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Abstract

We study the ergodic properties of finite-dimensional systems of SDEs driven by non-
degenerate additive fractional Brownian motion with arbitrary Hurst paraniéter

(0,1). A general framework is constructed to make precise the notions of “invariant
measure” and “stationary state” for such a system. We then prove under rather weak
dissipativity conditions that such an SDE possesses a unigue stationary solution and
that the convergence rate of an arbitrary solution towards the stationary one is (at least)
algebraic. A lower bound on the exponent is also given.
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1 Introduction and main result

In this paper, we investigate the long-time behaviour of stochastic differential equations
driven by fractional Brownian motion. Fractional Brownian motion (or fBm for short)
is a centred Gaussian process satisfyfig(0) = 0 and

E|By(t) — Bu(s)|* = |t — s|*7, t,s>0, (1.1)

whereH, the Hurst parameter, is a real number in the raHge (0, 1). WhenH = 1,
one recovers of course the usual Brownian motion, so this is a natural one-parameter
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family of generalisations of the “standard” Brownian motion. It follows from (1.1) that
fBm is also self-similar, but with the scaling law

t — Bp(at) ~ t — a’By(t),

where= denotes equivalence in law. Also, the sample path8 gfarea-Holder con-
tinuous for everyy < H. The main difference between fBm and the usual Brownian
motion is that it is neither Markovian, nor a semi-martingale, so most standard tools
from stochastic calculus cannot be applied to its analysis.

Our main motivation is to tackle the problem of ergodicity in non-Markovian sys-
tems. Such systems arise naturally in several situations. In physics, stochastic forces
are used to describe the interaction between a (small) system and its (large) environ-
ment. There is no a-priori reason to assume that the forces applied by the environment
to the system are independent over disjoint time intervals. In statistical mechanics,
for example, a non-Markovian noise term appears when one attempts to derive the
Langevin equation from first principles [JP97, Ris89]. Self-similar stochastic processes
like fractional Brownian motion appear naturally in hydrodynamics [MVNG68]. It ap-
pears that fractional Brownian motion is also useful to model long-time correlations in
stock markets [DHPDOO, @H99].

Little seems to be known about the long-time behaviour of non-Markovian sys-
tems. In the case of the non-Markovian Langevin equation (whicloig€overed by
the results in this paper due to the presence of a delay term), the stationary solution
is explicitly known to be distributed according to the usual equilibrium Gibbs mea-
sure. The relaxation towards equilibrium is a very hard problem that was solved in
[JP97, JP98]. It is however still open in the non-equilibrium case, where the invariant
state can not be guessed a-priori. One well-studied general framework for the study of
systems driven by noise with extrinsic memory like the ones considered in this paper is
given by the theory of Random Dynamical Systems (see the monograph [Arn98] and
the reference list therein). In that framework, the existence of random attractors, and
therefore theexistencef invariant measures seems to be well-understood. On the other
hand, the problem dfiniquenesgin an appropriate sense, see the comment following
Theorem 1.3 below) of the invariant measure on the random attractor seems to be much
harder, unless one can show that the system possesses a unique stochastic fixed point.
The latter situation was studied in [MS02] for infinite-dimensional evolution equations
driven by fractional Brownian motion.

The reasons for choosing fBm as driving process for (SDE) below are twofold.
First, in particular wherHf > 1, fractional Brownian motion presents genuine long-
time correlations that persist even under rescaling. The second reason is that there
exist simple, explicit formulae that relate fractional Brownian motion to “standard”
Brownian motion, which simplifies our analysis. We will limit ourselves to the case
where the memory of the system comes entirely from the driving noise process, so we
do not consider stochastic delay equations.

We will only consider equations driven by non-degenerate additive nioéseye
consider equations of the form

dry = f(x) dt + o dBg(t) , r9 € R", (SDE)
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wherez; € R”, f : R® — R", By is ann-dimensional fractional Brownian motion
with Hurst parameteH, ando is a constant and invertible x n matrix. Of course,
(SDE) should be interpreted as an integral equation.

In order to ensure the existence of globally bounded solutions and in order to have
some control on the speed at which trajectories separate, we make throughout the paper
the following assumptions on the components of (SDE):

Al Stability. There exist constants?! > 0 such that
(f@) = f@), = —y) < min{CT* — Ct|lw — y||*, 3 lx — yl*}

for everyz,y € R™.

A2 Growth and regularity. There exist constant§’, N > 0 such thatf and its
derivative satisfy

If@)) <+ lz)™ . IDf@)I <+ =)™,

for everyz € R".
A3 Non-degeneracylhen x n matrix o is invertible.

Remark 1.1 We can assume thdlz|| < 1 without any loss of generality. This as-
sumption will be made throughout the paper in order to simplify some expressions.

One typical example that we have in mind is given by
fx) =z —2?, reR,

or any polynomial of odd degree with negative leading coefficient. Noticeftisatis-
fiesA1-A2, but that it is not globally Lipschitz continuous.

When the Hurst parametéf of the fBm driving (SDE) is bigger thaih/2, more
regularity for f is required, and we will then sometimes assume that the following
stronger condition holds instead AP:

A2’ Strong regularity.The derivative off is globally bounded.

Our main result is that (SDE) possessamajuestationary solution. Furthermore,
we obtain an explicit bound showing that every (adapted) solution to (SDE) converges
towards this stationary solution, and that this convergence is at least algebraic. We
make no claim concerning the optimality of this bound for the class of systems under
consideration. Our results are slightly different for small and for large valués sb
we state them separately.

Theorem 1.2 (Small Hurst parameter) Let H € (0, %) and let f and o satisfyAl—

A3. Then, for every initial condition, the solution to (SDE) converges towards a
unique stationary solution in the total variation norm. Furthermore, for every
max,« g o(1 — 2a), the difference between the solution and the stationary solution is
bounded by, ¢t~ for larget.
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Theorem 1.3 (Large Hurst parameter) Let H € (%, 1) and letf and o satisfyAl—
A3andA2'. Then, for every initial condition, the solution to (SDE) converges towards
a unique stationary solution in the total variation norm. Furthermore, for eweﬁyé,

the difference between the solution and the stationary solution is boundédtby

for larget.

Remark 1.4 The “uniqueness” part of these statements should be understood as uni-
queness in law in the class of stationary solutions adapted to the natural filtration in-
duced by the two-sided fBm that drives the equation. There could in theory be other
stationary solutions, but they would require knowledge of the future to determine the
present, so they are usually discarded as unphysical.

Even in the context of Markov processes, similar situations do occur. One can
well have uniqueness of the invariant measure, but non-uniqueness of the stationary
state, although other stationary states would have to foresee the future. In this sense,
the notion of uniqueness appearing in the above statements is similar to the notion of
uniqueness of the invariant measure for Markov processes.e(§4arn98], [Cra91]
and [Cra02] for discussions on invariant measures that are not necessarily measurable
with respect to the past.)

Remark 1.5 The caseHd = % is not covered by these two theorems, but it is well-
known that the convergence toward the stationary state is exponential in this case (see
for example [MT94]). In both cases, the word “total variation” refers to the total varia-
tion distance between measures on the space of paths, see also Theorem 6.1 below for
a rigorous formulation of the results above.

1.1 Idea of proof and structure of the paper

Our first task is to make precise the notions of “initial condition”, “invariant measure”,
“uniqueness”, and “convergence” appearing in the formulation of Theorems 1.2 and
1.3. This will be achieved in Section 2 below, where we construct a general framework
for the study of systems driven by non-Markovian noise. Section 3 shows how (SDE)
fits into that framework.

The main tool used in the proof of Theorems 1.2 and 1.3 is a coupling construction
similar in spirit to the ones presented in [Mat02, Hai02]. More prcisely, we first show
by some compactness argument that there exists at least one invariant measure
(SDE). Then, given an initial condition distributed according to some arbitrary measure
L, We construct a “coupling process?( y;) onR"™ x R™ with the following properties:

1. The process; is a solution to (SDE) with initial conditiop...
2. The procesg; is a solution to (SDE) with initial conditiop.
3. The random time,, = min{t|z, =y Vs >t} is almost surely finite.

The challenge is to introduce correlations betweemndy; in precisely such a way

that 7, is finite. If this is possible, the uniqueness of the invariant measure follows
immediately. Bounds on the moments ©f furthermore translate into bounds on

the rate of convergence towards this invariant measure. In Section 4, we expose the
general mechanism by which we construct this coupling. Section 5 is then devoted to
the precise formulation of the coupling process and to the study of its properties, which
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will be used in Section 6 to prove Theorems 1.2 and 1.3. We conclude this paper with
a few remarks on possible extensions of our results to situations that are not covered
here.
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2 General theory of stochastic dynamical systems

In this section, we first construct an abstract framework that can be used to model a
large class of physically relevant models where the driving noise is stationary. Our
framework is very closely related to the framework of random dynamical systems
with however one fundamental difference. In the theory of random dynamical sys-
tems (RDS), the abstract spaQeused to model the noise part typically encodes the
futureof the noise process. In our framework of “stochastic dynamical systems” (SDS)
the noise spack typically encodes thpastof the noise process. As a consequence,
the evolution oV will be stochastic, as opposed to the deterministic evolutiof2on

one encounters in the theory of RDS. This distinction may seem futile at first sight, and
one could argue that the difference between RDS and SDS is non-existent by adding
the past of the noise process{aand its future to/V.

The additional structure we require is that the evolution/Bpossesses anique
invariant measure. Although this requirement may sound very strong, it is actually
not, and most natural examples satisfy it, as longVass chosen in such a way that
it does not contain information about the future of the noise. In very loose terms,
this requirement of having a unique invariant measure states that the noise process
driving our system is stationary and that the Markov process modelling its evolution
captures all its essential features in such a way that it could not be used to describe
a noise process different from the one at hand. In particular, this means that there is
a continuous inflow of “new randomness” into the system, which is a crucial feature
when trying to apply probabilistic methods to the study of ergodic properties of the
system. This is in opposition to the RDS formalism, where the noise is “frozen”, as
soon as an element €¥is chosen.

From the mathematical point of view, we will consider that the physical process
we are interested in lives on a “state spaéé’and that its driving noise belongs to
a “noise spaceW. In both cases, we only consider Poliste(complete, separable,
and metrisable) spaces. One should think of the state space as a relatively small space
which contains all the information accessible to a physical observer of the process.
The noise space should be thought of as a much bigger abstract space containing all
the information needed to construct a mathematical model of the driving noise up to
a certain time. The information contained in the noise space is not accessible to the
physical observer.
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Before we state our definition of a SDS, we will recall several notations and def-
initions, mainly for the sake of mathematical rigour. The reader can safely skip the
next subsection and come back to it for reference concerning the notations and the
mathematically precise definitions of the concepts that are used.

2.1 Preliminary definitions and notations
First of all, recall he definition of a transition semigroup:

Definition 2.1 Let(&, &) be a Polish space endowed with its Baréfield. Atransition
semigroupP; on & is a family of map®; : £ x & — [0, 1] indexed by € [0, co) such
that
i) for everyz € &, the mapA — Py(x, A) is a probability measure o8& and, for
everyA € &, the mapr — P(z, A) is &-measurable,

ii) one has the identity

Pesaler, A) = /g Pu(y, A) Py, dy)

for everys,t > 0, everyz € £, and everyA € &.
i) Po(x,-) = 0o, foreveryx € £.

We will freely use the notations

(Pi)(a) = /g S P dy) . (Pun)(A) = /g Pule. A) ulda)

wherey is a measurable function ¢ghandy is a measure oé.

Since we will always work with topological spaces, we will require our transition
semigroups to have good topological properties. Recall that a seq{ient®f mea-
sures on a topological spaéeis said to converge toward a limiting measurén the
weak topology if

/ (@) () — / Y@ pldzy, € CyE),
£ £

whereC,(£) denotes the space of bounded continuous functions famto R. In the
sequel, we will use the notatiow; (£) to denote the space of probability measures on
a Polish spacé, endowed with the topology of weak convergence.

Definition 2.2 Atransition semigrouf®; on a Polish spacé€ is Fellerif it mapsC,(€)
into Cy(£).

Remark 2.3 This definition is equivalent to the requirement that> P;(x, -) is con-
tinuous from¢& to .#1(£). As a consequence, Feller semigroups preserve the weak
topology in the sense thatjif, — pin . #1(E), thenPu,, — Py in 41 (E) for every
givent.
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Now that we have defined the “good” objects for the “noisy” part of our construc-
tion, we turn to the trajectories on the state space. We are looking for a space which has
good topological properties but which is large enough to contain most interesting ex-
amples. One such space is the spaceadfag paths (continw droite, limitea gauche
— continuous on the right, limits on the left), which can be turned into a Polish space
when equipped with a suitable topology.

Definition 2.4 Given a Polish spac€ and a positive numbér, the spacé([0,T7], &)

is the set of functiong : [0,T] — €& that are right-continuous and whose left-limits
exist at every point. A sequengé, },en converges to a limiff if and only if there
exists a sequencg\,, } of continuous and increasing functiong : [0,7] — [0, T]
satisfying\,,(0) = 0, A\,,(T) = T', and such that

Ant) ~ Aals) | _

lim sup [log 0, (2.1)
n—00 )< s<t<T t—s
and
lim  sup d(fa(t), F\(®) =0, (2.2)

n—00 g<t<T

whered is any totally bounded metric afiwhich generates its topology.

