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Abstract

We consider Metropolis Markov chains with finite state space and transition probabilities of

the form
P(n,n) = q(n,n)e OOl

for given energy function H and symmetric Markov kernel q. We propose a simple approach to
determine the asymptotic behavior, for large 3, of the first hitting time to the ground state starting
from a particular class of local minima for H called metastable states. We separate the asymptotic
behavior of the transition time from the determination of the tube of typical paths realizing the
transition. This approach turns out to be useful when the determination of the tube of typical
paths is too difficult, as for instance in the case of conservative dynamics. We analyze the structure
of the saddles introducing the notion of “essentiality” and describing essential saddles in terms of

“gates”. As an example we discuss the case of the 2D Ising Model in the degenerate case of integer
27
T .
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1 Introduction and preliminary discussion.

In recent years an increasing interest has been addressed to the rigorous study of metastability in
the framework of the “pathwise approach” (see [7], [29])). After the pioneering papers [25], [26], that
refer to Glauber dynamics for standard 2D Ising model, in finite volume and very low temperature,
several other models have been considered, in the same asymptotic regime (see [17], [18], [11], [23],
[2], [8], [9], [10], [15], [16]), aiming to describe various aspects of the transition from metastability to
stability. From a physical point of view, these works refer to the study of local aspects of nucleation of
the stable phase, at very low temperature. Mathematically, the metastable behavior in this regime is
related to the first exit problem, from suitable domains, for a class of Freidlin-Wentzell (F-W) Markov
chains (see [12], page 176). These are characterized by a finite state space and transition probabilities
that are exponentially small in a large parameter 3 (representing, in many applications, the inverse
temperature). Other, perhaps more interesting, asymptotic regimes have also been considered, like
infinite volume at very low temperature (see [13], [14],[20],[21]), or fixed low temperature at very small
magnetic field (see [31], [34]).

We refer to [30], [29] for a general rigorous discussion of metastability.

From the point of view of general probability theory, the first exit problem in the Freidlin Wentzell
regime is nowadays well understood. A good control of the first exit time and of typical exit paths is
possible in terms of the exponential rates in 3 of the transition probabilities via large deviation theory.
While the general strategy is well known, in many applications relevant for the statistical mechanics,
the specific model-dependent problems are far from being solved.

In other words, the general theory is not applicable in many concrete cases, since the needed
detailed control on the specific Markov chain is too difficult to obtain. This fact reopens the problem
also from the point of view of the general theory, making important to understand what is the minimal
information on the process that is necessary to obtain each specific result.

In this note we discuss this problem and we propose a simple approach to the study of metastability
for general Metropolis Markov chains, having in mind applications to stochastic dynamics for lattice
spin systems. This allows to extract from the full description of the process the most relevant infor-
mation about the tunnelling time and the critical configurations by only requiring a rough analysis of
the energy landscape. This approach has been recently used in some cases of conservative stochastic
evolution like 3D Kawasaki dynamics (see [16]) or the anisotropic version of 2D Kawasaki dynamics
(see [24]), where the conservation law makes the mechanism of decay from metastability more sub-
tle. Here we want to systematically describe our strategy within a critical discussion of results and
tools commonly used in the study of metastability. We will use the simple and well known case of
Glauber-Metropolis dynamics for standard 2D Ising model, as an example to explain our approach.

Let us introduce the setup: We consider ergodic aperiodic Markov chains with finite state space X
and transition probabilities P(n,n’) satisfying the detailed balance condition

umPn,n') = pn")P(n',n), (1.1)
with respect to the Gibbs measure
e—BH(n)
p(n) = WJ (1.2)

with H : X — R an assigned energy function.
For simplicity we consider the Metropolis choice: for 7' # n we take

P(y',n) = q(n,m)e PE@—H@l+ (1.3)



where [-];+ denotes the positive part and ¢(n',7n) is a connectivity matrix independent of £.

We will denote by o} the Markov chain at time ¢ € N starting from 5 at ¢t = 0.

In this context, the problem of metastability is the study of the first arrival of the process o}° to
the stable state n®, corresponding to the absolute minimum of H, (or to the set X'® of absolute minima
of H) when starting from an initial local minimum 7g: we speak of tunnelling between 79 and n?®.

Local minima can be ordered in terms of their increasing stability i.e., the height of the barrier
separating them from lower energy states. A particularly relevant case is when 7jg turns out to be in the
set X™ of local minima of maximal stability in X'\ X'®, also called set of “metastable states” (see (2.12)
below). The study of the transition between X™ and X* constitutes the most typical metastability
problem. However, we want to stress that, establishing that a given local minimum 7 is a metastable
state (in the above sense) is one of the main points to be settled when studying the tunnelling between
no and X%,

Forne X, AC X, let

7 :=min{t > 0; o} € A} (1.4)

be the first hitting time to A for the process o} starting from 7. We call 77, tunnelling time.
There are, mainly, two different aspects in the problem of the decay from ng to X'*:

1. The asymptotic behavior for large 8 of the tunnelling time, expressed as

lim P(e' =98 < 71, < el+9)8) =1, (1.5)

B—oo
for a suitable I' > 0 and arbitrary € > 0. Clearly, this corresponds to the convergence in proba-
bility (as 3 — o) of the random variables X3 := %ln(ﬂ{,"s) to T' as (3 tends to infinity. It is also
interesting to analyze the asymptotic behavior in £! and in law (with a proper normalization).
We will show that a control in £! is certainly granted when the initial state is ng € X™. More-
over, when the metastable state is unique, it turns out that the suitably normalized tunnelling
time converges in law to a mean one exponential random time.

2. The tube of typical paths realizing the tunnelling.

To describe the typical transition pattern during the first excursion between 79 and X*, we are
interested in determining the minimal tube of paths going for the first time from 7y to X%, still
having a probability exponentially close to one.

The general approach to the first exit problem for F-W Markov chains ([12], [6], [27] [28], [32]) is
based on the notion of cycle, i.e., a maximal connected component of the set of states lying below a
given energy (see 2.7 for a formal definition). A cycle C is characterized by the property that, with a
probability exponentially close to one, starting from any state n € C, our process visits every state in
C before exiting from C. It is possible to control the asymptotic behavior, for large 3, of the first exit
time from a cycle, in probability, in £ and in law, in terms of the depth of the cycle, i.e., the difference
between the minimal energy in the external boundary 0C (i.e. the set in C¢ connected to C in one step
of the dynamics) and the energy of the ground state of the cycle. Moreover, it is also possible to give
significant estimates on the probability distribution of the first exit state (see Theorem 2.17 below).

By regarding single states as trivial cycles, given a set A C X, we can consider the decomposition
of the set X'\ A into maximal cycles. A sequence of cycles of this decomposition, in which each cycle
is connected with the following one in the sequence, is called a cycle-path. It is natural to associate to
a given cycle-path a tube of trajectories (of single states) defined as the set of trajectories visiting the
ordered sequence of cycles given by the cycle-path. Cycle-paths describe tubes of trajectories in which
only the sequence of visited cycles is fixed while the time spent in each cycle, and the corresponding
piece of trajectory in the cycle, is somehow free.

In [6], the notion of cycle-path has been introduced and developed in the general non reversible
case, and large deviation principles have been proved for cycle-paths.

A cycle-path is called downhill if the height of the cycles (i.e. the minimal energy on their bound-
ary) is non-increasing. In [27] particular sets of downhill cycle-paths, called ”standard cascades” are



introduced and it is shown that they define, via time-reversal, the tube of typical trajectories exiting
from a given cycle.

An alternative construction of typical first-exit cycle-paths is obtained in [28] for the general non
reversible case, starting from the renormalization procedure in [32]. This procedure was introduced in
order to describe phenomena taking place in suitable, exponentially increasing, time scales. For this
purpose a complete classification of the states in X was introduced, in terms of increasing stabilities,
related to the increasing time-scales. Starting from this classification, a sequence of renormalized
Markov chains, corresponding to the sequence of time scales, was introduced and, in [28], paths of the
renormalized chain were associated to cycle-paths.

By using cycles and cycle-paths one can study the tunnelling time and the tube of typical tunnelling
paths. Indeed, let C(1o) be the maximal cycle containing 7o such that C(ny) N X* = 0. We will call
escape time the first exit time T("g(no))c from the cycle C(no).

Obviously, the escape time is smaller than the tunnelling time. In order to study the escape time
we can use well developed results about the first exit from cycles (see Theorem 2.17 below), giving, in
this way, a lower estimate of the tunnelling time. To get an upper estimate we have to use the property
that, after the escape time, with high probability for large 3, the process hits X'® in a relatively short
time. So, we get that escape and tunnelling times are of the same order, once we are able to prove
that, with high probability for large 3, the cycles visited by the process o; for t € (T(WCO(HO))C, 73%) have
a depth smaller than or equal to the one of C(7g). On the other hand, if the process, after the escape
from C(ng), typically visits very deep wells (deeper than C(ng)) it turns out that the asymptotics of
the tunnelling time is exponentially larger (in 3), than the one of the escape time. For example, this
happens in the dynamical Blume-Capel model, for suitable values of the parameters (see [11]). The
total absence, in the whole space X', of deep wells rules out the possibility of a difference between the
asymptotics of the escape and the tunnelling times. The total absence of deep wells is equivalent to
saying that 7o is a metastable state since, as it is immediate to see, the depth of C(19) is the maximal
depth of the cycles not containing X'°.

It is also possible that the two asymptotics coincide without total absence of deep wells: it is
sufficient that, after the escape from C(79), the process typically stays confined inside a region of the
state space free of deep wells. This suggests two possible ways of proving that escape and tunnelling
times are of the same order: the first one requires the total absence of deep wells; the second one needs
a good control on the tube 7 of typical paths! exiting from C(ng) and requires that 7 does not contain
deep wells. The first way involves a global control on the energy landscape, everywhere in X, while
the second one involves a detailed knowledge of the typical trajectories realizing the transition.

The second way was adopted in many previous works on metastability and, indeed, the lack of
a global control of deep wells was the main reason why in the previous approaches to metastability
the two issues of the asymptotics and the tube of typical paths were strictly connected. Thus, it is
reasonable to expect that the total exclusion of deep wells has the effect of partially separating the
problem of the asymptotics from the problem of the typical tube.

We are now at the main point of the problem: how to construct, for a concrete model, the cycle
C(mg)? how to find the tube of typical paths reaching X'*? In other words, even if general tools to
study metastability are well developed, there is a highly non trivial model-dependent problem to solve,
in order to apply the general results on cycles and cycle-paths, when discussing a concrete example.

Let us describe the basic features of the approach commonly used in previous works on metastability.
In [17], [18], [11], [23], [9], [10], X® consists of a unique state, ns and an important step is to find a special
set of states D, representing in practice the subcritical states, i.e. initial states starting from which
the process visits 79 before n°, with high probability. The process, while performing the tunnelling,
has to cross, with high probability, the boundary of D in a particular set of states, say P, where the
energy equals the communication height (see (2.5)) between 79 and n®. Successively, it goes towards
n®, following a well defined family of trajectories, never being trapped inside deep cycles, so that the
descent to n® is relatively fast.

The set of trajectories realizing this descent can be described in terms of a downhill cycle-path

li.e. the set of cycle—paths typically followed during the tunnelling.



Ci,...,Cy, starting from C; = C(19) and ending in a cycle C,, connected to Xs. A complete control of
typical paths from P to Xs; amounts to know all downhill cycle-paths emerging from C(n).

