" invariant subspace of the operator of linearized system (4) in the initial

variables in the equilibrium point. It corresponds to the \fast" eigenvalues (big jRe�j,

Re� < 0).

10.5 Example: Two-step catalytic reaction

Let's consider a two-step four-component reaction with one catalyst A2:

A1 + A2 $ A3 $ A2 + A4 (101)

We assume the Lyapunov function of the form G =
P4

i=1 ci[ln(ci=c
�

i
)�1]. The kinetic

equation for the four-component vector of concentrations, c = (c1; c2; c3; c4), has the form

_c = 
1W1 + 
2W2: (102)

Here 
1;2 are stoichiometric vectors,


1 = (�1;�1; 1; 0); 
2 = (0; 1;�1; 1); (103)

while functions W1;2 are reaction rates:

W1 = k+1 c1c2 � k�1 c3; W2 = k+2 c3 � k�2 c2c4: (104)

Here k�1;2 are reaction rate constants. The system under consideration has two conser-

vation laws,

c1 + c3 + c4 = B1; c2 + c3 = B2; (105)

or hb1;2; ci = B1;2, where b1 = (1; 0; 1; 1) and b1 = (0; 1; 1; 0). The nonlinear system

(101) is e�ectively two-dimensional, and we consider a one-dimensional reduced descrip-

tion. For our example, we chose the following set of parameters:

k+1 = 0:3; k�1 = 0:15; k+2 = 0:8; k�2 = 2:0;

c�1 = 0:5; c�2 = 0:1; c�3 = 0:1; c�4 = 0:4;

B1 = 1:0; B2 = 0:2

(106)

In Fig. 3 one-dimensional invariant grid is shown in the (c1,c4,c3) coordinates. The grid

was constructed by growing the grid, as described above. We used Newtonian iterations

to adjust the nodes. The grid was grown up to the boundaries of the phase space.

The grid derivatives for calculating tangent vectors g were taken as simple as g(ci) =

(ci+1�ci�1)=kci+1�ci�1k for the internal nodes and g(c1) = (c1�c2)=kc1�c2k, g(cn) =

(cn � cn�1)=kcn � cn�1k for the grid's boundaries. Here xi denotes the vector of the ith

node position, n is the number of nodes in the grid.
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Close to the phase space boundaries we had to apply an adaptive algorithm for choos-

ing the time step h: if, after the next growing step and applying N = 20 complete

Newtonian steps, the grid did not converged, then we choose a new hn+1 = hn=2 and

recalculate the grid. The �nal value for h was h � 0:001.

The nodes positions are parametrized with entropic distance to the equilibrium point

measured in the quadratic metrics given by Hc = jj@2G(c)=@ci@cj jj in the equilibrium

c
�. It means that every node is on a sphere in this quadratic metrics with a given radius,

which increases linearly. On this �gure the step of the increase is chosen to be 0.05.

Thus, the �rst node is on the distance 0.05 from the equilibrium, the second is on the

distance 0.10 and so on. Fig. 4 shows several basic values which facilitate understanding

of the object (invariant grid) extracted. The sign on the x-axis of the graphs at Fig. 4

is meaningless, since the distance is always positive, but in this situation it denotes two

possible directions from the equilibrium point.

Fig. 4a,b e�ectively represents the slow one-dimensional component of the dynamics

of the system. Given any initial condition, the system quickly �nds the corresponding

point on the manifold and starting from this point the dynamics is given by a part of the

graph on the Fig. 4a,b.

One of the useful values is shown on the Fig. 4c. It is the relation between the

relaxation times \toward" and \along" the grid (�2=�1, where �1,�2 are the smallest and

the second smallest by absolute value non-zero eigenvalue of the system, symmetrically

linearized in the point of the grid node). It shows that the system is very sti� close to the

equilibrium point, and less sti� (by one order of magnitude) on the borders. This leads

to the conclusion that the reduced model is more adequate in the neighborhood of the

equilibrium where fast and slow motions are separated by two orders of magnitude. On the

very end of the grid which corresponds to the positive absciss values, our one-dimensional

consideration faces with de�nite problems (slow manifold is not well-de�ned).

10.6 Example: Model hydrogen burning reaction

In this section we consider a more interesting illustration, where the phase space is 6-

dimensional, and the system is 4-dimensional. We construct an invariant 
ag which

consists of 1- and 2-dimensional invariant manifolds.