The spaceD(R-, &) is the space of all functions froR to £ such that their re-
strictions to[0, T'] are inD([0,T1], £) forall T > 0. A sequence convergesii{R ., &)
if there exists a sequende.,, } of continuous and increasing functiohs : Ry — R
satisfying\,,(0) = 0 and such that (2.1) and (2.2) hold.

It can be shown (see.g.[EK86] for a proof) that the spaceB([0,71],£) and
D(R4, &) are Polish when equipped with the above topology (usually called the Sko-
rohod topology). Notice that the spa@¥[0,71,&) has a natural embedding into
D(R4, &) by settingf(t) = f(T) for t > T and that this embedding is continuous.
However, the restriction operator fro®(R_, &) to D([0,T], ) is not continuous,
since the topology o®([0, 77, £) imposes thaf,,(T) — f(T), which is not imposed
by the topology oD(R., £).

In many interesting situations, it is enough to work with continuous sample paths,
which live in much simpler spaces:

Definition 2.5 Given a Polish spacé and a positive numbeF, the spac€([0,77], )
is the set of continuous functiorfs [0, 7] — £ equipped with the supremum norm.

The spac€ (R, &) is the space of all functions froR to £ such that their re-
strictions to[0, 7] are inC([0, 17, &) for all T' > 0. A sequence convergesiiR ., &)
if all its restrictions converge.

It is a standard result that the spackf), 7, £) andC(R., &) are Polish if€ is
Polish. We can now turn to the definition of the systems we are interested in.

2.2 Definition of a SDS
We first define the class of noise processes we will be interested in:
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Definition 2.6 A quadruple W, {P;}:>0, Pw, {0:}:>0) is called astationary noise
processdf it satisfies the following:
i) W is a Polish space,
i) Py isaFellertransition semigroup oW, which accept®,, as its unique invariant
measure,

i) The family{0;}:~0 is a semiflow of measurable maps W satisfying the prop-
erty 0; P,(x,-) = J, for everyz € W.

This leads to the following definition of SDS, which is intentionally kept as close
as possible to the definition of RDS in [Arn98, Def. 1.1.1]:

Definition 2.7 A stochastic dynamical systeom the Polish spac&’ over the station-
ary noise procesW, {P, }i>0, Puw, {01 }+>0) is a mapping

QDZR+><XXW_>X1 (t,.’I},W)’_’S@t(x,w),

with the following properties:

(SDS1) Regularity of paths:For everyT > 0, z € X, andw € W, the map
b (z,w) : [0,T] — X defined by

O7(z, w)(t) = pi(x, 07— w) ,

belongs taD([0, 17, X).

(SDS2) Continuous dependenc&he mapgz, w) — ®r(x,w) are continuous from
X x WtoD([0,T], X) for everyT > 0.

(SDS3) Cocycle propertyThe family of mappingg, satisfies

po(z,w) =,
@s-{-t(xaw) = @.s(@t(-ra st),’lU) ) (2.3)

forall s,t > 0,allz € X, and allw € W.

Remark 2.8 The above definition is very close to the definitionMdrkovian random
dynamical systermtroduced in [Cra91]. Beyond the technical differences, the main
difference is a shift in the viewpoint: a Markovian RDS is built on top of a RDS, so
one can analyse it from both a semigroup point of view and a RDS point of view. In the
case of a SDS as defined above, there is no underlying RDS (although one can always
construct one), so the semigroup point of view is the only one we consider.

Remark 2.9 The cocycle property (2.3) looks different from the cocycle property for
random dynamical systems. Actually, in our casis abackward cocycléor ;, which

is reasonable since, as a “left inverse” fay, 6, actually pushes time backward. Notice
also that, unlike in the definition of RDS, we require some continuity property with
respect to the noise to hold. This continuity property sounds quite restrictive, but it is
actually mainly a matter of choosing a topologylah which is in a sense “compatible”
with the topology on¥.
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Similarly, we define a continuous (where “continuous” should be thought of as
continuous with respect to time) SDS by

Definition 2.10 A SDS is said to beontinuousif D([0, 7], X) can be replaced by
C([0,T7], X) in the above definition.

Remark 2.11 One can check that the embeddiny§0, 7], X) — D([0,T1], X) and
C(R4+,X) — D(R4, X) are continuous, so a continuous SDS also satisfies Defini-
tion 2.7 of a SDS.

Before proceeding any further, we recall the following standard notations. Given a
product spacet’ x W, we denote byil» andIl,, the maps that select the first (resp.
second) component of an element. Also, given two measurable sfaaed F, a
measurable map : £ — F, and a measurg on &, we define the measu&, on F
in the natural way byf*u = po f=1.

Given a SDS as in Definition 2.7 and an initial condition € X', we now turn
to the construction of a stochastic process with initial conditigrconstructed in a
natural way fromp. First, givent > 0 and @, w) € X x W, we construct a probability
measured,(z,w;-) on X x W by

Qi(x,w; A x B) = / 8wy (A) Pe(w, dw') (2.4)
B
whered,, denotes the delta measure located.afhe following result is elementary:

Lemma 2.12 Let ¢ be a SDS on¥ over (W, {P;}1>0, Pw, {0 }+>0) and define the
family of measure®;(z, w; ) by (2.4). ThenQ; is a Feller transition semigroup on
X xW. Furthermore, it has the property thatlif, . = P,, for a measurg, on X' x W,
thenIl;, Qi = P,.

Proof. The fact thaf;, Q. = P, follows from the invariance oP,, under?;. We
now check that, is a Feller transition semigroup. Conditiofgndiii) follow imme-
diately from the properties @f. The continuity ofQ,(z, w; - ) with respect to £, w) is
a straightforward consequence of the facts fhais Feller and thatA, w) — ¢ (z, w)
is continuous (the latter statement follows from (SDS2) and the definition of the topol-
ogy onD([0, t], X)).

It thus remains only to check that the Chapman-Kolmogorov equation holds. We
have from the cocycle property:

Qs+t($7’LU;A X B) = / (5¢5+t(17w/)(_,4) 735+t(w, dw’)
B
= /BA(Stps(y’w’)(A)(ipt(x’gsw/)(dy) Ps+t(w,d’w/)

= / / / 64,05(y,w’)(A)(Sgot(w,@sw’)(dy) P (w//7 dw/) Py (’LU, dw//) .
wJBJX

The claim then follows from the property Ps(w”, dw') = §,,~(dw’) by exchanging
the order of integration. 0
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Remark 2.13 Actually, (2.4) defines the evolution of the one-point process generated
by . Then-points process would evolve according to

O (xy,. .. an, w; Ay X ... X Ay x B) = / 110610 (A) Pe(w, du') .
Bi=1

One can check as above that this defines a Feller transition semigretp gn/.

This lemma suggests the following definition:

Definition 2.14 Let ¢ be a SDS as above. Then a probability meagum X x W

is called ageneralised initial conditiofor ¢ if 11}, = P,. We denote by#, the

space of generalised initial conditions endowed with the topology of weak convergence.
Elements of#,, that are of the formu = 6, x P,, for somer € X will be calledinitial
conditions

Given a generalised initial conditign, it is natural construct a stochastic process
(z¢, w;) ON X x W by drawing its initial condition according t@ and then evolving it
according to the transition semigrog@h. The marginak;, of this process oi’ will be
called theprocess generated hyfor p.. We will denote by2u the law of this process
(i.e. 2u is a measure o®P(R.., X) in the general case and a measur&€@,, X) in
the continuous case). More rigorously, we define for eéry 0 the measureZu
onD([0,T1], X) by

Drp = PpPp,

where @ is defined as in (SDS1). By the embeddi®g[0,7], X) — D(R., &),
this actually gives a family of measures @R, X). It follows from the cocycle
property that the restriction t®([0, T], X) of 21 u with T" > T is equal to2rpu.
The definition of the topology o® (R, X) does therefore imply that the sequence
Qru converges weakly to a unique measurel(iR ., X) that we denote by2u. A
similar argument, combined with (SDS2) yields

Lemma 2.15 Let ¢ be a SDS. Then, the operat® as defined above is continuous
from.#, to #1(D(R, X)). O

This in turn motivates the following equivalence relation:

Definition 2.16 Two generalised initial conditiong andv of a SDSp are equivalent
if the processes generated byandv are equal in law. In shorty ~ v < 2u = Q.

The physical interpretation of this notion of equivalence is that the noise space contains
some redundant information that is not required to construct the future of the system.
Note that this does not necessarily mean that the noise space could be reduced in order
to have a more “optimal” description of the system. For example, if the pragegn-

erated by any generalised initial condition is Markov, then all the information contained

in Wis redundant in the above sensge.(x andv are equivalent ifl% ;1 = II%v). This

does of course not mean that can be entirely thrown away in the above description
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(otherwise, since the mapis deterministic, the evolution would become determinis-
tic).

The main reason for introducing the notion of SDS is to have a framework in which
one can study ergodic properties of physical systems with memory. It should be noted
that it is designed to describe systems where the memaytigsic as opposed to
systems withntrinsic memory like stochastic delay equations. We present in the next
subsection a few elementary ergodic results in the framework of SDS.

2.3 Ergodic properties

In the theory of Markov processes, the main tool for investigating ergodic properties
is theinvariant measure In the setup of SDS, we say that a measuren X' x W

is invariant for the SDSp if it is invariant for the Markov transition semigroug;
generated by. We say that a measureon X’ x W is stationaryfor ¢ if one has

O~ p, VE>0,

i.e.if the process orit’ generated by is stationary. Following our philosophy of con-
sidering only what happens on the state sp¥¢c&e should be interested in stationary
measures, disregarding completely whether they are actually invariant or not. In do-
ing so, we could be afraid of loosing many convenient results from the well-developed
theory of Markov processes. Fortunately, the following lemma shows that the set of
invariant measures and the set of stationary measures are actually the same, when quo-
tiented by the equivalence relation of Definition 2.16.

Proposition 2.17 Lety be a SDS and legt be a stationary measure far. Then, there
exists a measurg, ~ p which is invariant forp.

Proof. Define the ergodic averages

1 T
R = o / Quudt . (2.5)
0

Sincey is stationary, we havB’ Rru = IT% p for everyT'. Furthermorelly, Ry =
P, for everyT', therefore the sequence of measuRes. is tight onX x W. Let u, be
any of its accumulation points in7; (X x W). SinceQ, is Feller, u, is invariant for
9, and, by Lemma 2.15, one hag ~ pu. O

From a mathematical point of view, it may in some cases be interesting to know
whether the invariant measuye. constructed in Proposition 2.17 is uniquely deter-
mined byu. From an intuitive point of view, this uniqueness property should hold if
the information contained in the trajectories on the state space sufficient to re-
construct the evolution of the noise. This intuition is made rigorous by the following
proposition.

Proposition 2.18 Lety be a SDS, defing’? as thes-field on)V generated by the map
Or(z,-): W — D([0,T], X), and setV/ = A\, #F. Assume tha¥; C #7 for
T < T"and that?” = \/ -, #7 is equal to the Boret-field on)V. Then, foru; and
2 two invariant measures, one has the implication~ ps = 1 = po.
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Proof. Assumeu; ~ us are two invariant measures for Since# C #r it T < T',
their equality follows if one can show that, for evéfy> 0,

E(u | 2 @ #r) =E(p2 | 2 @ #7) , (2.6)

whereZ" denotes the Boret-field on X'.

Sincepy ~ po, one has in particulail’ ;1 = II% po, S0 let us call this measure
v. Since)V is Polish, we then have the disintegration— n7, yielding formally
wi(de, dw) = pf(dw)v(dz), wherep? are probability measures aw. (See [GS77,
p. 196] for a proof.) FiXI" > 0 and define the familyuf’T of probability measures on
W by

i = [ Pt uitaw)
w
With this definition, one has
Dy = [ (@rGe )i ) vida)
X
Leteg : D([0,T], X) — X be the evaluation map &f then
E(2ruileo =2) = (@T(x,~)*pf’T) ,
for v-almost everyr € X. Since2ru; = 279, one therefore has
E(ui” | #4) =E(us™ | #F) (2.7)

for v-almost everyr € X. On the other hand, the stationarity oof implies that, for
everyA € 2" and everyB € #7, one has the equality

i x B) = [ [ xalortw) "oy

Sincepr(z, - ) is #7-measurable an®# € #77, this is equal to

/X /B Xa(pr(e, w) E(u" | #) (dw) v(dx) .
Thus (2.7) implies (2.6) and the proof of Proposition 2.18 is complete. O

The existence of an invariant measure is usually established by finding a Lyapunov
function. In this setting, Lyapunov functions are given by the following definition.

Definition 2.19 Let ¢ be a SDS and lef" : X — [0, 00) be a continuous function.
ThenF' is aLyapunov function fokp if it satisfies the following conditions:

(L1) The set"~1([0, C]) is compact for everg’ € [0, cc).
(L2) There exist constants and-~y > 0 such that

/ F(2) (Quu)(da, duw) < C + e / F@)(Myp)ds) ., (28)
X XW X

for everyt > 0 and every generalised initial conditignsuch that the right-hand
side is finite.
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It is important to notice that one doe®t require F' to be a Lyapunov function
for the transition semigroug);, since (2.8) is only required to hold for measures
satisfyingIl;, 1. = P,. One nevertheless has the following result:

Lemma 2.20 Let p be a SDS. If there exists a Lyapunov functiofor ¢, then there
exists also an invariant measuge for ¢, which satisfies

/ F(x) py(dz, dw) < C . (2.9)
XXW

Proof. Let x € X be an arbitrary initial condition, set = ¢, x P,, and define
the ergodic averageR - as in (2.5). Combining (L1) and (L2) with the fact that
I3, Rrp = Py, one immediately gets the tightness of the sequdfitep}. By the
standard Krylov-Bogoloubov argument, any limiting point{@®ru} is an invariant
measure forp. The estimate (2.9) follows from (2.8), combined with the fact thas
continuous. 0

This concludes our presentation of the abstract framework in which we analyse the
ergodic properties of (SDE).