We can say that the approach above heavily relies on a precise knowledge of the set P (that
represents a narrow gate for the transition from 79 to n®) and of all typical future evolutions starting
from any state in P. In other words we need to know in detail the tube of typical trajectories going
from P to n°® .

A different strategy was used in [2], to find the asymptotics in probability of the tunnelling time
and the tube of typical paths. This strategy is based on the analysis of the state space by means of
its foliation into manifolds at fixed number of plus spins. By looking at the minimal energy barrier
between contiguous manifolds, one obtains a control of the energy landscape sufficient to find C(1)
and the tube of typical paths. This kind of model-dependent discussion is sufficiently simple in cases,
as the isotropic Glauber dynamics, where there are strong symmetries in the problem, but becomes
much more complicated in more general cases (we will discuss this point in more detail in the final
section).

Both these strategies require a very detailed knowledge of the energy landscape; however, only a
local analysis is needed around the typical tube and no global control.

It is clear that without controlling the of deep wells outside the tube, it is impossible to conclude
about the asymptotic behavior of the tunnelling time in £!. Indeed, it is possible that with a small
probability the process visits a very deep well outside the tube, so that the asymptotics in £! becomes
strictly larger than the one in probability.

In the final section of this paper we will discuss in more detail these approaches in connection with
the ideas developed in the present paper.

In this note we discuss the different model-dependent inputs necessary to obtain the different results
and propose a simpler approach to solve the problem of the asymptotics of the exit time and find partial
results about the tube. This approach is related to some of the ideas developed in [32]. An important
ingredient there, was a recurrence property of the process on the set of states of a given stability in the
corresponding exponentially long time scale. In the present paper we do not need the whole detailed
analysis developed in [32] but we still exploit the idea of proving a global recurrence to a suitable set
of states.

We will show that to study the tunnelling time, starting from a state 7o, it is sufficient (i) to solve
the global min-max problem, i.e. to find the height of the energy barrier between 19 and X'* and (ii)
to prove that for any state n & {no} U X® the energy barrier towards lower energy states is lower than
the energy barrier between 7y and X'?, which is equivalent to saying that 79 € A™. This means that
we are able to separate the control of the tunnelling time (i.e. point 1) from the much more difficult
control of the tube of typical paths (i.e. point 2).

This recurrence property actually gives a control on the distribution tail of the tunnelling time which
implies the property of uniform integrability, necessary to give also a control of the asymptotic behavior
in £1. In this sense, we can say that with our approach the model-dependent input is minimized.

We observe that inputs (i) and (ii) (together with some additional non-degeneracy assumptions)
correspond to the hypotheses required in [5], to apply the general method introduced in [3] to Glauber
dynamics.

This method is based on a very sharp control of the Laplace transforms of the tunnelling times and
does not even take into account the description of typical trajectories. As we will see in section 6.3,
the results obtained in [3], [5] are restricted to the tunnelling times and are for some respects stronger
than those obtained with our method. The relationship between the two strategies is interesting by
itself and we will come back to the topic in the final section.

In the framework of our pathwise approach it is natural to study the typical trajectories realizing
the tunnelling between 7y and X'®*. These can be described at different levels of detail, corresponding
to different levels of detail in the analysis of the energy landscape.

A central role in this description is played by the optimal paths, i.e. the set of paths realizing the
minimal value of the maximal energy in the paths going from 7y to X’*.



A first basic notion is the set of saddles S defined as the set of all maxima in the optimal paths
between 19 and X'®. In this note, we focus on the subsets of saddles that are typically visited during
the last excursion from 79 to A'*. To this end, we introduce the gates from metastability to stability,
defined as the subsets of S that are visited by all the optimal paths.

We will see that the process, while performing the tunnelling, is likely to follow one of the optimal
paths. Therefore, gates are subsets of S that are typically visited during the tunnelling.

The configurations in the minimal gates (minimal by inclusion) have the physical meaning of ” crit-
ical configurations” and are central objects both from a probabilistic and from a physical point of
view.

The structure of the minimal gates and their geometrical characterization is therefore a crucial point
in the description of the typical trajectories. On the other hand, the hypotheses needed to discuss the
gates are weaker than the ones necessary to completely characterize the tube of typical paths.

We remark that in several models analyzed in the literature in the context of F-W Markov chains,
the minimal gate was unique but, in general, there may exist many minimal sets with the gate property,
either distinct or overlapping. In the present paper we shall analyze in detail the set of minimal gates
in some examples, without assuming, like in [5], additional non—degeneracy hypothesis, that simplify
the structure of the gates.

It is clear that a crucial point in this analysis is to find out the minimality of a given gate. To this
end, we will provide a sufficient criterion in section 5.

We provide also a characterization of the set G C S, defined as the union of minimal gates, in terms
of essential saddles. These are defined as the states in S that cannot be avoided with a short-cut of
an optimal path (where a short-cut of a path w is a path w' whose set of maxima, is a subset of the set
of maxima in w).

As an example to illustrate the treatment of gates, we will discuss in detail the 2D Ising model in
the high degenerate case corresponding to 2J/h integer. In this case we will find the set of all essential
saddles and its decomposition into minimal gates, revealing a quite complicated structure (see fig. 4,
page 25).

The analysis of the properties of the minimal gates becomes particularly interesting when related
to the results about the pre-factors of the mean tunnelling time given in [5]. This is an open problem
posed by our analysis and, though not completely solved in the present paper, it is widely discussed in
the final section. From this discussion, we can conclude, quite surprisingly, that unessential saddles,
not characterizing the typical behavior of the process, may contribute to the pre-factors and that a
weaker notion of essentiality is needed to control the £; estimates.

The paper is organized as follows: we first give some definition and known results on cycles. In
section 3 we study the recurrence property, and we discuss its implication on uniform integrability.
We apply the recurrence property to the study of the tunnelling time in section 4 where we discuss
its convergence in probability, in £ and in law, under the additional hypothesis of uniqueness of the
metastable state. We give also some concrete criteria for the determination of I'. In section 5 we
discuss the gate and finally in the last section we discuss in detail the connections with old approaches
and open problems.

In Sections 4.3 and 5.4 we will use the example of the two-dimensional Ising model to illustrate the
general methods in a concrete case. In particular, we analyze here the degenerate case of 2.J/h integer
that exhibits a rather rich gate structure.
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2 Definitions and preliminary results.

We need some definitions.



A path is a sequence w = (wy,...,wg), k€N, w; € X for i =1,...,k, such that g(w;,wit1) >0
fori=1,....,k—1.

We write w: 1 = 7' to denote a path from 7 to n'.

Given ¢ € X, we write ( € w when w visits (.

A set A C X with |A| > 1 is connected if and only if for all ,n' € A there exists a path
w: n — ' such that w; € A for all i. Every singleton is connected.

We use A C B to mean A strictly contained in B.
Given a non-empty set A C X, define its (external) boundary as
OA:={C¢ A: q(¢,n) > 0 for some 5 € A} (2.1)

and its internal boundary as

9~ A:=0(A%), (2.2)
where A° := X\ A.

The bottom F(A) of a non-empty set A C X is the set of global minima of the Hamiltonian
Hin A, ie.
F(A) = {neA: Hp) = min H(()}. (2.3)

For a set A whose points have the same energy, we denote (by an abuse of notation) this energy
by H(A).

Given a function f : X — R and a subset A C X, we denote by

argmax 4 f := {n €A: f(n) = max f(é)} (2.9)

the set of points where the maximum of f in A is reached.
The communication height between a pair 5,7’ € X is

®(n,n') = min maxH((). (2.5)

w: n—n' (Ew
Given two non-empty sets A, B C X, put

(A, B) = ne;ng,lelg@(n,n’) (2.6)

A non-trivial cycle is a connected set C such that
mngH(a) < H(F(0C)). (2.7)
Any singleton that is not a non-trivial cycle is called trivial cycle.
The following structure Lemma is a well-known fact (see e.g. [27] Prop. 3.2):
Lemma 2.8 For any pair of cycles C, C' such that CNC' # 0, either C C C' or C D C'.

We call stability level of a state ( € X' the energy barrier

Ve = ®((,Z¢) — H(() (2.9)
where 7, is the set of states with energy below H(():
T, = {n eX: Hp < H(g)} (2.10)

We set V; := oo if Z¢ is empty.



e We call stability level of a state ( € X in a set A the energy barrier
VA = (T N A) - H(Q), (2.11)
setting VA := oo if Zc N A is empty.
e The set X'® := F(X) of the global minima of the hamiltonian is called set of stable states.
e The set of metastable states is given by

X .= exX: V,= Vi 2.12
{n T max ¢} (212)

e We call metastable set at level V' the set of all states with stability level larger than V:
Xy={neXx: V,>V} (2.13)
We denote by I' the stability level of the states in X™.
e The depth of a cycle C is given by
D(C) := [H(F(9C)) — H(F(C))]+- (2.14)

e For a non-trivial cycle C, we set U(C) := F(9C); for a trivial cycle C, we set U(C) := C. We call
H(U(C)) height of the cycle C.

e We call maximal internal resistance ©(C) the maximal depth of the sub-cycles of C that do
not contain the whole F(C):
O(C):= max D(C) (2.15)

cycles ¢/ CC;
c'pFC)

An immediate consequence of the definition of cycles is that for any 7,7’ in a given cycle C
®(n,n') < 2(C,C°) (2.16)

It is possible to show that this implies that, with probability exponentially close to one, every state
in the cycle is visited before the exit from the cycle, and that the exit time is of order e#P(©). More
precisely, the main result of [27] Prop. 3.7 is contained in the following

Theorem 2.17 Let us consider a non—trivial cycle C and let D := D(C) be its depth. For any n € C,
£€dCe e >0,6€(0,¢e), for 77, as in (1.4), and all sufficiently large 3

P (rgc < Do) n TQ) > ¢ AUH(EO - HUC)+e') (2.18)
P (Tgc > eﬂ(D—E)) >1— e P9 (2.19)

Moreover there exists k > 0 such that for all n,n’ € C and all sufficiently large 3:
P(rn <l)>1-eP" (2.20)

See [27] for the proof; see also [12], [28], [6] for similar results.
We need here some other definitions.

e The set of minimal saddles between 7,7’ € X is defined as

S(n,n') = {C €X: Jwin—=n, ws(: rgng(f) =H({) = @(n,n')}- (2.21)
SAB = |J Smn). (2.22)

@(n,n')=2(A,B)



o We write
(-A — B)opt (2.23)

to denote the set of optimal paths i.e. the set of all paths from A to B realizing the min-max
in X between A and B.

e Given a pair n,7' € X, we say that W = W(n,n') is a gate for the transition n — 7' if
W(n,n') CS(m,n') and wnNW # § for all w € (n = ') ope-

e We say that W is a minimal gate for the transition n — ' if it is a gate and for any W C W
there exists w' € () = 1')opt such that w' N W' = ). In words, a minimal gate is a minimal (by
inclusion) subset of S(n,n') that is visited by all optimal paths.