We consider chemical system with six species called (provisionally) H2 (hydrogen),

O2 (oxygen), H2O (water), H, O, OH (radicals). We assume the Lyapunov function of

the form G =
P6

i=1 ci[ln(ci=c
�

i
) � 1]. The subset of the hydrogen burning reaction and

corresponding (direct) rate constants have been taken as:

1: H2 $ 2H k+1 = 2

2: O2 $ 2O k+2 = 1

3: H2O$ H +OH k+3 = 1

4: H2 +O$ H +OH k+4 = 103

5: O2 +H $ O +OH k+5 = 103

6: H2 +O$ H2O k+6 = 102

(107)

The conservation laws are:

2cH2
+ 2cH2O

+ cH + cOH = bH
2cO2

+ cH2O + cO + cOH = bO
(108)
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Figure 3: One-dimensional invariant grid (circles) for two-dimensional chemical system.

Projection into the 3d-space of c1, c4, c3 concentrations. The trajectories of the system

in the phase space are shown by lines. The equilibrium point is marked by square. The

system quickly reaches the grid and further moves along it.
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Figure 4: One-dimensional invariant grid for two-dimensional chemical system. a) Values

of the concentrations along the grid. b) Values of the entropy (�G) and the entropy

production (�dG=dt) along the grid. c) Relation of the relaxation times \toward" and

\along" the manifold. The nodes positions are parametrized with entropic distance mea-

sured in the quadratic metrics given by Hc = jj@2G(c)=@ci@cj jj in the equilibrium c�.

Zero corresponds to the equilibrium.
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For parameter values we took bH = 2, bO = 1, and the equilibrium point:

c�
H2

= 0:27 c�
O2

= 0:135 c�
H2O

= 0:7 c�
H
= 0:05 c�

O
= 0:02 c�

OH
= 0:01 (109)

Other rate constants k�
i
; i = 1::6 were calculated from c

� value and k+
i
. For this

system the stoichiometric vectors are:


1 = (�1; 0; 0; 2; 0; 0) 
2 = (0;�1; 0; 0; 2; 0)


3 = (0; 0;�1; 1; 0; 1) 
4 = (�1; 0; 0; 1;�1; 1)


5 = (0;�1; 0;�1; 1; 1) 
6 = (�1; 0; 1; 0;�1; 0)

(110)

We stress here once again that the system under consideration is �ctional in that sense

that the subset of equations corresponds to the simpli�ed picture of this physical-chemical

process and the constants do not correspond to any measured ones, but re
ect only basic

orders of magnitudes of the real-world system. In this sense we consider here a qualitative

model system, which allows us to illustrate the invariant grids method without excessive

complication. Nevertheless, modeling of real systems di�ers only in the number of species

and equations. This leads, of course, to computationally harder problems, but not the

crucial ones, and the e�orts on the modeling of real-world systems are on the way.

Fig. 5a presents a one-dimensional invariant grid constructed for the system. Fig. 5b

shows the picture of reduced dynamics along the manifold (for the explanation of the

meaning of the x-coordinate, see the previous subsection). On Fig. 5c the three smallest

by absolute value non-zero eigen values of the symmetrically linearized system Asym have

been shown. One can see that the two smallest values \exchange" on one of the grid end.

It means that one-dimensional "slow" manifold has de�nite problems in this region, it is

just not de�ned there. In practice, it means that one has to use at least two-dimensional

grids there.

Fig. 6a gives a view onto the two-dimensional invariant grid, constructed for the sys-

tem, using the \invariant 
ag" strategy. The grid was grown starting from the 1D-grid

constructed at the previous step. At the �rst iteration for every node of the initial grid,

two nodes (and two edges) were added. The direction of the step was chosen as the direc-

tion of the eigenvector of the matrix Asym (in the point of the node), corresponding to the

second \slowest" direction. The value of the step was chosen to be � = 0:05 in terms of

entropic distance. After several Newtonian iterations done until convergence, new nodes

were added in the direction \ortogonal" to the 1D-grid. This time it is done by linear

extrapolation of the grid on the same step � = 0:05. When some new nodes have one or

several negative coordinates (the grid reaches the boundaries) they were cut o�. If a new

node has only one edge, connecting it to the grid, it was excluded (since it does not allow

calculating 2D-tangent space for this node). The process continues until the expansion is

possible (after this, every new node has to be cut o�).

Strategy of calculating tangent vectors for this regular rectangular 2D-grid was chosen

to be quite simple. The grid consists of rows, which are co-oriented by construction to the

initial 1D-grid, and columns that consist of the adjacent nodes in the neighboring rows.

