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1. INTRODUCTION

1.1 Motivation.

One of the cornerstones of equilibrium statistical mechanics is the notion that macroscopic sys-
tems undergo phase transitions as the external parameters change. A mathematical description
of phase transitions was given by Gibbs [16] who characterized a phase transition as a point of
non-analyticity in thermodynamic functions, e.g., the pressure. This definition was originally
somewhat puzzling since actual physical systems are finite, and therefore their thermodynamic
functions are manifestly real-analytic. A solution to this contradiction came in two seminal pa-
pers by Yang and Lee [40, 24], where it was argued that non-analyticities develop in physical
guantities because, as the system passes to the thermodynamic limit, complex singularities of the
pressure pinch the physical (i.e., real) domain of the system parameters. Since the pressure is
proportional to the logarithm of the partition function, these singularities correspond exactly to
the zeros of the partition function.

In their second paper [24], Lee and Yang demonstrated the validity of their theory in a particu-
lar example of the Ising model in a complex magnetic fleldsing an induction argument, they
proved the celebrated Lee-Yang Circle Theorem which states that, in this model, the cefnplex-
zeros of the partition function on any finite graph with free boundary conditions lie on the unit
circle. The subject has been further pursued by a number of authors in the following fifty years.
Generalizations of the Lee-Yang theorem have been developed [33, 30, 25, 29] and extensions
to other complex parameters have been derived (for instance, the Fisher zeros [13] in the com-
plex temperature plane and the zeros ofdglstate Potts model in the complepplane [38, 39]).
Numerous papers have appeared studying the partition function zeros using various techniques
including computer simulations [9, 21, 19], approximate analyses [20, 23, 28] and exact solutions
of 1D and 2D lattice systems [17, 27, 26, 37, 36, 7, 8, 11]. However, in spite of this progress, it
seems fair to say that much of the original Lee-Yang program—namely, to learn about the transi-
tions in physical systems by studying the zeros of partition functions—had remained unfulfilled.

In [1], we outlined a general program, based on Pirogov-Sinai theory [31, 32, 41, 5], to deter-
mine the partition function zeros for a large class of lattice models depending on one complex
parameterz. The present paper, and its companion [4], give the mathematical details of that
program. Our results apply to a host of systems with first-order phase transitions; among oth-
ers, they can be applied to field-driven transitions in many low-temperature spin systems as well
as temperature-driven transitions—for instance, the order-disorder transitiongrsthge Potts
model with largeq or the confinement Higgs transition in lattice gauge theories. We consider
lattice models with a finite number of equilibrium states that satisfy several general assumptions
(formulated in detail below). The validity of the assumptions follows whenever a model can
be analyzed using a convergent contour expansion based on Pirogov-Sinai theory, even in the
complex domain. In the present work, we study only models with periodic boundary conditions,
although—uwith some technically involved modifications—our techniques should allow us to treat
also other boundary conditions.

Under our general assumptions, we derive a set of model-specific equations; the solutions of
these equations yield the locations of the partition function zeros, up to rigorously controlled
errors which are typically exponentially small in the linear size of the system. It turns out that,
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as the system size tends to infinity, the partition function zeros concentrate on the union of a
countable number of simple smooth curves in the complelane. Another outcome of our
analysis is a local version of the Lee-Yang Circle Theorem. Whereas the global theorem says
that, for models with the full Ising interaction, all partition function zeros lie on the unit circle,
our local theorem says that if the model has an Ising-like symmetry in a restricted region of
the complexz-plane, the corresponding portion of the zeros lies on a piece of the unit circle.
In particular, there are natural examples (see the discussion of the Blume-Capel model in [1])
where only some of the partition function zeros lie on the unit circle, and others lie on less
symmetric curves. Our proof indicates that it is just the Ising plus-minus symmetry (and a natural
non-degeneracy condition) that makes the Lee-Yang theorem true, which is a fact not entirely
apparent in the original derivations of this result.

In addition to being of interest for the foundations of statistical mechanics, our results can often
be useful on a practical level—even when the parameters of the model are such that we cannot
rigorously verify all of our assumptions. We have found that our equations seem to give accurate
locations of finite-volume patrtition function zeros for system sizes well beyond what can be
currently achieved using, e.g., computer-assisted evaluations of these partition functions (see [1]
for the example of the three dimensional 25-state Potts model on 1000 sites). Our techniques
are also capable of handling situations with more than one complex parameter in the system.
However, the actual analysis of the manifolds of partition function zeros may be technically rather
involved. Finally, we remark that, in one respect, our program falls short of the ultimate goal
of the original Lee-Young program—namely, to describe the phase structure of any statistical-
mechanical system directly on the basis of its partition function zeros. Instead, we show that
both the location of the partition function zeros and the phase structure are consequences of an
even more fundamental property: the ability to represent the partition function as a sum of terms
corresponding to different metastable phases. This representation is described in the next section.

1.2 Basic ideas.

Here we will discuss the main ideas of our program, its technical difficulties and our assumptions
in more detail. We consider spin models @, with d > 2, whose interaction depends on a
complex parameter. Our program is based on the fact that, for a large class of such models, the
partition functionzferin a box of sidel. and with periodic boundary conditions can be written as

;
ZEer(Z) _ que— fm(z)Ld + O(e—constLe—f(z)Ld). (1.1)

m=1
Hereqa, ..., g are positive integers describing the degeneracies of the phasesr, the
gquantitiesf,, ..., f, are smooth, complex functions of the parametevhich play the role of

metastable free energies the corresponding phases, ahtz) = min;<m<r Re fn(2). The real
version of the formula (1.1) was instrumental for the theory of finite-size scaling near first-order
phase transitions [6]; the original derivation goes back to [5].

It follows immediately from (1.1) that, asymptotically agends to infinity,Z0*" = 0 requires
thatRe fn(2) = Re fm(2) = f (2) for at least two distinct indices andm. (Indeed, otherwise the
sum in (1.1) would be dominated by a single, non-vanishing term.) Therefore, asymptotically, all



4 M. BISKUP, C. BORGS, J.T. CHAYES, L.J. KLEINWAKS, R. KOTEGK

zeros ofZ}® concentrate on the set
¢ = {z: there exism # M with Re f(2) = Re fm(2) = f(2)}. (1.2)

Our first concern is the topological structuref Let us call a point wher&e f,(z2) = f(2)
for at least three different a multiple point the pointsz € ¢ that are not multiple points are
calledpoints of two-phase coexistendgnder suitable assumptions on the functidns. . ., f,
we show tha/ is a countable union of non-intersecting simple smooth curves that begin and end
at multiple points. Moreover, there are only a finite number of multiple points inside any compact
subset ofC. See Theorem 2.1 for details.

The interior of each curve comprisiri§ consists entirely of the points of two-phase coexis-
tence, i.e., we havlie f,(2) = Re fm(2) = f(2) for exactly two indicesn andm. In particular,
the sumin (1.1) is dominated by two terms. Supposing for a moment that we can neglect all the
remaining contributions, we would have

ZP%(2) = Qe M@ 4 gre~ ML, (1.3)

and the zeros oZ! would be determined by the equations
Re fn(2) = Re fm(2) + L~ 10g(m /)
Smfm(2) = Smfm(2) + (20 + Dz L7,

where? is an integer. The presence of additional terms of course makes the actual zeros only
approximate solutions to (1.4); the main technical problem is to give a reasonable estimate of
the distance between the solutions of (1.4) and the zer@§4f In a neighborhood of multiple
points, the situation is even more complicated because there the equations (1.4) will not be even
approximately correct.

It turns out that the above heuristic argument cannot possibly be converted into a rigorous proof
without abandoning the initial formula (1.1). This is a consequence of subtle analytic properties
of the functionsf,. For typical physical systems, the metastable free en&xgg known to be
analytic only in the interior of the region

S ={z: Refn(2) = f(2)}. (1.5)

On the boundary of#,,, one expects—and in some cases proves [18, 14]—the existence of essen-
tial singularities. Thus (1.1) describes an approximation of an analytic function, the fuﬁ@ﬁbn
by a sum of non-analytic functions, with singularities appearing precisely in the region where we
expect to find the zeros citﬁer! It is easy to construct examples where an arbitrary small non-
analytic perturbation of a complex polynomigith a degenerate zefgroduces extraneous roots.
This would not be an issue along the two-phase coexistence lines, where the r@tstafn
out to be non-degenerate, but we would not be able to say much about the roots near the multiple
points. In short, we need an approximation that respects the analytic structure of our model.
Fortunately, we do not need to look far to get the desirable analytic counterpart of (1.1). In
fact, it suffices to modify slightly the derivation of the original formula. For the benefit of the
reader, we will recall the main steps of this derivation: First we use a contour representation of the
model—the class of models we consider is characterized by the property of having such a contour
reformulation—to rewrite the partition function as a sum over the collections of contours. Then
we divide the configurations contributing 2/ intor 4 1 categories: Those having all contours

(1.4)
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of diameter smaller than, sal,/3 with the dominant phase being, wherem = 1,...,r,
and those not falling into the preceding categories. Zgt be the partial partition function
obtained by summing the contributions corresponding to the configurationsiimtheategory,
see Figure 1. It turns out that the error term is still uniformly bounded as in (1.1), so we have

r
ZEer(Z) — Z Zr(nL)(Z) + O(e—constl_e—f(z)Ld)’ (1.6)

m=1

but now the functionZ ) (z) are analytic in a small neighborhood.6f,. However, the size of
the neighborhood shrinks with — oo, and one of the challenges of using the formula (1.6) is
to cope with this restriction of analyticity. Moreover, writing

Z1)(2) = e~ L (1.7)

and using the contour representation, the functigfi$ can be expressed by means of conver-
gent cluster expansions [22, 10]. In particular, they can be shown to converge quickly to the
functions f, asL — oo.

In this paper, we carry out the analysis of the partition function zeros starting from the rep-
resentation (1.6). In particular, we formulate minimal conditions (see Assumptions A and B in
Section 2) on the function${-) and the error terms that allow us to analyze the root& [t
in great detail. The actual construction of the functid® and the proof that they satisfy the
required conditions is presented in [2, 3] for thestate Potts model with one complex external
field andq sufficiently large, and in [4] for a general class lattice models with finite number of
equilibrium states.

1.3 Discussion of assumptions and results.

Here we will describe our main assumptions and indicate how they feed into the proofs of our
main theorems. For consistency with the previous sections, we will keep using the funigtions
and f{-) even though the assumptions will actually be stated in terms of the associated exponen-
tial variables

m@=e™? and (LM(z)=e i’ @ (1.8)

The first set of assumptions (Assumption A) concerns the infinite-volume quaritjfiesnd
is important for the description of the set of coexistence pd#tsThe functionsf,, are taken
to be twice differentiable in the variables= %ez andy = 3mz, and analytic in the interior of
the set,. If, in addition, f (z2) = miny, Re f, is uniformly bounded from above, good control
of the two-phase coexistence curves is obtained by assuming that, for any disdndm, the
difference of the derivatives df,, and f5 is uniformly bounded from below at¥y,,N.%&. Finally,
in order to discuss multiple coexistence points, we need an additional non-degeneracy assumption
on the derivatives of the functionf, for the coexisting phases. Given these assumptions, we
are able to give a very precise characterization of the topology of the coexistenée se¢
Theorem 2.1.

The second set of assumptions (Assumption B) is crucial for our results on the partition func-
tion zeros, and is formulated in terms of the functidi{s’. These will be taken to be analytic
with a uniform upper bound on the firstderivatives in an ordefi/L) neighborhood of the
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FIGURE 1. Schematic examples of configurations, along with their associated contours,
which contribute to different terms in the decomposition in (1.6). Here we have a spin model
with r = 3 equilibrium phases denoted by, — and 0. The configuration on the left has all
contours smaller than the cutoff—which we sett(3 whereL is the side of the box—and

will thus contribute toZSr") becauset is the external phase for all external contours. The
configuration on the right has long contours and will be assigned to the error term.

sets . In this neighborhoodf (") is also assumed to be exponentially closé towith a lower
bound on the difference of the first derivatives for any pidff’ and frinL) in the intersection of

the corresponding ordéf-/L) neighborhoods. Finally, we need a bound on the error term and its
derivatives in an approximation of the form (1.6) where the sum runs only over the dominating
terms, i.e., thosen for which z lies in the ordercl/L) neighborhood of#,,.

