Pauli Approximations to the Self-Adjoint Extensions
of the Aharonov-Bohm Hamiltonian
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Abstract

It is well known that the formal Aharonov-Bohm Hamiltonian operator, describing the
interaction of a charged particle with a magnetic vortex, has a four-parameter family of
self-adjoint extensions, which reduces to a two-parameter family if one requires that the
Hamiltonian commutes with the angular momentum operator. The question we study
here is which of these self-adjoint extensions can considered as limits of regularised
Aharonov-Bohm Hamiltonians, that is Pauli Hamiltonians in which the magnetic field
corresponds to a flux tube of non-zero diameter. We show that not all the self-adjoint
extensions in this two-parameter family can be obtained by these approximations, but
only two one-parameter subfamilies. In these two cases we can choose the gyromagnetic
ratio in the approximating Pauli Hamiltonian in such a way that we get convergence
in the norm resolvent sense to the corresponding self-adjoint extension.
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1 Introduction

The Aharonov-Bohm Hamiltonian operator, describing the interaction of a charged particle
with a magnetic vortex, that is, an infinitely extended, infinitely thin, impenetrable magnetic

flux tube, is given by
1

— —A 1.1
= (p— AP (1)
where the vector potential A is given by
_¢kxr
1.2
T on g2 (1.2)

¢ being the flux of the tube. It is well known [1, 2] that this formal operator has a four-
parameter family of self-adjoint extensions, which reduces to a two-parameter family if one
requires that the Hamiltonian commutes with the angular momentum operator. These self-
adjoint extensions can be obtained formally by adding a delta-function. The question we
study in this paper is which of these self-adjoint extensions can considered as limits of
regularised Aharonov-Bohm Hamiltonians, that is Pauli Hamiltonians in which the magnetic
field corresponds to a flux tube of non-zero diameter.

This problem has been studied by Bordag and Voropaev [3] and by Moroz [4]. These authors
make the connection between the regularised Hamiltonian and the self-adjoint extensions of
the A-B Hamiltonian and show that the gyromagnetic ratio has to be chosen in a particular
way. They do this by by matching the bound states as the radius of the vortex tends to zero,
but do not prove convergence of the operators. Also they do not take into account the second
parameter in the two-parameter family of self-adjoint extensions mentioned above. Here we
proceed more sytematically to extend the results of [3] and [4]. We consider convergence
in the norm resolvent sense. We show that not all the self-adjoint extensions in this two-
parameter family can be obtained by these approximations, but only two one-parameter
subfamilies. Tamura [5] has done related work but with a different emphasis.

When the A-B Hamiltonian is decomposed into the subspaces corresponding to the values of
the angular momentum m € 7, it turns out that if /V is the integer part of the dimensionless
parameter o« = ¢e/hc, then the Hamiltonians restricted to m = N and m = N + 1 are not
essentially self-adjoint while the ones with other values of m are essentially self-adjoint. The
operators corresponding to m = N and m = N + 1 each have a one-parameter family of self-
adjoint extensions. We denote these parameters in (—oo, 00| by v and vy respectively,
vy = o0 and vy 41 = oo corresponding to the reqular self-adjoint extension. We prove that
for the subfamilies vy € (—00,0), vy+1 = 00 and vy11 € (—00,00), ¥y = 00 we can choose
the gyromagnetic ratio, g, in the approximating Pauli Hamiltonian in such a way that we
get convergence in the norm resolvent sense to the corresponding self-adjoint extension. The
approximating Hamiltonian is
1 eh

Hp = 5—(p~ “Ap)’ - k- By (13)
with Bg = curlAg. The vector potential Ay is 0 inside a tube of radius R away from its
boundary and given by (1.2) outside the tube away from the boundary. It was shown in [3]
and [4] that to obtain a non-trivial limit, g must depend on R and must tend to 2 in a certain
way. For a discussion of the physical significance of this limit we refer the reader to these
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papers. The same result holds here for the self-adjoint extensions with vy, € (—00,00),
vy = oo. However, for the self-adjoint extensions with vy € (—00,00), vy = oo, which
were not considered in [3] and [4], ¢ must behave like —2 4+ 4(N + 1)/«

Two other approximations have been considered, namely, the case when the magnetic field
inside the tube is homogeneous [3, 4] and the case when it is proportional to 1/r [3]. The
situation in these cases is similar but more complex. We deal with these briefly at the end
of the paper.

The paper is set out as follows. In Section 2 we give the basic properties of the A-B
Hamiltonian. In Section 3 we carry out the approximation to the A-B Hamiltonian with
an infinitely thin infinitely extended cylindrical shell of non-zero radius R. In Section 4 we
smooth the flux shell to give it a non-zero thickness. In this section we only sketch the
proof. In Section 5 we discuss the other two approximations. In the Appendix we give the
asymptotic behaviour of the Special Functions needed for these approximations.

2 The A-B Hamiltonian

In the sequel we set i2/m = 2 and e/c = 1 so that the A-B Hamiltonian is formally the
operator
H = (iV +A)? (2.1)

in L?(R?), where the vector potential A is now given by

kx r
R

A=aqa (2.2)

,
We let a = N + 9, where N € Z and 0 < 9 < 1. Without loss of generality, we shall assume
that a > 0.

This Hamiltonian is discussed in great detail in [1] and [2]. The analysis proceeds by decom-
posing the underlying space and studying the radial Hamiltonians

hyp = — =~ (2.3)

in L2((0,00),rdr). Taking as domain C§°((0,00),rdr), these operators are essentially self-
adjoint, except for the cases m = N, N + 1 which have deficiency indices (1,1). These two
operators therefore have self-adjoint extensions hy,, and Ayii,,.,, parametrized by vy
and vy11, where —0o < vy, Vni1 < 00. These self-adjoint extensions can be identified with
the boundary conditions

Vm¢0 = <Z517
where
g0 = limr" =g (r)

and

¢1 = lim r—m— [gb(r) — T"m_o‘|¢0] )

10

A four-parameter family of self-adjoint extensions of H4? can be constructed from these.
If we consider only self-adjoint extensions which commute with the angular momentum
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operator, this reduces to a two-parameter family. For this particular choice, the self-adjoint
extension, HY, with v € (—o0, 00]?, is just the direct sum