For a given pair 7,7, there may be several disjoint minimal gates. We denote by G(n,n') the
union of all the minimal gates:

G(n,n') = U W. (2.24)

w: w minimal gate for (n,7’)

Obviously, G(o,0') C S(o,0') and S(o,0') is a gate (but in general it is not minimal). The
configurations ¢ € S(n,n') \ G(n,n") (if any) are called dead-ends.

e A saddle ¢ € S(n,7n') is called unessential if for any w € (n — n')opt such that wN ¢ # 0
we have {argmax, H} \ {¢} # 0 and there exists w' € (n = 7')opt such that {argmax, H} C
{argmax,, H} \ {¢} (see (2.4) for the definition of arg max).

e A saddle ( € S(n,7") is called essential if it is not unessential, i.e. if either
(i) there exists w € (n = n')opt such that {argmax, H} = {{} or
(ii) there exists w € (7 = 7')opt such that {argmax, H} D {¢} and {argmax, H} ¢ {argmax,, H}\
{¢} for all W' € (n = 0')opt-

e Given A C X and n € X \ A, we consider the sets
Cam =nU{C: 8(n,0) < d(n, A)}. (2.25)

These sets are either trivial cycles coinciding with 7 (in case ®(n,.A) = H(7n)) or non-trivial
cycles containing 7 (in case ®(n,.4) > H(n)). Notice that H(U(C4(n))) = ®(n, A) and that
Ca(n) C X\ A. We immediately see that if ' € C4(n) then C4(n') = Ca(n).

Lemma 2.26 Given A C X, the sets {CA(n)} o in (2.25) form the partition into maximal
ne
cycles of X'\ A:

JCi=x\A, CinCj=0Vi#jand Vidnsst. Ci=Caln) (2.27)

Proof. It is immediate to see that for any ( € X' \ A, ¢ € C4(¢). We know by Lemma 2.8,
that two overlapping cycles either coincide or are included into each other. Thus, to conclude
the proof it is sufficient to show that C4(n) are maximal cycles in X' \ A. For, suppose C' be
a cycle strictly containing C4(n), we necessarily have C' N A # (0, contradicting the fact that
C' ¢ X\ A. Indeed, C' contains a point ¢ in 9C(n) with H({) > ®(n, A) and every optimal
path w € (n = A)opt is contained in C’', since H(U(C')) > ®(n,.A) and C' 3 9.

O

We refer to [6] for a definition of decomposition into maximal cycles in a more general setting.



e A sequence of cycles Cy, . . ., Cy, is called downhill cycle-path if the cycles are pairwise connected
with decreasing height; namely, such that H(U(C;)) > H(U(Cit+1)) for each ¢ € {0,...,n — 1}.
Notice that the predecessor and the successor of a non-trivial cycle in a cycle path must be trivial
cycles.

Notice that the probability that the process exiting from C; goes to C;y1 is not exponentially
small: when C; is a non—trivial cycle this fact can be seen by using Theorem 2.17, if C; is a trivial
cycle, it is a direct consequence of the definition of the dynamics.

The key property of the partition in (2.27) is that, any Cy in the partition can be joined with 4
by a downhill cycle-path made of cycles in the partition.

Lemma 2.28 For any n € X and A C X, there exists a finite downhill cycle-path Cy,...,Cy,
such that n € Cp and C, is a singleton in A.

Proof. We consider the case where n € A, otherwise there is nothing to prove. We give an
algorithm to construct the aforementioned downhill cycle-path by using the partition in (2.27).
More precisely, we construct a path w : 7 — A by joining pieces of optimal paths w(® € (n; —
Mi+1)opt for suitably defined {n;};en. The sets C4(n;) will form our downhill cycle-path:

1. SET no :=1n

2. pick a self-avoiding? optimal path w®) € (o — A) opi

3. FORi>1
4.  SETn; = w,(:), where k := min{n : W ¢ Ca(mi—1)}
5 IF n; € A, STOP
6

(i+1) | @ .

wr = W
ELSE

pick a self-avoiding optimal path w1 € (n; — A) ot
7. NEXT ¢

The key point in this construction is that we keep using the same path until the communication
height ®(n;1+1,.A) changes; since self-avoiding paths are finite, condition 6. can hold for a finite
number of indices ¢ for each of these paths. When changing the path, ®(n;+1,.4) must decrease
since n; and 7;;1 belong to the same optimal path w'® € (1; — A)Opt, implying

®(n;, A) = max {‘ﬁ(ni,mﬂ), ‘1>(77i+1a«4)} > ®(nit1, A). (2.29)

By the finiteness of X' and the monotonicity of ®(n;,.4), we see that the whole sequence of cycles
{CA(m;)}i is finite.

O
e A function § — f(f) is called super-exponentially small (SES) if
lim — log £(8) = (2:30)
p im. 3 og = -0 .

28elf-avoiding paths can be obtained from general paths by removing the loops in the order they appear.
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2.1 The Ising model.

We will use the standard 2D Ising model with Metropolis dynamics as an example to clarify our
approach. Let us give some definitions:

e For z = (x1,22) € Z2, we will use the norms |||, := (|o1|" + |22|")» and ||#||o := max;—1 2 |2;].

e Let A be a two dimensional torus with a sufficiently large side-length L. A configuration is a
function o : A — {—1,+1}. With each configuration o € X7 := {—1,+1}"* we associate an
energy given by the Hamiltonian

B(o) = —% S o@o) - g S o(a), (2.31)
{m,y}Clizl TEA

We take the external magnetic field % >0 and J > 0.
We set
H(o) := E(0) — E(-1) (2.32)

e The dynamics is defined via the Metropolis algorithm given in (1.3), where ¢(o, ), for all o # 7,
is

o ={ 5T nies 233)
where
e ={ "oty 2l 230
e Let
N*t(o) = g % (2.35)

be the number of plus spins in the configuration o.

e Given a configuration o € X, consider the set C'(o) C R? defined as the union of the closed unit
cubes centered at sites x such that o(z) = 1. The maximal connected components C1,...,Cp,
m € N, of C(o) are called clusters of . We often identify o with C'(o).

e We denote by 0C' the boundary of C' as a subset of the two dimensional torus of side length L
in R?. For o € Xy, let v(0) = ;~, OC; be the boundary of ¢ and |y(0)| := Y., |0C;| the
perimeter of 0. |y(0)| equals the number of pairs of n.n. sites with opposite spin in o. It is
immediate to see that the energy of a configuration in the Ising model is

H(o) = J|y(o)| — hN* (o). (2.36)

e —1,1 are respectively the configurations in which all the spins have value —1, +1.

3 Recurrence to Ajy.

A crucial property of our Markov chains is that with probability super-exponentially close to one,
starting from any point in X’ the process visits Xy (the metastable set at level V defined in (2.13))
within a time of order €Y. We will prove this result in Theorem 3.1, by using Theorem 2.17.

This recurrence property can be considered the key ingredient of our results on metastability.

Theorem 3.1 For any € > 0 and sufficiently large 3

sup P <T:\’gv > eﬁ(VJrE)) = SES (3.2)
nex
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Proof.

We use the partition in (2.27) with A = Xy and Lemma 2.28 to show that there exists a finite
downhill cycle-path from Cx, (1) to Xy . Since none of the cycles in the downhill cycle-path can contain
states in Xy, all these cycles have depth not larger than V.

By using Theorem 2.17 we get that the probability to reach Xy within e®(V+</2) is uniformly larger
than e=?¢" for any € > 0 and sufficiently large 5. Indeed, the cycles in the downbhill cycle-path are
pairwise connected in such a way that the probability to pass from an element of the cycle-path to
the following one, within a time e?(V+¢/4) ig larger than e %" for any " > 0 and sufficiently large 3;
moreover, their number is bounded independently of 4 by |X|. So that by Theorem 2.17 we get

P (T;V < eﬁ(V+%)) > 0 (3.3)

A standard iteration of this estimate (based on Markov property) proves (3.2):

s

P (Téﬂ\?v > eﬂ(V—f-s)) < ( sup P (T{%IV > eﬁ(V+§))> — SES. (3_4)
n'gXy

Nje

O

An immediate consequence of the previous theorem, applied to V =T := Vym, is the following;:

Corollary 3.5 For any § > 0, the variables Y := 75,6 T+98 are uniformly integrable that is, there
exists [y sufficiently large such that for any € > 0 there exists K € [0, 00) such that for any 8 > o

su ]E(Y"l , )<s 3.6
"eg 8 H{Y)>K} (3.6)
Proof. It is sufficient to have an exponential control on the tail of the distribution:
sup P(77,e~T+98 > ) < 277 (3.7)
neX

for any sufficiently large 3. This estimate can be obtained as in (3.4), since Ar = X* and V§ > 0
n
sup P(r2,e~ T8 > p) < ( sup P (T;"( > e(r+5)5)> <27, (3.8)
neX n'gxs
where we used Theorem 3.1 to get the last inequality. O

Remark 3.9 We note that it is possible to prove a recurrence result similar to theorem 3.1 also if
we consider the recurrence to a given state in X'®°. This is important when studying the tunnelling
problem between stable states. More precisely, let 71 € X'® and let ® = O(X) the maximal internal
resistance defined in 2.15. By using Lemma 2.28 and the arguments of proof of Theorem 3.1, we can
prove that

sup P (TT"“ > eﬁ(@+5)) = SES (3.10)
nex

for any € > 0 and g sufficiently large.

4 Asymptotics of tunnelling time.

In this section we give results on the asymptotics of the tunnelling time. We first obtain general results
and then we discuss how to apply them to concrete models. We conclude this section by discussing
the example of the Ising model.

12



4.1 General results.

We study the tunnelling time 73 by giving results in probability (in Theorem 4.1 and Theorem 4.5),
on the asymptotics of the expectation (in Theorem 4.9) and on the convergence in law (in Theorem
4.15).

Notice that in some cases where a global description of the energy landscape is not given it is still
possible to give results in probability, but neither in law nor in £;.

Let us first consider the case g € X™.

Theorem 4.1 Let g € X™ and I' := &(X™, X*) — H(n). Then, for any § > 0, there exist 8y and
K > 0 such that for any 8 > By

P (T;os < eﬁ(r—é)) < e KB (4.2)
P (r}"s > P+ ")) = SES (4.3)

Proof. (4.2) is a consequence of (2.19) when C = {&: ®(&,m0) < B(no, X*)}, since 77, > 770.
(4.3) is just a particular case of Theorem 3.1 when V =T. In this case Xy coincides with X*. O

Remark 4.4 As noted at the end of the previous section, in the case of several stable states, we can
obtain a similar result for the tunnelling time 7,° between stable states 1o, 7, by substituting I' with
the maximal internal resistance ©(X).

In some cases, where a global characterization of the metastable sets is missing, we can use a slightly
weaker version of Theorem 4.1. The idea is to control stable and metastable states only locally. More
precisely, suppose to be able to find a habitat, defined as a set A such that there exist K4 > 0, B > 0

such that for any n € A\ F(A) and P (T;(A) < TgA) > 1 —e KB for all 3 > By. Notice that, by

definitions (2.9) and (2.11), for any 7 in a habitat A either VWA = 00 or VWA =V,. Indeed, if VWA >V,

we immediately see that the cycle Cz,n(n) has non—empty intersection with Z,, N .A°. By Theorem

2.17 P(T;’_-(CI aam) < 77,n4) — 1, contradicting the definition of habitat. Examples of habitats are
7

given by basins of attraction, cycles and suitable sets of downhill cycle paths.

Theorem 4.5 Let A be a habitat and let V(A) := max,c 4\r(4) VWA be the maximal stability level in
A. Let n € A with V;A = V(A).
Then, for some k > 0 and g sufficiently large

V(A)—e V(A)+e —BK
P(ea(() )<T;(A)<eﬂ(()+))21_eﬁ (4.6)
that is, n “plays the role of a metastable state relatively to A”.

Proof. Let us start to prove that P (T;_-( A > eﬁ(V+5)) is exponentially small. The proof is very
similar to that of Theorem 3.1.