3 Construction of the SDS

In this section, we construct a continuous stochastic dynamical system which yields
the solutions to (SDE) in an appropriate sense.
First of all, let us discuss what we mean by “solution” to (SDE).

Definition 3.1 Let{x;}:>o be a stochastic process with continuous sample paths. We
say thatx; is asolutionto (SDE) if the stochastic proced&(t) defined by

N(t) = 1 — 20 / F)ds (3.1)

is equal in law too By (t), whereo is as in (SDE) andy (t) is an-dimensional fBm
with Hurst parameteid .

We will set up our SDS in such a way that, for every generalised initial congition
the canonical process associated to the mea$urés a solution to (SDE). This will
be the content of Proposition 3.11 below. In order to achieve this, our main task is to
set up a noise process in a way which complies to Definition 2.6.

3.1 Representation of the fBm

In this section, we give a representation of the fBn (¢) with Hurst parameteH €
(0, 1) which is suitable for our analysis. Recall that, by definitiéh; () is a centred
Gaussian process satisfyifgy; (0) = 0 and

E|Bu(t) — Bu(s)|*> = |t — 5?7 . (3.2)
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Naturally, atwo-sided fractional Brownian motidoy requiring that (3.2) holds for all

s,t € R. Notice that, unlike for the normal Brownian motion, the two-sided fBmat
obtained by gluing two independent copies of the one-sided fBm together at We

have the following useful representation of the two-sided fBm, which is also (up to the
normalisation constant) the representation used in the original paper [MVNG8].

Lemma 3.2 Letw(t), t € R be a two-sided Wiener process andi&te (0, 1). Define
for some constanty the process

0
By(t) = aH/ (—r)H_% (dw(r +t) — dw(r)) . (3.3)

Then there exists a choice @f; such thatBg(t) is a two-sided fractional Brownian
motion with Hurst parameteH . O

Notation 3.3 Given the representation (3.3) of the fBm with Hurst paramétewe
call w the “Wiener process associatedBg,”. We also refer to{w(t) : ¢ < 0} as the
“past” of w and to{w(t) : ¢t > 0} as the “future” ofw. We similarly refer to the “past”
and the “future” of By . Notice the notion of future foBy is different from the notion
of future forw in terms ofo-algebras, since the future & depends on the past of
w.

Remark 3.4 The expression (3.3) looks strange at first sight, but one should actually
think of By (t) as being given byBy (t) = By (t) — Br(0), where

"Bu(t) = an / t t — )72 dw(s) . (3.4)

This expression is strongly reminiscent of the usual representation of the stationary
Ornstein-Uhlenbeck process, but with an algebraic kernel instead of an exponential
one. Of course, (3.4) does not make any sense sitneesQH—% is not square inte-

grable. Nevertheless, (3.4) has the advantage of explicitly showing the stationarity of

the increments for the two-sided fBm.

3.2 Noise spaces

In this section, we introduce the family of spaces that will be used to model our noise.
Denote byCi°(R_) the set ofC> functionw : (—o0,0] — R satisfyingw(0) = 0

and having compact support. Given a paraméfeg (0, 1), we define for every €
C3°(R-) the norm

Jollw = sup —wO = ws)l (3.5)

1—H

toeR [t — s (14 [t] 4 Js])F

We then define the Banach sp&alg; to be the closure of3°(R-) under the norm
|l - |- The following lemma is important in view of the framework exposed in Sec-
tion 2:
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Lemma 3.5 The space%{y are separable.

Proof. It suffices to find a nornj - ||, which is stronger thafi - ||z and such that the
closure ofC3°(R_) under|| - || is separable. One example of such a norm is given by
[wl[lx = sup . [ti(t)]- O

Notice that it is crucial to defingé{y as the closure of$° under|| - ||z. If we
defined it simply as the space of all functions with firjjte|| z-norm, it would not be
separable. (Think of the space of bounded continuous functions, versus the space of
continuous functions vanishing at infinity.)

In view of the representation (3.3), we define the linear ope@jpron functions
w € C§° by

0
uw))=an [ (9"l + 0 i) ds (3.6)
whereay is as in Lemma 3.2. We have the following result:

Lemma 3.6 Let H € (0,1) and let; be as above. Then the operai@y;, formally
defined by (3.6), is continuous frohy into H;_g. Furthermore, the operatdby
has a bounded inverse, given by the formula

Dy =vuDi-n |

for some constanty satisfyingyy = v1_pg-

Remark 3.7 The operato@Dy is actually (up to a multiplicative constant) a fractional
integral of orderd — % which is renormalised in such a way that one gets rid of the
divergence at-oc. It is therefore not surprising that the inverseldf is Dy _ .

Proof. For H = % Dy is the identity and there is nothing to prove. We therefore
assume in the sequel that # 3.

We first show tha®y is continuous from g into H;_ . One can easily check
that Dy mapsCg® into the set o> functions which converge to a constant-ato.
This set can be seen to belongha _y by a simple cutoff argument, so it suffices to
show that|Dyw|1—x < Cllw|x for w € C§°. Assume without loss of generality
thatt > s and definéh = t — s. We then have

S

(Duw)(t) — (Dyw)(s) = aH/ ((t - T)H_% —(s— T)H_%) dw(r)

+ay /t(t — )2 du(r) .

Splitting the integral and integrating by parts yields

(Dar)) ~ (Dur)) = ~an(H ~ ) [ (=1 (w() - wle)ar

S
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t

can(=4) [ =" Hu0) - () dr
s—h

Fan(H - 1) / (=" — (s — )" 3) (w(r) — w(s)) dr

— 00

+ a2 (w(t) - w(s))
ETl +T2+T3—|—T4 .
We estimate each of these terms separatelyZi-owe have

h
ITy| < C(1+|s| + |t|)1/2/ pH=3452 gr < ORE (1 + |s| + [t)Y/2 .
0

The termT} is bounded by?h % (1 + |s| + |¢])"/? in a similar way. Concernind, we
bound it by

‘T3| S C/hoo(rH_g — (h+T)H—%)(w(S —’/‘) —UJ(S)) dr

<Ch [ oA s ) ar
h

oo

<ot 1+ )s) + Ch/ rE2(h 4 )2 gr
h

<ChZ (14 s|+m)"? <ChZ (14 |s| +|t])/*.

The termT} is easily bounded b@'h % (1 + |s| + |¢])"/?
This shows thaDy is bounded fronH ; to H1_x.

It remains to show thaP g o D;_ g is a multiple of the identity. We treat the cases
H < 1/2andH > 1/2 separately. Assume first thaf > 1/2. Integrating (3.6) by
parts, we can then write

, using the fact that € Hy.

0 3
) = —an(t ~5) [ " H 6+ 0~ o) ar

—0o0

We setBy = —aga;_g(H — %) in order to simplify the notations and assume 0.
(In view of the definition ofH 7, we actually always have< 0, but since the operator
Dy commutes with the translation operator, we can asstime 0 without loss of
generality.) Putting = D;_ gw yields

T

0
o)) =8 [ ([ (-9 9 dut)

r+t L -
—l—/ (r+t—s)2 " dw(s)) dr .

Exchanging the order of integration and regrouping terms yields

t 0 . .
(Duo)(t) = /6'H/0 /_t(—r)H_%(r +t—s)2 " dr dw(s)
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+ Bu /OOO (/Sot(T)Hg(Tth —s)2 H gy

— /O(T)Hg(r — 5)%*H dr) dw(s) .
Since 0
| o R it ar = v - Y - )
for everyh > 0, 0;1}; finally gets
(DuDi_gw)(t) = —agar—gT(} + HIT(E — Hw(t) = 75 w(t),

valid for everyt > 0 andH > 1/2. It remains to treat the cagé < 1/2. Integrating
again (3.6) by parts (and assuming 0), we can write

0
<DHmar:—aHuff%>/:<me*%wa+wofvoofva»dr. (37)

At this point, one can make a similar analysis, but there are more terms, so it gets a bit
more involved. We thus define the functions

fl(tv/rv S) = ﬁH(t +7r— S)%_H , ']62(1577"7 S) = ﬁH(—S)%_H ,
falt,r,s) = —But— )2~ fu(t.r,s) = —pulr—s)= 7",

(with Sy defined in the same way as previously) and we write (3.7) as
t 0
o)) = [ [ R drdug),

where the functiort; is piecewise (in the, s-plane) given by a partial sum of thf,
according to the following diagram:

Y . (3.8)

For exampleF; = fo + f3if s < 0 andr < s — t. It therefore remains to compute
Ky(s) = ffoo(—r)H—gFt(r, s)dr for s € (—oo, t]. We start with the case < 0 and
we split the integral in the following way:

s—t 3
(—r)H=2 dr

&@zh[gwﬁﬁm+ﬁ/

— 00
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0

0
+ / 7t<f1 + f3) (=) "5 dr + / (fo+ fa)(=r)" =% dr .

The first two terms are equal tofy /(H — %) and cancel out. The remainder can be
written asK,(s) = I(—s) — I(t — s) with

0
I(=s) = 51{/ ((*5)%7H —(r— 5)%*H)(77,)Hfg dr
0 /0
—H) / / (q— )73 (=r) =% dqdr

0 q 1 3
:ﬁH(%—H)/ /(q—s)*H*E(—r)H*E dr dq
(

= B (

N

)
= Bu | (@—s) T E(—q)" % —(~9)""%)dq.

Now it can be seen from the change of variaple> —sq that both terms are homoge-
neous of degre@ in s. Thereforel(—s) is constant and s&(;(s) = 0 for s < 0. For
s > 0, one has

s—

¢ 0
ﬁgw):jé/1 (_”H;%dr+p/7Qﬁ+;ﬁﬂ—mH*%dr

o
— By /Jq )y HE () dg = BuT(L — H)D(L + H) =5

This concludes the proof of Lemma 3.6. O

Since we want to use the operat@g andD;_ g to switch between Wiener pro-
cesses and fractional Brownian motions, it is crucial to show that the sample paths of
the two-sided Wiener process belong to all of tHg with probability 1. Actually,
what we show is that the Wiener measure can be constructed as a Borel measure on
Hp.

Lemma 3.8 There exists a unique Gaussian measien H g which is such that the
canonical process associated to it is a time-reversed Brownian motion.

Proof. We start by showing that thE ;-norm of the Wiener paths has bounded mo-
ments of all orders. It follows from a generalisation of the Kolmogorov criterion
[RY99, Theorem 2.1] that

E< sup W)p < 00 (3.9)

s,t€0,2] |s — |72

for all p > 0. Since the increments af are independent, this implies that, for every
e > 0, there exists a random varialldg such that
[w(s) — w(t)|

= Cr, (3.10)
s—t1<1 |s — ¢ 77 (14 [¢] + |s])°
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with probability 1, and that all the moments @f; are bounded. We can therefore
safely assume in the sequel that- s| > 1. It follows immediately from (3.10) and
the triangle inequality that there exists a constarsuch that

w(s) —w(t)] < CCLlt —s|(1+ [t] + |s])" (3.11)

whenevellt — s| > 1. Furthermore, it follows from the time-inversion property of the
Brownian motion, combined with (3.9), that| does not grow much faster tha'/?
for large values of. In particular, for every’ > 0, there exists a random variakl&
such that .

lw(t)] < Co(1+t)>*, VteR, (3.12)

and that all the moments @f, are bounded. Combining (3.11) and (3.12), we get (for
some other constant)

1+H

lw(s) —w(t)] < CCL 7 Cy? [t—s|"2 (1+]s|+[t])

H+41 1—H 114 H
3o teTm e

The claim follows by choosing for exampte= ¢’ = (1 — H)/4.
This is not quite enough, since we want the sample paths to belong to the closure
of C§° under the nornj - || 7. Define the function

(141t +1s)®

(s,t) — I['(s,t) = ]

By looking at the above proof, we see that we actually proved the stronger statement
that for everyH € (0, 1), one can find & > 0 such that

L(s, 1) |w(s) — w(®)|
[l = sup e, 1
st s =t 72 (1 + [t +[s])?

with probability 1. Let us callH ; , the Banach space of functions with finjte ||z~ -
norm. We will show that one has the continuous inclusions:

HH,V — HH — C(R,, R) . (3.13)

Let us callW the usual time-reversed Wiener measur&@R_, R) equipped with the
o-field Z generated by the evaluation functions. Sifitg  is a measurable subset of
C(R_,R) and\fV(HHﬁ) = 1, we can restrictV to a measure of 7, equipped with the
restrictionZ of Z. It remains to show tha# is equal to the Boret-field 2 onH .
This follows from the fact that the evaluation functions a&emeasurable (since they
are actually continuous) and that a countable number of function evaluations suffices
to determine thd - || ;-norm of a function. The proof of Lemma 3.8 is thus complete
if we show (3.13).