Combining Assumptions A and B, we are able to prove several statements on the location
of the partition function zeros. We will start by covering the set of availablalues by sets
with a given number of stable (or “almost stable”) phases. The covering involves three scale
functions,w|, y, andp, which give rise to three classes of sets: the region where one phase is
decisively dominating the others (more precisely, the complement bf &, -neighborhood of
the set¥), a y_-neighborhood of sets with two stable phases, excluding-aeighborhood of
multiple points, and the, - neighborhoods of multiple points. As is shown in Proposition 2.6,
for a suitable choice of sequenass, y, , andp_, these three sets cover all possibilities.

In each part of the cover, we will control the zeros by a different method. The results of
our analysis can be summarized as follows: First, there are no zezf§'ofutside anL 9, -
neighborhood of the s&. This claim, together with a statement on the maximal possible de-
generacy of zeros, is the content of Theorem 2.2. The next theorem, Theorem 2.3, states that
in ay_-neighborhood of the two-phase coexistence points, excluding a neighborhood of multiple
points, the zeros aZ' are exponentially close to the solutions of (1.4). In particular, this implies
that the zeros are spaced in intervals of ordef-along the two-phase coexistence curves with
the asymptotic density expressed in terms of the difference of the derivatives of the corresponding
free energies—a result known in a special case already to Yang and Lee [40]; see Proposition 2.4.
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The control of the zeros in the vicinity of multiple points is more difficult and the results are
less detailed. Specifically, in thg -neighborhood of a multiple point with coexisting phases,
the zeros oz are shown to be located withinla~9~%/9 neighborhood of the solutions of an
explicitly specified equation.

2. MAIN RESULTS

2.1 Complex phase diagram.

We begin by abstracting the assumptions on the metastable free energies of the contour model
and showing what kind of complex phase diagram they can yield. Throughout the paper, we
will assume that a domai@ c C and a positive integar are given, and us®& to denote the

setR ={1,...,r}. Foreactz € &, we letx = Rezandy = Smz and define, as usual,
aZ:%(O%—i%) and az:%(oieri%). (2.1)

Assumption A. There exists a constant > 0 and, for eaclm € R, a function: ¢ — C,
such that the following conditions are satisfied.
(1) The quantity (z2) = maXxner [¢m(2)] is uniformly positive in@, i.e., inf,cs £ (2) > O.
(2) Each functioryy, viewed as a function of two real variablgs= ez andy = Smz,
is twice continuously differentiable o and it satisfies the Cauchy-Riemann equa-
tionsdz¢m(z) = O for all z € ., where

Im={z€ 0: |tn(@| = ((2)}. (2.2)

In particular,ir, is analytic on the interior of,.
(3) For any pair of distinct indices), n € R and anyz € .%, N .%, we have

02¢m(2) _ 02(n(2) > o

2.3
(m(2) 0 |~ 23)
(4) If @ c RissuchthatQ| > 3, then for anyz € (.o “m,
_ 9m(2)
om(2) D)’ me O, (2.4)

are the vertices of a strictly convex polygonGn~ R?.

Remark 1 Note that Assumptions A3 and A4 are invariant with respect to conformal trans-
formations of& because the functions involved in (2.3) and (2.4) satisfy the Cauchy-Riemann
conditions. Also note that, by Assumption A3, the length of each side of the polygon from As-
sumption A4 is at least. See Figure 3.

The indicesn € R will be often referred to aghasesWe call a phasen stableatzif z € .7,
i.e., if |tm(2)| = ¢(2). For eache € & we define

Q@) ={meR: Itm@| =¢(@} (2.5)
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to be the set of phasesable at z If m, n € Q(z2), then we say that the phasesandn coexist
at z The phase diagram is determined by sle¢ of coexistence points

9= |J 9mn with gmn) =50, (2.6)
m,neR: m#n
If |tm(2)] = ¢(2) for at least three distineh € R, we call suclz € ¢ amultiple point In the
following, a curve is calledmoothf can be parametrized using twice continuously differentiable
functions.
Our main result concerning the topology#fis then as follows.

Theorem 2.1 Suppose that Assumption A holds and4etc ¢ be a compact set. Then there
exists a finite set of open disBg, Do, ..., D, C & coveringZ, such thatforeachk=1,...,¢,
the seterik = 4 N Dy satisfies exactly one of the following properties:
(1) % =29.
(2) % is a simple, smooth, open curve with both endpoint$bn Exactly two distinct
phases coexist along the curve constituting
(3) % contains a single multiple pointzvith 5 = |Q(z)| > 3 coexisting phases, andj \
{z¢} is a collection of g simple, smooth, non-intersecting, open curves connecting z
to k. Each pair of distinct curves fromy \ {z} intersects at a positive angle at.z
Exactly two distinct phases coexist along each componesaf §f{z}.

In particular, ¥ = (J,.e ¢, where€ is a countable union of smooth, simple, open and closed
curves which intersect each other only at the endpoints.

Theorem 2.1 is proved in Section 3.2. Further discussion is provided in Section 2.4.
2.2 Partition function zeros.

Next we will discuss our assumptions and results concerning the zeros of the partition function.
We assume that the functio@$®": & — C, playing the role of the partition function in a box of
sideL with periodic boundary conditions, are defined for each intéger, more generally, for
anyL e L, wherelL. C N is a fixed infinite set. Given any € R ande > 0, we use¥,(m) to
denote the region where the phasés “almost stable,”

Fu(m) = {z€ 0 |tm@)| > €C@). 2.7)

For anyQ C R, we also introduce the region where all phases f@mre “almost stable” while
the remaining ones are not,

%(Q) = (] Ltm\ | Fea(), (2.8)
meQ neQ°
with the bar denoting the set closure. Notice that the fungtipis non-vanishing o/, (m) and
that|Jo-r % (Q) = O, see Figure 2. Note also thét (9) = ¢, so we may assume th@ # ¢
for the rest of this paper.
Assumption B. There exist constants z € (0, co) and, for eachm € R, a positive integeqm
and a function " : ., . (m) — C such that for any. € L the following is true:
(1) The functionz®'is analytic in&.
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(2) Eachg{M is non-vanishing and analytic ist, . (m). Furthermore,

(L)( )
I 2.9
‘Og (@) (2:9)
and cL(z ()
( ) - Cm (Z) —7L
6zlog D + |oz10 @ <e (2.10)

forallm e R and allz € .7, . (m). (Here “log” denotes the principal branch of the
complex logarithm.) . )
(3) There exist constants > 0, M < co andLy < oo such that for an. > Lo we have

(U(z)
(L)(z) <M, (2.12)
wheneveme R, ¢ =1,...,r,andz € ., (m). In addition,

RO RC)
whenevem, n € R are distinct and € ., (M) N 7, (N).
(4) There exist constantS, < oo, £ = 0,1,...,r + 1, such that for an\Q@ c R, the
difference

et (212

0@ =22~ [P @] (2.13)
meQ
satisfies the bound

aQEQ,L(z)‘ < CLIHD 4 (z)L (Z qm)e"'-, (2.14)
meR

forall£=0,1,...,r + 1, uniformly inz € %, (Q).

Our first theorem in this section states that the zero&[Sf(z) are concentrated in a narrow
strip along the phase boundaries. In addition, their maximal degeneracy near the multiple points
of the phase diagram can be evaluated. In accord with the standard terminology, we will call
a pointzy a k-times degenerate roatf an analytic functiorh(z) if h(z) = g(z)(z — z)* for
someg(z) that is finite and non-zero in a neighborhoodi@f Recalling the definition (2.8) of the
set7.(Q), we introduce the shorthand

9. = |J (Foa nFom) = o\ | %(1m). (2.15)

m=£n meR

An easy way to check the second equality in (2.15) is by notingdhatZ, ({m}) can be written
as the unionJ ..., ¢/2(n). Then we have the following result.

Theorem 2.2 Suppose that Assumptions A1-3 and B hold and tetO be as in Assumption B.
Let(w, ) be a sequence of positive numbers suchdhat> oo. Then there exists a constang k
oo such that for L> Lg all roots of Z* lie in ¢, -a,, and are at mosfRr| — 1 times degenerate.
For eachQ c R, the roots of Ze’in U (Q) are at mos{Q| — 1times degenerate.
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@ (b) ©

FIGURE 2. An illustration of the set$ (Q) in the vicinity of a multiple point. The thick

lines indicate the visible portion of the set of coexistence pathtsThree phases, here la-
beled 1, 2 and 3, are stable at the multiple point. In (a), the three shaded domains represent
the sets7, ({1}), % ({2}) and % ({3}), with the label indicated by the number in the box.
Similarly, in (b) the three regions represent the s&t${1, 2}), % ({2, 3}) and 7 ({1, 3}).

Finally, (c) contains only one shaded region, representing thé/g¢l, 2, 3}). The various
regions#, (Q) generously overlap so that their union covers the entire box.

In other words, a& — oo, the zeros oz asymptotically concentrate on the set of coexis-
tence points/. Notice that we explicitly daot require Assumption A4 to hold; see Section 2.4
for further discussion. Theorem 2.2 is proved in Section 4.1.

Our next theorem deals with the zeroqu‘ffer in the regions where at most two phases frRm
are “almost stable.” It turns out that we have a much better control on the location of zeros in
regions that are sufficiently far from multiple points. To quantify the meaning of “sufficiently
far,” we lety, be a sequence of positive numbers (to be specified below) and, foR anyR
with |Q| = 2 and amyL. > 0, letd, : %, (Q) — (0, o) be a function defined by

et if ze w, (Q) N U/ (Q),

2.16
Ldg=3nL?, otherwise (2.16)

oL(2) = {

(Clearly, 6. (z) depends on the index s€. However, this set will always be clear from the
context and so we will not make it notationally explicit.) Finally, given- 0 andz € 0, let
D¢ (z) denote the open disc of radiasentered at.

The exact control of the roots in two-phase regions is then as follows.

Theorem 2.3 Suppose that Assumptions A and B hold andetbe the set of all zeros of the
function Z2(2) in @, including multiplicity. If mn e R are distinct indices, le@ = {m, n},
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and letQ, (Q) be the set of the solutions of the system of equations

Y@ = 0¥ In @), (2.17)
LY Arg(¢m(2)/¢n(2)) = 7 mod 2z (2.18)
Lety, be such that
d
iminf SL = 4d and lim supL9ly, <27, (2.19)
L-oco logL L= 00

and leto, : %, (Q) — (0, oo) be as defined in (2.16). Then there exist finite positive constants
B, C, D, and lg such that for any@ c R with |Q| = 2and any L> Lo we have:

(1) Porallz e 9N, (Q) withDp -4(2) C O, the disdDp, -¢(2) contains at least one root
from Q7.

(2) Forall z € Qf N %, (Q) withDcs, (2) C O, the discDcs, (z(2) contains exactly one
point fromQ (Q).

(3) Forall z € Q (Q) N %, (Q) with D¢, (2) C O, the discDc;, () (2) contains exactly
one root fromQ; .

(4) Any two distinct roots of Z"in the set{z € %, (Q): Dg,-a(z) C ¢} are at least BL®
apart.

Note that the first limit in (2.19) ensures tH&ts, (z) - 0asL — oo throughout%;, (Q) (for
any Q c R with |Q| = 2). Thusé, (z) is much smaller than the distance of the “neighboring”
roots of (2.17-2.18). Theorem 2.3 is proved in Section 4.2.