P (T;(A) > eﬁ(v+s)) < P (T;I-‘(A) =7 yuoa > eﬂ(v+s)) +
P (4 < Thn) - (4.7)
By Lemma 2.28, there exists § > 0 such that
P (i <75 i <7HD) 2 (4.8)

Hence, a standard iteration argument like in (3.4) shows that the first term in (4.7) is super-exponentially
small; the second one is the leading term and it is exponentially small by definition of habitat.
On the other hand, since for any £ in F(A) the depth of C¢(n) is V, by (2.19) we see that JP’(T;( 4 <

ePV—9)) < P(Te. () < ePV=e)) < =P for any 6 € (0,¢) and sufficiently large j. O

A different characterization of the tunnelling time is given by the following Theorem:

13



Theorem 4.9 For any 9 € X™,
i 1 10
gh_,n;o_l()gET » =T (4.10)

Proof. By theorem 4.1 we know that, for each § > 0, the variables Y3 := 77, ('*+98 tend to zero in
probability, moreover by Corollary 3.5 they are uniformly integrable. This implies that they tend to
zero also in £', that is

]E(|Yﬁ”°|) - 0. (4.11)
Hence, there exists By such that for any 8 > [
Er, < el+98, (4.12)
The estimate
Er, > eT=0)8 (4.13)

valid for any 6 > 0 and sufficiently large 3, immediately follows by theorem 4.1 since
Er}S, > eT=0PP(r0, > e(T=90) > o(F=98(1 — ¢=KB), (4.14)

By using that § is arbitrary, by (4.12) and (4.13) we obtain (4.10).
(|

We remark that in the previous Theorem the hypothesis 79 € X™ (often called ”absence of deep
wells”) is not necessary and can be easily substituted by n is such that Vn ¢ X*® with V;, > V,,,,
H(n) > H(no) that can be called ”absence of dangerous wells”. This property is also ”global” since it
requires the analysis of the whole energy landscape.

Theorem 4.15 Suppose there exists a state 7o, such that T :=inf{n >1: P(r3% <n) >1—e'}
tends to infinity with 8. Moreover suppose that there exist Té and &g such that for all n € X

TI
P(rf, xy > Th) <05 with lim 22 =0 and lim d5 =0, (4.16)

B—0o0 B B—o0

then, for any § > 0,

lim P(77% Ts) = et 4.1
Jim (T: >1Tg) =e (4.17)
and —_—
lim &) _ g (4.18)
B—o0 T[g
Proof.

Let 7*(t) :=inf{s > tTs : o5 € {no, X*}} be the first hitting time to {ne, X'*} after tTs.

P (13 > (t+s)Tp) =
P (73 > (t+8)Tp; 7°(t) <tTp+Tp) + P (73 > (t+8)Ts ; 7°(t) > tTp + Tp)
r.h.s of (4.19) =

Ts
Z]P’(T*(t) =tTg+u; 73 > tTg+u) P (1% > sTs —u) +
u=0

Y P(r > tTs; 0, =n) P (T}s > 8T 5 0 oy > Té) , (4.19)
n€{no,Xs}e

where we used Markov property at time ¢T3 4+ u, and the fact that 73% > 7*(t) implies o+ () = 7.
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Clearly, by (4.16),

Lh.s. of (4.19) >
[P (7% > tTs + Tp) — P (13 > tTg + T ; 7°(t) > tTp + Tp) | P (1. > sTp) >
[P (7%, > tTs + Tj) — 03] P (%, > sTp) (4.20)

and
Lh.s. of (4.19) < P (73, > tTs) [P (74, > sTp — Tp) + d] - (4.21)
Let By be such that Té < Tpg for all B > (y. Thus for any integer k > 2 we write
P(r3% > (k+ 2)Tg) < P(r3 > kTp)(6s + P(r3% > Tp)) (4.22)

and taking r := 2e~! we may assume that dg + P(75% > Tp) < dg+e ' <r < 1, for each 3 > fo.
Thus, for each 8 > By and each k > 3 we get

P(r. > kTp) < rlk/2 (4.23)

which immediately 1mphes the tightness of the family {7%./Ts}, on [0,+00). Let us call 95 the family

of random variables =

T, -

From (4.21) it follows that if the random variable ¥ is the limit in distribution of a subsequence
dg, then

P >t +s) =PW > t)PH > s) (4.24)

for any s,t > 0 which are continuity

points

for the distribution of 77.. From the density of such points, and the right-continuity of the distribu-
tion function, we conclude the validity of (4.24) for all s,t > 0, and consequently that ]P’(19 >t)=e
for all t > 0, where a = —logP(J > 1) € (0, +00]. The case a = 400 corresponds to ?J identically null;
in our case this is excluded from the definition of Tz, which implies at once:

P <1)= lim P@Ws <1)<1—e'< lim P@s <1)=P®H<1), (4.25)

k—+o00 k—+oco

and since P(9 < 1) = P(J < 1), we conclude that a = 1.
To conclude the proof of the theorem we write

Er70 1 +o0 +o0
X — P(r¥ > s)ds = / P(r¥. > Tps) ds. (4.26)
Tp Ts Jo 0
Due to (4.23) we may apply the dominated convergence theorem, and so
Er?Y. Foo +o0
lim —2&% = / lim P(r3, > Tps)ds = / e %ds=1. (4.27)
B—+oo Tpg 0 B—r+oo 0

O

We remark that if XY™ = {n}, hypothesis (4.16) is immediately verified. Moreover if Cx: (1) i.e.,
the maximal cycle containing 79 and not intersecting X'* (see (2.25) ), is the unique cycle of maximal
depth in the decomposition of X'\ X'* ( see lemma 2.26), hypothesis (4.16) holds for any 7 in this cycle.
In general, when there are many metastable states hypothesis (4.16) is not satisfied. More than that,
it is possible to find examples where even the statement of the theorem does not hold, namely, the
asymptotic law of the renormalized tunnelling time is not exponential. An example where we expect an
asymptotic gamma distribution can be found in the framework of the probabilistic cellular automaton
studied in [10]. However, in the general case of many metastable states
1) there are examples of 1y that does not satisfy the hypothesis of the theorem, but nevertheless, we
have asymptotic exponentiality of the tunnelling time.

2) we always have an exponential tail of the distribution and the convergence in £!.
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4.2 The model-dependent input.

We note that in order to apply the previous results to some concrete model we need essentially two
model-dependent inputs:

I) to determine the communication height ®(ng, X'®).

IT) to verify the hypothesis ny € X™;
As far as point I) is concerned, a general criterion is to find a set of states B satisfying the following;:

(a) B is a connected set containing ng with BN X* = ()

(b) there is a reference path w* : no — X%; namely, a path such that
{argmax .H} N F(0B) # 0 (4.28)
i.e. such that the maximum of the energy in w* is reached in F(9B).

Indeed, point (a) gives the lower bound ®(rg, X'*) > H(F(0B)), while the path w*, joining 79 with
X?, gives the upper bound ®(ny, X*) < max; H(w}); by eq. (4.28) the two bounds coincide.

As we will show in the next section, this criterion can also be used to determine the gates.

Notice that there is no need to determine the domain of attraction of XY™ or X* (i.e. the set of
initial configurations s.t. the process typically hits X™ before, resp. after, X'*). This is a crucial point
since such a detailed description of the energy landscape is often not possible. Instead, a rather simple
analysis can be used to find a suitable set B satisfying the above mentioned criterion.

One of the ideas that were used to carry out this preliminary analysis in some cases consists in
a suitable foliation of the state space X into manifolds according to a given parameter (for instance
the number of pluses of the configuration, for the Ising model) so that the solution of point I) can be
reduced to solve the min-max problems between contiguous manifolds of the foliation. This method
(used in [22], [2], [5], [15], [16]) suggests the choice of the set B that we will make in the next subsection
to treat the Ising model.

As observed above, point II) can be verified even locally in a habitat; actually this is the way
followed in many cases in the literature. Our proposal in this paper is to find a global solution to this
problem. We note that the statement 19 € X™ is equivalent to the absence of too deep energy wells
in the sense that saying V; < V,,, for each ¢ X'®, is equivalent to saying that the maximal depth
of the cycles of the decomposition of X\X?, is V,;. In many physically interesting cases (as shown
for the Ising model) if one guesses correctly the metastable state, it is easy to solve this point with a
very rough argument by constructing for each configuration n € X'* a “reducing path” w : n — 7' with
H(n) > H(n') for which max; H(w;) — H(n) < V,,. Moreover, if the last inequality is strict for each
n & no U X?, then we have that 7 is the unique metastable state, and we can also apply Theorem 4.15.

4.3 The Ising model.

As an example, we apply the above procedure to the well known case of 2D Ising model (see §2.1 for
definitions). Without loss of generality, we set, here and in subsection 5.4, J = 1.

The first step is the determination of the communication height. We use the criterion proposed in
the previous section.

Theorem 4.29 &(—1,1) = —h(£*(£* — 1) + 1) + 4¢*.

Proof. We start by defining our reference path. Equation (2.36) suggests that the best paths from
—1 to 1 are sequences of configurations that are increasing clusters ”as close as possible to squares”.

We define the reference path w* : —1 — 1 by flipping the spin at the origin and then filling (fipping
the spins from minus to plus) consecutively the shells

S; = {m €A ||zl = z} (4.30)
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starting from the point (¢, — 1) and continuing clockwise so that Nt (wj) = k.

All configurations in this path consist of a rectangle (either a square ! x | or a ”quasi-square”
I x (I — 1)) possibly with one of the longest sides not completely filled.

The maximum of the energy in w* between consecutive rectangles is achieved in the configuration
where the incomplete side contains exactly one plus. For these configurations, the number of pluses is
either k =1+ 1 and H(w}) = —hl®+4l+2—hork=1(l—1)+1and H(w}) = —hl> + hl+ 41+ 2 — h.

It is immediate to see that the maximum energy among these configurations is achieved in k* :=
£*(£*—1)+1, where £* := [2/h]. Tf 2/h is non-integer , this is the only maximum, otherwise k = £** 41
corresponds to the same energy.

We take the side-length L of the torus larger than k* + 1.

We define?

Bi={¢: No(§) <k}, (4.31)
The Theorem is proven once we show that H(F(0B)) = H(wy).

It is easy to show that the minimum of the energy on the manifolds with fixed number of pluses is
achieved only in configurations consisting of a single cluster.*

Moreover, it is immediate to see that the perimeter of a cluster is larger than or equal to the perime-
ter of the rectangle circumscribed to the cluster (this property can even be extended to configurations
that wrap around the torus, but we do not need to consider such configurations since L > k* + 1).

The perimeter of the cluster of pluses in wj. is 4¢*. In order to prove wj. € F(0B), we only have
to show that there is no configuration with k* pluses that is contained in a rectangle with perimeter
40* — 2 or smaller, but this is immediate since 4¢* —2 < 4v/k*, being v/k* the side-length of the square
with area k* (that is, the rectangle in R? of minimal perimeter among that of area k*).

O

Our next step is to show that —1 € X', namely the absence of deep wells:

Theorem 4.32 V,, < V_4 for any n ¢ {—1,1} i.e., XY™ = {-1}.

Proof. It is sufficient to focus on the local minima of the energy, namely configurations where the
pluses form rectangles (possibly encircling the torus) such that the minimal distance ||z — y||1 between
sites in different rectangles (if they exist) is at least 2.