HY = hyuy ® byt ® €D b

m=—0oQ

m#N,N+1

We shall write H> for H” with v = (00, 00). Let gg, m = (hm — k?)~*. Then

s
G, m(r,1') = 5 Jjma (k<) H (k7). (2.4)
where 7. = min{r,7’} and 7~ = max{r,7'}. The resolvents g; = (hm,, —k*)~', m =
N, N + 1, are given by
g (") = g, m(r,7") + c(m, v, k) H ‘m a\(k‘T)Hﬁb o (7"), m=N,N+1, (2.5)
with
—71‘2 k 2lm—a|
k) = — 2.
) = sy (3) 20
-1
' (1 — - k 2lm—a|
% <e—z7r|m—a| ( |m|ina| al) <§) + v (|jm — CVD) ’
c¢(m,o00,k) = 0. (2.7)

Finally, the resolvent of the Hamiltonian G¥ = (H” — k*)~! is given by (see [1]):

GY = g% © gyl © @ Tt (2.8)
mZZJ_V,_Noi-l
Note that the operators h,,,,, have one bound state, £, given by

<@)2'm‘“' _ _£<1 +|m —al)

2 1—|m—al) ™

m=N,N +1. (2.9)

3 Approximation by Finite Flux Tube

The Aharonov-Bohm Hamiltonian consists of an infinitely thin magnetic flux tube. As a
first approximation to H4Z, consider a flux tube of radius R > 0, with a é-function on a
cylindrical shell (following [3] but see also [6], [4]). That is we take the vector potential

0 r<R
Ap = 1
R aer r > R. (3.1)

72

Then k- By = %5 (r — R), so that formally, the Hamiltonian is then given by:

Hi = (iV + Ag)? + %s(r _R) (3.2)
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where 8 = —ga/2. The components in L?((0,00),rdr) corresponding to the angular mo-
mentum m of this formal operator are

10 0 (m—a®O(r—-R)?> 2

——r— —0(r—R 3.3

ror or * r? * R (r ) (33)
where O is the unit step function. The procedure for adding a point interaction at r = R
to a radial Hamiltonian is standard (cfr. [7] Sect. 1.3.1). The point we make here is that f3,
the strength of the point interaction, has to depend on R and « in a definite way so that the
self-adjoint extensions obtained in this manner converge to the A-B self-adjoint extensions
as R tends to 0.

Consider the following operator in L?((0, c0), r dr)
10 0 N (m —aO(r — R))?

k= = o B P
with the closure of C§°((0,00) \ {R}) as its domain ([7], p. 75) i.e.
D(hm, r) = {g € H**((0,00),7dr) s.t. hy, rg € L*((0,00),7dr)
and g(R) = 0}. (3.5)
Then its adjoint has domain ([7], p. 75)

D(h,, r) ={g9 € H*2((0,00) \ {R},rdr) N H*'((0,00), rdr)
s.t. hy, rg € L*((0,00),7dr)}. (3.6)

(3.4)

The equation hy, rd = k*¢, (k) > 0, has one solution in D(h}, ) for all values of m € Z
(see Note 1, Appendix 1), given by

Jimi(kr r<R
Pmi(r) = { Blml((k:) o ) ro R (3.7)

Hi, o)

where B,,(k) is chosen so that the condition ¢, x(R+) = ¢mi(R—) is satisfied. Thus the
operators h,, r have deficiency indices (1, 1). Self-adjoint extensions hfh r are obtained by
imposing the following boundary condition on the domain of h,, g:

S B) = B) = PO (), (58)

where [(a, R) is a constant parameter ([7] p. 76). Note that we do not want the parameter
B(a, R) to depend on m since it represents —ga /2. We shall henceforth be writing 3 for this
parameter to make the notation less cumbersome.

Next we find the resolvent g, . p = (hl) —k?)~'. Note first that g9 ,, p = (hm, R—k*)7"
(k) > 0, is given by (Note 2, Appendix 1)

(. A® (k)
Z—;J‘m‘(kﬂ"<> <B7(2)R k) J|m|(k7r>) + H (k;,r>)) ) r, T/ < R
. 1)
Ge,m, n(r7) = | (Jm—a(kT<) j(l) Z Hl(nla of (K7 <)) H\(;L)—a\(kr>)7 rr'>R o (39)
2A(1) RO J|m|(k7"<)H\iL) a\(lﬁ">) otherwise
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where the constants AQ?R(k), Ag?R(k), B,%’)R(k) and Bg?R(k) are given by:

Wdim, H, kR
AL (k) = il 'm “']( ) (3.10)
W[J\m—a\ |m a|](kR)
W\ Jimis Jym—all (KR
Bk = s T} (3.11)
W[Hlm af Jim—al)(kR)
wiH) ,H kR
Ag?R(k‘) _ [ |m— a| \m\]( >’ (3.12)
Wdim, H, kR
B k) = I 'm(l ol (3.13)
W iy, Hip) (KR)
Here W[ -, -] denotes the Wronskian. Then the resolvent of hfn r is given by (Note 3,
Appendix 1):
3 _ 0 B 0 o P
= 9% m, R~ (- R®g (-, R), 3.14
9k, m, R = 9k, m, R 1+59;27 N R(R7R>9k, ,R( ) Ik, ,R( ) ( )

for (k) > 0. We are interested in the behaviour of g,f, m, r(r,7") for small R. We note first
that }zirr%) 9r. m. #(T,7") = gk, m(r,7"), which is the resolvent of the regular operator. For small

R,

00 B e (R = 2, (BBl HY () HO k), (315)
where
. B s o\ Ime
enk) = T —al T fm)E(m — o) <§) | (3.16)

If |m—a| >1(ie if m¢ {N,N+1}), then the second term will either go to zero, or to a
constant multiple of Hﬁ) ((kr )Hﬁ of(kr"). Now IZ08 (kr) is not in L?((0, 00), rdr) since
it behaves like =™~ for small r (see Note 1, Appendix 1). So in the latter case, the limit
is not the kernel of a rank-one operator in L?((0,00),7dr). In particular, this means that
it cannot be the kernel of a resolvent operator. Thus a meaningful non-zero limit for the
second term in equation (3.14) exists only for the cases m = N, N + 1. It shall be shown
later that for small R, we get

e=imm=alT(1 — Im — o 2lm—al
9 o (R, R) =~ I (1_ (2 NG |)) <k‘73) ) (3.17)

[m —al +[m| im —al +[m|) I'(jm — af

\m a

For the case r,’ > R (the other cases are straightforward), this results in

EEAGIE
B(1 —&(k)R*m ) Hio

[m — af + |m|

ey 2671 — m —al) (BT
o) = (|m — a| + |m|) T(jm — af) (2) : (3.19)

(k‘T)H(

Im—a(

T g7 2GR m(r7) — (kr'),  (3.18)

1+

where
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The second term in (3.18) converges to a non-zero limit if 5 has the following R-dependence
for small R:

2lm — aly, ol
~ —(jm — 11— —————" Ram=el ) 3.20
5~ (fm —al + ) (1 - ATl e (3.20)
Then we obtain

lim g,i m, RT) = g, m(r,77) 4 c(m, v, k)Hﬁ)_M(kT)anll)_a'(kr’). (3.21)

R—0

This gives the correct expression in (2.5) for the kernel of the resolvent of some self-adjoint
extension of h,,, m = N, N + 1.