Theorem 2.3 allows us to describe the asymptotic density of the rod§°balong the arcs
of the complex phase diagram. Lt n € R be distinct and lef/(m, n) be as in (2.6). For
eache > 0 and eaclz € ¥(m, n), letp:; ‘)(z) be defined by

ot

(L,e)
P (2) = o Ld (2.20)

where|Qf ND,(2)| is the number of roots aZ®' in D, () including multiplicity. Since? (m, n)

is a union of simple open and closed curves, and since the roots of (2.17-2.18) are spaced
within O(L~9) from each other,p(L :9(2) has the natural interpretation of the approximiate

density of zerosf ZEer along¥(m, n). As can be expected from Theorem 2.3, the approximate
densityp-:(2) tends to an explicitly computable limit.

Proposition 2.4 Let mn e R be distinct and let{-;¥(z) be as in (2.20). Then the limit
pmn(2) = lim golim_, o pit:€(2) exists for all ze ¢(m, n) such tha Q(z)| = 2, and

1 |0:(m(2) _ 02¢n(2)
{m(2) n@ |

Remark 2 Note that, on the basis of Assumption A3, we have thak(z) > a/(27). In
particular, the density of zeros is always positive. This is directly related to the fact that all points
z € ¢ will exhibit a first-order phase transition (defined in an appropriate sense Somzes 0

or Rez < 0)—hence the title of the paper. The observation that the (positive) density of zeros and
the order of the transition are closely related goes back to [40].

pmn(2) = > (2.21)
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In order to complete the description of the rootsZ@fr, we also need to cover the regions with
more than two “almost stable” phases. This is done in the following theorem.

Theorem 2.5 Suppose that Assumptions A and B are satisfied. \.dteza multiple point and
let © = Q(zv) withq = |Q| > 3. For each me Q, let

0 Z
¢m(L) = LYArg cm(zw) (mod 2r)  and oy = ZC”‘—(M). (2.22)
Cm(ZM)
Consider the se®, (Q) of all solutions of the equation
Z Om g m(L)+Lz—2m)om _ 0, (2.23)
meQ
including multiplicity, and let{p.) be a sequence of positive numbers such that
lim L9, =00  but lim L9-9/CD, —o. (2.24)
L—o0 L—00

Definep] = p. + L~9@+Y9_ Then there exists a constang l< oo and, for any L> Lo, an
open, connected and simply connected&esatisfyingD,, (zu) C % C D, (zw) such that
the zeros i N % are in one-to-one correspondence with the solution& (@) N % and the
corresponding points are not farther apart tharq®+/®,

Theorem 2.5 is proved in Section 4.4. Section 2.4 contains a discussion of the role of Assump-
tion A4 in this theorem; some information will also be provided concerning the actual form of
the solutions of (2.23).

To finish the exposition of our results, we will need to show that the results of Theorems 2.2, 2.3
and 2.5 can be patched together to provide complete control of the ro@fS'oét least in any
compact subset of. This is done in the following claim, the proof of which essentially relies
only on Assumption A and compactness arguments:

Proposition 2.6 Suppose that Assumption A holds anddet y, andp, be sequences of posi-
tive numbers such thas, < y, LY y, — 0, andp_ — 0. For each compact s&¥ c &, there
exist constanty = y (%) > 0and Ly = Lo(%) < oo such that, ifp,. > yy, , we have

G-, N2 | 2%, QU |J Dy (2.25)
QCR med
1QI=2 1Q(zw)|>3

forany L > L.

Note that in (2.25)we consider only that portion®in %, -4, , since by Theorem 2.2 the roots
of ZP* are contained in this set. Note also that the conditions we impose on the sequenges
andp_ in Theorems 2.1, 2.3 and 2.5 and Proposition 2.6 are not very restrictive. In particular, it
is very easy to verify the existence of these sequences. (For example, one can takesnokby_
to be proportional td.~9 log L with suitable prefactors and then tet = L9y, .)

2.3 Local Lee-Yang theorem.

As our last result, we state a generalized version of the classic Lee-Yang Circle Theorem [24],
the proof of which is based entirely on the exact symmetries of the model.
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Theorem 2.7 Suppose that Assumptions A and B hold. etnd — be two selected indices
fromR and let% be an open set with compact closWwec ¢ such thatzz N{z: |z| = 1} # @.
Assume tha® is invariant under circle inversion 2> 1/z*, and

1) 222 = z2"/z),

@ @ =¢-1/z) and g, = q-
hold for all ze 2. Then there exists a constang such that the following holds for all I> Lg:
If the intersection of7 with the set of coexistence poitgsis connected and # and — are the
only stable phases iz, then all zeros irnz lie on the unit circle, and the number of zeros on any
segment ofZ N {z: |z| = 1} is proportional to 19 as L — oco.

Condition (2) is the rigorous formulation of the statement thatthend — phases are related
by z <> 1/z* (or h <> —h, whenz = €") symmetry. Condition (1) then stipulates that this
symmetry is actually respected by the remaining phases and, in particullf; bitself.

In order to prove Theorem 2.7, we first show that the phase diagranmfalls exactly on the
unit circle, i.e.,

9NY ={ze P: |zl =1}. (2.26)

This fact is essentially an immediate consequence of the symmetry betwéeamd “—." A

priori one would then expect that the zeros are close to, but not necessarily on, the unit circle.
However, the symmetry aZP*' combined with the fact that distinct zeros are at ldkt® apart

is not compatible with the existence of zeros away from the unit circle. Indeeds @ root of

ZP®, it is bound to be within a distand®(e~*") of the unit circle. If, in addition|z| # 1, then

thez <> 1/z* symmetry implies that Az* is also a root oz, again withinO(e~*") of the unit

circle. But then the distance betweeand 1/z* is of the ordee"- which is forbidden by claim

(4) of Theorem 2.3.

This argument is made precise in the following proof.

Proof of Theorem 2.7.We start with the proof of (2.26). Let us suppose thatc ¢ and
Q(z) c {+, -} forall z e 2. Invoking the continuity ot and condition (2) above, we have
Q) ={+,—}forallze 2N {z: |z| = 1} and thusZ N {z: |z] = 1} € ¥. Assume now
thaty N 2\ {z: |z]| = 1} # @. By the fact thaty N Z is connected and the assumption that
w N{z: |z| =1} # @, wecanfindapatlh e ¥N2,t € [-1, 1], suchthat, € ZN{z: |z| = 1}
ift<Oandzz e ¥NZ\{z:|zl =1} ift > 0. SinceQ(zy) = {+, —}, we know that there
is a discD.(zy) C ¢ that contains no multiple points. Applying Theorem 2.1 to this disc, we
conclude that there is an open diBavith z; € D C D.(z), such thaty N D is a simple curve
which ends abD. However, using condition (2) above, we note that as &ithalso the curve

t = 1/z liesin¥ N 2, contradicting the fact th&# N D is a simple curve. This completes the
proof of (2.26).

Next, we will show that for anygy € 2 N {z: |z] = 1}, and anyd > 0, there exists an open
discD.(zp) ¢ ¢ such that the se¥ N D.(zp) is a smooth curve with the property that for any
z € D.(zp) with |z| # 1, the line connecting and 1/z* intersects the curv@ N D, (zy) exactly
once, and at an angle that lies betweei2 — 6 andz /2 + J. If Z lies in the interior ofZ, this
statement (withh = 0) follows trivially from (2.26). If zy is a boundary point of7, we first
choose a sufficiently small dide > zy so thatD c & and, for all points ifD, only the phases-



14 M. BISKUP, C. BORGS, J.T. CHAYES, L.J. KLEINWAKS, R. KOTEGK

and— are stable. Then we use Theorem 2.3 and (2.26) to infee tbah be chosen small enough
to guarantee the above statement about intersection angles.

Furthermore, we claim that gively € 2 N {z: |z| = 1} ande > 0 such thais.(zy) € ¢ and
Q(2) c {+, —} for all z € D3 (z0), one can choosk sufficiently large so that

D2e(20) NG a0, C U, ({+, =}) N UL ({4, —)). (2.27)
To prove this, let us first note that, fp; < 2«/L, the right hand side can be rewritten as
U 1+, =D\ | Tt (m). (2.28)
mz£—,+

Next, by the compactness @f, (z;) and the fact that non € R different from + is stable
anywhere inDs (o), we can chooség so large that?,, (m) N Dy (Z9) = G forall L > Lo and
all m # +. Using the closure dby (zp) in place of the se@ in (2.25), we get (2.27).

We are now ready to prove that for amy € & N {z: |z| = 1}, there exist constants > 0
and Lo such that all roots oZ}in D, (zo) N Z lie on the unit circle. To this end, let us first
assume that has been chosen small enough to guarantegthak) ! < 1+ 2¢, D3 (20) C O,
Q(z) C {+, —} for all z € Ds.(zp), and¥ N D3 (zp) is a smooth curve with the above property
about the intersections angles, with, says 7 /4. Assume further that is chosen so that (2.27)
holds andt > max(Cd, (z9), BL™%), whereC andB are the constants from Theorem 2.3.

Let z € D.(z0) N 2 be a root ofZ[*". If L is so large that Theorem 2.2 applies, we have
Z € 9 -a,, andthuss, (z) = e *" in view of (2.27). By Theorem 2.3, there exists a solution
to (2.17-2.18) that lies in &, (z)-neighborhood of, implying thatz has distance less than
CoL(2) from Dy (z9) N ¥4. (Here we need that, = g_ to conclude that € ¢.) Suppose now
that|z| # 1. Then the condition (1) above implies tirat= (z*)~ is adistinctroot of Z{*' in 2.
Moreover, ife is so small thafl — €)™ < 1+ 2¢, thenz' € 4 -4, N Dy (Z0) andéy (Z) also
equalse’t, implying thatz' has distance less th&@v, (z) from D3 (z0) N ¥. Since bottz and
Z have distance less th&v_ (z) from Dz (z5) N ¥, and the curvés,. (zg) N ¥ intersects the line
throughz andz in an angle that is near/2, we conclude thgz — Z| < 2+/2Ce~*- which for L
sufficiently large contradicts the last claim of Theorem 2.3. Henceust have been on the unit
circle after all.

The rest of the argument is based on compactness. Th& setz: |z| = 1} is compact,
and can thus be covered by a finite number of such discs. Picking one such coerblet
the complement of these disc . Then the set’’ is a finite distance away froi¥ and thus
7' N9 -, = @ for L sufficiently large. From here it follows that for some finitg < oo
(which has to exceed the maximum of the corresponding quantity for the discs that constitute the
covering ofZ N {z: |z| = 1}), all roots of Z{*' in % lie on the unit circle. O

2.4 Discussion.

We finish with a brief discussion of the results stated in the previous three sections. We will also
mention the role of (and possible exceptions to) our assumptions, as well as extensions to more
general situations.

We begin with the results on the complex phase diagram. Theorem 2.1 describes the situation
in the generic cases when Assumptions A1-A4 hold. We note that Assumption A3 is crucial
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for the fact that the se¥ is a collection ofcurves A consequence of this is also that the zeros
of Zﬁerasymptotically concentrate on curves—exceptions to this “rule” are known, see, e.g., [34].
Assumption A4 in turn guarantees that multiple points do not proliferate throughoutnfor-
tunately, in several models of interest (e.g., the Potts and Blume-Capel model) Assumption A4
happens to be violated at sothfor one or two “critical” values of the model parameters. In such
cases, the regiofr has to be restricted to the complement of some neighborhobdrmd, inside
the neighborhood, the claim has to be verified using a refined and often model-specific analysis.
(It often suffices to show that the phase coexistence curves meefimget different curvatures,
which amounts to a statement about the second derivatives of the functigRg1pg Examples
of such analysis appear in [1] for the Blume-Capel model and in [3] for the Potts model in a
complex external field.
Next we will look at the results of Theorems 2.2 and 2.3. The fact that the ro@t¥ adre only
finitely degenerate is again independent of Assumption A4. (This is of some relevance in view
of the aforementioned exceptions to this assumption.) The fact that, in the cases wipga all
are the same, the zeros shift only by an exponentially small amount away from the two-phase
coexistence lines is a direct consequence of our choice of the boundary conditions. Indeed, the
factore~*" in (2.16) can be traced to the similar factors in (2.9) and (2.14). For strong (e.g., fixed-
spin) boundary conditions, we expect the corresponding terms in (2.9) and (2.14) to be replaced
by 1/L. In particular, in these cases, the lateral shift of the partition function zeros away from the
phase-coexistence lines should be of the ordér. Bee [42] for some results on this problem.
Finally, let us examine the situation around multiple points in some detail. Theorem 2.5 can
be given the following geometrical interpretation: L&f be a multiple point. Introducing the
parametrizatiory = (z — zy)LY, we effectively zoom in on the scale™®, where the zeros
of ZP*" are well approximated by the roots of the linearized problem (2.23) @ite: Q(zv).
Let us plot the complex conjugate of the logarithmic derivativesy, (see (2.22))m € Q, as
vectors inR2. By Assumption A4, the vectors;, are the endpoints of a convex setln~ R2.
Leto], ..., 04 be the ordering of in the counterclockwise direction, see Figure 3. Noting that
the real partRe(vmz) can be written in terms of the dot produ®e(vm3) = v}, - 3, (2.23) can be
recast as

> ametni — o, (2.29)
meQ(zm)

whereg/,(L) = ¢m(L) + Sm(vmj).