We distinguish two cases:

1. If there exists a rectangle of pluses with a side-length [ strictly smaller than £*, we consider the
path that flips the spins in that side consecutively starting from one corner and ending with the
other corner. The energy gap between the final and the initial configuration is [h — 2 < 0. Each
step increases the energy by h, except the last one that lowers the energy by 2 — h. Since the
energy gap between the highest point in the path and the starting configuration is h(I—1) < 2—h,
for all these configurations V,; < h(£* —2) <2 —h.

2. If there exists a rectangle of pluses with all sides larger than or equal to £*, consider the path
that flips consecutively the minus spins near this side. The first step increases the energy by
2 — h, while each consecutive step lowers the energy by h. If the maximal side-length [ is strictly
larger than £*, this path reduces the energy since 2 — lh < 0. Otherwise, for a square £* x £*, the
final configuration of the above-defined path has the same energy as 77 and contains a rectangle
£* x (£* 4+ 1) full of pluses. Now, either this rectangle does not interact with any other rectangle
and we are in the case already considered (so that we can decrease the energy by iterating the
construction), or it does interact and the energy can be decreased by flipping one further minus
to plus. The maximum energy of the path is reached at the first step showing that V,, <2 —h
for all these configurations.

3This set is suggested by the fact that our reference path w* crosses all manifolds {¢ : N4 (¢) =k} (for k=0,...,L)
in a state with minimal energy in that manifold. However, we stress once again that we do not need to analyze the whole
foliation but we can focus only on the critical manifold.

4This fact can be proved by using a suitable map that associates to a configuration with a set of clusters a new
configuration where the same clusters are attached to each other.
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Since every local minimum different from —1 and from 1 falls in at least one of the two cases above,
we see that max,cx\{-1,1} V <2 — h. This implies that —1 = X™.
g

5 Gate.

In this section we first discuss the relation between gates and essential configurations. Then, we show
that the process passes through a gate with high probability and we discuss the minimality of the
gates. We conclude again with the example of the Ising model.

5.1 Essential saddles and gates.

The following Theorem shows that unessential configurations are dead-ends:

Theorem 5.1 € S(n,n') is essential if and only if ¢ € G(n,7n').

Proof. Abbreviate S =S8(n,7"), G =G(n,7"), Q= (1= 1")opt-

We first prove that ( € G implies ( essential.

For, let YW be a minimal gate containing (. It is immediate to see that there exists a path w €
(m = n"),p: such that w N W = (; indeed, otherwise { would not be pivotal for the minimal gate W.

We have either {argmax, H} = {(¢} and then ( is essential, or {argmax, H} D {(}, with
{argmax, H} N W\ {¢} = 0. In this last case no w' € (n = n')opt can exist with {argmax, H} C
{arg max,, H}\ {¢} since all optimal paths going from 7 to n' must cross the gate W; thus, again, ( is
essential.

Next, we prove that ( € S essential implies ( € G, i.e. there exists a minimal gate W containing (.

If there exists w € Q such that {argmax, H} = ¢, then ¢ must belong to all minimal gates and
hence to G. Thus, we may assume that, for all w € Q with w 3 ¢, we have {argmax, H} \ {¢} # 0.
Since ( is essential, we know that there exists @ 5 & such that {argmaxg H} \ {¢} 2 {argmax, H}
for any w' € Q.

Partition

Q=0 U0 (5.2)

with Q¢ = {w € Q: w3 (}, QF = 2\ Q.

We may assume that Q¢ # (), otherwise ( is obviously a minimal gate and we are done. We know
that w' NS # 0 for all W' € Of, where S’ := S\ {argmaxg H} # 0. Let W' be a minimal gate for Qf
inS' ie.

wrcs,
WNW £ V' e ()°, (5.3)
YW c W A" € (QC)C: JTAW! = 0.

Such a W' certainly exists, since trivially S’ is a gate for Q¢ in S’ and we can always extract from it
a minimal gate in §’. We claim that W = (U W' is a minimal gate. Indeed, w N W # ) for all w € Q,
since any w € Q not passing through W' must pass through (. Moreover, W' is minimal because we
cannot exclude any configuration from W' without destroying the minimal gate property, nor can we
exclude ¢, since @ N W' = () because W' C S’ and {argmax; H}n{ S’} = 0. O

5.2 Crossing the gates.

Theorem 5.4 For any pair of states 7, &, for any gate W = W(n, &) C S(n, ) there exists ¢ > 0 such
that
P (r;’v > rg) < ePe (5.5)

for sufficiently large .
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Proof. We can suppose the set of non—optimal paths w : 7 = £ non—empty, otherwise P (ch > Tg ) =
0; then,
do:= min maxH({)— min maxH(() (5.6)

win—¢ Ew — Ew
wE s ¢ WwEM—E) ot €

is strictly larger than zero.
We consider the cycle C := {C : ®(¢,n) <HW) + %")} By definition this cycle contains both 7

and €. Moreover, it is impossible to go from 7 to £ without crossing W or exiting the cycle. Indeed, if

w € (1 = &) opt then w crosses W, and if w & (n = &)ope then by definition of dg, w leaves the cycle C.
We have:

P (T{,’v > 7'2) <P (Tg > Tgc) < e Pe, (5.7)

where in the last inequality we used the cycle property in Theorem 2.17, and ¢ is a suitable constant.
O

5.3 Reducing the gates.

A crucial information on the tube of critical paths is given by the set G defined in (2.24).

The method proposed in Section 4.2 to implement the model-dependent input, i.e. to find a set
B satisfying (4.28), provides a gate given by W = F(0B) N'S. In general W is neither minimal nor
unique; however, we can try to extract from it a minimal gate by eliminating dead—ends.

The criterion used in this analysis is based on the observation that a gate ¥ is minimal if and only
fvneWIwe (X" — &%), withwnW=n.

In more complex situations, we can make use of Theorem 5.1 and identify the unessential saddles.
For ¢ € S(n,n"), we call bypassing set of  with respect to the transitionn — 7' aset A = A, () €
X with the following properties:

1. A>¢

2. A {n,n'}

3. H(F(0A)) = @(n,7')

4. V¢, (" € FOA) U(AN{n,n'}) 3® € (¢" = (")opt with argmaxy H = {¢',¢"}\ (AN {n,n'}).

Proposition 5.8 A saddle ¢ € S(n,7') is unessential if there exists a bypassing set A, (¢)

Proof. It is sufficient to show that for any pathw € (n = 1) opr With { € w there exists w' € (1 = ') ope
with argmax, H C {argmax, H} \ {¢}.
Let ¢' and (" be the first and the last states in 0.4 U (A N {n,n'}) hit by w, respectively.
Since w is optimal, ¢! and ¢" are in F(0.A)U(AN{n,n'}). We define ' by substituting the sub-path
of w that connects ¢’ and " with @.
a

We stress that this condition is not necessary (see fig 1).
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Figure 1: A counterexample where a bypassing set containing the unessential saddles ¢; or {» does not exist.
H(e) = H($) > H(A) > H(V).

5.4 Gates for the Ising model.

The Ising model provides an excellent example of the procedures that can be used to reduce the gate
(see Theorem 5.10 below). Besides the well known case 2/h non—integer (where the Ising model has a
unique minimal gate), we analyze here the case 2/h integer, where the structure of the gates is rather
complex (see fig. 4).

We consider the Ising model in a torus with side-length L > k*.
Let P,, (resp. P.,) be the set of configurations where the pluses form a rectangle £* x m with
a unitary protuberance attached to one of the longest (resp. shortest) sides (for m = £*, when the
rectangle is a square, we set Pg» = Pj.).
Let
We*fl = 'Pg*71. (5.9)

Theorem 5.10 For 2/h non—integer , Wp«_1 is the unique minimal gate, so that G = Wy«_1 .
Proof. We consider the set B defined in 4.31 and prove that Pg«_; is a gate in two steps:

i) every optimal path in (=1 — 1)  , hits 0B in Pp_1 UPj._;.

opt
ii) for any ¢ in Pj._, there is no optimal path in w € (( — 1), such that wN B = 0.
From i), ii) we conclude that Pg-_; is a gate. Indeed, from i) we have that every optimal path exiting

from B visits the set Pg«_1 U Pj._;, on the other hand, from ii) we can conclude that in its last exit
from B before the first arrival to 1, every optimal path has to hit Pg«_;. Thus, Pe-_1 is a gate.

i) We use the fact that the minimum of the energy in the manifold {n: Ni(n) =k* -1} =0~ B
is unique (up to rotations and translations).?

Indeed, we know that the minimum of the energy must be a single cluster. The perimeter of the
cluster of the pluses is larger than or equal to the perimeter of the circumscribed rectangle. Let
Iy and [y be the side-lengths of this rectangle. The minima of the energy are the configurations
that minimize I; + I with l1ly > k* — 1.

It is easy to see that these configurations are rectangles £* x (£* —1).

The gap with every other configuration in 0~ B is at least 2 because the perimeter is an even
number.

But the energy gap between the rectangle £* x (£* — 1) and the saddle is 2 — h; thus, all configu-
rations in 0~ B except the quasi-square £* x (£* — 1) have energy higher than ®(—1,1).

Hence, only the configurations in 0B that are neighbors of this quasi-square can be essential
saddles.

Among these, the only configurations with energy equal to ®(—1,1) are in Pg=_1 U Pp_;.

5We will refer at this technique as ”focusing”.
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ii) By contradiction, let ¢ € P;._, and let w: { = 1 be the optimal path lying outside B.
Let n be the first time when w,, has a plus spin outside the rectangle R circumscribed to the
pluses in (.
We see that H(wy,) — H(wp—1) > 2— h because a minus with at most one plus neighbor is flipped
in the transition.

On the other hand, ¥* < Ny (wnp—1) < (£*—=1)(£*+1) and the perimeter of w,_; is at least equal
to the perimeter 2((£* — 1) + (£* 4+ 1)) of the rectangle R because the minuses in the rectangle
are strictly less than £* — 1 since wy, ¢ B for any k.

Thus, H(w,_1) > —h(£*? — 1) 4+ 4¢* and H(w,) > —h{** +40* +2 > &(—1,1).

Figure 2: Energy vs. volume for the (modified) reference path for h = 4/9. The maximal energy is reached
only in (.

To show that Py-_1 is a minimal gate it is sufficient to exhibit for each { € Py-_1 an optimal path
that touches 9B only in (. Clearly, such a family of paths can be obtained by modifying the updating
order of the reference path w* between the quasi-square £* x (£* — 1) and the square £* x £* (see fig.
2).

Since 2/h is non—integer, Py«_1 is the only minimal gate because the above defined reference paths
reach the energy ®(—1,1) only in Pps_4.

O

Let us now consider the case where 2/h is integer, all rectangles with a side of length 2/h have the
same energy 4/h = 2(2/h + 1) — h(2l/h). This will give rise to a rich gate structure we are going to

analyze.
Let
Wie = Ppe (5.11)
Wm;: U ,PnU,P;n fOI‘mG{E*‘Fl)-"aL_]'}
n=£0*+1
We set
H := U W (5'12)

me{£*—1,...,L—2}

We will prove in Theorems 5.27, 5.28 that the W,,,’s are minimal gates and G = H.

A simple argument could have been used in order to prove just the identification G = H. Indeed
it is possible to show that the configurations in UmE {6 —1,...,L—2} W, are essential saddles by using
suitable modifications of the reference path that cannot be short-cut. These paths can be obtained
modifying the reference path after reaching the square £* x £* by adding the protuberances on the
shortest sides instead of on the longest sides, when needed (see fig.3). However, this description is
not sufficient to investigate the structure of the set G and to show that the W,,’s are minimal gates.