The following are the only cases of interest:

26
(I) if f ~ -« (1 — —I/NR%), then the second term in equation (3.14) approaches
Q@

1. a non-zero limit for m = NN, corresponding to the self-adjoint extension Ay ,,;
2. zero limit for m = N + 1, corresponding to the regular self-adjoint extension A y.1 oo;
3. zero limit for m # N, N + 1, corresponding to the self-adjoint operators h,,.

2(1 — 6)

(IT) if B~ (@ —2(N + 1)) <1_m

tion (3.14) approaches

I/N+1R2(1_5)), then the second term in equa-

1. a non-zero limit for m = N + 1, corresponding to the self-adjoint extension hyy1,y,;;
2. zero limit for m = N, corresponding to the regular self-adjoint extension Ay ;

3. zero limit for m # N, N + 1, as before.

We can state the above results as a Theorem:

Theorem 1
Let

Hp= P ) g (3.22)

m=—0Q

Then Hg(a’R) converges, as R — 0, to one of the self-adjoint extensions HY of the A-B
Hamiltonian only if either

Bla, R) + «

(I) 728 — 20y
1y Ble R) = a+ 2N + 1)
a, R) —a+ +
(II) 20 —2(1 = 0)vNya-

In case (1) Hg(a’R) converges in the norm resolvent sense, as R — 0, to H¥~ ) and in
case (I1) to H (> vn+1),
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Proof Let us consider case (I), case (II) is similar. Since

H(HﬁaR k‘2) G]S/Nv OO)H (323)
a,R v o,R)
= max Hgf} N, )R - gkaN ﬁ( — 9k, N+1 sup Hgk — 9k, mH
m;éNN—l-l

we not only have to prove that the the terms in the righthand side of the above equations
tend to zero, but we have to show that || glf’(o,ir’f)R — gk, m|| tends to zero uniformly in m. To
do this we need to obtain detailed upper and lower bounds on the special functions J,, and

H,Sl). These are given in the Appendix.

The first term in the expressions for g,f(%R)R is gy . g and first term in the expressions
for gy ., 18 gr, m- Therefore we start with the following lemma. Here || - || denotes the
Hilbert-Schmidt norm, and of course || - || < || - ||2-

Lemma 1
For any m, lim g} . p = gk m||, =0

Furthermore, there exists M € N such that for |m| > M, there exists a constant ¢(R),
independent of m, such that ||g. . g — gk, mll2 < c(R), and Il%in%) c¢(R)=0.

Proof :
198, m, & = 9, mll, < NGl + 121l + 15515 + 1Gally + 175 — g, mll (3.24)
where
i AZ) (k)
~ 17T m,R
gur,r') = gmjm(mﬂlml(m/)l(o, Ry, R)(7,7") (3.25)
~ / i (1) /
Go(r, ") = EJ‘m‘(kQ)H‘m‘(kg)l(Q R)x(0, R)(T7") (3.26)
. )
. irByR(k) ) ) ) ,
= —— H kr)H, kr')1 2
gg(’f‘,T) 9 ASL)R(]{;) |m— ozl( ) |m— a|( T) (R, 0o)x(R, 00)(T7T) (3 7)
- i
Ga(r,7") = mjm(kk)ﬂﬁ) ol (k<) X0, RIx[R, co)lR, co)x(0, RI(T 1)
(3.28)
Gs(r,r') = J‘m ol (kT Y H{ (kr) (g, so)x(r, o) (1) (3.29)
Using the bounds (7.32), (7.41)and (7.45) in Appendix 2 and the relation
W, (2), H,'(2)] = —, (3.30)
Tz

we can see that for any € > 0, there exists Ry > 0 such that if R < Ry, then the following
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bounds hold:

1 2T (Jm| + 1) kR|mel=im

< - 1 31
A0 ] S Tm=al+ mlT(m —a] | 2 t+e 331
Bun(k)| _ 7| — af — || ]
AD, (k)| = Um=al = [m)T(jm—al)T(jm—a]+ 1) | 2

(3.32)

Awn®)| _ Jlm = ol = ml| P(mDE(m + 1) [kR7 (3.33)
B9, (k)| 2n(jm — ol + [m]) 2 |

Now we can find bounds for the terms in equation (3.24) for small R.

B B 2 R 2
G = [ [t prar i =7 ( / rdrum<kr>|2) .
0

2
AD (k)

4 1B2) (k)

Using (3.33) and (7.1) we get

(Im — a| — |m|)*R*
| SR DR — o e T A
[g1]]5 < (3.34)

R4

6—4(1+€), m = 0.

Next we have

Gl = [ Gatr P
72 R /g0 2y r7(1) 7 \|2
z/0 rdr o' A ()P (L)

i f 2 f 1o rr(1) N2
- ?/0 r dr| Jym (k7)) / ! dr'| ) (k)2

From (7.1), (7.18) and (7.25), we get

( i 1 1
SmP+ T | > 1,
~ R
152115 < 5 1+9), m| =1, (3.35)
R* k
— (8In|-|+14InR+1)(1+¢), m=0.
\ 32 2

From the relations K,(z) = K,(z) and

HO(2) = —Ze 5™ K, (—iz), (3.36)
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we obtain
8] ) 4 00 ,,,2|m al+£-1 - .
/R rdr |H|m a|(k‘7“)| = F/R drmK‘m_a‘(Z]{?T’)K|m_a|(—2k57“)

4 2—2|m—a|—¢&
g

~X

/ dr T2|m_a|+§_lK|m_a|(Z'];‘T)K‘m_a‘(—ik#).