On the basis of (2.29), it is easy to verify the following facts: et |3|&, with & a unit
vector inC. An inspection of (2.29) shows that, figf > 1, the roots of (2.29) will concentrate
along the “directions” for which the projection éfon at least two}'s is the same. Invoking the
convexity assumption (Assumption A4), this can only happen wijere = v, , - & for somen.

In such cases, the contributions of the terms with indines n, n+1 in (2.29) are negligible—at
least oncqj| > 1—and the zeros will thus asymptotically lie along the half-lines given in the
parametric form by

5= 3(t) = 0 " Unia Iog(q;+1> Fitf —vf,,),  tel0,00). (2.30)
N

lon — Un+l|2
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FIGURE 3. An illustration of the situation around a quadruple point. Here .., v; are
the complex conjugates of the quantities from (2.4) @ne- g2 = g3 < q4. (The quadruple
point lies at the common tail point of the vecters ..., v;.) The dashed lines indicate the
asymptotes of the “strings” of zeros sufficiently far—on the s¢até—from the quadruple
point. Note the lateral shift of these lines due to the factthat g1, g3. The picture seems
to suggest that, on the scaled, the quadruple point splits into two triple points.

Clearly, the latter is a line perpendicular to tfre n + 1)-st side of the convex set with ver-
ticesoy, ..., vy, which is shifted (away from the origin) along the corresponding side by a factor
proportional to loggn,1/0n), See Figure 3.

Sufficiently far away fromzy, (on the scald.~9), the zeros resume the pattern established
around the two-phase coexistence curves. In particular, the zeros are asymptotically equally
spaced but their overall shift along the asymptote is determined by the fagtby—which we
note depends very sensitively &an Computer simulations show that, at least in generic cases,
this pattern will persists all the way down to the multiple point. Thus, even on the “microscopic”
level, the zeros seem to form a “phase diagram.” However, due to the lateral shifts caused by
Om+1 7 Om, @ “Macroscopic” quadruple point may resolve into two “microscopic” triple points.
See, once again, Figure 3.

3. CHARACTERIZATION OF PHASE DIAGRAMS

The goal of this Section is to give the proof of Theorem 2.1. We begin by proving a series of
auxiliary lemmas whose purpose is to elevate the pointwise Assumptions A3-A4 into statements
extending over a small neighborhood of each coexistence point.
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3.1 Auxiliary claims.

Recall the definitions of,, Q(z) andvm(2), in (2.2), (2.5) and (2.22), respectively. The first
lemma gives a limiting characterization of stability of phases around coexistence points.

Lemma 3.1 Let Assumption A1-A2 hold and et ¢ be such thatQ(z)| > 2. Let(z) be a
sequence of numberg 2 & such that z — z but z # z for all k. Suppose that

Zx— 2

e’ = lim - (3.1)
k—oo |Zx — Z|
exists and let ne Q(2). If zx € ., for infinitely many k> 1, then
Re(@?om) > Re(€%0,) foralln e Q(2), (3.2)

wherev, = v,(2). Conversely, if the inequality in (3.2) fails for at least one 2(2), then there
is ane > 0 such that

%,9(2)={zeﬁ: lz—2| <€, Z# Z,

=2 _ gt| < e} (3.3)

lz=2|

has empty intersection withy,, i.e.,.YmN%; »(Z) = @. In particular, z ¢ .n, for k large enough.

Remark 3 In the following, it will be useful to recall some simple facts about complex functions.
Let f, g andh be functionsC — C and leto, andé; be as in (2.1). Iff satisfiesd; f (zg) = 0
(i.e., Cauchy-Riemann conditions), then all directional derivativet af zy = xg + iyo can be
expressed using one complex numbBet &, f (Xo + iyo), i.e.,

f (Xo + € COSa + iyo + iesina) — f(Xo+iyo) = €Ad* +0(e), €10, (3.4)
holds for everyo. € [—x, 7). Moreover, ifg is differentiable with respect ts andy atz; =
Xo + iyp andh satisfieso;h(zZ') = 0 atZ = g(zp), then the chain rule holds far— h(g(2)) at
z = 2o. In particular,o,h(9(z0)) = (8:h)(9(20))0,9(20).

Proof of Lemma 3.1Let m € Q(2) be fixed. Whenevezy € ¥, we have

log|¢m(z0)| — 109|¢m(2)] > log|¢n(z)| — log|cn(@)],  ne Q(2), (3.5)
becauseé:m(2)| = |¢h(2)], by our assumption tham, n € Q(z). Using the notation
{m(2)
I:m n =
D=6

for n € Q(2) (which is well defined and non-zero in a neighborhood)tthe inequality (3.5)
becomes

(3.6)

Iog‘Fm,n(Zk)} - log“:m,n(z)} >0, ne Q2. (3.7)
Note that the complex derivativi® Fr, n(2) exists for alln € Q(z). Our task is then to prove that
i0 6ZFm,n(z) =
_— 0 ) 3.8
Te(e E )z0. neo® (3.8)

Fixn € Q(2). Viewing z — Fnn(2) as a function of two real variables= Rez andy = Smz,
we can expand log=m n(z)| into a Taylor series around the pointo get
92Fmn(2)

09] P20 = 10g] @] = (2~ 2 200

) + O(jz — Z». (3.9)
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To derive (3.9) we recalled th&, , is at least twice continuously differentiable (hence the error
bound) and then applied the identity

2109|Fnn@| . 109|Fnn(2)

3.10
X oy (3.10)

Ay = %e((zk - Z)M),

Fm.n(2)

whereAxy = Re(zx — 2) and Ay = Sm(z« — 2). (To derive (3.10), we just have to apply the
chain rule to the functions — log Fyn n(2). See Remark 3 for a discussion of this point.) Using
thatz, — z, the inequality (3.8) and hence also (3.2) now follows by combining (3.9) with (3.5),
dividing by |z« — 2] and taking the limik — ooc.

If, on the contrary, the inequality (3.2) is violated for some Q(z), then (3.8) fails to hold as
well and hence (3.7) and (3.5), with replaced by, must be wrong for € %, (z) whenevelk
is small enough. Bum e Q(Z) implies that|(m(2)| = |¢h(2)| and thus|¢m(2)| < |¢h(2)] for
all z € #.4(2), proving thatsm, N #¢9(z2) = ¢. By (3.1) and the fact that, — z, we have
z« € W »(2) and hencey ¢ ./, for k large enough. g

Lemma 3.1 directly implies the following corollary.

Corollary 3.2 Let Assumption A1-A2 hold and let me R be distinct. Le{z) be a sequence
of numbers iz e SmN A such _that E—>2e0 but z # Z for all k. Suppose that the limit (3.1)
exists and equals® ThenJte(€%0,) = Re(€%)).

Proof. Follows immediately applying (3.2) twice. g

The next lemma will ensure that multiple points do not cluster and that the coexistence lines
always intersect at positive angles.

Lemma 3.3 Suppose that Assumption A holds andzlet &. Suppose there are two sequences
(z¢) and (z,) of numbers fron¥’ such that g — z and|z — z| = |z, — z| # O for all k. Let

a, b, c € R and suppose thafz .73 N .7, and Z € ., N .7 for all k. Suppose the limit (3.1)
exists for both sequences and IBtand &7’ be the corresponding limiting values.

(1) If a, b, c are distinct, then'é £ &', _ _
(2) Ifa # b = c and z # z_ for infinitely many k, thenQ(z)| = 2 and &’ = —€"".

Remark 4 The conclusions of part (2) have a very natural interpretation. Indeed, in thiszcase,
is a point on a two-phase coexistence line (whose existence we have not established get) and
andz, are the (eventually unique) intersections of this line with a circle of rqdiusz| = |z, —Z|
aroundz. As the radius of this circle decreases, the intersectimrend z, approachz from
“opposite” sides, which explains why we should expect to teifre- —e?".

Proof of Lemma 3.3Throughout the proof, we sef, = vm(2). We begin by proving (1). Assume
thata, b, c € R are distinct and suppose treif = 7. Note that, since2(2) o {a, b, ¢}, the
pointz is a multiple point. Corollary 3.2 then implies that

Re(€¥0,) = Re(d0p) = Re(€%0,), (3.11)

and hence,, v, ando, lie on a straight line irC. But theno,, vy ando. cannot simultaneously
be vertices of a strictly convex polygon, in contradiction with Assumption A4.
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In order to prove part (2), let # b = c, suppose without loss of generality trmt# z for
all k. If €7 £ +€?, then Corollary 3.2 implies thake(€?(va — vp)) = 0 = Re(€? (va — vp))
and hence, = vy, in contradiction with Assumption A3. Next we will rule out the possibility
thate? = €7, regardless of how many phases are stable aet G(z) = ¢a(2)/b(2) and note
that|G(z)| = 1 = |G(z)| for all k. Applying Taylor's theorem (analogously to the derivation
of (3.9)), dividing by|z, — z | and passing to the limk — oo, we derive

. Z— 2z, aZG(zk))
lim Re =0. 3.12
k— 0o (|Zk — Z|/(| G(Zk) ( )

The second ratio on the left-hand side tends.te- vy,. As for the first ratio, an easy computation
reveals that, sincy — z| = |z, — z| # 0, we have

T A Z:" — il 2000 si.n((Gk — 0'%)/ 2 , (3.13)
|z« — Z [ sin((6k — 6x)/2)|
where
- Z—2 o Z, —Z
dk = X7 % and &% = % (3.14)
|z — Z| |z, — 2|

By our assumptions, we hae#« — €? andeé% — & ask — oco. Suppose now that? = &'
Then, choosing a subsequence if necessary, the left-hand side of (3.13) tends to a definite sign
timesie'’. Inserting this into (3.12) and using Corollary 3.2, in additiofig€? (vg — vp)) = 0,
we now get that als@te(ie'? (vy — vp)) = Im(€?(va — vp)) = 0. Consequentlyy, = vy, again
contradicting Assumption A3.
To finish the proof of the claim (2), it remains to rule out the possibility #fat= —€? in the
case wherz is a multiple point. Leh € 9Q(2) be another phase stablezt.e.,n # a, b. By
Lemma 3.1, we have

Re(€?(om —vn)) >0 and Re(€” (vm — vn)) > 0, m = a, b. (3.15)

But thend? = —e? would imply thatfte(€7v,) = Re(€%0,) = Re(€70p), in contradiction with
Assumption A4. ThereforéQ(z)| < 3, as claimed. d

Corollary 3.4 Suppose that Assumption A holds andzlet & be a multiple point. Then there
exists a constant > Osuch thai Q(z)| < 2forallz e {Z € 0: 0 < |Z — 2| < §}. In particular,
each multiple point ir¢ is isolated.