The more detailed analysis that we perform in order to get the minimality of the W,, and allows
a satisfactory characterization of the set of critical droplets and more generally of the tube of typical
paths followed by the system during the transition. Indeed the critical droplets can be identified with
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Figure 3: Energy vs. volume for the (modified) reference path for h = 2/5. The maximal energy is reached in
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the sets W,,. It turns out that the supercritical growth of the stable 1 phase can begin starting from
any rectangle I* x m with arbitrary m € (I*,..., L —2). It is remarkable that the degeneracy generated
by the choice 2/h € N gives rise to this arbitrariness in the shape of the critical rectangles. Before
touching Wj«_1 and after leaving #H the system behaves similarly to the case 2/h ¢ N.

As we will argue in section 6.4, the structure of G is crucial for the computation of the pre-factor
of the expectation of the tunnelling time as outlined in [5].

Unfortunately, the simple method used in Theorem 5.10 only allows to show that Wes_1, W
and Wy« are minimal gates; for larger m’s the manifolds at fixed magnetization cease to be a good
approximation of the boundary of the ”domain of attraction” of —1.

We introduce the bootstrap percolation map in order to define suitable sets B, such that the gates
W coincide with F(0By,).
Given a configuration n € X, we consider the configuration obtained by flipping all the minus spins
that have at least two plus nearest neighbors; we iterate this procedure and, since the map is monotonic
and the volume is finite, we reach the final configuration (denoted by #) in a finite number of iterations.
The map n — 7 is called bootstrap.

It is clear that there exists a downhill path w : n — 7.
It is immediate to see that

H(i) < H(n) — h d(n,7), (5.13)

where d(n,n') is the number of sites x where n(z) # n'(x). Indeed, n(z) < 7(x) for every x while
in each step of the updating procedure the perimeter does not increase. Another direct consequence
of the definition of bootstrap is that the pluses in 7 (if any) form non-interacting rectangles namely,
rectangles such that no site z in A exists with two n.n. contained in these two rectangles. Moreover,
all the configurations ' where the set of occupied sites is intermediate between the sets of occupied
sites in 7 and in 7, give the same 7’ = 7; thus, we are allowed to change the order in the updating
procedure without affecting the final configuration.
For I < m < L, we consider the sets

Bim == {77 : 7] contains only rectangles of pluses with
smallest side-length <[ and largest side-length < m} (5.14)

The bootstrap percolation map, used in [17] for the ”anisotropic Ising model” gives a very deep
insight into the structure of the gates and no reduction is needed. On the other hand, the analysis of
the minima on the sets 0B;,,, defined with the help of this map is rather difficult.

In order to show that for £* —1 <m < L — 2, F(OB¢+ mm) = Wi, we start proving the following

Lemma 5.15 Let. Ri,m be the set of configurations in B; ., that consist of a set of non-interacting
rectangles {a} x a}}i<n with the following properties:

max » a.>m-—n (5.16)



or
> ai+ah>2 (5.17)
i<n
or both.
Then, for | < ¢* <m < L —2, we have H(F(Rym)) = —hl(l + 1) + 4] + 2 and the configurations
in F(Ri,m) consist of a single rectangle [ x m, where

m=I0l+1 if Il<lrx<m

Frl<ms<m if I=0<m (5.18)

Proof.
Let us denote by H (a,b) := —hab+ 2(a+ b) the energy associated to a rectangle a x b. Notice that
%H(a,b):—hb+220 Sb<r(=0b=1% (5.19)

We will compare the energy of a generic n € R;,, with the energy associated to a particular
rectangle in Ry, of the form (I —§) x m or I x (I + 1+ ), where § € N.

e For n verifying (5.16), we compare it with a rectangle (I — §) x m: Let I' := min{a{,a}} and
m' := max{a},at}. We set L4, 1= max;<p I*.

H(m) = —h) I'm'+2> (I'+m)
i<n i<n

e 3+ 2(17,“,z +-1)+> m") (5.20)

i<n i<n

vV

By adding and subtracting 2m + hl,,q..m, we have

r.hs. of eq. (5.20) =

~hlmagt + 2lmaz + 1) = (2 = hlimaz) (m = 3 mi) +2(n - 1)
i<n

(5.21)
By (5.16), > ;,, m* > m — n and thus, using that l,,., <1*,
r.hs. of (5.21) > H (lnaz,m) + (n — D)hlyas. (5.22)

Hence, the set of configurations of minimal energy in Ry ,, verifying (5.16) must contain a single
rectangle of pluses, with maximum side-length m. By (5.19), we get that the minimum of the
energy associated to rectangles (I — §) x m is —hlm + 2l + 2m and is associated to rectangles
I xm. If m > £*, these are the only minima, otherwise if m = [* all rectangles (I — §) x m are
associated to the same energy.

e For 7 verifying (5.17), we compare it with a rectangle I x (I + 1 + 9):

Let us assume (without loss of generality) that Y, ., ai < Y, , ab, so that >, ab >1+1.
Let b® := min{at,}. Since, by definition of R;m, ai > [ implies a} <1 < £*, by (5.19) we have

H(n) =) H(a},a}) > > H(,ah) =—h Y blas+2) (b’ +aj) (5.23)

i<n i<n i<n i<n

Notice that )°,,, b* + aj > 21 since either af = b or 3°,., ab > >, b > 1.

We set 7 :=1— .. b® and distinguish two cases:
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— if r < 0, by using b; <[ we have

rhsof (523) > —hY aj+ 2(1 —r ag)

i<n i<n
= H(I,Zaé) +2/r] > H(l,Zag) (5.24)
i<n i<n

— if r > 0, we use that

(X dh=r) = 3 vaj+r(Tiaf—b) )

j<n ij<n i<n
= Zbiaé + Z bial +T<Z(a§ +b%) — 21 +r)
i<n i#j<n i<n
> abb' +n(n—1)+1°, (5.25)
i<n

where we used (5.17) and we estimated the sum of the off-diagonal terms by n(n —1) . By
5.25, we can estimate —h ), ., a3b’ so we have

r.hs of (5.23) > —hl(Za% — r) + hn(n —1) 4+ hr? + 2(l —r+ Za%)

i<n i<n

H(l, Z al — r) + hn(n —1) + hr. (5.26)

i<n

Since Y., a4 —r > 1+ 1, we see that the minimum of the energy among configurations
verifying (5.17) can only be achieved in a configuration consisting of a single rectangle
Ix(+1+59).

By (5.19), we get that the minimum of the energy associated to rectangles | x (I + 1+ ¢) is
—hl(l+1)+ 41+ 2 and is reached for § =0 . If [ < £*, these are the only minima and the energy
of these configurations is lower than the one of the rectangles I x m if m > [ + 1. Otherwise, if
I = ¢*, all rectangles [ x (I + 1 + §) are associated to the same energy.

O

Theorem 5.27 If 2/h is integer, for any m € {£* —1,...,L — 2} the set Wy, (see (5.9), (5.11)) is a
minimal gate for the transition —1 — 1.

Proof. Our strategy is to prove that F(0Bg«—_1,—2) = We=—1 and F (0B ) = Wy, for any m €
{¢*,...,L —2}.

Let &% denote the configuration obtained from & by flipping the spin at site x.

Let us consider n € By, with n* € F(0B;,).

Obviously, 77(z) = —1.

We observe that n = 7. Otherwise, H(n*) > H(n*) — H(n) + H(77) > H(7") while 7 € By, and
1® € OBy, contradicting that H(n") € F(0Bm)-

Now, let R be a rectangle of pluses in 7 interacting with z. We see that = must be a protuberance
attached to R. Otherwise, there would exist a protuberance y adjacent to x attached to R and
either n¥ € 0By, with H(n¥) < H(n®) or 0¥ € Bim, n¥" € OBym with Hn?") < H(n®). Hence,
H(n®)=H(n) +2-h.

Recall that R; ., has been defined in lemma 5.15, we see that n € Ry ,,,: indeed, n* contains either
a rectangle (I 4+ a) x (I + b) with a,b > 1 or a rectangle a x (m + b) with a,b > 1.

In the first case,

™) = [yl +2=2 (ai +a}) +2 >4l +4;

i<n
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Figure 4: Structure of the minimal gates when 2/h is integer. The grey areas denote minimal gates.

in the second case, we assume (without loss of generality) that the length of the north side of the
rectangle is m + b. Then, there exists an interval larger than or equal to m + b where each pair of
adjacent columns contains at least one plus in 77*. Hence,

Za’i+n>m+b2m+1.

i<n

We can use Lemma 5.15 to conclude the proof:

e Forl=/¢*—1,m = L—-2,nis arectangle (¢* —1) x £* and * € Py+_1, since Pj._; C By+_1,1_2.
e For m =1=1{* nis asquare £* x £* and F (0B~ ) = P;.

e For m > 1 = {*, nis arectangle £* x 1 where m € {€*+1,m}. If b < m, P}, C Bes,m, if i =m
we get F(0Bgr,m) = Why.

This concludes the proof that F (0B —1,1—2) = Wr—2 and F(0B¢r m) = Wp. To prove that the
Wi,’s are minimal gates, we exhibit, for any ¢ € W,,, an optimal path that crosses W,, only in (.
These paths can be obtained by the following rule:

w' € (( =& —1),pt is defined by flipping the plus protuberance and then sequentially eroding the pluses
on the shortest sides of the rectangles @j,. w" € ({ = 1)op¢ is defined by completing the side where the
protuberance is and then sequentially flipping the minuses in the layer near one of the longest sides of
the rectangles of pluses.

O

Theorem 5.28
G=H (5.29)

Proof. We have shown in Theorem 5.27 that H C G, to conclude the proof we show that # O G. By
Theorem 5.1, this is equivalent to show that every n € S(—1,1) \ H is unessential.
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To this end, we use the sufficient condition given in Proposition 5.8 and exhibit a bypassing set
A_1,1(n) for any saddle n in S(—1,1) \ H.

The configuration 7 consists of a set of rectangles of pluses (possibly degenerate) 1! x m! where
1! <mt. Let I() := max; [* and m(7) := max; m’.

We distinguish three cases:

a) If [(7) < £* and m(7]) < L — 1, we set A:= Bp+_1, 2.

b) If I(7) = £* and m(7j) < L — 1, we set A as the set of all configurations ¢ with £ = 7 and such
that every row and column of the rectangles of pluses in 7 has at least two plus sites in 7.

c) If1(7) > £* or m(7j) > L — 1, we set A as (Bgs 1,2 U 0Bg+ 1.—2)°.

We now show that A is a bypassing set A_11(7).

In cases a), properties 1) and 2) in the definition of bypassing set can be readily checked. In case
c) to prove property 1) we notice that 1 ¢ OB 12, otherwise by theorem 5.27 and by n ¢ H we
have H(n) > ®(—1,1), against the hypothesis n € S(—1,1). Properties 3) and 4) have already been
proved in the proof of Theorem 5.27: we have that F(0.A) = Wy+_1 in case a) and F(0.A) = Wr_»
in case ¢). Moreover, we showed that for any ¢ € F(0.A) there exists a suitable modification of the
reference paths w'({) € (¢ = —1),pt such that {argmax, H} = {¢} (resp. w"({) € (¢ = 1)op
such that {argmax,» H} = {(}); by joining these paths we obtain the paths &(¢’,(") for any pair
{¢',¢"} C F@A) U (AN{-1,1}).