2 0
for 2|m —a| 4+ & > 2.
Using the formula 6.576 of [9], we then get

R

X
2

[ e 1 < Zee
R

T(jm—al+5+ )T @m-a|+5) (T (Im—a|+5)°
I (m—al+5+3H)T2m—al+¢)

(3.37)
for [m —a| > 1 and & > 0.
So, if m # N, N + 1,
Gl = [ atr ) rdr @
2| BO, (k) [
=L ZSR( ) / rdr|HY a|(kr)|2/ v dr' | H) L (k)2
4 Am,R(k) R
2 B(l) k 00 2
<= ;’Z;R( ) [ / rdr|H§}3_a(m>|2]
4 Am,R(k) R
ol —Imh? R\ T T\
 (m—al = )’ <1_;) - ( (5 <>> (L+)x
(Im — af + |m]) I'G+3)
2 2
y D(m—af+5+H)T2m—af+5) (T (jm—al+3%)) .
I (jm—al+5+2)T2m—al+ T (jm - a))[(jm — o + 1)
(3.38)
For m = N, N + 1 the following bound is sufficient:
S % |Jm — a| — m] 2| kR |
195l < — X
A(lm — ol + |m[)U(lm = a[)U(jm —a[+1) ) | 2
><||H‘m o (R +2). (3.39)
Thus, for fixed m, ||gs]|l, — 0 as R — 0 provided we choose £ < 2.
To make the bound for ||gs||, in (3.38) independent of m, we use the following limit:
lim nt-e LT (3.40)

n—00 ['(n+0b)
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to deduce that there exists My € N such that, if |m| > M), then

(T (Im—al + 5+ D T@2Im — o] +£/2)) (T(jm — o] +£/2))* < o-tmtes

(3.41)
(0 (jm = o] + § + 5) T@m — a] + OT(|m — a|)T(Im — a| + 1))’
where T = ||m — a|], and we must choose £ < 3.
Similarly, for m # N, N + 1,
Gl = [ ) Prar s (342
2 R , ,
= rdr|Jm (kr / r'dr’ Hm o kr' 3.43
2|A§?R(k)|2/0 Tk [ ot (1 (k) (3.43)
261 Ri=¢ (5T
< N LI
(Im[ +1)(Im — o + |m|) LG +3)
2
F(m—al+5+ 9T 2m—al+5) T (Im—a|+5)) (3.44)
[ (lm—al+ 5+ ) T(2m — o] +£) ((Im — a]))*
while for m = N, N + 1,
) 2 ‘g‘mm—al R2lm—al+2 »
194l < S H oy (B [*(1+2).
M2 (Iml -+ D (Im = af + [m)2(T(jm = af))? el
(3.45)

As previously, for fixed m, ||g4]|, — 0 as R — 0 if we choose & < 2.

To obtain a bound independent of m in (3.44), we again use the limit in (3.40) to show that
there exists M; € N such that, if |m| > M, then

F(|m—a\+%+%)F(2|m—a\+g) (F(\m—a\—i—%)f

S et
(1+|m‘)r(|m—o¢\—i—§—|—%)F(2|m_a|+§)(P(’m_a|))2<2 M@ (3.46)

Finally,

- T
gs(r, 7“/) — Gk, m (T, 7“/) = gJ\m—a\(k&) \m a\(kr>)1R2\(R7oo)><(R,oo) (3.47)
SO

2

~ 2 ™ R 2 i / |2
195 — gk, mll2 = 9 ; 7 dr|Jm—o) (k)] r’dr |H\m a‘(k:r)| +

2 R o0
+% / v dr| Ty (k7) 2 / v 1B (k)2 (3.48)
0

RY(1+¢)
8lm — al?(1 + |m — al)
consider the cases m # N, N + 1 separately using equation (3.37).

The first term is bounded by , while for the second term we need to



Pauli Approximations to the Aharonov-Bohm Hamiltonian 12

Then we deduce that for m # N, N + 1,

R(1+¢) () TR
8lm — a?>(1+ |m — al) 8(1+|m — «|)
T (Im—a|+5+1)T@m—al+£/2) T(m— al +£/2))°

TE+ D0 (Im—al+ 5+ TQm—a| + T (Im —al +1))2

195 — gk, mll3 < (1+¢)x (3.49)

Y

while for m = N, N + 1,

RY(1+¢)
8lm — a?>(1 + |m — al)
2lm—a| —
2 ‘g‘ R2lm—al+2

195 — gk, mll3 < (3.50)

H(l)

(+ T — a0+ = apye et B+ €)

i

A similar argument to that used previously shows that the bound in (3.50) may be taken to
be independent of m. This completes the proof of Lemma 1.

O

Next we shall show that the operator hfh r converges in norm the resolvent sense to the
appropriate limit provided 3 obeys condition I or II.

Lemma 2:
(a) If condition I (condition II) holds, then for m # N (m # N + 1), the operator hfn’ R
converges to h,, in the norm resolvent sense as R — 0.

Furthermore, there exists M € N such that for |m| > M, there exists a constant c¢(R),
independent of m, such that Hgf m, B — 9k, mll2 < c(R), and Il%in%) c¢(R)=0.

(b) If condition I (condition II) holds, then the operator h%vR converges to hn,,, (h%JFLR
converges to by i1y, ) in the norm resolvent sense as R — 0.

Proof: We shall prove the Lemma for the case when condition I holds. The corresponding
proof for the case when condition II holds is similar.

First we note the limiting behaviour of g (R, R) for small R:

1 ~ m—ao
m(l—d(k’)Rm |) m:N,N+1,

gl(ﬁ], m, R(RJ R) = (351)

1
- (1—d(k)R? N, N + 1.
|m—a|+|m|( (k) ) m7 NN+

where

& (k) =

2e=mm=elT(1 — |m — al) (k)zm_al (3.52)

(Jm —al +[m[) T (m — af) \ 2

2
and )
6= o (1 i ) (5) (853)
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(a) Let m # N and suppose condition I holds. We need to show that

-], -0 .
Lm 19y, 1, 5 = b m||, =0 (3.54)
Now Hgf, m, R~ Ok, mH2 < gk m, r = 9r. mll, +

. 8
1+ 692, m, R(R7 R)

192 1 m(+ R (3.55)

In Lemma 1, we have shown that Il%irr%] Hgg m, R — Gk, mH2 =0

The following three cases need to be considered separately:

Case 1. m=0,1,2,...,N — 1;

Case 2. m =N + 1.
Case 3. m< —lorm> N + 2.
Case 1. If m=10,1,2,...,N — 1, then |m — a| + |m| = a. For small R,

042

= 20(uy]

g
1+ 893, r(R, R)

R™%, (3.56)

while

192 o n( - B = / rdrlgl . alr R

Ui &) 2 " )
= Hp o BRI [ 7 dr| Ty (k)]
A[A,, r(F)[? 0

+ \Jm(kR)|2/I:Ordr|Hm a(/{:r)\2}
R? R (2\*T (5 T(3)
2211 |m]) | 202 (%) "G
T (jm—a| + &) T2lm — o +£/2) (T <|m—a|+£/2>>2]
T (jm —a] + E2)T(2lm — o] +€)(T(jm — a]))? ’

) .