Notice first that the functiof'(s, ¢) becomes large whejt — s| is small or when
either|t| or |s| are large, more precisely we have

T(s,t) > max{|s|, |t], [t — s| "'} . (3.14)
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Therefore, functions € H g , are actually more regular and have better growth prop-
erties than what is needed to have finjte|| z-norm. Givenw with ||w| 7, < co and
anye > 0, we will construct a functiond € C° such thaljw — @||g < . Take two

C®® functionsy; andy, with the following shape:

-1 ©1(t)

Furthermore, we choose them such that:

[ wonr. [0

For two positive constants< 1 andR > 1 to be chosen later, we define
a(t) = <p2(t/R)/ w(t + s)@ ds .
R_

i.e. we smoothen out at length scales smaller tharand we cut it off at distances
bigger thanR. A straightforward estimate shows that there exists a conétasch
that

[0y < Cllwlay

independently of < 1/4 andR > 1. Ford > 0 to be chosen later, we then divide the
quadrants’ = {(¢, s) | t, s < 0} into three regions:

@ Ky = {9 I+ s 2 Ry K
K

Ko = {(t,9)|]t — 5| <6} K\ K |
K3:K\(K1UK2).

We then boundw — @|| i by

c —w t) — w(t
lw—dlm< sup Selza [(s) = ()| + [wld) = o)
snekiuks L 8) (sneks [t—s| 72 1+t +|s))2

<CE + R )|wllay+2077 sup |w(t) — i) .
0<t<R

By choosingd small enough andk large enough, the first term can be made arbitrarily

small. One can then choosesmall enough to make the second term arbitrarily small

as well. This shows that (3.13) holds and therefore the proof of Lemma 3.8 is complete.
0
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3.3 Definition of the SDS

The results shown so far in this section are sufficient to construct the required SDS. We
start by considering the pathwise solutions to (SDE). Given a fime 0, an initial
conditionz € R"™, and a noisé € Cy([0,77],R"), we look for a functiond(z, b) €
C([0,T], R™) satisfying

t
Do (z,b)(t) = ob(t) + = + / f(@p(x,b)(s))ds . (3.15)
0
We have the following standard result:

Lemma3.9 Let f : R® — R" satisfy assumption&1 and A2. Then, there exists a
unique mapbr : R™ x C([0,7T],R"™) — C([0,T], R™) satisfying (3.15). Furthermore,
® is locally Lipschitz continuous.

Proof. The local {.e. small T') existence and uniqueness of continuous solutions to
(3.15) follows from a standard contraction argument. In order to show the global ex-
istence and the local Lipschitz property, fixb, anT, and definey(t) = x + ob(t).
Definez(t) as the solution to the differential equation

2@t) = f(z@) +y(), =(0)=0. (3.16)

Writing down the differential equation satisfied Wy (¢)||> and usingAl and A2,
one sees that (3.16) possesses a (unique) solution up toltim®ne can then set
dp(z, b)(t) = 2(t) +y(t) and check that it satisfies (3.15). The local Lipschitz property
of & then immediately follows from the local Lipschitz property fof O

We now define the stationary noise process. For this, we définely — Hy by
(0rw)(s) = w(s — t) —w(—t) .

In order to construct the transition semigraBp we define firsty; like Hy, but with
arguments iR, instead ofR _, and we writeW for the Wiener measure ol y, as
constructed in Lemma 3.8 above. Define the funclipn Hy x Hy — Hy by

- _ Jw(t+s)—w() fors> —t,
i = { 06T 700 o 317
and setP;(w,-) = Pi(w,-)*W. This construction can be visualised by the following
picture:

One then has the following.
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Lemma 3.10 The quadruple(H g, {P;}i>0, W, {0:}:>0) iS a stationary noise pro-
cess.

Proof. We already know from Lemma 3.5 thaf,; is Polish. Furthermore, one has

0: o P(w,-) = w, S0 it remains to show th&k; is a Feller transition semigroup with

W as its unique invariant measure. It is straightforward to check that it is a transition
semigroup and the Feller property follows from the continuitydfw, @) with respect

to w. By the definition (3.17) and the time-reversal invariance of the Wiener process,
every invariant measure fdfP, },>¢ must have its finite-dimensional distributions co-
incide with those ofV. Since the Boreb-field onHy is generated by the evaluation
functions, this shows th& is the only invariant measure. O

We now construct a SDS overcopies of the above noise process. With a slight
abuse of notation, we denote that noise proces$Wy{P;};>0, W, {0;:}+>0). We
define the (continuous) shift operatér : C((—o0,0],R™) — Co([0,7],R™) by
(Rrb)(t) = b(t — T) — b(—T) and set

p: Ry xR"xW —R"

(3.18)
(t, z,w) — & (z, RyDyw) .

From the above results, the following is straightforward:

Proposition 3.11 The functiony of (3.18) defines a continuous SDS over the noise
process(W, {P:}1>0, W, {6 }+>0). Furthermore, for every generalised initial con-
dition p, the process generated lpyfrom p is a solution to (SDE) in the sense of
Definition 3.1.

Proof. The regularity properties af have already been shown in Lemma 3.9. The co-
cycle property is an immediate consequence of the composition property for solutions
of ODEs. The fact that the processes generated e solutions to (SDE) is a direct
consequence of (3.15), combined with Lemma 3.2, the definitidhpf and the fact
thatW is the Wiener measure. O

To conclude this section, we show that, thanks to the dissipativity condition im-
posed on the drift ternf, the SDS defined above admits any power of the Euclidean
norm onR™ as a Lyapunov function:

Proposition 3.12 Let be the continuous SDS defined above and assum@athatd
A2 hold. Then, for every > 2, the mapr — ||z||? is a Lyapunov function fop.

Proof. Fix p > 2 and letu be an arbitrary generalised initial condition satisfying
[ Nl (1 o) < oo
JR™

Let ¢ be the continuous SDS associated by Proposition 3.11 to the equation

dy(t) = —ydt + o dBg(t) . (3.19)
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Notice that bothy and are defined over the same stationary noise process.

We definer, as the process generatedgbjrom i andy; as the process generated
by @ from 6y x W (in other wordsyy = 0). Since both SDS are defined over the same
stationary noise process; andy; are defined over the same probability space. The
processy; is obviously Gaussian, and a direct (but lengthy) calculation shows that its
variance is given by:

t
Ellye||? = 2H tr(oo™) e_t/ s>~ cosh¢ — s) ds ,
0
In particular, one has for att
o0
Ellye||? < 2Htr(oa*)/ s le™5ds =T(2H + ) tr(o0*)=Cs . (3.20)
0

Now definez; = z; — y;. The processg; is seen to satisfy the random differential
equation given by

Z
— =flze+y) tue, Z0 = o -
Furthermore, one has the following equation ffey||?:

dllzel? _

ar 2(zt, [zt + Y1) + 2(2t, yr) -

UsingA2—-A3 and the Cauchy-Schwarz inequality, we can estimate the right-hand side
of this expression by:

dz |
dt

<201 — 2058|201 4 2(z0, ye + Flye)) < =205 2] + C(L+ ||y DY,
} (3.21)
for some constanf’. Therefore

t
l2¢]1% < €728 1% + C / e 2= (1 |y | 2N ds .

It follows immediately from (3.20) and the fact that is Gaussian with bounded co-
variance (3.20) that there exists a constapsuch that

Ellze]|P < Cpe PO E|ao|” + Cp

for all timest > 0. Therefore (2.8) holds and the proof of Proposition 3.12 is complete.
O

4 Coupling construction

We do now have the necessary formalism to study the long-time behaviour of the SDS
 we constructed from (SDE). The main tool that will allow us to do that is the notion
of self-coupling for stochastic dynamical systems.
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4.1 Self-coupling of SDS

The main goal of this paper is to show that the asymptotic behaviour of the solutions of
(SDE) does not depend on its initial condition. This will then imply that the dynamics
converges to a stationary state (in a suitable sense). We therefore look for a suitable
way of comparing solutions to (SDE). In general, two solutions starting from different
initial points inR™ and driven with the same realisation of the ndixg have no reason

of getting close to each other as time goes by. Condiittindeed only ensures that

they will tend to approach each other as long as they are sufficiently far apart. This
is reasonable, since by comparing only solutions driven by the same realisation of the
noise process, one completely forgets about the randomness of the system and the
“blurring” this randomness induces.

It is therefore important to compare probability measures (for example on path-
space) induced by the solutions rather than the solution themselves. More precisely,
given a SDSp and two generalised initial conditiopsandv, we want to compare the
measures?29; and 29, ast goes to infinity. The distance we will work with is
the total variation distance, henceforth denoted|by|ty. We will actually use the
following useful representation of the total variation distance. (l.éie a measurable
space and leg?; andP, be two probability measures éh We denote by’ (P;, P;) the
set of all probability measures éhx €2 which are such that their marginals on the two
components are equal By andP, respectively. Let furthermorA C Q x  denote
the diagonali.e. the set of elements of the form (w). We then have

[P1 —Polltv =2~ sup  2P(A). (4.1)
PeC(P1,P2)

Elements ofC'(Py, P2) will be referred to agouplingsbetweenP; andP,. This leads
naturally to the following definition:

Definition 4.1 Lety be a SDS with state spad¢and let.#, be the associated space
of generalised initial conditions. 8elf-couplingfor ¢ is a measurable magu, v) —
2Q(u,v) from .4, x M, into DR, X) x D(R, X), with the property that for every
pair (i, v), 2(u, v) is a coupling for2u and 2v.

Define the shift mag; : D(Ry, X) — D(R, X) by
(Bix)(s) = a(t + s) .

It follows immediately from the cocycle property and the stationarity of the noise pro-
cess that2 Q. = ¥f 2u. Therefore, the measubef 2(u, v) is a coupling for29, u
and29,v (which is in general different from the coupling(Q; ., Q:v)). Our aim in
the remainder of this paper is to construct a self-coupl#t{g, v/) for the SDS associ-
ated to (SDE) which has the property that

Jim (37 2(u,v))(A) =1,
whereA denotes as before the diagonal of the sgagR ., X) x D(R, X). We will
then use the inequality

[2Qin — 2v|rv <2 —2(5; 2(1,))(A) (4.2)



COUPLING CONSTRUCTION 25

to deduce the uniqueness of the stationary state for (SDE).

In the remainder of the paper, the general way of constructing such a self-coupling
will be the following. First, we fix a Polish spacd that contains some auxiliary
information on the dynamics of the coupled process we want to keep track of. We also
define a “future” noise spade/, to be equal td{?,, whereHy is as in (3.17). There
is a natural continuous time-shift operatorRx W x W, defined fort > 0 by

(s, w, ) — (s —t, P(w, W), Syw) , (Siw)(r) = wlr +t) — w(t), 4.3)
whereP; was defined in (3.17). We then construct a (measurable) map

C XX W2 x A— Rx M (AxWT),

(Ivyawxawyaa) = (T(Ivyawxawyaa)7w2(zay7w$7wy7a)) ’

(4.4)

with the properties that, for alle y, w,, wy, a),
(C1) The timeT'(z,y, ws, wy, a) is positive and greater than
(C2) The marginals oWy (z, v, w,, wy, a) onto the two copies ofV,. are both equal
to the Wiener measun/'.

We call the magy the “coupling map”, since it yields a natural way of constructing a
self-coupling for the SD%. The remainder of this subsection explains how to achieve
this.

Given the maps’, we can construct a Markov process on the augmented space
X = X% x W? x Ry x A x W2 in the following way. As long as the component
T € Ry is positive, we just time-shift the elements)iti? x W? x R, according to
(4.3) and we evolve itk? by solving (SDE). As soon asbecomes), we redraw the
future of the noise up to tim&(x, y, a) according to the distributiokV,, which may
at the same time modify the information stored4n

To shorten notations, we denote elementsoby

X = (Iv Y, Wy, Wy, T, Q, ﬁ)w, wy) .
With this notation, the transition functio@, for the process we just described is de-
fined by:
e Fort < 7, we defineQ,(X;-) by

QX5 +) =0p,(2, Py (wa i) X Opu(y, Pu(wyiy)) X O (w5,
X (Spt(wy’ﬁ,y) X 6.,—,,5 X (Sa X (SS“;,I X (Sstwy .

e Fort = 7, we defineQ,(X;-) by

Qu(X;5-) =0pu(a, Patw ) X Oy, Prlawysy)) X 0P 0)
X 0Py (wy,@y) X OT(2,y, Py (we @), Py(wy iy),a) (4.5)
X WZ(Ia Y, Pt(wa:7 ’d}'ﬁ)v Pt(wyv ﬁ)y)v a’) .

e Fort > 7, we defineQ; by imposing that the Chapman-Kolmogorov equations
hold. Since we assumed th&{z, y, w,, wy, a) is always greater than, this
procedure is well-defined.
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We now construct an initial condition for this process, given two generalised initial
conditionsu; andus for . We do this in such a way that, in the beginning, the noise
component of our process lives on the diagonal of the sptigeln other words, the
two copies of the two-sided fBm driving our coupled system have the same past. This is
possible since the marginals @f andu. on WV coincide. Concerning the components
of the initial condition inR, x A x W2, we just draw them according to the mj
with some distinguished elememn € A.