Let us focus on case b). The point here is to show that n € A. We start showing that 7 contains a
single cluster of pluses. Since 7 is a saddle, it is not a local minimum and its energy is ®(—1,1).

H(n)=20"+2-h>>» H(I"m")= Y H+H, (5.30)

i lP=4*

where H' is the energy associated with the rectangles with I/ < ¢* and H; = 2¢* is the energy associated
with the ith rectangle when I = ¢*. We immediately get |{i : [ = £*}| = 1 and, since the energy
associated to the rectangles with {7 < ¢* is larger than 4 — h no such rectangle can exist.

Now we observe that every row and column of the rectangle £* x m(7), that is full of pluses in 7,
has at least two pluses in 7. By (5.13),

H(n) = 20" + h(€" — 1) > H() + hd(n,7n) (5.31)
By using H (7)) = 2¢*, from the previous inequality, we get
d(n,7) <" —1. (5.32)

By direct inspection we see that the configurations with energy ®(—1,1) with only one plus in a row
or column of the rectangle £* x m(7) are in H.

Property 2) of the bypassing set A can be immediately checked. To prove properties 3) and 4)
we show that F(0.A) C H and that from each ¢’ € F(0.A) there exists a downhill path going to the
configuration 7 := F(A) consisting of a rectangle £(77) x m(7)) by joining these paths we obtain the
paths &(¢', ¢").

Let ¢ € F(0A(n)) we distinguish two cases:

1. if ¢ is a neighbor of a configuration ¢(* € A with (*(z) = —1, we immediately see that H({) >

H(t*,m(7)) + 2 — h and the minima are only for { € Ppy) U Py, (,,); the path & : ¢ — 7 consists
in only one step.

2. if ¢ is a neighbor of a configuration ¢* € A with (*(z) = +1, there exists in { a row or column
with only one plus. Clearly, H({) > 2 — h + H(l,m), where [ = £* — 1 or m = m(7]) — 1. The
minima are only for ¢ € P;n(ﬁ _,; namely, the pluses in 5 form a rectangle £* x (m(7j) — 1) with a
protuberance on one of the sﬁlortest sides. The path @ : { — 7 consists in filling the incomplete
side of the rectangle £* x m(7).

O
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6 Final discussion.

As already discussed in the introduction, this paper is mainly motivated by the need to give partial
results about the metastable behavior of some models where we could not get a sufficiently good control
of the energy landscape. The effort of determining the weaker hypothesis at the basis of these partial
results allowed to clarify many aspects of the problem.

Indeed, we separated the hypotheses needed to control the tunnelling time from the ones needed
to control the tube of typical paths.

As far as tunnelling time is concerned, we separated the hypotheses to get convergence in probability,
in £; and in law of the variables X := 5 In73..

Concerning the tube of typical paths, we propose to give a partial characterization (the most
important one from a physical point of view) by identifying the minimal gates.

This better understanding of the problem allows to clarify the relationship among the different
approaches to metastability in the Freidlin-Wentzell regime. This section is devoted to discuss in more
details the differences between the approach proposed in this paper and previous results.

6.1 Why in some previous approaches tunnelling time and exit tube came
jointly.

We want now to discuss the approach followed in several previous papers (see [17], [18], [11], [23], [9],
[10]), treating metastability for different lattice models and to make a comparison with the method in
the present note. In those papers a common strategy was used. A key ingredient was the possibility
to find a connected set D containing 79 and not intersecting X'® satisfying the following conditions:

(a) There exists a path w* : g — X'*® such that {argmax_.H} C F(9D)
(b) Let P = F(0D) and let I' = H(P) — H(1no). For any n € D we have

ﬁh_)rréo]P’ (rh < 79 and 7)1 < eT0) =1 (6.1)
where 'y < T.
(c) Let .
P={n¢(DUID):Jo € P downhill communicating with n} (6.2)
For any 1 € P we have
Jim P (rh. <efo) =1 (6.3)

where 'y < T.

The above conditions characterizing the set D are a strengthening of the previous hypotheses
characterizing the set B introduced at the beginning of Section 4.2 (see 4.28)

D represents, in practice, the subcritical states, namely the ones typically evolving towards 1y before
hitting X*. Condition (b) says that from any configuration in D the system recurs in 79 before exiting
D, in a time exponentially smaller than e°". From (a) it is easy to deduce that the communication
height between 19 and X* is H(P). It is easily seen that Cxs(no) is contained in D so we can use the
exit time from Cx: (7o) to get a lower estimate of the tunnelling time.

With high probability when our process crosses the boundary 0D, during the first excursion from
1o to X%, it passes through F(9D) = P. This follows from condition (b) and eq. (2.18), using that, by
reversibility we have

lim P (Tg < eﬁ<H(<>*H<">*5>) =0 (6.4)

B—o0

for any n,{ € X and § > 0.
Then, possibly after many attempts, the process will eventually exit downhill from DU 0D passing
through P. Condition (c) ensures that from P the first hitting time in X'® is exponentially shorter
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than €T, so the Txs and Tsp are of the same order. In this way it is possible to get an upper estimate
of the tunnelling time without supposing total absence of deep wells.

In order to use this method, in many of the previous works, the authors needed a precise knowledge
of the set P. Then, to verify condition (c), they used other very detailed model-dependent information,
namely they determined the set P and were able to control the tube of typical path to X* emerging
from states in P.

We clearly see that in this approach the problem of tunnelling time is solved jointly with the one
of the tube of typical paths.

In the language developed in section 4 we can say that the tube of typical paths from P to X’ is
a habitat without deep cycles. This requires a local detailed analysis of the energy landscape instead
of a rough but global analysis as the one used to prove recurrence to {fy U X*} in a sufficiently short
time. On the other hand, this local information is enough to get the result in probability, but not in
L1 since, for this purpose, it is necessary to have a global control of deep wells in the whole energy
landscape.

As we discussed before, in [17], [18], [11], [23], [8], [9], [10], due to the strong conditions required in
the definition of the set D, it was easy to get that P := F(D) is a minimal gate.

This approach could be probably extended to cases with many minimal gates by relaxing hypothesis
(c). Anyway, we remark that the structure of the gates and the behavior of the process, when crossing
them, is a key point in the description of the tube of typical paths.

In this note, we call the attention on these sets and give general results on their structure. The
strategy we use consists in observing the process when it crosses suitable target manifolds (the sets
OB with B as in (4.28)). In order to complete the picture and give the full information on the tube
of typical paths, we should follow all the optimal paths emerging from any essential saddle until they
reach a new essential saddle or X* U X™. This involves a model-dependent analysis that is often quite
delicate. However the approach proposed in this paper could have some advantages:

1) the analysis needed to find a set B with the properties in (4.28) requires just a description of the
energy landscape whereas (6.1), which is formulated in terms of probabilities of hitting times is, at
least in principle, a stronger condition;

2) the general notions and structure properties concerning the gates that we develop, turn out to
be useful in the perspective of determining the typical tube. Indeed, for example, the preliminary
knowledge of the minimal gates allows to restrict the search of optimal paths to the subpaths emerging
from essential saddles.

6.2 An example: 3DK versus 3DG.

In order to give an example and a concrete comparison between the approach proposed in this paper
and more powerful but more difficult theories, we discuss here the differences between the analysis of
metastability in non-conservative and conservative dynamics, having in mind the results on the 3D
Glauber and Kawasaki dynamics in finite volume, [2] and [16] respectively.

Let us first briefly recall the main ideas used in [2] for the case of Glauber dynamics. We introduce
the Glauber dynamics for the 3D Ising model in complete analogy to what we did in section 2.1 for
the 2D case. We still assume h > 0. It is easy to see that, as in dimension 2, the configuration +1,
with all spin plus, is the stable state, i.e. the unique absolute minimum of the energy H (o), while
the configuration with all spins minus, —1, for h < 2 is a local minimum. To study the asymptotics
of the tunnelling time, it is important to determine the communication height ®(—1,+1). To this
purpose one can use the strategy already explained in the previous section in the example of the 2D
Ising model, see Theorem 5.10. Indeed, as before, to every configuration o it is possible to associate
the union of unitary cubes corresponding to plus spins of o, this region is called a polyomino in [2].
The energy of the configuration ¢ can be easily written in terms of the area, a(c), and the volume,
v(0), of the corresponding polyomino: H (o) = Ja(o) — hv(c). This remark suggests that, in order to
determine the communication height between states or set of states, it is useful to consider the foliation
of the state space in terms of volumes of the corresponding polyominoes. Indeed, every path going from
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—1 to +1 has to cross every manifold corresponding to fixed volume. In this way the solution of the
min-max problem is reduced to minimize the area at fixed volume. Following [1], we call quasi-cube a
parallelepiped with sides m, (m + §), (m + ), with 6,6 € {0,1}, a quasi-square a parallelepiped with
sides I, (I + @),1, with & € {0,1} and a bar a parallelepiped with sides k,1,1. We define minimal
polyomino a configuration with minimal surface among all those with the same volume, and principal
polyomino a configuration whose single cluster is a quasi-cube with a quasi-square attached to one face
of the quasi-cube and with a bar attached to one side of the quasi-square (see [1] for more details).
Since for each n € N there exists a unique 6-tuple (m, 1, k, d, 9, «) such that:

n=m(m+)(m+9) +1(l+a)+k. (6.5)

where m,l,k € Ny, §,9,a € {0,1}, and 6 < ¥, k <l+a, l(Il+ ) +k < (m+ J)(m + ), then it is
natural to associate with each n € N a principal polyomino.
The following discrete isoperimetric inequality is a key ingredient in the analysis.

Theorem 6.6 Alonso and Cerf [1], Theorems 3.1.and 3.6)

(a) All principal polyominoes are minimal polyominoes.

(b) The set of minimal polyominoes of volume n coincides with the set of principal polyminoes of
volume n if and only if n is of the form “quasi-cube 4+ quasi-square” or “quasi-cube —1”.

Item (a) of Proposition 6.6 was in fact already proved by Neves [22]. This first result is sufficient to
find the communication height ®(—1,41). Indeed, it turns out that the maximal energy of principal
polyominoes, as a function of the volume, is obtained for a critical value of the volume, v(o) = n.,
where 1, is a suitable function of h. Call I this energy. Since it is possible to exhibit a reference path
w: —1 — +1 with max; H(w;) =T, we can conclude that T is the communication energy.

Ttem (b) is the crucial ingredient to complete the analysis of the asymptotics and of the tube of
typical paths. For the magic numbers corresponding to volumes of “quasi-cube + quasi-square” the
minimal polyominoes are just given by the principal polyominoes. Note that this is no longer true
for “general” volumes. However, the information at magic numbers is sufficient to completely solve
the problem. This is the 3D analog of what we called “focusing” in the discussion of the 2D Ising
model (in theorem 5.10). In fact if we consider the maximal cycle C;1(—1) containing —1 but not
containing +1, it is possible to show that the configuration of minimal energy on its boundary are
principal polyominoes of volume n.. In other words, since n. is of the form magic number +1, the
complete information on configurations minimizing the energy on the manifold corresponding to the
volume given by the magic number n. — 1, is sufficient to obtain a geometrical characterization of the
configuration of minimal energy on the boundary of C;41(—1).

By means of the above model-dependent analysis ben Arous and Cerf are able to apply the theory
developed in [6], to determine the tube of typical path after exiting Cy1(—1) from which the the
asymptotics of tunnelling time, can be derived in probability.