< (1+¢)

F(2
T

(3.57)
Taking £ < 2(1 — ) gives the desired limit.
Case 2. If m = N + 1, then |m —a|+ |m| = N 4+ 2 —§. Then
6] a(N+2-9)
lim , 3.58
R 15 By n R B)| 201 5) 555




Pauli Approximations to the Aharonov-Bohm Hamiltonian 14

while
/oordr|g0 (r,R)|? = o~ {|H<” (k:R)|2/err|JN L(kr) P+
k,N+1,R\T" = 1-5 +
0 4 AR () 0
+ Iy (kR)? / rdr\H£?5<kr>|2} (3.59)
R
R2
< 1
INE Nzttt
21 gD () ||2 LR |29
T H (k)] R 4 e), (3.60)
(N4+2—=06)>2T(1-6))2| 2
Case 3. If m < —1 or m > N + 2, then |m — a| + |m| = |2m — a|. The constant term is
bounded as follows:
g al2m — o
< 1 , 3.61
T 090 wBR)| S om—a]—at O (3.61)
and
/Oordr|g0 (r,R)|? = ”—2{|H<1> (kR)|2/err\J (kr) |+
o T A Uy
R [ arl )} (362)
R
R2 R2¢ 92 ST (8 (L
+ = 7(2) (2)(1+s) X
2am—aP(+ml)  22m—aP \k) T(E+)

T (jm—a| + &) (2m — o +£/2) (T(jm — o +£/2>>2]
T (jm —a| + S2)T2lm — o] +)(T(jm — a))? ’
(3.63)

An argument similar to that used in (3.46) ensures that the bound is independent of m if
|m| is large enough.

(b) Let m = N and suppose condition I holds. Then

Hglf,MR - 911;1\1[\/“2 < Hgg,N,R - 9k,NH2 + lk,nv,r — lk7N||2 (3.64)
where
() = ——— g0 R)g (R, (3.65)
1 + 5gk,N,R(R7 R) n T
and

lon = c(N, vy, KYH (kr)H (kr'). (3.66)

As noted previously, Lemma 1 proves that }%imo Hg,f NR— gZJjVH =0.
— b b b 2
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Now,
e = bl = [ s | gl R ()~
1 +ﬁgk,N7R(R, R)7H o
(1) @ |
—¢(N, vy, K)YH® (kr) HY (r') (3.67)
= 1M 4@ _ 1B _16) (3.68)
where
1D = 5 Gl /rdr r dr’ }g,SNR(r, R)gy v r(R, r')‘z, (3.69)
1+59k,N,R(R= R) o o
2
1 = |e(N, vy, k)| / rdr v dr' |HS (kr)H (k)| (3.70)
and
3 .
13 = 0 R>c(N, vn, k) [ rdr v dr' gy g(r, R) x
g0 (R Y H (k) HSD () (3.71)
For small R,
_ 2R—26
Oﬁ AL (3.72)
Then
/rdr ' dr' gy n r(r, R)gp n r(R T’)}2 o~ X (3.73)
R 16| AR g (k)| |
R 2 00 2
« {\Hél)(k;R)\‘* [/ rdr|JN(/fr>|2] F1n(RR)| U rdr\H(gl)(kR)F} }
0 R
4
The first term is bounded by m(l + ¢), while for small R
3 CHINGR) T [ :
Ah R R D U rdr|H )(kR)|2} ~ (3.74)
+ B9 v (R, R) 16| AN g (K)|* LR
mt (E)M (1) 2 (D)
2 SIHS (kr)Ligoo)I* = [e(N, vn, )7 | Hs (k)1 (r oo l|"

(['(0))*(20vy + al(k))

Then [ — {® as R — 0 by dominated convergence.
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For I® we have

/ rdr v’ dr' gl s n(r R)GR e (Ry )Y () HY (k') = (3.75)
I {H(l)(k;R) / errJN(kr)HT(kr)Jr
2AP (k) L° 0 '
00 2
+JN(kR)/ rdr\Hg”(k;r)\?H . (3.76)
R

il'(6)R?~° (k;

-5
an(N +2—9) —) , while for small R,

The first term in the bracket goes to 5

: 0 . é
T 1) 9 1T kR (1) 9
—Jy kR/ rdr|HD (kr)|? ~ ‘—‘ HO (kr)1 g0 |1
A YR [ 7P = e | Y |
(3.77)
Then [ — [® as R — 0 by dominated convergence, which completes the proof.
OJ

4 Approximation by Smooth Flux Tube

kxr
2
we replace the ©-function by a smooth step function which approximates the ©-function as

R — 0. Let a : R — R be a differentiable function with a(r) = 0 for r < 0 and a(r) = 1

In Section 3, Agp =« O(r — R) so that By is concentrated on a cylindrical shell. Now

for r > rg, where o > 0. Furthermore, let a be such that the function b(r) = — —a(r) is
bounded in absolute value (i.e. there exists by € R such that |b(r)| < bg). Then b(r) has

support only in (0,7¢), and / b(r)rdr =1. We take
0

~ kxr r—R
Ap =« = a( JE ) (4.1)
. - R
SO thatk-BR:R_%zb<rR5 ) Let
. 2 B

[ here depends on o and R. Motivated by the result of Section 3 we shall consider two cases:
20
(a) B, R) ~ —« <1 - EVNR%),

(b) B(a, B) = (@ = 2(N +1)) (1 . ﬁmﬁ“‘”).

The component of the operator Hr on the space with angular momentum m are

. 10 0 (m—aa(%fi))z 5 (T—R
hm’R__r8TT8r+ p + BR™b ) (4.3)
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We shall prove convergence in the norm resolvent sense of the operators izm r, and hence of
Hpg.