The direction of \columns" corresponds to the second slowest direction along the grid.

Then, every row and column is considered as 1D-grid, and the corresponding tangent

vectors are calculated as it was described before:

g
row

(ck;i) = (ck;i+1 � ck;i�1)=kck;i+1 � ck;i�1k
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Figure 5: One-dimensional invariant grid for model hydrogen burning system. a) Pro-

jection into the 3d-space of cH , cO, cOH concentrations. b) Concentration values along

the grid. c) three smallest by absolute value non-zero eigen values of the symmetrically

linearized system.
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for the internal nodes and

g
row

(ck;1) = (ck;1 � ck;2)=kck;1 � ck;2k; grow(ck;nk) = (ck;nk � ck;nk�1)=kck;nk � ck;nk�1k

for the nodes which are close to the grid's edges. Here xk;i denotes the vector of the

node in the kth row, ith column; nk is the number of nodes in the kth row. Second

tangent vector gcol(ck;i) is calculated completely analogously. In practice, it is convenient

to orthogonalize grow(ck;i) and gcol(ck;i).

Since the phase space is four-dimensional, it is impossible to visualize the grid in

one of the coordinate 3D-views, as it was done in the previous subsection. To facilitate

visualization one can utilize traditional methods of multi-dimensional data visualization.

Here we make use of the principal components analysis (see, for example, [45]), which

constructs a three-dimensional linear subspace with maximal dispersion of the othogonally

projected data (grid nodes in our case). In other words, method of principal components

constructs in multi-dimensional space such a three-dimensional box inside which the grid

can be placed maximally tightly (in the mean square distance meaning). After projection

of the grid nodes into this space, we get more or less adequate representation of the two-

dimensional grid embedded into the six-dimensional concentrations space (Fig. 6b). The

disadvantage of the approach is that the axes now do not have explicit meaning, being

some linear combinations of the concentrations.

One attractive feature of two-dimensional grids is the possibility to use them as a

screen, on which one can display di�erent functions f(c) de�ned in the concentrations

space. This technology was exploited widely in the non-linear data analysis by the elastic

maps method [41]. The idea is to \unfold" the grid on a plane (to present it in the two-

dimensional space, where the nodes form a regular lattice). In other words, we are going to

work in the internal coordinates of the grid. In our case, the �rst internal coordinate (let's

call it s1) corresponds to the direction, co-oriented with the one-dimensional invariant grid,

the second one (let's call it s2) corresponds to the second slow direction. By how it was

constructed, s2 = 0 line corresponds to the one-dimensional invariant grid. Units of s1
and s2 are entropic distances in our case.

Every grid node has two internal coordinates (s1; s2) and, simultaneously, corresponds

to a vector in the concentration space. This allows us to map any function f(c) from

the multi-dimensional concentration space to the two-dimensional space of the grid. This

mapping is de�ned in a �nite number of points (grid nodes), and can be interpolated

(linearly, in the simplest case) in between them. Using coloring and isolines one can

visualize the values of the function in the neighborhood of the invariant manifold. This is

meaningful, since, by the de�nition, the system spends most of the time in the vicinity of

the invariant manifold, thus, one can visualize the behaviour of the system. As a result

of applying the technology, one obtains a set of color illustrations (a stack of information

layers), put onto the grid as a map. This allows applying all the methods, working with

stack of information layers, like geographical information systems (GIS) methods, which

are very well developed.

In short words, the technique is a useful tool for exploration of dynamical systems. It

allows to see simultaneously many di�erent scenarios of the system behaviour, together

with di�erent system's characteristics.

The simplest functions to visualize are the coordinates: ci(c) = ci. On Fig. 7 we

displayed four colorings, corresponding to the four arbitrarily chosen concentrations func-

tions (of H2, O, H and OH; Fig. 7a-d). The qualitative conclusions that can be made
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from the graphs are that, for example, the concentration of H2 practically does not change

during the �rst fast motion (towards the 1D-grid) and then, gradually changes to the equi-

librium value (the H2 coordinate is \slow"). The O coordinate is the opposite case, it

is \fast" coordinate which changes quickly (on the �rst stage of motion) to the almost

equilibrium value, and then it almost does not change. Basically, the slope angles of the

coordinate isolines give some presentation of how \slow" a given concentration is. Fig. 7c

shows interesting behaviour of the OH concentration. Close to the 1D grid it behaves like

\slow coordinate", but there is a region on the map where it has clear \fast" behaviour

(middle bottom of the graph).