Proof. Suppose& € & is a non-isolated multiple point. Then there is a sequence ¢ such
thatz, — z and, without loss of generality)(z,) = Qo with |Qo| > 3, z # z for all k, and
such that the limit (3.1) exists. Taking féz,) the identical sequencg, = z, we getd? = &7
in contradiction to Lemma 3.3(1). Therefore, every multiple poin#iis isolated. OJ

Our last auxiliary claim concerns the connectivity of set8 stich that (3.2) holds. As will be
seen in the proof of Lemma 3.6, this will be crucial for characterizing the topology of the phase
diagram in small neighborhoods of multiple points.
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Lemma 3.5 Suppose that Assumption A holds andzlet & be a multiple point. For ne 9(2),
letom = vm(2). Then, for each ne Q(2), the set

Im={€7: 0 €[0,2r), Re(€”vm) > Re(€n), n€ Q) \ (M} (3.16)
is connected and open as a subsefzé ¢': |z| = 1}. In particular, if €7 is such that
Re(@om) = max  Re(@’op), (3.17)
neQ(2)~{m}

then &’ is one of the two boundary points 6f.|

Proof. By Assumption A4, the numbers,, m € Q(2), are the vertices of a strictly convex
polygon & in C. Lets = |Q(2)| and let(vy, ..., vs) be an ordering of the vertices @P in
the counterclockwise direction. Fon = 1, ..., s define Avy, = vm — vm—1, Where we take
vo = vs. Note that, by strict convexity af”, the arguments,, of Aoy, i.e., number#,, such
that Aoy = |Avm|€7m, are such that the vectoe$?, . . ., €% are ordered counterclockwise, with
the angle betweed’ ande %+ lying strictly between 0 and for all m = 1, ...s (again, we
identify m = 1 andm = s+ 1). In other words, for eacim, the angle®; . . ., 65 can be chosenin
such away thal, < 61 < -+ < Omas, With O < Oak — Onak—1 <,k =1,...,s. (Again,
we identifiedm + k with m 4+ k — swhenevem + k > s).

Using Jn to denote the sedy, = {ie™”: 9 € (6m, Oms1)}, We claim thatl, = Jy, for all

m=1,...,s. First, let us show thal,, c In. Letthusy € (6, Omy1) and observe that
Re(ie™ Avm) = |Avm| Sin(®@ — ) > 0, (3.18)
becausé, < ¥ < Omy1 < O + z. Similarly,
Re(ie™ Avms1) = |Avmya] SINW — Omy1) < O, (3.19)

becaus@n,1 — 7 < Oy < ¥ < Omp1. ConsequentlyRe(ieVoy) > Re(ie™’v,) holds for
bothn =m+1andn =m-— 1.

It remains to show thaRe(ie 7o) > Re(ie™Vv,) is true also for all remaining € Q(2).
Letn € 9(2) \ {m,m =+ 1}. We will separately analyze the cases with— 6, € (0, #] and
6n — Om € (—x, 0). Suppose first that, — 6, € (0, z]. This allows us to writeh = m + k for
somek € {2,...,s— 1} and estimate

k

k
Re(ie™” (on — vm) = D _ Re(i€™ Avmyj) = D |Avmyj|SINW — Onyj) <0, (3.20)
j=1 j=1

The inequality holds since, in light af < 61 < -+ < Omek < 8 + 7, each sine is negative
except perhaps for the last one which is allowed to be zero. On the other h#&d; #,, €
(—=, 0), we writen = m — k instead, for som& € {2, ..., s — 1}, and estimate
0 0
Re(ie™(om—vn)) = D Re(e” Avmy)) = D [AvmyjlSING = bnyj) > 0. (3.21)
j=—k+1 j=—k+1

Here we invoked the inequalities— 7 < Ok < -+ < O < ¥ to show that each sine on the
right-hand side is strictly positive.
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As a consequence of the previous estimates, we concluddthatl, forallm=1,...,s.
However, the union of alll,’'s covers the unit circle with the exception ®points and, since the
setsly, are open and disjoint, we must halg = J, for all m € Q(2). Then, necessarily, is
connected and open. Now the left-hand side of (3.17) is strictly greater than the right-hand side
for €’ e |, and strictly smaller than the right-hand side érin the interior of the complement
of I,. By continuity of both sides, (3.17) can hold only on the boundariyof a

3.2 Proof of Theorem 2.1.

Having all the necessary tools ready, we can start proving Theorem 2.1. First we will apply
Lemma 3.5 to characterize the situation around multiple points.

Lemma 3.6 Suppose that Assumption A holds andzlet & be a multiple point. Fov > 0, let
1V ={ze0:|z—2 =6, Q(2) >m}. (3.22)
Then the following is true oncgis sufficiently small:

(1) For each me Q(2), the set [ is connected and has a non-empty interior.
(2) 19 = g whenever m¢ Q(2).
(3) For distinct m and n, the set¢’l and |9 intersect in at most one point.

Proof. The fact that () = @ form ¢ Q(2) onces > 0is sufficiently small is a direct consequence
of the continuity of the functiong,, and¢ . Indeed, if there were a sequence of pomtsending
to z such that a phasa were stable at eacly, thenm would be also stable at

We will proceed by proving that, as| 0, each set?, m e Q(2), will eventually have a non-
empty interior. Letn € Q(Z). Observe that, by Lemma 3.5, there is a vadidnamely, a number
from l,,) such thatke(é?v,) > Re(€%,) for alln € Q(2) \ {m}. But then the second part of
Lemma 3.1 guarantees the existence otan 0 such thatQ(z) = {m} for all z € #; y(2)—
see (3.3). In particular, the intersecti#fi o(z) N {z: |z — z| = ¢}, which is non-empty and
(relatively) open fol < e, is a subset of (9). It follows that the set? has a nonempty interior
onced is sufficiently small.

Next we will prove that each!?, m e Q(2), is eventually connected. Suppose that there exist
a phase € Q(2) and a sequencé | 0 such that all set§” arenot connected. Then, using
the fact thatl (%) has nonempty interior and thus cannot consist of just two separated points, we
conclude that the phasecoexists with some other phase at at least three distinct points on each
circle{z: |z — 2| = &}. Explicitly, there exist (not necessarily distinct) indicbéQ e Q2 \ {a}
and points(z\)), j = 1,2,3, with |z — 2| = 6 andz!’ # 2z for j # ¢, such that, b\’ ¢
Q(zf(”). Moreover, (choosing subsequences if needed) we can assunhé)thatb(” for some
b e Q(2) \ {a} independent ok. Resorting again to subsequences, we also may assume that
the limits in (3.1) exist for all three sequences.

Let us used?i to denote the corresponding limits for the three sequences. First we claim that
the numberg?, j = 1, 2, 3, are necessarily all distinct. Indeed, suppose two oéfhis are the
same and leb andc be the phases coexisting wighalong the corresponding sequences. Then
Lemma 3.3(1) forceb = ¢, which contradicts both conclusions of Lemma 3.3(2). Therefore, all
three€?i must be different. Applying now Corollary 3.2 and Lemma 3.1, weRe€ i v,) =
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Ma¥eo@)\(a) Re(€%vy) for j = 1,2, 3. According to Lemma 3.5, all three distinct numbelfs,
j =1, 2,3, are endpoints off;, which is not possible sinck, is a connected subset of the unit
circle. Thus, we can conclude thid’ must be connected onée> 0 is sufficiently small.

To finish the proof, we need to show tHg? N 1” contains at most one point for amy= b.
First note that we just ruled out the possibility that this intersection contlafeedistinct points
for a sequence af's tending to zero. (Indeed, thenwould coexist withb along three distinct
sequences, which would in turn imply thatand b coexists along three distinct directions, in
contradiction with Lemma 3.5.) Suppose now thgt N Iéé) contains two distinct points. Since
both 1 and1,” are connected with open interior, this would mean t&tand1\” cover the
entire circle of radiug. Once again, applying the fact that twf’ have at most two points in
common, we then must hawé?) = g for all ¢ # a, b. But Q(2) contains at least three phases
which necessitates th&f? # ¢ for at least three distinah. Hencel ) N Ié‘” cannot contain
more than one point. a

Next we will give a local characterization of two-phase coexistence lines.

Lemma 3.7 Suppose that Assumption A holds and letime R be distinct. Let z= & be such
that ze SnN S and Q(Z) c {m,n} for Z € Ds(z). Then there exist numbeds € (0, 9),
t; < 0, t > 0, and an twice continuously differentiable functign (t, t;) — Dy (2) such that

(1) 7,(0) = z.

(2) 1Em(yz )] = 1En ()] = (7, (1), t € (L, o).

(3) Iimtul yz(t), Iimtth Vz(t) € 81[)(5/(2).
The curve t— y,(t) is unique up to reparametrization. Moreover, the Bgt(z) \ 7,(t1, t2) has
two connected components and m is the only stable phase in one of the components while n is the
only stable phase in the other.

Proof. We begin by observing that by Assumption A3, the function

Pmn(X, y) = 10g[¢m(X +iy)| —log|in(X 4 1y)| = Relog Fnn(X +1iy), (3.23)

has at least one of the derivativegpm n, dy¢mn NON-vanishing ak + iy = z. By continuity,
there exists a constant > 0 such that one of the derivatives is uniformly bounded away from
zeroforallzZ = u+iv € D,(2). Sincez = x +iy € SN 7, we havepyn(X,y) = 0. By

the implicit function theorem, there exist numbgJst;, Xo, X1, Yo andy; such thaty < 0 < t;,

Xo < X < X1, Yo <Y < Y1 and(Xo, X1) x (Yo, 1) C I,,(2), and twice continuously differentiable
functionsu: (t}, t}) = (Xo, X1) ando: (ty, t;) = (Yo, Y1) such that

Pmn(U®), v(1)) =0, te (tty), (3.24)
and
ui@) =x, and v(0)=vy. (3.25)
Moreover, since the second derivativesgaf,, are continuous 0 and therefore bounded in
D,(2), standard theorems on uniqueness of the solutions of ODEs guarantee that the solution to
(3.24) and (3.25) is unique up to reparametrization. The constructign isfnow finished by

picking ¢’ so small thaiDy (z) C (Xo, X1) X (Yo, Y1), and taking, andt; to be the first backward
and forward time, respectively, whéua(t), o (t)) leavesDy ().
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The fact thaDy () \ y,(t1, t2) splits into two components is a consequence of the construction
of y,. Moreover,y, is a (zero-)level curve of functiopm » which has a non-zero gradient. Hence,
¢mn < 0 on one component dy(z) \ y,(t1, t2), while ¢ n > 0 on the other. Recalling the
assumption tha@(z') c {m, n} for Z' in a neighborhood of, the claim follows. O

Now we can finally give the proof of Theorem 2.1.
Proof of Theorem 2.1Let.# denote the set of all multiple points @, i.e., let

M ={ze 0:19(2) > 3}. (3.26)
By Corollary 3.4, we know that7 is relatively closed in0’ and so the sef” = &'\ .# is open.
Moreover, the se¥ N ¢ consists solely of points where exactly two phases coexist. Lemma 3.7
then shows that for eaahe ¥ N7, there exists a disby (z) and a unique, smooth, open cume
in Dy (z) passing througla such that©(z') = 9(2) for all Z on the curvey,. Lety, be a maximal
extension of the curve, in ¢’. We claim thaty, is either a closed curve or an open curve with
both endpoints 0ad”. Indeed, ify, were open with an end-poidte ¢”, thenQ(z) 5 Q(z), by
continuity of functiongm,. Butz € ¢” and s0|Q(2)| < 2, which implies thaQ(2) = Q(z). By
Lemma 3.7, there exists a non-trivial cunuealong which the two phases fro@(z) coexist in a
neighborhood of. But theny, U 7, would be a non-trivial extension @f,, in contradiction with
the maximality ofy,. Thus we can conclude thate 00".