Notice that this proof does not need a control of stability of configurations far away from the tube,
and thus the evaluation of the mean value of the tunnelling time is not done.

Let us now consider a “local version” of 3D Kawasaki dynamics introduced in [16]. Consider a
lattice gas in a finite box A C Z3 with each configuration 5 € {0,1}* we associate a grand-canonical

hamiltonian
H(n) =-UY_ n@)n(y) + A n(x) (6.7)
(z,9) TEA

where —U < 0 is a binding energy, the first sum is on pairs (z,y) of n.n. sites inside A_, the interior
of A, obtained by removing the internal boundary (0~ A) from A, ie. A_ := A\0"A and A > 0is an
activity parameter. The standard Kawasaki dynamics is usually defined in an infinite volume given
by a Metropolis Markov chain where the occupation variables of each pair of n.n. sites, (z,y), are
exchanged with a rate

e—ﬂ[H(ﬂ(m’y))—H(ﬂ)H (6.8)
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with 7(*%) the configuration obtained from 7 by interchanging the occupation number at z,y. The
local version introduced in [16] is the following: inside the box moves are Kawasaki exchange and
on the boundary a process of creation and annihilation of particles takes place at rates e 2? and 1,
respectively. Here e~ 28 represent the gas density in the limit of large 3.

By using the transformation n = HT", it is immediate to verify that this lattice gas hamiltonian
corresponds to the Ising hamiltonian with J = % and h = 2U — A. As in the case of the spin variables,
we can write the energy in terms of the area and the volume of the associated polyomino of occupied
sites in A_ and the number of particles in 8~ A: H(n) = Ya(n) — (3U — A)v(n) + A, c5-2 1(z). The
unique ground state is then 1, the configuration with ones precise in A_ and empty in 8~ A, and 0,
the empty configuration, is a local minimum for A < 3U.

Arguments similar to those used in 3DG, can be used in 3DK to evaluate the communication height
$(0,1). Actually the same idea of foliation of the state space in terms of the volume of the cluster,
with the associated results by [1], can be used in the conservative case to find the solution of the min-
max problem. Let ' := ®(0,1). Again the result on magic numbers produces an effect of focusing.
However the min-max problem between contiguous manifolds happens to be much more complicated
as a consequence of conservativity of the dynamics so the gate of the transition is much larger. Indeed,
as explained in details in [16], Kawasaki moves produce a motion of matter along the boundary of
the cluster that takes place with high probability before the growth or the shrinking of the cluster.
This motion, at fixed number of particles, is a conservative effect producing a sensitive enlargement
of the gate in the transition from the 0 to 1. In other words, due to this conservation there is a large
degeneracy of states at the same minimal energy on the boundary of C1(0). For this reason it becomes
really very hard to determine the typical evolution after leaving C1(0), as done in the non—conservative
case.

However, with a very simple argument, we can prove that in 3DK there are no deep wells. More
precisely in [16] it is proven that there exists Iy < I' such that A, = {0,1}. This is proved by finding,
for each configuration 7 different from 0, a suitable path starting at 1 and reaching 1 within an energy
To.

Using this result we can apply the approach proposed in this paper to obtain asymptotic estimates
on the tunnelling time 79 in probability and in £! and we can prove its asymptotic exponential
distribution. Actually in [16] the results in £! and in law are not derived. An example of a gate
configuration is given in the picture.
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Figure 5: A critical configuration with m. = 20, I = 10 and §. = 0.

6.3 Gates and pre-factors.

One of the main aspects in this paper is to focus the attention on the notion of minimal gate, a partial
but central description of the tube of typical paths.
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Unlike the preceding works, we analyze here the general situation where we can have many minimal
gates. This fact poses many new and interesting questions.

We discuss here the relationship between the gates and the results in [5]: [5] is the application
of the powerful method developed in [3] to study metastability in a quite general setting where the
state-space A may depend on a parameter 3 of the system. Contrary to our approach, where £;
estimates are deduced by probability estimates on cycle-paths, in the approach in [3] the results in
probability are obtained via a very sharp control of the Laplace transforms of the tunnelling time. The
tunnelling time is described at the level of its mean value and distribution in terms of the quantities

P (7’577 < 7',7) (6.9)

to be computed directly from the stochastic matrix P that defines the dynamics.
In the context of [3], metastability is characterized by the existence of a sequence of sets { Mg}z
with the property

P (7'77, < 7'7777) -0
sup —0————

nn' eEMg P (TC < Tc) B—ro0
CEXﬁ Mﬂ ¢

(6.10)

Under the non-degeneracy hypothesis that for any pair 7,7’ € Mg and any set Z C Mg\ {n,n'}

the ratio
P (7} < T,’,’)

P (Tgl < 7'77,’)
either tends to zero or to infinity as 8 goes to infinity, the following Theorem is proven (among other
results characterizing the low lying spectrum of the Markov generator):

(6.11)

Theorem 6.12 [from Theorem 1.3 in [3]]
Let Mg be a set with properties (6.10), (6.11).
For any n € Mg, let Mg(n) := MgNZ, (see (2.10) for the definition of 7,), )

Bt ) = k (]P’ (T;Aﬁ(n) < Tg))fl (1 +o(1)) (6.13)

and, for any t > 0,
P (Thupi) > BTy ) = ¢ A+ 0(1) (049

The constant  is explicitly given and can be read as the degeneracy of the bottom of the cycle Cz, ().

Results about the typical paths are not taken into account in this approach.

All model-dependent aspects of the problem are somehow hidden in the probability P(TJ’ZAg(n) <))
and the strength of this method relies on the precision in the computation of this quantity. In the case
of Metropolis dynamics in the Friedlin-Wentzell regime, quantities like this can be directly computed
by using the well known Dirichlet representation (see e.g. [19] Theorem 6.1)

1 : — [ max !
Pt <) = g0 int, 3 a6 e e HOTEN Q) —n))’, (619)
¢,¢'ex

where #/ := {h: X = [0,1]; h(n) =0, h(§) = 1}.
By taking h(¢) as the characteristic function of C¢(n), we immediately get

P (Tg < r,’;) < CyeP@me—Hm) (6.16)
where C < |0C¢(¢)| max¢ ¢rex (¢, ¢"). On the other hand, the simple one-dimensional argument used

in [5] eq. (4.5) gives
P (7 <) > Cre PO, (6.17)

31



with Cy > |X|_1 minC,C’eX{Q(Ca CI) : q(Ca CI) > 0}
We remark that by (6.16), (6.17) it is not difficult to show that (6.10) is the dynamical counterpart
of g € XY™ and corresponds to

sup  [(®(n,n') — H(n)) — (®(, Mp) — H(()] >0 (6.18)

n,n EMg
(€EXs

The non-degeneracy hypothesis (6.11) of Theorem 6.12 implies that g = X™ and is needed to ensure
the exponentiality of the law of 75 /E(75.) (see Theorem 4.15).

The estimate on the mean tunnelling time given by (6.16), (6.17) via Theorem 6.12 are considerably
stronger than the corresponding (4.10) given by our method and can be pushed to Cy = Cs + o(f)
with a finer analysis.

As noticed in [5], this computation can be done under general hypotheses and was carried out in
the case of a unique minimal gate with the further simplifying hypothesis that the states in the gate
are not connected to any other in one step.

We want now to give a result that reformulates and slightly generalizes Lemma 3.2 in [5]:

Theorem 6.19 If 90 = A" and the minimal gate W between 79 and X* is unique and made of
isolated points (i.e. ¢(¢,¢") =0 for all {¢,¢'} CW).

Let Q := {n €X: 2(nm) <T = é(n,Xs)} \ S(no, X*) and P := Yeccy (o) P(CE)s B =
ZEQC«YS(WO) P(¢,€)

hen,
I[D (TZ.OS < 7‘77(?) = Knoeﬁ(é(WOaXs)fH(no))(l + 0(1)) (620)
With o N
Kol = L (14 01)) = P (6.21)
cesS(m,xs) PC TP ceW(m,xe) PE TP

Proof. The proof is based on the notion of minimal gate that turns out to be crucial for the analysis of
the structure of the set of saddles. It can be obtained along the same lines as the ones of Lemma 3.2 in
[5] to which we refer: here we only outline some specific points. it is easy to see that the hypothesis of
uniqueness of the minimal gate implies that WW C 0Cx=(no). Suppose first all the saddles are essential;
in this case we can directly apply Lemma 3.2 in [5] to get the result. On the other hand, if there are
unessential saddles, it becomes crucial to use in our construction the set Q. that contains Cxs (1)
together with all cycles that can be connected to Cxys (1) through unessential saddles. Using this set
@ it is possible to reduce the study of the pre-factor to the analysis of single steps of the dynamics as
it is needed in the definitions of p¢ and p¢ that involve only the one-step transition probabilities. [

It is immediate to see that p. is exponentially small if { is unessential, showing that only the states
in the minimal gate WV (supposed unique) contribute to the pre-factor in (6.21).

It is a very remarkable fact that the set YW emerges in this context as the crucial set to be inves-
tigated. A natural conjecture arises: is it the case that unessential saddles do not contribute to the
pre-factor K, in (6.21) also in the case we drop the hypothesis of uniqueness of the minimal gate? As
we already said, the answer is negative:

In figure 6, we give two examples, apparently very similar. Only in the first case though, the
unessential saddle ¢ does not influence the pre-factor.

We conjecture that ¢ does not influence the pre-factor whenever there exists a cycle C 5 X*¥ U ng
that is crossed by every optimal path w € (¢ — {X® Uno}). Heuristically, this property entails that
the process when reentering C looses memory of its visit to (. More precisely, there exists § > 0 such
that for any £ € C,

P (Ti < Tf,o) =P (Tﬁgs < Tf,o | ngsu,m < Tg) 1+ O(e‘ﬁ‘s)) (6.22)
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Figure 6: Two examples where H(e) > H(¢) > H(A) > H(V). Only in case a) the unessential saddle ¢ does
not influence the pre-factor C_1.

Indeed,
P (TfY < 750) =P (Ti <7t Ug) +P (TC < rfwu,,o) P (ng < Tgo) =
P (ri <t uc) +P (r§ < rfcsu,m) []P’ (Té < r§(sUno) P (ng < 750) +
P (7% < 7S] (6.23)

Since all optimal paths w € (¢ = X'® Ung),p: must enter C, by the same argument used in the proof of
theorem 5.4 and by Theorem 2.17 we get P (Té < ngSUno) =1— 0(e2P%) for suitable 6.
Hence,

Lhs. of (6.23) = IP(TXS TIOUC)+
[a-

P (TC < TXSU,IO) (e~20%))P (rfw < Tgo) + O(e—W)] . (6.29)

and

P (r§ <Tp UC) (1 +0(e —2ﬂ5)w)

]P’('rk“s <Tn0u<)

- 1-P (7€, 3
P (TEYSUUO < TC) (1 + O(e—289) (TX Uno<:<))

£
P(szuno <T<)

(6.25)

Now, since (¢, X* Uno) < H(¢), by Theorem 2.17 P <T§YSU”0 < Tg) >e B and P (Ti-s < TE UC)

e~ P for any ¢. (6.22) follows.

In the example of figure 6, we see that while in case a) the trajectories leaving ¢ must enter the
cycle given by the two states denoted with the symbol ¢, in case b) the visit to the state { must be
taken into account in the computation of the transition probability.

We will further explore the connection between gates ad pre-factors in a forthcoming paper.
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