We call 2y(u1, 12) the measure o™ constructed by this procedure. Consider a
cylindrical subset ofZ” of the form

X:X1XX2><W1XW2XF,

whereF is a measurable subsetRf. x .4 x W3. We make use of the disintegration
w — p, yielding formally p; (dz, dw) = p¥ (dz) W(dw), and we defineZq (i1, p2)
by

Do, j12)(X) = / / / (51(0s.0mnman) X Waler, 22, w, w, a0))(F)
WinWs J X1 J X5
112 (da) i (diry) W(dw) . 4.6)

With this definition, we finally construct the self-couplic®(s.1, 112) of ¢ correspond-
ing to the functior¥” as the marginal 0G(R.., X) x C(R., X) of the process generated
by the initial condition2(u1, 112) evolving under the semigroup given ig%. Condi-
tion (C2) ensures that this is indeed a coupling £, and 2pus.

The following subsection gives an overview of the way the coupling funéios
constructed.

4.2 Construction of the coupling function

Let us consider that the initial conditions and u, are fixed once and for all and
denote byr; andy; the twoX'-valued processes obtained by considering the marginals
of 2(u1, p2) on its two X’ components. Define the random (but not stopping) time
by

Too = inf{t> 0|zs =ys forall s > t} )

Our aim is to find a spacel and a functioné satisfying (C1) and (C2) such that

the processes; andy; eventually meet and stay together for all timies, such that
limr_. P(Tec < T) = 1. If the noise process driving the system was Markov, the
“stay together” part of this statement would not be a problem, since it would suffice
to start drivingz; andy; with identical realisations of the noise as soon as they meet.
Since the fBm is not Markov, it is possible to make the future realisations of two copies
coincide with probabilityl only if the past realisations also coincide. If the past reali-
sations do not coincide for some time, we interpret this as introducing a “cost” into the
system, which we need to master (this notion of cost will be made precise in Defini-
tion 5.3 below). Fortunately, the memory of past events becomes smaller and smaller
as time goes by, which can be interpreted as a natural tendency of the cost to decrease.
This way of interpreting our system leads to the following algorithm that should be
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implemented by the coupling functicsi.

Try to makez; andy; meet

5
&
d
N
2

Try to keepz, andy; together

2,
Q)

Wait until the cost is low

4.7)

SUCCesS

aln|rey

The precise meaning of the statements appearing in this diagram will be made clear
in the sequel, but the general idea of the construction should be clear by now. One
step in (4.7) corresponds to the time between two jumps of-tbemponent of the
coupled process. Our aim is to construct the coupling funcéian such a way that,
with probability 1, there is a time after which stéyalways succeeds. This time is then
precisely the random time,, we want to estimate.

Itis clear from what has just been exposed that we will actually never need to con-
sider the continuous-time process on the spécgiven by the self-coupling described
in the previous section, but it is sufficient to describe what happens at the beginning of
each step in (4.7). We will therefore only consider the discrete-time dynamic obtained
by sampling the continuous-time system just before each step. The discrete-time dy-
namic will take place on the spage= (X x W? x A) x R, and we will denote its
elements by

(Z,7), Z=(z,y,ws,wy,a), TERL.

Since the time steps of the discrete dynamic are not equally spaced, the fsne
required to keep track of how much time really elapsed. The dynamic of the discrete
process ¥,,, 7,,) on Z is determined by the functiot : R, x Z x (A x W3) — Z

given by

(I)(t? (Zv T)v (’LDI, ﬁ}yv &)) = (@t(wv Pt(va wﬂ?))7 (Pt(y’ Pt(w?!’ @y))’
Pt(wma wm)7 Pt(wy> ’lI)y), d’ T+ t) '

(The notations are the same as in the definitior@@fabove.) With this definition at
hand, the transition function for the procegs, (,,) is given by

P(Z,1) = (T(2),(Z,7),-)" Wa2(Z) , (4.8)

whereT andW- are defined in (4.4). Given two generalised initial conditippsand
1o for the original SDS, the initial conditiorn, 1) is constructed by choosing = 0
and by drawingZ, according to the measure

H0(X) = b0y (A) /X /X 12 (des) i (der) Wi(du) |

WinNWs
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whereX is a cylindrical set of the fornX = X x X, x W7 x W5 x A. It follows from

the definitions (4.5) and (4.6) that if we defingas thenth jump of the process o&”

constructed above arid, as (the component iA’? x W? x A of) its left-hand limit at

Tn, the process we obtain is equal in law to the Markov chain that we just constructed.
Before carrying further on with the construction®f we make a few preliminary

computations to see how changes in the past of the fBm affect its future. The formulae

and estimates obtained in the next subsection are crucial for the constructioanaf

for the obtention of the bounds that lead to Theorems 1.2 and 1.3. In particular, Propo-

sition 4.4 is the main estimate that leads to the coherence of the coupling construction

and to the bounds on the convergence rate towards the stationary state.

4.3 Influence of the past on the future

Letw, € Hy and setB, = Dyw,. Consider furthermore two functiong, andgg
satisfying

t t
t— / gw(s)ds € Hy , t— / ge(8)ds € Hi_g , (4.9
0 0

and defineB, andw, by B,(0) = w,(0) = 0 and
d/By =dB; + 9B dt , dwy =dwg + Guw dt . (410)

As an immediate consequence of the definitio®gf, the following relations between
9w andgp will ensure thatB, = Dyw,.

Lemma 4.2 Let B,, By, ws, wy, g, andg,, be as in (4.9), (4.10) and assume that
B, = Dyw, and B, = Dyw,. Then,g,, andgp satisfy the following relation:

t
gu() = o o 1 (t — )5 M gp(s)ds, (4.11a)

d [t 1
9(0) = o1y / (t — )" Fgu(s)ds . (4.11b)

If g,(t) = 0fort > tgy, one has

g5(t) = (H — Yymor_n / (- )" Egu(s)ds (4.11c)

fort > to. Similarly, if gg(t) = 0 for t > ¢y, one has

to

gut) = (5 — H)aH/ t—s) " 2gp(s)ds (4.110)

—0o0
fort > ty. If g, is differentiable fort > t; andg,,(¢t) = 0 for t < ¢y, one has

bogl(s)

YHO1—HGw(to)
to (t - S)%iH

g98(t) = (1) +yHa1-m ds (4.11e)
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for t > to. Similarly, if gg is differentiable fort > ¢, andgg(t) = 0 for ¢t < to, one

has
t

angp(to) g5(s) d

—=——ds, 411
=ty =9 N

gw(t) =
fort > tg.

Proof. The claims (4.11a) and (4.11b) follow immediately from (4.10), using the lin-
earity of Dy and the inversion formula. The other claims are simply obtained by
differentiating under the integral, see [SKM93] for a justification. O

We will be led in the sequel to consider the following situation, whereé, andg;
are assumed to be given:

g1(1) g2(t — t2)
|
\
- - (4.12)
B
! - ¢
t=0 t=1 t =1ty

In this pictureg,, andg g are related by (4.11a—4.11b) as before. The boldfaced regions
indicate that we consider the corresponding partg,06r g to be given. The dashed
regions indicate that those partsg@f andgg are computed from the boldfaced regions

by using the relations (4.11a—4.11b). The picture is coherent since the formulae (4.11a—
4.11b) in both cases only use information about the past to compute the present. One
should think of the intervall, ¢,] as representing the time spent on stépsd2 of the
algorithm (4.7). The intervak{, t5] corresponds to the waiting timee. step3. Let us

first give an explicit formula fog, in terms ofg; :

Lemma 4.3 Consider the situation of Proposition 4.4. Then,is given by

boys—H(t, — g)H-3
go(t) = C’/ t:—ztg —)s g1(s)ds , (4.13)
0

with a constantC' depending only of# .

Proof. We extendy, (¢) to the whole real line by setting it equal @icoutside of D, ¢4].
Using Lemma 4.2, we see that, for some constaand fort > ¢,

QQ(t — t2) = C/O 2(t — 5)7H7% gB(S) ds

to

=C (t—s)_H_%i/( (s—T)H_%gl(r)drds
0 ds Jo

to .
=C(t—ta) 72 [ (ta—7)" " Zgi(r)dr
0
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- C(H + %)/0 (- Ht /Os(s — )2 gy (r) dr ds

t1

=C K(t,r)g1(r)dr,
0

where the integration stops &t becausey, is equal to0 for larger values ot. The
kernel K is given by

Kt,r) =t~ t2)_H_%(t2 - T)H_% - (H+13) /tQ(t - s)_H‘%(s — r)H‘% ds

R T e

t—r to— 1
(= to)2 H(ty —r)H—3
o t—r '
and the claim follows. O

We give now estimates ag3 in terms ofg; . To this end, giverx > 0, we introduce
the following norm on functiong : Ry — R™:

o0
lallz = [ @+ 0 lgto at.
0
The following proposition is essential to the coherence of our coupling construction:

Proposition 4.4 Lett, > 2t; > 0, letg; : [0,t;] — R"™ be a square integrable
function, and defing; : R, — R by

t1 41l H H-1

t2 (tQ—S) 2
t) = ds .
92(t) /0 t+ty—s llg1(s)[| ds

Then, for everyy satisfying
0<a<min{i; H},

there exists a constart > 0 depending only o and H such that the estimate

|911la (4.14)

tyjo—3
loella < 5| 2|
tq

holds.

Remark 4.5 The important features of this proposition are that the constdogs not
depend ort; or ¢, and that the exponent in (4.14) is negative.

Proof. We definer = t5/t; to shorten notations. Using (4.13) and Cauchy-Schwarz,
we then have

b 2H—141—-2H
1y — t
la2®I < Cllgalla /(LmrmVls) s
0 (t+rt; —s)




DEFINITION OF THE COUPLING FUNCTION 31

1 _ Q)2H-1
= Cllgllats o4 | [ oo P,
0 (t+7”t1—t18)

- apy—Hp.H—}
t+(r -0t
where we made use of the assumptions fhat< 1 andr > 2. Therefore)|gz||. iS

< Cllgi o 2

bounded by
1 4+ ¢)2a¢1-2H
192l < rillgi oty 1o / (R
(t+ (r — 1)t1)?
1 oo t20‘t1*2H
= ot —dt,
= HH!JlH r /O (t+ 1)2

for some constant, where the last inequality was obtained through the change of
variablest — (r — 1)t1t and used the fact that> 2. The convergence of the integral

is obtained under the conditian < H which is verified by assumption, so the proof
of Proposition 4.4 is complete. O

We will construct our coupling functiof” in such a way that there always exist
functionsg,, andgp satisfying (4.9) and (4.10), where, andw, denote the noise
components of our coupling process, aBig and B, are obtained by applying the
operatorDy to them. We have now all the necessary ingredients for the construction
of .

5 Definition of the coupling function

Our coupling construction depends on a parameter min{%, H} which we fix once
and for all. This parameter will then be tuned in Section 6.
First of all, we define the auxiliary spack

A=1{0,1,2,3} x Nx Nx R, . (5.1)
Elements of4 will be denoted by
a=(S,N,N,Ts) . (5.2)

The componen$ denotes which step of (4.7) is going to be performed next (the value
0 will be used only for the initial value,). The counterV is incremented every time
step2 is performed and is reset toevery time another step is performed. The counter
N is incremented every time stelpor step?2 fails. If stepsl or 2 fail, the time T}
contains the duration of the upcoming s&p\Ve take

ag = (O; 1, 170)

as initial condition for our coupling construction.

Remember that the coupling functié@fis a function fromx2 x W? x A, repre-
senting the state of the system at the end of a stepRnto/; (A x W3 ), representing
the duration and the realisation of the noise for the next step. We now ¢éfioethe
four possible values of.
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5.1 Initial stage S=0
Notice first thatAl implies that

(f@) = f(x),y — )
ly — ||

where we seC)! = \/CPM(CH + CAY).

In the beginning, we just wait until the two copies of our process are within distance
1+ (C{/CHY) of each other. Ifr; andy; satisfy (SDE) with the same realisation of
the noise procesBy, ando: = y; — ¢, we have by fot| o, || the differential inequality

dlorl _ (fl) = F@e), o)
dt el

and therefore by Gronwall’'s lemma

<Ot = Oty — =) (5.3)

<O = CMledll

AL OAl AL
loell < llyo — wolle™ = + =33 (1 —e==7) .
02
It is enough to wait for a time = (log|jyo — xol|)/C4* to ensure thatje|| < 1 +
(Ct/O42Y), so we define the coupling functicfi in this case by

T(Z, ap) = max{w : 1} L Wa(Zyag) = AW x 6., (5.4)
02
where the map : W, — W3 is defined byA(w) = (w,w) and the elemeni’ is
given by
a =(1,0,0,0) .

In other terms, we wait until the two copies of the process are close to each other, and
then we proceed to stelp

5.2 Waiting stage § =3
In this stage, both copies evolve with the same realisation of the underlying Wiener
process. Using notations (5.2) and (4.4), we therefore define the coupling fuéttion

in this case by
T(Z,a)="Ts, Wy (Z,a) = A*W X §, (5.5)

where the map\ is defined as above and the elemehis given by
a =(1,N,N,0).

Notice that this definition is in accordance with (47, the countersV and N remain
unchanged, the dynamic evolves for a tiffiewith two identical realisations of the
Wiener process (note that the realisations of the fBm driving the two copies of the
system are in general different, since hestsof the Wiener processes may differ),
and then proceeds to sté&p
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5.3 Hitting stage §=1)

In this section, we construct and then analyse the #iarresponding to the stelp
which is the most important step for our construction. We start with a few preliminary
computations. Defin&/; ; as the space of almost everywhere differentiable functions
g, such that the quantity

1

dgs(t)

lalha = [ 222 de -+ g
0

is finite.