Let € denote the set of maximal extensions of the cufyesz e ¥ N 0'}. LetZ c 0 be a
compact set and note that Corollary 3.4 implies tat ./ is finite. Letdy be so small that, for
eachzy € #N2,we haveDy,(zw) C O, Ds,(zw) N = {zv} and the statements in Lemma 3.6
hold true ford < dq. Letd € (0, dp]. We claim that if a curves” e € intersects the disB;s(zyv)
forazy € .# N 2, then the restrictiory’ N Ds(zy) is a simple open curve connectiag to
oDs(zw). Indeed, each curvg e € terminates either o6&’ or on.Z . If € “enters"Ds(zy) and
does not hitzy;, our assumptions aboudg imply that % “leaves”D;(zy) through the boundary.
But Lemma 3.7 ensures that one of the phases coexisting &atamninates in a small neighbor-
hood on the “left” of¢’, while the other dominates in a small neighborhood on the “righ# of
The only way this can be made consistent with the connectivity of thel §tsm Lemma 3.6
is by assuming that'? # @ only for the twom’s coexisting alongs’. But that still contra-
dicts Lemma 3.6, by which? £ @ for at leastthreedistinctm. Thus, once a curv& e €
intersectds(zy), it must terminate aty.

Let Zo = 2\ U,y Dsy(2) and letA: 75 — [0, oo) be a function given by

A(z) =inf{d' € (0, d0): Dy (2) C O, Dy(2) N Uyee € is disconnecteld (3.27)

We claim thatA is bounded from below by a positive constant. Indetds clearly continuous
and, since%, is compact,A attains its minimum at some € %,. If A(z) = 0, thenz is

a limit point of | J,.e ¢ and thusz € ¢ for some%¢ e €. Moreover, for infinitely many

0" € (0, do), the circledDy (z) intersects the sét).._. % in at least three different points. Indeed,
the curve? > z provides two intersections; the third intersection is obtained by adjusting the
radiusd’ so thatDy(z) N (J4 e is disconnected. Thus, we are (again) able to construct three
sequences$z), (z,) and(z/) such that, without loss of generality,, z,z, € %2 N %, for
some distinch, b € R (only two phases can exist in sufficiently small neighborhoods of points
in %), lzx —2| = |z, — 2| = |z —2z] - 0, butzy # 7z # 7 # z for all k. However,
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this contradicts Lemma 3.3, because its part (2) cannot hold simultaneously for all three pairs of
sequence&z, z,), (7, z;) and(z, z;).

Now we are ready to define the set of points. . ., .. Lete be the minimum of the function
in 99 and lets = min(dy, €). Consider the following collections of open finite discs:

81 ={Ds(2): ze M4 NP},
82={Ds(2): z€ 7N Uyee €, distz, Upes, D) > %6}, (3.28)
83 ={Ds(2): € 7, dist(z, Upcs, s, D) > 56}.

It is easy to check that the union of these discs cogerketS = §; U 8, U 83. By compactness
of 2, we can choose a finite collectiéh c § still coveringZ. It remains to show that the sets
o =9 NDforD e & will have the desired properties. LBt € & and letz be the center
of D. If D € 83, then ND = @. Indeed, ifZ is a coexistence point, théhs(Z) € 81 U S, and
thus distz, Z) > 0 + %5 and hence’ ¢ D. Next, if D € 8, thenz € ¢4 and, by the definition
of dp ande, the discD contains no multiple point and interse&sonly in one component. This
component is necessarily part of one of the cufdes C. Finally, if D € 8,, thenzis a multiple
point and, relying on our previous reasoning, several cures € connectz to the boundary
of D. Since Lemma 3.6 implies the existence of exagflyz)| coexistence points o), there are
exactly|Q(z)| such curves. The proof is finished by noting that every multiple point appears as
the center of some dide € &', because that is how the collections (3.28) were constructed.

4. PARTITION FUNCTION ZEROS

The goal of this section is to prove Theorems 2.2-2.5. The principal tool which enables us to
control the distance between the root<Z8f" and the solutions of equations (2.17-2.18) or (2.23)
is Rouclé’s Theorem, see e.g. [15]. Throughout this section, we will use the shorthand

F(Q) = () Lelm) (4.1)
meQ
to denote the set of pointse & where all phases from a hon- emp@dyc R are “almost stable”
(as quantified by > 0).
4.1 Root degeneracy.

In this section we will prove Theorem 2.2. We begin with a claim about the Vandermonde matrix
defined in terms of the functions

0254(2)
o (2

where the dependencelnf on L has been suppressed in the notation. Let us fix a non-e@haty
R and letq = |Q|. For eactz € .7, (Q), we introduce the| x g Vandermonde matri®/(z)
with elements

bm(z) = , ze S (m), (4.2)

M m(2) = bm(2)°, meQ, £=0,1,....,9-1 (4.3)
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Let | M| denote thef?(Q)-norm of M (again without making the&-dependence of this norm
notationally explicit). Explicitly,|M]||? is defined by the supremum

IMI|J? = SUp[qi ’Z Mg,mamr: > ol = 1], (4.4)

(=0 meQ meQ

where(any) is a|Q|-dimensional complex vector.

Throughout the rest of this section, the symfol| will refer to the (vector or matrix§2-norm
as specified above. The only exceptions arefthaorms||q||1, ||qll> and||qll« Of ther-tuple
(Om)mer, Which are defined in the usual way.

Lemma 4.1 Suppose that Assumption B3 holds andllgte as in Assumption B3. For each
Q C R, there exists a constant kK K(Q) < oo such that

M) | < K, forallz e ., (Q)and L > Lo. (4.5)
In particular, M(2) is invertible for all ze ., (Q) and L > Lo.

Proof. Let Q ¢ R andq = |Q|. Let us choose a poite .7, (Q) and letM andby,, m € Q, be
the quantitiegM(z) andbn,(z), m € Q. First we note that, sincl is a Vandermonde matrix, its
determinant can be explicitly computed: 8&t= [[,,,_,,(bn —bm), where “<” denotes a complete
order onQ. In particular, Assumption B3 implies thatetM| > ¢9@-9/2 >~ 0 onceL > L.

To estimate the matrix norm &1, let A4, ..., Aq be the eigenvalues of the Hermitian ma-
trix M M+ and note that, > Oforall£ =1, ..., q by our lower bound ofdetM]|. Now, || M+||?
is equal to the spectral radius of the operatbM*, and||M~1||? is equal to the spectral radius
of the operatofM M+)~. By the well-known properties of the norm we thus have

IM[I? = [MT)|> = max A, (4.6)
1<t<q
while
M™% = max A7t 4.7
IMH* = max i (4.7)

Now |detM|? = detM M* = 1; ... 1q and a simple algebraic argument gives us that

M

MY < )
I I'= |detM|

(4.8)

Using the lower bound ofdetM], this implies that|M~| < Gar IM||9~L. The claim then
follows by invoking the uniform boundedness of the matrix elemenid ¢éee the upper bound
from Assumption B3), which implies th#iM|| and hence alsfM || is uniformly bounded from
above throughout”,,. (Q). O

Now we are ready to prove Theorem 2.2. To make the reading easier, let us note that for
Q = {m}, the expression (2.8) definirg, (Q) can be simplified to

.({m}) = {z e 0 |ta(2)| < €“?|¢(2)| for all n # m}, (4.9)

a fact already mentioned right after (2.8).
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Proof of Theorem 2.2Letm € R. Since the set$/, (Q), Q C R, coverd, it suffices to
prove thatzZ!®" # 0 in % -4, (IM}) N %L (Q) for eachQ c R. In fact, sincez € % -, ({M})

implies thatm is stable|rm(2)] = ¢(2), we may assume without loss of generality that O,

because otherwis@| -4, ({m}) N %,,.(Q) = @. Thus, letm € Q C R and fix a pointz

U\ 4, (M) N %/ (Q). By Assumption B4, we have the bound

G (2)
(2

Ld Ld

iZE”(Z)Izc(Z)L( | —coL“nqnle—’L). (4.10)

On| =
neQ~{mj} C(Z)

Sincez € 7 -4, ({M}), we have|;h(2)| < ((z)e—%L_d“’L for n # m. In conjunction with
Assumption B2, this implies

L Ld .
CC (z()Z) < et ez, n#m. (4.11)
On the other hand, we also have
(L) Ld .
‘C (Z()Z) > gLt (4.12)

where we used thdtm(z)| = ¢(2). Sincew,. — oo, (4.11-4.12) show that the right-hand side
(4.10) is dominated by the term with index which is bounded away from zero uniformly lin
ConsequentlyZp® # 0 throughoutZ -4,, ({m}) N %, (Q), providedL is sufficiently large.

Next we will prove the claim about the degeneracy of the roots. Let u@fix R and let,
as beforeq = |Q|. Suppose that > Lo and letz € %, (Q) be a root ofZP* that is at
leastq-times degenerate. Sin@ "' is analytic in a neighborhood af we have

3.z (2) =0, t=0,1,...,9 -1 (4.13)

It will be convenient to introducg-dimensional vectorg = x(z) andy = y(z) such that (4.13)
can be expressed as

M(@2)x =y, (4.14)
with M(z) given by (4.2) and (4.3). Indeed, bet= x(z) be the vector with components
_ (G @\
Xm = qm( @ ) , me Q. (4.15)
Similarly, lety = y(z) be the vector with componenys, . .., yq—1, Where

Y, = L‘dfg(z)‘Lda'fEQ L(2)
— qug(z) Ld {L dfaf[C(L)(z)] bm(Z) [C(L)(Z)]Ld}'

meQ
Recalling the definitiorEg  (z) from (2.13), it is easily seen that (4.14) is equivalent to (4.13).
We will now produce appropriate bounds on #€Q)-norms|ly|| and|/x|| which hold uni-
formly in z € %, (Q), and show that (4.14) contradicts Lemma 4.1. To estirfialle we first
note that there is a constaAt < oo, independent of., such that, foralf = 0,...,q9 — 1 and
all ze %,{/L(Q),

(4.16)

LD @]~ bn@ [ @] < AL @ (4.17)
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Here the leading order term frohm# 5[+ (1) (2)]-" is exactly canceled byn(2)[¢(" ()], and
the remaining terms can be bounded using (2.11). Invoking (4.17) in (4.16) and applying (2.14),
we get

Iyl < Allglli/AL™ + ( max Collgl /ALl (4.18)

where the facto/q comes from the conversion éf°-type bounds (4.17) into a bound on the
¢?-norm ly||. On the other hand, by (2.9) ang > 1 we immediately have

Ix|| > e (4.19)

But x| < IM~Y(@] llyll, so onceL is sufficiently large, this contradicts the upper bound
IM~1(2)| < K implied by Lemma 4.1. Therefore, the rootzatannot be more thagy —1)-times
degenerate after all. O

4.2 Two-phase coexistence.

Here we will prove Theorem 2.3 on the location of partition function zeros in the range of pa-
rameterz where only two phases frofR prevail. Throughout this section we will assume that
Assumptions A and B are satisfied and usandz to denote the constants from Assumption B.
We will also usej,_(2) for the function defined in (2.16).

The proof of Theorem 2.3 is based directly on three technical lemmas, namely, Lemma 4.2—
4.4 below, whose proofs are deferred to Section 5.2. The general strategy is as follows: First, by
Lemma 4.2, we will know that the solutions to (2.17-2.18) are withiOge~*")-neighborhood
from the solutions of similar equations, where the functignsget replaced by their analytic
counterpartg "), Focusing on specific indices andn, we will write these analytic versions of
(2.17-2.18) ad = 0, wheref is the function defined by

t@ =@ + @Y, ze S (m,n). (4.20)

The crux of the proof of Theorem 2.3 is then to show that the solutioris-of0 are located within
an appropriate distance from the zeroszgf'(z). This will be achieved by invoking Rouéts
Theorem for the function$ and f + g, whereg is defined by

92 =22 - (2, ze e (im, n)). (4.21)

To apply Rouchk’s Theorem, we will need thaf (z)|] > |g(z)| on boundaries of certain discs

in .7, ({m, n}); this assumption will be verified by combining Lemma 4.3 (a lower bound on

| f (2)]) with Lemma 4.4 (an upper bound ¢9(z)|). The argument is then finished by apply-

ing Lemma 4.2 once again to conclude that any two distinct solutions of the equations (2.17—
2.18), and thus also any two distinct rootszﬂ’er, are farther than a uniformly-positive constant
times L~9. The actual proof follows a slightly different path than indicated here in order to
address certain technical details.