We can rewrite the last equation as

- 190 0 (m—a®(r—R))?* f r—R
"= o o e () 4
where
R 2/.2
Vin(r) = rb(r) GO D) —2ma(a(r) — O(r)) + a“(a*(r) — @(T))} (4.5)

We note that V,,(r) has support only in (0,7), and that
| ()] == | — 2ma(a(r) — O(r)) + o*(a*(r) — O(r))| < mK (4.6)
where K is a constant independent of m and R.

Define the auxiliary operators

190 0 (m—aO(r—m3))? RB 1
ror 8r+ r? + r Vi "T R (4.7)

so the form sum (4.7) is well-defined. From Thm. B.1(b) of [7], the resolvent of h,, g for

k* € p(hy,, r) and (k) > 0, is given by

i, 5= K7 = g0 o r = BB . mOmll + BB g (k)] limgp . g (4.8)
where
1 1\ 1 1\|2 1
O (1) = . V. (r — ﬁ) . Up(r) = ;Vm (7‘ — ﬁ) sgn {Vm (r — ﬁ)] (4.9)
and .
B (k) = RoUmg). . glm;  S(k) > 0. (4.10)

B,k extends to a Hilbert-Schmidt operator (Note 4, Appendix 1).
1
Introducing the unitary scaling group (Ugg)(r) = Y (%), we get
. 1 - »
hm,R - ﬁURhmv RUR . (411)

Then, noting that
RlOUngl(c)7 m, RU}gl = gg/R5,m,R (412)
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and taking the translation r — r 4 %{, we obtain
L
R10
= R"Up [, n — (RK)?] T
= R'Ur gk, m, 1 —

- Rsﬁg%%, m, ROm[1+ 5Bm,R(R5k)]_1ﬂmg%5k, m, R U}SI

-1
(e — K271 = { Urhm, RUR — k?]

(4.13)

for k2 € p(h) and S(k) > 0. For (k) > 0, define Hilbert-Schmidt operators A, z(k),
By, r(k) and Cy, r(k), with integral kernels:

A r(k,r ') = g,(; m, r(7; R(1+ R*")) o ('); (4.14)
Bog(k,r ') = ﬂm(r)g,(g’ m, R(R(1+ R*), R(1+ R*"))0,(1") (4.15)
Cmr(k,rr') = ﬂm(r)gg’ m, R(R(1+ R*r), ") (4.16)
where )
O (r) = er(” T oand () = | e o) (4.17)

Then (4.13) becomes
ne = K7 = g . 5 — BAm (k)1 + BB g (k)] Con (k) (4.18)
for k? € p(he, m, r) and (k) > 0.
Using this representation we can prove the following result.
Theorem 2.

Let

o0

Hrp= P humr. (4.19)

m=—0oQ

Then H r converges, as R — 0, to one of the self-adjoint extensions H” of the A-B Hamilto-
nian only if either
Bla, R) + «
(I) R25
or
I Bla, R) —a+2(N +1)
) A2

— 20UN

- 2(1 - 6)VN+1~

In case (I) Hy converges in the norm resolvent sense, as R — 0, to H*~> ) and in case (II)
to H(oo vn+1),

The proof of this theorem is fairly standard but by no means trivial. Because again we
require uniform convergence in m we need to control the m-behaviour and this makes the
proof very lengthy. We therefore we do not give the proof here but only state the two lemmas
required in the case when Condition I holds. Once we have these two lemmas, the proof is
similar to that of Theorem 1. and the result follows from them.
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We have already proved that gg, m. B — Jk;m 0 norm. Let

1

v(r) = 1b(r)[2;  u(r) = [b(r)[? sgnlb(r)]. (4.20)
Lemma 3: If condition I holds, then

(a) for m < 0 and m > N, the operators A,, r(k), Cyn.r(k) — 0 in norm;
(b) for m =0,...,N — 1, the operators R°A,, p(k), R°Cp, r(k) — 0 in norm;

(c) form = N, R°A,, r(k) — Anx(k) and R7°C,, r(k) — Cy(k) in norm, where
Ay(k,r ") = en(R)H® (kr)o(r') and Cy(k,r,r") = éx(k)u(r)H (k).

Lemma 4:

If condition I holds, then

Clof

(a) for m < 0 and m > N, ||B(c, R) B r(F)], < m

, where C' is a constant

independent of m and R;
1

(b) form =0,...,N, R®[1 + B(a, R)Bpr] " — — (v, -)u in norm as R — 0, where
Km
a

- —0,...,N—1

257/N m 07 ’ )

Km = S (4.21)

70@\7(/{) m = N.
C(N, VN, k‘)

5 Other Approximations

As mentioned in the Introduction, there are two other very natural approximations. These
were investigated also in [3, 4]. Case (1) is when the magnetic field inside the cylinder of
radius R is homogeneous, that is,

k
a—éz - , T<R
Arp = (5.1)
k
« X2 r , > R.
T
200
Hel“e k . BR == ﬁG(R - T).
1
Case (2) is when the magnetic field is proportional to — inside the cylinder:
r
kxr
a— = T <R
Ap = (5.2)
kxr
« , 7> R.

r2
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«

In this case k- By = ﬁ%@(R — ).
Let
1+ N . (1)
M(1,2+ N, a) case
o= (5.3)
1+2N
i , in case (2),

M(1,2 + 2N, 2a)
where M (a, b, z) is Kummer’s function. Let 1 be a solution of the equation

(1=8)(2+N)M(n,2+ N,«)
aM(n+1,3+ N, «)

n=- ) (54)

in case (1) and of the equation

_ (A =0)(B+2N)M(n,3+ 2N, 2a) (5.5)
B aM(n+1,4+ 2N, 2a) ’ ‘

in case (2). Note that both these equations have an infinite number of solutions.

Let
Ok, m, r(T, ") = gli m, RT) = Gk, m(r,77)

where g,f, m, r(T,7") is the resolvent of the approximating Hamiltonian in each case and
Gk, m(r,7’) is as in (2.4).

The following are the only cases which give non-trivial results:

20
(I) if f~ —« (1 — O‘—VNR%) as R — 0, then ¢y ., r(r,7’) approaches
a
1. a non-zero limit for m = NN, corresponding to the self-adjoint extension Ay, ;
2. zero limit for m = N + 1, corresponding to the regular self-adjoint extension A y.1 oo;

3. zero limit for m # N, N + 1, corresponding to the self-adjoint operators h,,.