Lemmab5.1 Letgp : [0,1] — R"™ be inW;, and defineg,, by (4.11a) withH €
(%, 1). (The functiory s is extended t&R by setting it equal t® outside of[0, 1] and
Jw 1S considered as a function froRy,. to R™.) Then, for every € (0, H), there exists
a constant”' such that

lgwlla < Cllglli1 -

Proof. We first bound the L.norm of g, on the interval §, 2]. Using (4.11f), we can
bound||g.,(t)|| by

i
001 < ClasO)ed =" +C [ an(le -9t~ ds.

Sincetz— is square integrable at the origin, it remains to bound the tdinasid I,
given by

L= /02(/0t(t_5)§_H||gB(3)|ds/ot(t—r);_HHg'B(err) dt |

2 t
I = g5 ) / g / (t — )5 " gm(s)| ds d |
0 0

We only show how to bound,;, asl, can be bounded in a similar fashion. Writing
rV s =max{r, s} one has

1 1 2
h :/0 /0 /TVS“_S)%_H“—T)%‘H dt|g5() 135 dr ds .

Since

? 1 1 2 1-2H 2220
/Ws(tfs)TH(tfr)THdtg/Tvs(tf(rv,s)) dt < TR
I, is bounded by’||gz||7 ;.
It remains to bound the large-time tail gf,. Fort > 2, one has, again by
Lemma 4.2,

lgw®] < ¢ —1)~"> S[lée] lgp@)|l < Ct = 1)~ 2| gp|
€10,

S

11 - (5.6)

It follows from the definition that thé - || .-norm of this function is bounded if < H.
The proof of Lemma 5.1 is complete. 0
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In the caseld < % one has a similar result, but the regularitygef can be weak-
ened.

Lemmab.2 Letgg : [0,1] — R™ be a continuous function and defigg as in
Lemma 5.1, but witlil € (0, %). Then, for everyy € (0, H), there exists a constant
such that

ngHa < C sup HgB(t)H :
t€[0,1]

Proof. SinceH < % one can move the derivative under the integral of the first equa-
tion in Lemma 4.2 to get

t
lgu(®ll < C / (t— ) " Fgp(s)| ds < C sup [lg(®)] .
0 te[0,1]

This shows that the restriction ¢f, to [0, 2] is square integrable. The large-time tail
can be bounded by (5.6) as before. O

We already hinted several times towards the notion of a “cost function” that mea-
sures the difficulty of coupling the two copies of the process. This notion is now made
precise. Denote by = (o, yo, w., w,) an element o2 x W? and assume that there
exists a square integrable functigp : R_ — R such that

0
wy(t) = we(t) + / guw(s)ds , Vt<O0. (5.7)

In regard of (4.13), we introduce fa@r > 0 the operatofR  given by

0 t%—H(T _ S)H—%

(Rrg)t) =C P

lg(s)ll ds ,

— 00

whereC' is the constant appearing in (4.13). The cost is then defined as follows.

Definition 5.3 The cost functioiC,, : L2(R_) — [0, o] is defined by
0
Kale) = Spl[Ragla + Cic | (=" Hg(e)] s, (5.8)
> —o0

where, for convenience, we defifg = |(2H — 1)ygai—pu|. GivenZ as above,
K.(2) is defined asC,(g,,) if there exists a square integrable functigp satisfying
(5.7) and asx otherwise.

Remark 5.4 The cost functioriC,, defined above has the important property that
Ka(0r9) < Kalg), forallt >0, (5.9)

where the shifted functiofy g is given by

_fg(s+1) ifs<—t,
(0:9)(s) = { 0 otherwise.

Furthermore, it is a norm, and thus satisfies the triangle inequality.
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Remark 5.5 By (4.13), the first term in (5.8) measures by how much the two realisa-
tions of the Wiener process have to differ in order to obtain identical increments for the
associated fractional Brownian motions. By (4.11c), the second term in (5.8) measures
by how much the two realisations of the fBm differ if one lets the system evolve with
two identical realisations of the Wiener process.

We now turn to the construction of the process, {;;) during stepl. We will set
up our coupling construction in such a way that, whenever $tispto be performed,
the initial conditionZ is admissible in the following sense:

Definition 5.6 Leta satisfy0 < a < min{3; H}. We say tha¥Z = (9, yo, ws, wy) i
admissibldf one has
1+t

Al !
&3

(the constant&'”! are as inAl and in (5.3)), and its cost satisfié,(Z) < 1.

2o — yol <1+ (5.10)

Denote now by the space of continuous functioas [0, 1] — R™ which are the
restriction to [, 1] of an element of{;;. Our aim is construct two measure$ and
P2 on ) x Q satisfying the following conditions:

B1 The marginals oP}, + P% onto the two componenf3 of the product space are
both equal to the Wiener measuhé

B2 Let#,. C 2x§)denote the set of pairgi(;, w,) such that there exists a function
gw : [0,1] — R" satisfying

ot

() = .0+ |

1
guls)ds /m%@w@gm
0 0

Then, there exists a value afsuch that, for every admissible initial condition
Zy, we havePy (%) + P%(%.) = 1.

B3 Let (x¢,y;) be the process constructed by solving (SDE) with respective ini-
tial conditionsz, andyg, and with respective noise procesdgéw,, w,) and
Py(wy,0,). Then, one has; = y; for P,-almost every noise;, w,). Fur-
thermore, there exists a constant- 0 such thatP,(Q x Q) > § for every
admissible initial conditior¥.

Remark 5.7 Both measureB’, andP% can easily be extended to measure$/'gh in

such a way thaB1 holds. Since the dynamic constructed from the coupling function
% will not depend on this extension, we just choose one arbitrarily and denote again
by P, andP?, the corresponding measures)ait .

GivenP,, andP%, we construct the coupling functiafiin the following way, using
notations (5.2) and (4.4):

T(Z,a)=1, Wy(Z,a)=PL x 64, +P% X dq, , (5.11)
where the two elements anda, are defined as

a1 = (2,0,N,0), (5.12a)
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as = (3,0, N +1,¢, N¥/(=2a)y (5.12b)

for some constant, to be determined later in this section. Notice that this definition
reflects the algorithm (4.7) and the explanation following (5.2). The reason behind the
particular choice of the waiting time in (5.12b) will become clear in Remark 5.11.

The way the construction d?}, and P% works is very close to the binding con-
struction in [Hai02]. The main difference is that the construction presented in [Hai02]
doesn't allow to satisfB2 above. We will therefore introduce a symmetrised version
of the binding construction that allows to gain a better control gyerIf p; and s
are two positive measures with densitids and D, with respect to some common
measureg:, we define the measugg A us by

(1 A p2)(dw) = min{ Dy (w), Da(w)} p(dw) .

The key ingredient for the construction®f, andP% is the following lemma, the proof
of which will be given later in this section.

Lemma5.8 Let Z = (zo, yo, w,, wy) be an admissible initial condition and Ief,

o, and f satisfy the hypotheses of either Theorem 1.2 or Theorem 1.3. Then, there
exists a measurable map, : Q — Q with measurable inverse, having the following
properties.

B1' There exists a constant> 0 such thatW A U7, W has mass bigger tha2s for
every admissible initial conditiod.

B2 There exists a constanrtsuch that{(@,, @,) | 0, = ¥z (@;)} C B, for every
admissible initial conditior?.

B3' Let(x:, y:) be the process constructed by solving (SDE) with respective initial
conditionsz, andyg, and with noise processé$(w, w,) and P (wy, ¥ z(w,)).
Then, one has, = y, for everyw, € 2 and every admissible initial condition
Z.

Furthermore, the map® ; and ¥, are measurable with respect .

Given such al' , we first define the mapg; andW¥_, from Q to Q x by
\I/T('Lba:) = (’LTJI, ‘I’Z(wm)) ’ \I/H(wv) = (\Ilgl(wy)va) .
(See also Figure 1 below.) We also define the “switch map™Q x Q@ — Q x Q by
S(ij, wy) = (’l])y, "Dw) -
With these definitions at hand, we construct two measReandP, onQ x by

P, = (TIWAT" W), P,=P},+5P,. (5.13)

1
2
On Figure 1P, lives on the boldfaced curve aj, is its symmetrised version which
lives on both the boldfaced and the dashed curve. Denoié;byQ x Q@ — Q the
projectors onto théth component and bA : © — Q x Q the lift onto the diagonal
A(w) = (w,w). Then, we define the measu?g by

PZ = S*PL + A*(W — IIIP}) . (5.14)
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Figure 1: Construction d?.

By (5.13),W > II, P}, soP} andP% are both positive and their sum is a probability
measure. Furthermore, one has by definition

Pl +P% =Py, + A*(W —II;P}) .
Sincell; A* is the identity, this immediately implies
;P, +II;P% = W .

The symmetryS*P} = P}, then implies that the second marginal is also equaVto
i.e. Bl is satisfied. Furthermore, the Sgtv,, w,) | W, = Vz(w,)} hasPz-measure
bigger thans by B1’, soB3 is satisfied as well. FinallyB2 is an immediate conse-
quence oB2'. It remains to construct the functioh.

Proof of Lemma 5.8As previously, we writeZ as
Z = (x07y07wwawy) . (515)

In order to construct ;, we proceed as in [Hai02, Sect. 5], except that we want the
solutionsz; andy; to become equal after time Letw, € €2 be given and define

Bu(t) = (D Pi(we, we))(t — 1), (5.16)

wherelV denotes the corresponding part of the initial conditifyrin (5.15). We write
the solutions to (SDE) as

dzy = f(xy) dt + odBg(t) , (5.17a)
dy; = f(y;) dt + odBg(t) + ogp(t) dt , (5.17b)

wheregp(t) is a function to be determined. Notice thatis completely determined by
w,, and by the initial conditior¥. We introduce the procegs = y; — x;, SO we get

doy

o = et o) = fle) +0gs() - (5.18)
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We now defingjg(t) by

gu(t) = —a’l(mgt + Kp— ) , (5.19)

Vel

for two constants:;; andxs to be specified. This yields for the norm @fthe estimate

s
dt

We choose:; = C4! and so

(62t — /Teoll)” fort < /Teoll/(6r2),
< 5.20
e {o for ¢ > /Toll/(652). (620

We can then chooss, sufficiently large, so thdte,|| = 0 for¢ > 1/2. Since the initial
condition was admissible by assumption, the constardan be chosen as a function
of the constant€#! only. Notice also that the preceding construction yigjgsas a
function of Z andw, only.

We then constructt, = ¥ z(w,) in such a way that (5.17) is satisfied with the
function gg we just constructed. Defing, by (5.7) and construciz by applying
(4.11b). Then, we extenglz to (—oo, 1] by simply putting it equal tgjg on (—oo, 0].
Applying the inverse formula (4.11a), we obtain a functignon (—oo, 1], which is
equal tog,, on (—oo, 0] and which is such that

< 205" — k)l eell* — 2wl P2 -

<wwmmz@m+/%@@,

0
has precisely the required property.
It remains to check that the family of mags; constructed this way has the prop-
erties stated in Lemma 5.8. The inverselof is constructed in the following way.
Choosew, € Q2 and consider the solution to the equation

dys = f(ys) dt + odBy(t) ,

where By is defined as in (5.16) with replaced byy. Oncey, is obtained, one can
construct the process as before, but this time by solving
doy Ot
7:f(yt)*f(yt*9t)*</f19t+/‘€2 )
dt Vel
This allows to defing g as in (5.19). The element, = \Ifgl(zby) is then obtained by
the same procedure as before.
Before turning to the proof of propertiésl’'-B3’, we give some estimate on the
function g,, that we just constructed.

Lemma 5.9 Assume that the conditions of Lemma 5.8 hold. Then, there exists a con-
stant K such that the function,,(Z, w,) constructed above satisfies

1
/ ||§'w(Z7 wx)(S)HQdS <K,
0

for every admissible initial conditio@ and for everyw,, € W;.
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Proof. We write g,,(t) fort > 0 as

0 H H_,
e R L N T
OB AOR

whereg,, is defined by (5.7)gp is given by (5.19), and the constafitis the constant
appearing in (4.13). The?tnorm of () is bounded byl by the assumption that
is admissible. To bound the norm 9§, we treat the casel < 1 andH > 1
separately.

The case H< % For this case, we simply combine Lemma 5.2 with the definition
(5.19) and the estimate (5.20).

The case H> 3. For this case, we apply Lemma 5.1, so we bound|thig ;-norm of

gg- By (5.19), one has

doy

gB(t)H < CH (14 [l ~2) (5.21)

I

for some positive constaidt. Using (5.18), the assumption about the boundedness of
the derivative off, and the definition (5.19) we get

< C(lloel + Vlleell) -

Combining this with (5.21) and (5.20), the required bound|§g||,,1 follows. 0

H doy

PropertyB1’ now follows from Lemma 5.9 and Girsanov’'s theorem in the follow-
ing way. Denote byZ; the density ofl'}, W with respect taw, i.e. (¥5W)(dw,) =
Dz(,) W(dw,). Itis given by Girsanov’s formula

2205 = o0 [ {0z 1)@, 400}~ § [ otz w0 a)
One can check (se=g.[Mat02]) that||W A ¥%W/||ty is bounded from below by
WA w5 Wlry > (4] F20)* Widu))
PropertyB1’ thus follows immediately from Lemma 5.9, using the fact that

1 1
— P 7y 7 — P 7 2 — .
[ ea(=2 [ (@ a0, ai o) =2 [ 13,02 0)1°0) i) wiaw) 1

PropertyB2’ is also an immediate consequence of Lemma 5.9, and proBattfol-
lows by construction from (5.20). The proof of Lemma 5.8 is complete. O

Before concluding this subsection we show that, if stdails, . can be chosen in
such a way that the waiting timg N4/(1=22) in (5.12b) is long enough so that (5.10)
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holds again after step and so that the cost function does not increase by more than
1/(2N?). By the triangle inequality, the second claim follows if we show that

K:a (etgw (Z, ww)) < ) (522)

N2
whenevett is large enough (the shift; is as in (5.9)). Combining (4.14), Lemma 5.9,
and the definition ofC,,, we get, for some constagt,

Ka(0150(Z,105)) < Ct*~% + CtH=% | fort > 2.