We begin by stating the aforementioned technical lemmas. The first lemma provides the nec-
essary control over the distance between the solutions of (2.17-2.18) and those of the equa-
tion f = 0. The functionf is analytic and it thus makes sense to consider the multiplicity of the
solutions. For that reason we will prefer to talk about the roots of the fundtion
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Lemma 4.2 There exist finite, positive constants B B,, C; and L; such thatCe "t <
B;L~9 whenever L> L;. Furthermore, forall L> Ly, alls < (B;+ By)L%and all z e
Zereu(fm, n}) with Ds(z0) C O, the discDs(2o) is a subset of7, . ({m, n}), and the following
statements hold:
(1) If s < B;L™9, then disdDs(z) contains at most one solution of the equations (2.17—2.18)
and at most one root of function f, which is therefore non-degenerate.

(2) If s > C;e7L and if z is a solution of the equations (2.17—2.18), thy(z,) contains at
least one root of f.

(3) Ifs > Cie "t and if z is a root of the function f, thePs(zo) contains at least one solution
of the equations (2.17-2.18).

(4) If s = B,L~9 and if both m and n are stable a$,zhenDs(z) contains at least one solution
of the equations (2.17-2.18).

The next two lemmas state bounds|driz)| and|g(z)| that will be needed to apply Rougls
Theorem. First we state a lower bound|dr{z)|:

Lemma 4.3 There exist finite positive constariis < C, and, for anyC > C, and any se-
quencege| ) of positive numbers satisfying

lim L%, =0, (4.22)
Lo>oo

a constant L < oo, such that for all L> L, the following is true: If 3 € .7 aL)({m, n}) N
(Fm U SA) and D¢, (20) C O, then there exists a numbe(zg) € {6¢, Coe } such that
Ds(z0)(20) C F/2Ly({m, n}) and

liminf  inf  |f@)] > e L% (o). (4.23)
sts(z0) z: |z—2z0|=S

Moreover, if f has a root iDg,, (20), then gzy) can be chosen ag®) = Ce,.

The reasons why we write a limit in (4.23) will be seen in the proof of Theorem 2.3. At this
point let us just say that we need to use Lemma 4.3 for the maximal cb@ge= Ce¢, in the
cases when we know thBg,, (z0) C ¢ but do not know the same about the closur®gf (o).

In light of continuity ofz — | f ()|, onces(zy) < Ce,, the limit is totally superfluous.
Now we proceed to state a corresponding upper bourid@j|:

Lemma4.4 There exists a constanA (0, oo) and, for each Ce (0, oo) and any sequenceg
obeying the assumptions (2.19), there exists a numbet bo such that

sup  19(2)] < AsdL(zo)L% (20)"" (4.24)
z: |z—2| <C4L (20)
holds for any L> Lz and any 3 € %, with Dc;, (z,)(20) C 0.

With Lemmas 4.3—4.4 in hand, the proof of Theorem 2.3 is rather straightforward.

Proof of Theorem 2.3Let m andn be distinct indices froniR and let us abbreviaté/, =
%, ({m,n}) and ./, = Z.({m,n}). Let f(2) and g(2) be the functions from (4.20-4.21).
Let By, By, C4, &, C, and Az be the constants whose existence is guaranteed by Lemmas 4.2-4.4
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and letL; be as in Lemma 4.2. Sinc&z appears on the right-hand side of an upper bound,
without loss of generality we can assume that

& A > Cy. (4.25)
Further, let us choose the consta@tand D such that
C=C,+C,A;, and D= B;+B,. (4.26)

Next, letL, be the constant for which Lemma 4.3 holds for b6tk= C, andC = C/A;z and for
bothe, = Aze~"t ande, = AsLd%e=2tL°. Finally, letL 3 be the constant for which Lemma 4.4
holds withC as defined above.

The statement of Theorem 2.3 involves two additional constants chosen as follows: First, a
constanB for which we pick a number fror(D, % B,) (e.g,B./3 will do). Second, a constahg
which we choose such thay > maxXL,, Lo, L3} and that the bounds

y < ﬁ, et < Lde !, cLleint’ 4 Gt < _@2_ gL (4.27)
hold true for allL > L. Fix L > Lg and consider the set
U = {z0 € U, : Dcs, (z)(20) C O}. (4.28)

Notice that our choice of o guarantees tha¥ C %, C /@) N (FmU ), while the fact
thatC < C/As for both choices o€ above ensures that for amy € %, the discD¢ ps(z) (20) IS
contained inZ. These observations verify the assumptions of Lemma 4.3—ayith Azd (20)
andC equal to eithe€, or C/A;—as well as of Lemma 4.4, for arpg € % .

First, we will attend to the proof of claim (2). Leb € Qf N % be aroot ofZ*' = f + g.
Lemma 4.3 withC = C, ande, = Agd, (zo) and Lemma 4.4 then imply the existence of a radius
s(zg) with s(z9) < Coe. = C2A30, (z9) < Cdy(z0) such that

|f(@)| > |9(2)]. z € 0Ds(20) (4.29)

holds fors = s(zp). (Note that here the limit in (4.23) can be omitted.) Hence, by Resch
Theorem,f and f + g have an equal number of roots i, (zo), including multiplicity. In
particular, the functionf has a rootz; in Ds,(zg) which by Lemma 4.3 lies also it¥ o).
Sinces(zp) + Cie7"t < Cé.(z) by the definition ofC and the second bound in (4.27), we
may use Lemma 4.2(3) to infer that the equations (2.17-2.18) have a s@wi@n: ... (z1) C
Des, (z5)(Z0)- Moreover, (4.27) implies tha€dy (zo) < BiL~9 so by Lemma 4.2(1) there is only
one such solution in the entire diBg:s, () (2o)-

Next, we will prove claim (3). Letz € Q| (Q) N % be a solution to the equations (2.17—
2.18). By Lemma 4.2(2), there exists a ragte D¢ o (20) C Dcsy (z)(Z0) Of the functionf.
Lemma 4.2(1) then shows thatis in fact the only root off in D¢, z)(20). Applying Lemma 4.3
for the pointzy and the choices, = Azd (2p) andC = C/ Az in conjunction with Lemma 4.4,
there exists a radius(zg) such that (4.29) holds true for asy< s(zp) sufficiently nears(zp).
Moreover, by the bound (4.25) we know ttate Dg 1 (Z0) C Dey, (Z0) is a root of f within
distancet,e. from zy, and so the last clause of Lemma 4.3 allows us to che@¢ = Co (2o).
Letsy < s(zg) be such that (4.29) holds fere (s, S(2p)) and pick ars € (sg, S(zg)). Roucle’s
Theorem for the disc®s(z0) and the fact thatf has only one root icg, () (20) imply the
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existence of a unique zemof f(2) + g(z) = Z*(2) in Ds(zo). The proof is finished by taking
the limits 1 C4 (zo).

Further, we will pass to claim (4). Leg andz, be two distinct roots oZ{*' in %,_such that
bothDg,-a(z1) € € andDg -4(z) C ¢ are satisfied. We will suppose that—z,| < BL~9 and
derive a contradiction. Let = %(zl + 2,) be the middle point of the segment betwegmandz,.

Since|z;—2,| < BL™Y, a simple geometrical argument shows that the disc of ra;ﬁ:ué BL
centered at is entirely contained ig  -d(z1) U D -d(z2) € €. Next, by Lemmas 4.3-4.4,
there exist two rootg] andz, of f such thatz} € Dcy,)(z1) andz, € Dcsz,)(22). (We may
have thatz; = z,, in which casez; = z, would be a degenerate root 6f) Now our assumptions
on B andLq imply that

3 B
% BL™ > EL_d +CoL(z) > 1z—zal+ |z — 7| > |2- 27, (4.30)
and similarly forz,. Consequently, botk; andz, lie in Ds(z). But this contradicts Lemma 4.2

and the bound? B < By, implying thatDs(zp) contains at most one non-degenerate rooft .of
Finally, we will prove claim (1). Letzp € ¥ N %, (Q) with Dp -a(2) C &. According to

Lemma 4.2(4), the disDg, -4(2) contains at least one one solutiznof the equations (2.17—

2.18). Checking thaB,L~9 + Cd_ (1) < (B 4+ B1)L~% in view of (4.27) and the definition of

B, we know thatDcs,)(z1) C & and we can use already proven claim (3) to get the existence of

aroot of 2" in Dy, (1) (21) C Dpi-a(20). O

This concludes the proof of Theorem 2.3 subject to the validity of Lemmas 4.2-4.4.

4.3 Proof of Proposition 2.4.

Fix distinct indicesm,n € R. Our strategy is to first prove the claim for the density of the
solutions of the equations (2.17-2.18),

1
2¢elLd

pii(2) = QL (Im, n}) N D, (2)

: (4.31)

and then to argue that the density;) yields the same limit.

Letzg € 4({m,n}) \ .#, where . is the set of all multiple points. By Theorem 2.1 and
Assumptions A1-A2, there exists an> 0 such that, throughout the didk, = D.(z9) C
0, we haveQ(z) c {m,n} and the the functiorFy n(2) = ¢m(2)/in(2) is twice continuously
differentiable and nonvanishing. Clearly, all solutions of the equations (2.17-2.D8)nmust lie
in the set#®) = {z € D¢ [Fnn(2)] = (0n/Gm)Y""}. Denoting the se¥ ({m, n} N D, by ¥,
we now claim that for sufficiently smadl, the sets7 and¥") can be viewed as differentiable
parametric curves: (t_,t,) — D, andy®: "), t{~) — D, for which

D) tY > toandt!™ -t
(2) y — y uniformly one (t_, t,)
(3) V. — Vuniformly on(t_, t;)

hold true asd. — oco. Here?, (t) = 3y (t) and¥(t) = 2y(t) denote the tangent vectors.
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We will construct both curves as solutions to the differential equation

dz(t) _ . dupmn(2(t))
dt |02¢pm,n(Z(1))]
with ¢mn(z) = log|Fmn(2)| (note that fore small enough, the right hand side is a well de-
fined, continuously differentiable function aft) € D, by Assumptions Al1-A2 and the fact
that|9,¢mn(20)| > a/2 according to Assumption A3). In order to define the cur/éy(.) and
y(-) we will choose a suitable starting pointtat= 0. For y(-), this will just be the pointz,
while for y(-) we will choose a point}”’ € D, which obeys the conditiongm (zy”) = 7.
and|zo — 2| < 3a~1y., wheren. = L=910g(gn/qm). To construct the pointy” € D, we
use again the smoothnessgf ,. Namely, by Assumption Al-2, the functigf, (X +iy) =
log |Fm.n(X + iy)]| is twice continuously differentiable oB, if € is sufficiently small, and by
Assumption A3 we either haj@gm n(X +iy)/ox| > a/3, or|0pmn(X+1Y)/3y| > a /3. Assum-
ing, without loss of generality, thad¢pm (X + 1y)/dy| > a/3 on all of D, we then define the
pointz\~ as the unique point for whicliezy" = Rez andegmn(zy~) = .. By the assumption
|0¢mn(X +1y)/dy| > /3, we then havgz, — z\-'| < 3a~17,, as desired.
Having chosen the poirt,”, the desired curveg™ : (t*"), t{") - D, andy: (t_,t,) — D,
are obtained as the solutions of the equation (4.32) with initial condjtibi{0) = z" and
y(0) = 2o, respectively. Here!", t{", t_, andt, are determined by the condition that’ and
t_ are the largest valuds < 0 for which y(®(t) € aD, andy(t) e oD, respectively, ancﬂiL)
andt,. are the smallest valugs> 0 for whichy(-)(t) € aD, andy(t) € dD,, respectively. Since
the right-hand side of (4.32) has modulus one, both curves are parametrized by the arc-length.
Moreover, decreasing if necessary, the functions) can be extended to alle (t_,t,). To
see that the limits in (1-3) above hold, we just refer to the Lipschitz continuity of the right hand
side of (4.32) and the fact that, by definitign{-)(0) — y(0)| = O(L~9). Let K be the Lipschitz
constant of the right-hand side of (4.32) in a neighborhood contaidin¢) for all t e (t_, t,).
Choosinge so small that both, —t_ andt{~ —t~) are less than, say,/ 2K ), integrating (4.32)
and invoking the Lipschitz continuity, we get
sup [yPt) —y®1 < 1y © =701+ 3 sup [P ) —y®)l. (4.33)

o<t<ty to<t<ty

(4.32)

This shows thap“)(t) — y(t) uniformly int e (t_, t;). Using Lipschitz continuity once more,
we get a similar bound on the derivatives. But then also the arc-lengths correspongihy to
must converge to the arc-length gfwhich shows that alsg™ — t, andt™ — t_.