The next two functions which one can want to visualize are the entropy S = �G

and the entropy production �(c) = �dG=dt(c) = �
P

i
ln(ci=c

�

i
) _ci. They are shown on

Fig. 8a,b.

Finally, we visualize the relation between the relaxation times of the fast motion

towards the 2D-grid and along it. This is given on the Fig. 8c. This picture allows to

make a conclusion that two-dimensional consideration can be appropriate for the system

(especially in the \high H2, high O" region), since the relaxation times \towards" and

\along" the grid are de�nitely separated. One can compare this to the Fig. 8d, where the

relation between relaxation times towards and along the 1D-grid is shown.

11 Method of invariant manifold for open systems

One of the problems to be focused on when studying closed systems is to prepare exten-

sions of the result for open or driven by 
ows systems. External 
ows are usually taken

into account by additional terms in the kinetic equations (4):

_c = J(c) +�: (111)

Zero-order approximation assumes that the 
ow does not change the invariant manifold.

Equations of the reduced dynamics, however, do change: Instead of J(c(M)) we substitute

J(c(M)) +� into Eq. (39):

_Mi = (rMijc(M);J(c(M)) +�): (112)

Zero-order approximation assumes that the fast dynamics in the closed system strongly

couples the variables c, so that 
ows cannot in
uence this coupling.

First-order approximation takes into account the shift of the invariant manifold by Æc.

Equations for Newton's iterations have the same form (57) but instead of the vector �eld

J they take into account the presence of the 
ow:

[1� Pc](�+L0cÆc) = 0; PcÆc = 0; (113)

where projector Pc corresponds to the unperturbed manifold.

The �rst-order approximation means that 
uxes change the coupling between the vari-

ables (concentrations). It is assumed that these new coupling is also set instantaneously

(neglect of inertia).

Remark. Various realizations of the �rst-order approximation in physical and chem-

ical dynamics implement the viewpoint of an in�nitely small chemical reactor driven by

the 
ow. In other words, this approximation is applicable in the Lagrangian system of
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Figure 7: Two-dimensional invariant grid as a screen for visualizing di�erent functions

de�ned in the concentrations space. The coordinate axes are entropic distances (see the

text for the explanations) along the �rst and the second slowest directions on the grid.

The corresponding 1D invariant grid is denoted by bold line, the equilibrium is denoted

by square.
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Figure 8: Two-dimensional invariant grid as a screen for visualizing di�erent functions

de�ned in the concentrations space. The coordinate axes are entropic distances (see the

text for the explanations) along the �rst and the second slowest directions on the grid.

The corresponding 1D invariant grid is denoted by bold line, the equilibrium is denoted
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coordinates [51, 79]. Transition to Eulerian coordinates is possible but the relations be-

tween concentrations and the 
ow will change its form. In a contrast, the more simplistic

zero-order approximation is equally applicable in both the coordinate system, if it is valid.

12 Conclusion

In this paper, we have presented the method for constructing the invariant manifolds

for reducing systems of chemical kinetics. Our approach to computations of invariant

manifolds of dissipative systems is close in spirit to the Kolmogorov-Arnold-Moser theory

of invariant tori of Hamiltonian systems [5, 6]: We also base our consideration on the

Newton method instead of Taylor series expansions [7], and systematically use duality

structures. Recently, a version of an approach based on the invariance equations was

rediscovered in [54]. He was solving the invariance equation by a Taylor series expansion.

A counterpart of Taylor series expansions for constructing the slow invariant manifolds in

the classical kinetic theory is the famous Chapman-Enskog method. The question of how

this compares to iteration methods was studied extensively for certain classes of Grad

moment equations [31, 50, 48].

The thermodynamic parameterization and the selfadjoint linearization arise in a natu-

ral way in the problem of �nding slowest invariant manifolds for closed systems. This also

leads to various applications in di�erent approaches to reducing the description, in partic-

ular, to a thermodynamically consistent version of the intrinsic low-dimensional manifold,

and to model kinetic equations for lifting the reduced dynamics. Use of the thermody-

namic projector makes it unnecessary global parameterizations of manifolds, and thus

leads to computationally promising grid-based realizations.

Invariant manifolds are constructed for closed space-independent chemical systems.

We also describe how to use these manifolds for modeling open and distributed systems.
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