There thus exists a constantsuch that the bound (5.22) is satisfied if the waiting time
is longer thart, N4/(1=22) |t remains to show that (5.10) holds after the waiting time
is over. If stepl failed, the realisations, andw, are drawn either in the set

Ay = {0y, @) € O | By = By},
or in the set R
Ay = {(wwku) € o? ‘“7:10 = ‘IJZ(wU)}

(see Figure 1). In order to describe the dynamics also during the waitingitenstép
3), we extend those sets W2 by

A; = { (g, Wy) € W2 | (Ws]j0,17 Wylio,17) € As
and @,(t) — w,(¢) = const fort > 1} .

Given an admissible initial conditiod = (xo, yo, w., w,) and a pair ¢, w,) € W2,
we consider the solutions, andy, to (SDE) given by

dzy = f(z) dt + cdBE(t) ,

dy, = f(y) dt + odBY(t) , (5.23)

whereB7; (and similarly forBY,) is constructed as usual by concatenatingandw,,
and applying the operat@y. The key observation is the following lemma.

Lemma 5.10 Let Z be an admissible initial condition as above, (&t,, w,) € A; U
A, and letz, andy, be given by (5.23) fot > 0. Then, there exists a constant> 0
such that

1+0t

”xt - ytH <1+ 091

holds again fort > ¢,.

Proof. Fix an admissible initial conditio@ and consider the case when(, w,) € A
first. Letg, : R — R™ be asin (5.7) and defing, : Ry — R™ by

t
0) = 5.0+ [ 5. ds
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Introducingo; = y; — x¢, We see that it satisfies the equation

0 fo) - 1) + oG (529

where the functioryj; is given by

0 ‘ t
G = / (= )" Eguls)ds + 2y / (t— )" Fgu(s)ds,  (5.25)
oo 0

with some constants andc, depending only orf. It follows from (5.24), (5.3), and
Gronwall's lemma, that the Euclidean notfp || satisfies the inequality

t
leell < €= [lo] +/ e =IO + |G ds - (5.26)
0

Consider first the time intervad[ 1] and define

0 t
g}:cl/ (tfs)H*%gw(s)dstQ%/ t— )T 2G,(s)ds ,
o 0

i.e., we simply reversed the sign ¢f,. This corresponds to the case wheig, (10,
are interchanged, and thus satigfy = ¥ z(&,) instead ofw, = ¥ z(w,). We thus
deduce from (5.19) and (5.20) that

IGsll < llo = I (k1 0oll + w2/l 00ll) . (5.27)
for s € [0, 1]. This yields for||G,|| the estimate

0
_ _3
IG: 1l < o™l (kalleoll + 52/l oll) +201/ (t = )" lgu(s)|l ds

<lo™ [ (k1lleoll + w2/l ooll) + 1, (5.28)

where we used the fact thatis admissible for the second step. Notice that (5.28) only
holds fors € [0, 1], so we consider now the case> 1. In this case, we can writg,
as o 3 . )
Go=c [ )" g ds e [ -9 g ds.
[e%s) 0

The first term is bounded by as before. In order to bound the second term, we use
Lemma 5.9, so we get

1G:ll <1+ \/QHK_ 5 (= 1) =2 — 2t =2) (5.29)

This function has a singularity at= 1, but this singularity is always integrable. For

t > 2 say, it behaves likeH 3. Putting the estimates (5.28) and (5.29) into (5.26),

we see that there exists a const@htlepending only orff and on the parameters in

assumptiorAl such that, fot > 2, one has the estimate

1+t
cat

The claim follows at once. O

+ o3

_ AL
loell < e "ol +
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Remark 5.11 To summarise, we have shown the following in this section:

1. There exists a positive constansuch that if the stat& of the coupled system
is admissible, stefh has a probability larger thanto succeed.

2. If step1 fails and the waiting time for stepis chosen larger than N4/ —22),
then the state of the coupled system is again admissible after the end &f step
provided the cosk,(2) at the beginning of stepwas smaller than — 21{72 .

3. The increase in the cost given between the beginning of stepd the end of
step3is smaller than < .

In the following subsection, we will define st@mnd so conclude the construction
and the analysis of the coupling functign

5.4 Coupling stage$ =2

In this subsection, we construct and analyse the couplinggheprresponding to step

2. Following (4.7), we construct it in such a way that, with positive probability, the
two copies of the process (SDE) are driven with the same noise. In other terms, if
Z = (xo, Yo, wz, wy) denotes the state of our coupled system at the beginning of step
2, we construct a measuke; on W?r such that if (v, w,) is drawn according t®,

then one has

(D (wy Ug))(t) = (Pua(wy Uwy))(t), t>0, (5.30)
with positive probability. Here,! denotes the concatenation operator given by

- (t) fort<oO,
(w“wwz{gm fort > 0.

In the notation (5.2), step will have a duratior2”¥ and N will be incremented byl
every time stef2 succeeds.

The construction oPz will be similar in spirit to the construction of the previous
section. We therefore introduce as before the fundgjipigiven by

t
%@:@m+l@$m& (5.31)

Our main concern is of course to get good bounds on this fungtjofT his is achieved
by the following lemma, which is crucial in the process of showing that &teyll
eventually succeed infinitely often.

Lemma 5.12 Let Z, be an admissible initial condition and denote Bythe measure
on X? x W? obtained by evolving, according to the successful realisation of step
1. Then, there exists a constait > 0 depending only o, «, and the parameters
appearing inAl, such that for7 -almost every? = (x, y, w., wy), and for every pair
(w4, wy) satisfying (5.30), we have the bounds

[Gwlla < K, <K. (5.32)

H 9w
dt
Furthermore, one has = y, 7 -almost surely.

a+1
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Proof. Itis clear from Lemma 5.8 that = y. Let nowZ be an element drawn accord-
ing to 7, and denote by,, : R_ — R" the function formally defined by

dwy = dwy(t) + gu (1) di . (5.33)
We also denote by, : R_ — R the function such that
dBy = dB,(t) + gu(t) dt , (5.34)

whereB, = Dyw, andB, = Dyw,. (Note thatg,, andg, are almost surely well-
defined, so we discard elemerfisfor which they can not be defined.) By (5.19) and
(5.20), there exists a constafij such that

C, forse[-1,-1),
lgv()I < {0 for s € [—3,0]. (5.35)

Combining the linearity oDy with (4.13), one can see that if’(, w,) satisfy (5.30),
then the functiorg,, is given by the formula

-1 1 g H-1 —1/2
t+1 1 1
gw(t):cl/ o+ 1 s + 1] Zgw(s)ds+02/ (t— )" S gy(s)ds,

t—s _1
(5.36)
for some constant€’; andC; depending only orf{. Notice that the second integral
only goes up td /2 because of (5.35).

Since the initial conditior?, is admissible by assumption, tkje ||,-norm of the
first term is bounded by. The|| - ||,-norm of the second term is also bounded by a
constant, using (5.35) and the assumptioa H.

Deriving (5.36) with respect tg we see that there exists a constAhsuch that

g (t) K 1z H s+ 1H 2
|50 =< m(/ el t_| = gl ds
oy (5.37)
1
w9 ) ds)
-1
and the bound on the derivative follows as previously. O

The definition of our coupling function will be based on the following lemma:

Lemma 5.13 Let A/ be the normal distribution o, choosez € R, b > |a|, and
defineM = max{4b,21og(8/b)}. Then, there exists a measukg"’b on R? satisfying
the following properties:

1. Both marginals of\?, are equal taV.
2. If |b| <1, 0ne has

N2, ({@y)|ly=2+a}) >1-b.

Furthermore, the above quantity is always positive.
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3. One has
s{@ )y -2 <M})=1.

Proof. Consider the following picture:

Denote byN, the normal distribution on the sét, = {(z,y)|y = 0} and byN,
the normal distribution on the sét, = {(z,y)|x = 0}. We also define the maps
;. (respect.m; ,) from L, (respect.L,) to L;, obtained by only modifying thg
(respectx) coordinate. Notice that these maps are invertible and denote their inverses
by 7; . (respect; ,). We also denote by, |1 (respectN,|) the restriction of\,
(respect\V,) to the squaref4f, 212,

With these notations, we define the meas\geon L3 as

N3 =75, (Nalar) Al (Nylar) -
The measurgy?, is then defined as
N2y = Ns + 75 0 (Nalar) = 75 2N5) + 77 o (Vo = (Nalar)) -

A straightforward calculation, using the symmetries of the problem, shows that prop-
erty 1 is indeed satisfied. Property 3 follows immediately from the construction, so it
remains to check that property 2 holds, that

N3(Ls)>1-b,
for |b| < 1, andN3(L3) > 0 otherwise. It follows from the definition of the total
variation distancd - ||ty that

1
N3(L3)=1— §||(Nx\M) — 7o Nzl v

wherer,(z) = ¢ — a. SinceM > 4b > 4a, is clear from the picture and from the fact
that the density of the normal distribution is everywhere positive, AB4L3) > 0 for
everya € R. It therefore suffices to consider the céble< 1. Sincef;{o e 4y <
b/8, one had| N, | v — Nylltv < b/4, which implies

b 1
N3(L3) >1— 1 §||Nw — TaNglltv -
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A straightforward computation shows that, far < 1,

||Nm 7T;NEHTV <v €a2 -1 < \/5(1 s
and the claim follows. O

We will use the following corollary:

Corollary 5.14 LetW be the Wiener measure o, letg € L2(R,) with ||g|| < b,
let M = max{4b, 21og(8/b)}, and define the map, : W, — Wy by

(Vyw)(t) = w(t) + /O g(s)ds .

Then, there exists a measté , on W? such that the following properties hold:
1. Both marginals ofV?2 , are equal to the Wiener measufé.
2. If b < 1, one has the bound

W2, ({ (g, ) [y = Tg(iig)}) > 1D (5.38)

Furthermore, at fixed > 0, the above quantity is always positive and a decreas-
ing function ofj|g||.

3. The set

t
{30 0,00 = 5.0+ 5 [ gte)as. wllal < )

has fullW? ,-measure.

Proof. This is an immediate consequence of tReskpansion of white noise, using
as one of the basis functions and applying Lemma 5.13 on that component. O

Given this result (and using the same notations as above), we turn to the con-
struction of the coupling functiof¥” for step2. Given an initial conditionZ =
(0, Y0, wy, wy), remember thay,, is defined by (5.7). We furthermore define the
functiong,, : Ry — R™ by

0 4i1-H( H-1
o= [ B, (539
with C the constant appearing in (4.13). By (4.13),is the only function that ensures
that (5.30) holds ifv, andw, are related by (5.31). (Notice that, although (5.36) seems
to differ substantially from (5.39), they do actually define the same function.) Given
Z as above and € A, denote byg, z the restriction ofg,, to the interval {), 2V]
(prolonged byo outside). It follows from Lemma 5.12 that there exists a constant
such that if the coupled process was in an admissible state at the beginning bf step
then the a-priori estimate

2N

MMWE/ lge.2(8)]12 ds < C272N =13, (5.40)
0
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holds for some constanit. We thus definé = max{by, ||ga,z |} and denote byv7 ,
the restriction oNVEa)Z’b to the “good” set (5.38) and bWQZya its restriction to the
complementary set.

We choose furthermore an arbitrary expongésttisfying the condition

B>’1j2a' (5.41)
With these notations at hand, we define the coupling function forXstep
T(Z,a)=2Y, Wa(Z,a) = W%, x 60 + W%, X Sarr ,
where
d =@2,N+1,N,0), d =(3,0,N +1,i,20N N2y (5.42)

for some constant, to be determined in the remainder of this section. The waiting
time in (5.42) has been chosen in such a way that the following holds.