2
(Il) if f~a(2n—1) (1 ~3 il 11/N+1R2(1_5)) as R — 0, then ¢y, ., r(r,7’) approaches
77 J—

1. a non-zero limit for m = N + 1, corresponding to the self-adjoint extension hyi1,y,,;
2. zero limit for m = N, corresponding to the regular self-adjoint extension Ay o;
3. zero limit for m # N, N + 1, as before.

Acknowledgement: One of the authors (J.L.B.) would like to thank the University of
Malta (Staff Development Fund) for financial support during the course of this work.
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6 Appendix 1

Note 1:
The Bessel functions of the first and third kind have the following limiting and asymptotic
properties [8]:

1. for small z,

To(2) ~ ﬁ G wE-1-2-3.) (6.1)
HO(2) ~ _i(”) C)" w0 (6.2)
2. for large |2],
(2) = % feos(z = = T+ 10|21}
(largz| <) (6.3)

19 0 2
(T 1) ) =) (6:5)

are J,(kr) and HS" (kr).

In the given case, the only solution for r < R which lies in D(h}, g) is Jjm(kr), while for
r > R the only solution is H, ﬁ)_al(k:r).

Note 2:

To obtain the Green’s function, consider two solutions of equation (6.5), one of which is
regular at » = 0 and irregular at r = oo, while the other is irregular at » = 0 and regular at
r = 00.

Consider
_ J\m\(l‘”") r<R
Prmi(r) = { A () () + B EHED. (k) 7> R (66)
b (1) = AR (6 Ty (k) + B (k) H ) (Fer) r<R 67)
P HE) (k) r>R '

where the constants AQ?R(k), Ag?R(k), B,%’)R(k) and BS?R(k:) are chosen so that the boundary
conditions ¢, 1(R+) = ¢mi(R—) and ¢, ,(R+) = ¢, ,(R—) are satisfied (note that the
second boundary condition is the one imposed to obtain the regular self-adjoint extension
i.e. the one with 5 =0).
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Then g3 . g(r,7") = co1mk(r<)d2,mr(rs), where ro = min{r, 7'} and r» = max{r,r'}. The
constant ¢ is determined by considering the boundary condition at r» = r’:

892 R dgp, R dgy, R
A 25 M = ljim 4™ & / T e T Iy N — 6.8
or , T or (r,7) v’ Or (r,7) (6:8)

Then we obtain

2B<§—§T(k)¢1,m,k(7’<)¢2 mk(T>) rr' <R
G, m, () =9 : (6.9)
P m¢lmk(r<)¢2,m,k(r>) ' 2 R
Note that the boundary conditions imply that
lim (A0 (k) = BOa(k)) = 0. (6.10)

Note 3:
(Cfr. Thm 1.3.1.2 of [7]) The general structure of equation (3.14) follows from Krein’s formula.
To verify the constant in the second term, define for ¢ € L*((0,00),rdr) and S(k) > 0,

p
1 + ﬁgl(; m, R(R7 R)

fo(r) = ((hmr — k*)""g) ()

X<glg, m, R(W R)7g>gl(c), m, R(TJ R) (611)
= [T R sl — T
0 T 1+ ﬁgk, m, R(R7 R)
< [T Gl RO, (R, (6.12
0

Then f3 € H22((0,00) \ {R}, rdr) N H*'((0,00),rdr) and

loc
) 3/R
1+ ﬁRgg m R

= DroR) (6.13)

f3(B+) = f3(R-)

d//O R/ /
G o (R

This means that fg € D(h? ). Furthermore, for S(k) > 0
B m, R

(W, = k) fs = g(r), 1€ (0,00)\ {R} (6.14)
which proves equation (3.14).

Note 4:
To show that B extends to a Hilbert-Schmidt operator, we need to show that (cfr. [7] p.80)

[ ard VOl VG < o S0 (619
[0,00] % [0,00]
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This follows by considering the behaviour of the Bessel functions for small and large argu-
ments, as discussed in Note 1. From the previous estimate we obtain

1/2 2 1/2
10 9  (m—aO(r—R)) 2
( S e +HE) € Bu(L((0,00),mdr)), (g4
E>0

‘V(T)

r

7 Appendix 2

In this section we shall derive bounds for expressions involving the Bessel functions J,(z)
and H, ,51)(2).

First we shall obtain upper bounds for | J,(z)|. If v > —3, then it follows [10] from Poisson’s
integral that

T —C ) (7.1)

For v < —1, the following series expansion [8], which is valid for all z and v, is used:

e
Tu(z) = (5) kZ:O KT(v +k+1) (72)

_ (g—)y (1 n > F(l/—l- 1) (_%22)k> . (73)

KT(v+ k + 1)

ID(v+1)] 1
Forv # —1,-2,-3,.. ., < ,

7 T(v+k+1) = v+ 1F
3|,...}. Thus we obtain:

where |1+ 1| = min{|v+ 1|, |v+2|, |v+

14
A

|1 (2)| < m

elvo+l v#—-1,-2-3,.... (7.4)

Next we obtain lower bounds for |J,(z)|. Using the series expansion (7.2), and the same
argument used for (7.4), we obtain

10,02
| (2)] 2 ——— (2—6"0+1) , v#—-1,-2-3,.... (7.5)

The above bounds imply that, given any € > 0, there exists zg such that, for any v, if
|z| < |20| then

i |
and |.J,(2)| > L(l —e). (7.7)

IP(v +1)|
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If v is a negative integer, upper and lower bounds may be deduced using

Ju(2) = (=1)"J|(2). (7.8)

Upper and lower bounds for expressions involving the derivatives of J,(z) may be deduced
from the recurrence relation:

(=) = =Jua(2) + 2 (2). (7.9)

Now we turn to bounds for |H, ,51)(z)|. These are obtained using the following relation
HWY(2) = icsc(vm){e ™ J,(2) — J_,(2)}. (7.10)

Note that we are only interested in the case v > 0. Thus, when v > 0 and v ¢ Z:

—v 122 I 2v
e%ﬁT'(1+-|( z ), (7.11)

HO ()] < 2|2
T 12

'l+v)
L(v) |z 11212 IT( )| 1212
HY(2)] > =2 |2 2 —emiil | (1 -2 (2] ). 7.12
HPE > ] (2 e i (7.12)
Here |1y + 1| = min{|v + 1|, |[v + 2|, |[v +3|,...,| —v+1|,| —v+2|,| —v+3|,...}.

For v € 7, we use the relation:

HW(2) = J,(2) +iY,(2) (7.13)
where Y, (2) is the Bessel function of the second kind with series expansion:
-n n—1 k
(n—k—1)! 2 z
Y. (z i “m(Z)J,
™ = (4) +7Tn<2>J(z)
z n oo k
5) ¢k+1+¢m+k+n 22
—— > 1 7.14
with the Digamma function ¢ (n) = 11::)) given by:
n—1 1
k=1

where ~ is Euler’s constant.

Noting that (n —k —1)! < T'(n) and Yk+1) +9n+k+1)

< 2T'(n) for n > 1, we get the

(n+k)!
following bounds:
el < BT 1"2{1+% o
|Yn<z>|>FTm}§‘”{(z e4wzw2)_ (2)\32” bt
—m‘l % g el3 } n>1. (7.17)
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The corresponding inequalities for Hy(Ll)(z) are:

F(TL) Z|~n ll |2 2 z
z 22 ) ’_
- 2‘ « * r(n) 2

1 11,2
(e}, o

13
- (2m3 ‘”) ()an—l—l) n

2n

[HP(2)] < (1 +

z

e|g(z)|} n > 1. (7.19)

The above bounds imply that, given any € > 0, there exists zg such that, for any v > 0, if
|z| < |20| then

@ < T2 e (7.20)
and [H ()] > @ : o). (7.21)

For n = 0, we use the following series expansion for Y;(z):

Yo(z) = % [ (2) +7} ao2) (7.22)

O L

Noting that 14 1 +--- 4+ & < n!, we find that the term in the second bracket of (7.22) is
bounded in absolute value by eil” — 1. Hence we get the following bounds for Yg(2):

%(a)] < 2inc {uaau%anzﬂwﬁﬂ—;l}; (7.23)
P
¥o(2)] > §|1nz|{uo< )= B (12 4 ) - “—f} (7.24)

Then, using (7.4) and (7.5) for the case v = 0, we obtain the corresponding bounds for
HV(2):

2 Lo 1 a1 —e il
HY () < 2l zlei®* {1 —(1 2 _) - - L. 7.25
|Hy ' (2)] 7T| nzle +|1 I ty+g)+ T ; (7.25)

2 2 el us el — 1
UG > 2 ( 4z ) _ (1 2 _> B N (&
[Ho ' (2)] = | HZI{ — e g (22473 T (7.26)

Now, for fixed arg(z), we know that |Inz| > In|z|, and that for any ¢ > 0, |Inz| <
In|z|(1+4¢’) if |z| is small enough. This implies that for any € > 0, there exists zo such that,
if |z| < |20/, then:

In|z|(1+ ¢); (7.27)

In|z|(1 —¢). (7.28)
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Next we obtain bounds for the Wronskians that appear in the expressions for the constants
ASL?R(k), Aﬁ?R(k), BS?R(k), and BS?R(/{) which are defined in Note 2 of Appendix 1.

Using (7.9) and (7.10), we can write

WIH (), 1 (2)] = HP(2)T(2) = B (2) 1 () (7.29)
= g {7 = L} ()

{7 (2) = T (2)} (7))
N Sin(zwr) (‘V ijuf(z)J_V(z) + Jys1(2) Iy (2)

vV —v

—J () i1 (2) + €™ { J(2)Jd,(2)
—Ju11(2) 0 (2) + Jur(2) Jo11(2)}) - (7.30)

From the bounds derived above, we obtain

/_I_ ]/)F(]/) z v —v—1 %\2‘2 31‘2‘2
WI[HWD(2), > GdINCNE 2—evit | (2 —emil | —
N 1122 11212 N
26“9(2” 6\V1+1| z 2 e\VlJrl\ z 2 |]// _I_ V|e“9(z)| z 2v
Vv \V+1 5‘ 1 — v ‘5’ * 2I(v + 1) ‘5

T — )[R
I'(v+2)

2v+2 |F(1 — V)|e|g(z)|
(v +1Dl(v+1)

z

2

z

2

-

(7.31)

forv,/ >0,v ¢ Z.

7r
sin(mv)I(v)
|z| < |20| and v/, v > 1y,

Since I'(1 — v) = , then for any ¢y > 0 there exist zy and 7y such that for

WIHD ), o () > 5o - ), (7.32)

(V' +v)I'(v) ‘z
2

Using a similar argument to that used in (7.30), as well as the relation

/ 1%
HY (z) = —HY, (2) + ;Hy)(z), (7.33)
we can write
WIHD(z), HV(2)] = HP(2)HY' (2) — HY (2)HY (2) (7.34)
. 7 (1) n—+v (1)
— (H — (H
ey () = L )
—Jiu(2)HV (2) + 7™ {n — 2 J,()HV ()

~ T (H () + T (VHD() }) (7.35)
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2
Let n € zt, v > 0, and v ¢ Z. Using the relation H,(Lle( ) = nH(l)( ) — H,(LI_)l(z), and the

bounds in (7.4) and (7.11), one can see that for any ; > 0 there exist z; and ny such that
for |z] < |z1| and v,n > ny,

o) (B - ) )| < L |F(1;<7_”,,)| 1 e
7, () HO (2)] < ﬂ& ol }2 o (1+¢1); (7.36)
) HY (z)’ < % ‘2 T g (7.37)
T HI ()] < ﬁ%%%i?tif- T e (7.38)
| Jyar () HO (2)] < m 5 T ). (7.39)

The above results imply that for |z| < |z;| and v, n > nq,

Wi @), 1P < e [ (14 #ﬁlw 5
IT'( z 2n|T'(1 —v)
I'(v+1) |1/—n|I‘(
AT —v)| |2 pw+2
v —nl (v +2) 12 )(Hgl) (740)

From this we deduce that for any €5 > 0 there exist zo and ny such that for |z| < |z| and
vV, n > no,

v — TL| —n—v—1

Win ), 10 < Ao |2 @ e (7.41)
Using (7.9), we obtain
WJa(2), Ju(2)] = Ju(2)J,(2) = J3(2)Ju(2) (7.42)
= L 1) (2) = Tu(2) o1 (2) + Jusa (2) 1), (7.43)
Then, for n € Z*, and v > —%,
|y — n|elSEG) z |ntv—1 2n 2 212
W), LGN < sraT e 12 {1 * (1/+ i 1) 2 } '

(7.44)

In the case n = |m|,v = |m — al, for any 4 > 0 there exist z; and ny such that for |z| < |z4]
and v,n > ny,

2 |ntrv—1

p—n

{1 + 54} (745)
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