Lemma 5.15 Let (Zy, ag) € X2 x W? x A with Z, admissible and denote I the
measure ont’? x WW? obtained by evolving it according to the successful realisation
of stepl, followed by N successful realisations of st&) one failed realisation of
step2, and one waiting perio®. There exists a constant such that7 -almost every

Z = (z,y, wg, wy) satisfies

1+t 1

, Ka(Z) < Ku(Z —,
- (2) < KalZ0) +

[z =yl <1+

whereN denotes the value of the corresponding compone.of

Proof. We first show the bound on the cost function. Giéristributed according

to 7 as in the statement, we defigg by (5.33) as usual. The bounds we get on the
functiong,, are schematically depicted in the following figure, where the time interval
[£2, t3] corresponds to the failed realisation of s&p

istepl: step2 i step2 i step3

: : gt —t2)

: : g(t —t1) : : :
S -t
it ito o its 0

(5.43)
Notice that, except for the contribution coming from times smaller tharwe are
exactly in the situation of (4.12). Since the cost of a function is decreasing under time
shifts, the contribution té,, (2) coming from oo, ¢1] is bounded by, (7). Denote

by ¢ the function defined by

o gw(t + tl) fort e [07 t3 — tl],
9 = { 0 otherwise.
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Using the definition of the cost function together with Proposition 4.4 and the Cauchy-
Schwarz inequality, we obtain for some constafifsandCs the bound

t1
ts — 1

Kal(2) < KalZo) + Cry/ltsl2-2 — 1212 g + Co| —2—|" 7 g]la.

where|| - || denotes the3-norm. Since steft has lengthl and theNth occurrence of
step2 has lengtl2V —!, we have

ltg —tq| = 2V Jtg| = £, 20N N/ (20

In particular, one hai;| > |t3 — t1] if £. is larger thari. Since

t3
t3 — 11

1
2
’

VItsl2=2 — 22 < ] Tt — 1]} < |

this yields (for a different constaut; ) the bound

a3 Fzg-wN
gl < KalZo) + 1= ——lgla

t
Ka(2) < KalZo) + Ca|

i3 —11

where we defined = (5 — 1)(% — «). Notice that (5.41) guarantees that> «.

We now bound théd| - ||,-norm of g. We know from Lemma 5.12 that the contri-
bution coming from the time intervat{, £,] is bounded by some constaht Further-
more, by (5.40), we have for the contribution coming from the intemak}] a bound
of the type

t3
[ g(s)|I?ds < C(N + 1)?,
ta
for some positive constaidt. This yields forg the bound
l9lla < C(N +1)20N

for some other constaidt. Sincey > «, there exists a constaat such that

a1

te

Ka(Z) S ]CQ(ZO)+C NQ .

By choosingt, sufficiently large, this proves the claim concerning the increase of the
total cost.

It remains to show that, at the end of s&phe two realisations of (SDE) didn’t
drift to far apart. Defingy, by (5.34) as usual and notice that, by constructions v,
for t = t,. Writing as beforep, = 3, — x;, one has fot > £, the estimate

Al

C b omg .
lerll < Ga + [ &g ds. (549)
2 ta

We first estimate the contribution coming from the time interval f3]. Denote by
g : [t2,t3] — R™ the valueg,, would have taken, had the last occurence of &ep
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succeeded and not failed (this corresponds to the dashed curve in (5.43)). Defining
= gw — §, We have by (4.11e) that, on the intervat [t,, 3],

i) [ R

S — Al (s . 5.45
A N

an(t) = C1

By Corollary 5.14 and the construction of the coupling functigms proportional to
gw and, by (5.40), we also have fgra bound of the type|g| < C(N + 1) (the
norm is the B-norm over the time intervat§, ¢5]). Furthermore, (5.37) yield|$%|| <
C(N +1)2—V. Recall that every differentiable function defined on an interval of length
L satisfies

/1]

o< L+ |2 |VE-

(The norms are3-norms.) Using this to bound the first term in (5.45) and the Cauchy-
Schwarz inequality for the second term, we get a congtastich thaty, is bounded
by

lgo()]| < C(N +1)(1+27F(t — i)~ 7).

From this and (5.44), we get an other constansuch that|g;|| < C(N + 1) at the
timet = t3. We finally turn to the intervaltf, 0]. It follows from (4.11c) that, for
some constant’, we have

1 _
lgs@I = 5 +Clt = tsl " lgll

where the termﬁ is the contribution from the times smaller than Since we know
by (5.40) and Corollary 5.14 that thé-horm of g is bounded byC'(V + 1) for some
constantC, we obtain the required estimate by choosipgufficiently large. O

Remark 5.16 To summarise this subsection, we have shown the following, assuming
that the coupled system was in an admissible state before performing atepthat
stepl succeeded:

1. There exists constant8 € (0,1) and K > 0 such that theVth consecutive
occurrence of step succeeds with probability larger than n{ak 1 — K2-<V},
This occurrence has leng??’ —!.

2. If the Nth occurrence of stef fails and the waiting time for step is chosen
longer thant, 28N N4/(1-2¢) then the state of the coupled system is again ad-
missible after the end of st&} provided that the co%t,(Z) at the beginning of
stepl was smaller than — .

3. The increase in the cost given between the beginning of stepd the end of
step3is smaller than— .

Now that the construction of the coupling functi@his completed, we can finally
turn to the proof of the results announced in the introduction.
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6 Proof of the main result

Let us first reformulate Theorems 1.2 and 1.3 in a more precise way, using the notations
developed in this paper.

Theorem 6.1 LetH € (0, 1), let f and o satisfyAl-A3if H < 1 andAl, A2’, A3 if

H > % and lety < max,<g a(l — 2«). Then, the SDS defined in Proposition 3.11
has a unique invariant measure.. Furthermore, there exist positive constagtand

0 such that, for every generalised initial conditipnone has

1200 — 2u.lrv < 2u({llzoll > €}) + Ct (6.1)

Proof. The existence of:. follows from Proposition 3.12 and Lemma 2.20. Further-
more, the assumptions of Proposition 2.18 hold by the invertibility,afo the unique-
ness ofu.,. will follow from (6.1).

Denote byp the SDS constructed in Proposition 3.11, and consider the self-coup-
ling 2(u, u.) for ¢ constructed in Section 5. We denote hy,@;) the canonical
process associated 18(u, u.) and we define a random tinfg, by

Too =iNf{t > 0|2y =y, Vs >t} .
It then follows immediately from (4.2) that
2Qtu — Lty < 2P(100 > t) .

Remember tha2(y, 11.) was constructed as the marginal of the law of a Markov pro-
cess with continuous time, living on an augmented phase spac8ince we are only
interested in bounds on the random tifg and since we know that, = y, as long
as the coupled system is in the staté suffices to consider the Markov chaif,(, 7,,)
constructed in (4.8). It is clear that, is then dominated by the random timg,
defined as

Too = inf{Tn | Sy =2V m >n},

whereS,, is the component of,, indicating the type of the corresponding step. Our
interest therefore only goes to the dynamicrgfand S,,. We define the sequence of
timest(n) by

t0)=1, tn+1)=inf{m>t(n)|Sn, =1}, (6.2)

and the sequence of duratioAs;, by
ATy = Tyn+1) — Ti(n) »

with the conventionA7,, = +oo if #(n) is infinite (.e. if the set in (6.2) is empty).
Notice that we set(0) = 1 and not0 because we will treat stefpof the coupled pro-
cess separately. The duratider,, therefore measures the time needed by the coupled
system starting in stepto come back again to stdp We define the sequenég by

—00 if At,, = 400,
&, + Ar,  otherwise.

=0, €n+1={
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By construction, one has
Too = T1 + SUPE, , (6.3)
n>0
so we study the tail distribution of th&r,,.

For the moment, we leave the valaeppearing throughout the paper free, we will
tune it at the end of the proof. Notice also that, by Remarks 5.11 and 5.16, the cost
increases by less th every time the counteN is increased by. Since the initial
condition has no cost (by the choice (4.6) of its distribution), this implies that, with
probability 1, the system is in an admissible state every time $tisperformed.

Let us first consider the probability dfr,, being infinite. By Remark 5.11, the
probability for stepl to succeed is always greater thanAfter stepl, the Nth occur-
rence of ste has lengt2V—1, and a probability greater than mi, 1 — K2~ 2V}
of succeeding. Therefore, one has

N
P(A7, >2V) > 6 [ max{d’, 1 — K27} .
k=0

This product always converges, so there exists a congfant0 such that
P(AT, = 00) > p. ,

for everyn > 0. Since our estimates are uniform over all admissible initial conditions
and the coupling is chosen in such a way that the system is always in an admissible
state at the beginning of stdpwe actually just proved that the conditional probability

of P(A7,, = o0) on any event involvingS,, and Ar,,, for m < n is bounded from
below byp..

For Ar, to be finite, there has to be a failure of st2at some point (see (4.7)).
Recall that if stef2 succeeds exactlyy times, the corresponding value farr,, will be
equal te2N +£,2°N (14+n)*/0=29) for N > 0 and tot,.(14+n)*/ =22 for N = 0. This
follows from (5.12b) and (5.42), noticing that in those formulae counts the number
of times stepl occurred and is therefore equalitoWe also know that the probability
of the N'th occurrence of step to fail is bounded from above bi2—*~. Therefore,

a very crude estimate yields a const@hsuch that

P((1+n) *029A7, > C2°N andAr, # o0) <K »_ 27K,
k>N

This immediately yields for some other constéaht
P((1 +n)*0729Ar, > T and A, # o0) < CT~ /7. (6.4)

As a consequence, the procésss stochastically dominated by the Markov chgjn
defined by

_0 [ =0 with probabilityp.,
=0, G = n + (n+1)*/0=22)p  with probability1 — p,,
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where thep,, are positive i.i.d. random variables with tail distributiéti’ /% i.e.
Py, > T) = {CT—W if CT-/8 <1,
1 otherwise.

With these notations and using the representation (6,3)s bounded by

P(7oo > t) < P(ry > t/2) + P(i(n + 1)V A=20y, t/2) , (6.5)

n=0

wheren, is a random variable independent of fheand such that
P(n. = k) = p.(1 — p.)* . (6.6)

In order to bound the second term in (6.5), it thus suffices to estimate terms of the form
Sk o+ 1)4/0=22), for fixed values of. Using the Cauchy-Schwartz inequality,
one obtains the existence of positive constantnd N such that

k
P(D o+ 1Y0=20p, > 1/2) < O+ DVE/
n=0

Combining this with (6.6) and (6.5) yields, for some other constant
P(Too > t) < P(ry > t/2) + Ct=/7 .
By the definition of stef® (5.4), we get forr:

P(r1 > 1/2) < u({llzoll > €% /2/2}) + pa ({{lyo]l > <2 4/2/2}) .

Since, by Proposition 3.12, the invariant measuréas bounded moments, the second
term decays exponentially fast. Sinae < min{%,H} and3 > (1 — 2a)~! are
arbitrary, one can realise= «/ for v as in the statement.

This concludes the proof of Theorem 6.1. O

We conclude this paper by discussing several possible extensions of our result. The
first two extensions are straightforward and can be obtained by simply rereading the
paper carefully and (in the second case) combining its results with the ones obtained in
the references. The two other extensions are less obvious and merit further investiga-
tion.

6.1 Noise with multiple scalings

One can consider the case where the equation is driven by several independent fBm’s
with different values of the Hurst parameter:

dz, = f(zy) dt + i o;dBy (1) .

i=1
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It can be seen that in this case, the invertibilityyaghould be replaced by the condition
that the linear operator

c=01 Do ®...Do,, :R™ —-R",
has rank:. The condition on the convergence exponetiien becomes

y<min{y,...,Ym},
wherey; = max,<zm, ol — 2a).

6.2 Infinite-dimensional case

In the case where the phase space for (SDE) is infinite-dimensional, the question of
global existence of solutions is technically more involved and was tackled in [MNO2].
Another technical difficulty arises from the fact that one might want to take fan
operator which is not boundedly invertible, A8 would fail on a formal level. One
expects to be able to overcome this difficulty at least in the case where the equation is
semilinear and parabolice. of the type

dr = Az dt + F(z)dt + QdBg(t) ,

with the domain ofF’ “larger” (in a sense to be quantified) than the domaindof
and By a cylindrical fBm on some Hilbert spadé on which the solution is defined,
provided the eigenvalues of and of ) satisfy some compatibility condition as in
[DPZ92, Cer99, EHO1].

On the other hand, it is possible in many cases to split the phase space into a finite
number of “unstable modes” and an infinite number of “stable modes” that are slaved
to the unstable ones. In this situation, it is sufficient to constructstapsuch a way
that the unstable modes meet, since the stable ones will then automatically converge
towards each other. A slight drawback of this method is that the convergence towards
the stationary state no longer takes place in the total variation distance. We refer to
[Mat02, KS01, Hai02] for implementations of this idea in the Markovian case.

6.3 Multiplicative noise

In this case, the problem of existence of global solutions can already be hard. In the
caseH > 1/2, the fBm is sufficiently regular, so one obtains pathwise existence of
solutions by rewriting (SDE) in integral form and interpreting the stochastic integral
pathwise as a Riemann-Stieltjes integral. In the ddse (i, %), it has been shown re-
cently [Lyo94, Lyo98, CQ02] that pathwise solutions can also be obtained by realising
the fBm as a geometric rough path. More refined probabilistic estimates are required in
the analysis of stefh of our coupling construction. The equivalent of equation (5.18)
then indeed contains a multiplicative noise term, so the deterministic estimate (5.20)
fails.

6.4 Arbitrary Gaussian noise
Formally, white noise is a centred Gaussian proéesih correlation function

E&(s)5(t) = Cu(t —s) = 6(t — s) .
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The derivative of the fractional Brownian motion with Hurst paraméfeis formally
also a centred Gaussian process, but its correlation function is proportional to

Cr(t—s)=|t —s|*"72,

which should actually be interpreted as the second derivatiyie-of|2 in the sense
of distributions.

A natural question is whether the results of the present paper also apply to differen-
tial equations driven by Gaussian noise with an arbitrary correlation fun€tfor- s).
There is no conceptual obstruction to the use of the method of proof presented in this
paper in that situation, but new estimates are required. It relies on the fact that the
driving process is a fractional Brownian motion only to be able to explicitly perform
the computations of Section 5.
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