Consider now the curvg(t). Given thatFy n(2)| is constant along, we have

dArg Fnn(y(t)) _ 1dlogFmn(y(®)
dt i dt

Referring to Assumption A3 and the fact th@agt)| = 1, we find that the modulus of the left-hand
side is bounded below hy. Using continuity of the derivativg- Arg Fnn in D, we observe that

one of the two alternatives occurs on all the intei@é?, t-)):

dArg Fm,n(y(L)(t)) - dArg Fm,n(V(L)(t)) < _a
dt - dt - 2

= —id,log Fm,n(z)|zzy(t)\7(t). (4.34)

either

(4.35)

N R
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providede is sufficiently small. By Lemma 4.2, the didd, contains a finite numbek =
2¢ Ldﬁ,(T]Ehf)(zo) of solutions of the equations (2.17) and (2.18) which in the present notation read

(G 1/Ld
|Fmn(2)| = (q—m) , (4.36)
L4 Arg Finn(2) = 7 mod 2t. (4.37)
Assuming, without loss of generality, that the former alternative in (4.35) takes place, and or-
dering all the solutions consecutively along the cuplle, {z; = Y (t1), ...,z = YO (1)},
tH <ty < <t <tV we have
Arg Fnn(Zj+1) — Arg Fmn(z)) = 22L7¢ (4.38)
foranyj =1, ...,k—1,aswell as

Arg Fin(z1) — Arg Fnn(z2) < 2zL~% and ArgFnn(z,) — Arg Fon(z) < 27179, (4.39)

In view of the first equality in (4.34) rephrased fé}, the left hand side of (4.38) can be rewritten
as

i+1, dlogF Ot
Arg Fnn(zj+1) — Arg Fnn(z)) = / 9 m;j”t(y ©) dt (4.40)
1y
and thus
"|dlo Fm”(y(L)(t))(dt 2k L~ < 27 L~ (4.41)
(L dt - ’ )

Let us divide the whole expression Iy and take the limit. — oo. Now y“) converge toy

along with their first derivatives, uniformly ine (t_, t,), and the Ilmltst(L> converge td.. The
Bounded Convergence Theorem then shows that the integral in (4.41) converges to a correspond-
ing integral overy. Recalling thap -+ (z0) = k/(2¢L?), we thus get

1 (% dlogF t
“m p(L g)(zo) 471-6/ 9 r&n(VO( )

ot
(4.42)
:4_/ 0, 10g Fin,a(2)|1d2
T € 70

where the last integral denotes the integration with respect to the arc length. Taking into account
the Lipschitz continuity ofio;log Fynn(2)|, the last integral in (4.42) can be approximated by
(|aZ log Fm,n(zo)| + O(e))lyl. By the smoothness of the curygewe estimate its length bly| =

2¢(1+ O(e)), so that

asz(Zo) azC,.Vn (20)
{m(20) ¢n(20)

To finish the proof, we need to show tl'p;(,i,jh‘)(zo) will converge to the same limit. According
to Theorem 2.3, we have

127 NDe(2)] = 1Q({m, n) N D) < 2 (4.44)

(4.43)

|I£n I|m P (z0) = —|azlog Fmn(20)| =
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forall z € ¥(m, n) such thali Q(z)| = 2 ande sufficiently small. Hence

) 1
i’ @) = i’ @] < T35

and the claim of the proposition follows by (4.43). O

(4.45)

4.4 Multiple phase coexistence.

In this section we will prove Theorem 2.5, which deals with the zera&[8fin the vicinity of
multiple points. Letzy, € & be a multiple point and lef = Q(zy). For eactm € 9, let¢m(L)
ando, be as in (2.22). Define the functions

f(z) = z G € #m(L)+Hom(z-—2m)L? (4.46)
meQ
4@ = 2@ @)™ - f(2, (4.47)
and
E(2) = exp{maé(i){e(vm(z —zu))}. (4.48)

As in the case of two-phase coexistence, the proof uses RLTheorem for the function§
and f + §. For this we will need a lower bound difi| and an upper bound dgj.

Lemma 4.5 Suppose Assumptions A and B hold. Gigerc R with |Q| > 3 and abbreviat-
ingg=|Qland R = L~9@+V/® et (¢, ) be a sequence of positive numbers such that

lim L%, =00  but lim L2-99¢ =o0. (4.49)

L—o00 L—oo
Then there is a constantsL< co such that for any ge C and any L> L5 there exists &) €
[RL/q, R_] for which the bound

inf  |f(2)| > L% &(z0)"" (4.50)
z: |z—29|=5(20)

holds.

Lemma 4.6 Letzy € ¢ be a multiple point, leQ = Q(zv), g = |Q|, and R = L9+,
There exists a constantgAe (0, co) and, for each sequendg, ) of positive numbers obeying
(2.24), anumber k. < oo such thatif L> Lg then]Dp/L (zm) C %L (Q), Wherep, = p. + RL.
Furthermore, we have

sup 62| < Aep? L% (z0)" (4.51)
Z: |Z-Zp|<RL

wheneverge D, (zw).

With these two lemmas we can proceed directly to the proof of Theorem 2.5.

Proof of Theorem 2.5The proof is close in spirit to the proof of Theorem 2.3. gtbe a multiple
point and letQ = Q(zy). Consider a sequendgg, ) of positive numbers such that (2.24) holds.
Choosinge, = AGpE, where A is the constant from Lemma 4.6, we note that the conditions
(4.49) are satisfied due to our conditionsgnfrom (2.24). We will then prove Theorem 2.5 with
Lo = maxLs, Lg}, whereLs andLg are the constants from Lemma 4.5 and 4.6, respectively.
The proof again boils down to a straightforward application of Rélschiheorem.
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Indeed, letL > Ly and note that by Lemmas 4.5 and 4.6, for eaghe D, (zv) there is
ans(zo) € [RL/q, R.] such that oD, (o), we have

|f(2] > 52| (4.52)

Consider the set of these disBs,)(zo)—one for everyzg € D, (zw). These discs cover the
closure ofD,, (zv), so we can choose a finite subcoderNext we note that (4.52) implies that
neither f nor f + § have more than finitely many zeros ¥, (zw) (otherwise, one of these
functions would be identically zero). Without loss of generality, we can thus assume that the
discs centered at the zerosband f + §in D, (zu) are included ir§. DefiningZ = Up.s D,
we clearly haveD, (zw) C % C D, (zw).

Let nowX be the set of all components @f \ | s D. Let.#" € K be one such component.
By (4.52) we know thatf (z)| > |§(z)| on the boundary of#” and Rouck’s Theorem then guar-
antees thaf has as many zeros i##” as f + @, provided we count multiplicity correctly. More-
over, both functions or f +§ have no zeros o)y, s aD. Sincef(2)+§(2) = ZP*(2)¢ (zm) -
and¢(zy)™t" > 0, the zeros off + § are exactly those oZ*". The above construction &
ands then directly implies the desired correspondence of the zeros. Namely, in&aehk,
both f andZ® have the same (finite) number of zeros, which can therefore be assigned to each
other. Now f and Z[* have no zeros i \ | ;. #, SO choosing one such assignment in
each.z” e X extends into a one-to-one assignmentf N % andQ (Q) N % . Moreover,
if ze Qf N andz € Q (Q) N % for some.? e X (which is required ifz andz are the
corresponding roots), thenbelongs to the dis® e $ centered aZ andz belongs to the disc
D e § centered az. Consequentlyz andz are not farther apart thaR, = L~9@*+%9  This
completes the proof. a

4.5 Proof of Proposition 2.6.

Assuming thal. %, < y_, it clearly suffices to show that
U S QNI C U D, (zw). (4.53)
Q:1Q|>3 meInM
First, let us observe that continuity of the functigpsimplies
lim .7, (Q) = ﬂg S (4.54)
me

sincey, — 0. The setZ N .# is finite according to Theorem 2.1. Hence, there exists a constant
oo > 0 and, for eachd € (0, dg], a constant. g = Lq(9), such that the disds(zy), zw € 2N,
are mutually disjoint,

Q(2) C A(zwm) whenever  z € Ds(zyw), (4.55)

and
U S @n2c | Dsaw (4.56)

Q:19|>3 medNM
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whenever O< 6 < dp andL > Lq(d). It is therefore enough to show that there exist constants
x > 0ands e (0, dy) such that for any multiple poirgy € 2, we have

Ds(zm) N7, (L(zm)) C D, (2m) (4.57)

oncep. > yy_andL > Lo(d).
We will prove (4.57) in two steps: First we will show that there is a consgant 0 such that
for any multiple pointzy, anyz # zy, and anyn € Q(zy), there existsn € Q(zy) for which

Re[(z— zw) (0n(zm) — vm(zm))] = 2x12 — 2ul, (4.58)

and then we will show that (4.58) implies (4.57). To prove (4.58), we first refer to the fact that we
are dealing with a finite number of strictly convex polygons with vertiggszy): k € 9(zu)}
according to Assumption A4 and thus, givemandn, the labelm can be always chosen so that
the angle between the complex numhers zy; andv,(zw) — vm(zv) is Not smaller than a given
fixed value. Combining this fact with the lower bound from Assumption A3, we get (4.58).

We are left with the proof of (4.57). Let us thus consider a multiple pajpte 2 with
Q(zv) = Q, and a pointz € Ds(zvw) \ D, (zv). We will have to show that there exists an
m e Q with z ¢ ./, (m). Recalling thatQ(z) c Q for all Z € Ds(zu), letn € Q be such
that |t (2)] = ¢(2). Choosingm € Q(zy) so that (4.58) is satisfied and using, as in the proof
of Lemma 3.1,F, n(2) to denote the functioifr, m(z) = ¢n(2)/¢m(2), we apply, as in (3.9), the
Taylor expansion to logF, m(z)| to get

log |Fom(2)| = Re[(Z — zm) (n(zm) — om(zu))] + Oz — zul®) = x|z — 2wl = xpL. (4.59)

Here, we also used thif, m(zv)| = 1 and assumed thatvas chosen small enough to guarantee
that the error term is smaller thatjz — zy|. As a result, we get

im(2)| < €t ¢(2) < €7 ¢(2) (4.60)

implying thatz ¢ .#, (m). Thus, the inclusion (4.57) is verified and (4.53) follows. g

5. TECHNICAL LEMMAS

The goal of this section is to provide the proofs of Lemmas 4.2-4.6. We will begin with some
preparatory statements concerning Lipschitz continuity ofthand¢ .

5.1 Lipschitz properties of the functionslog |¢m| and log¢.

In this section, we prove two auxiliary lemmas needed for the proofs of our main theorems. For
anyz, z, € C, we will use [z;, z;] to denote the closed segment

[z, Z]= {tzs + (1 - t)z,: t € [0, 1]}. (5.1)

The following Lipschitz bounds are (more or less) a direct consequence of formulas (2.9) and
(2.11) in Assumption B.
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Lemma 5.1 Suppose Assumptions A and B hold andclet, and M be as in Assumption B.
Letme R, and let 7, z, € ., (M) be such thafz;, z]C ., (m). Then

Em(Z) | _ pethiz 2o (5.2)
Cm(Zz)
Moreover, for all 2, z, € & such thafz;, z,]c &, we have
fa) eMla—zl, (5.3)
((z2) ~

Proof. Let [z, Zo]C -7, (m). The bound (5.2) is directly proved by combining (2.9) with the
estimate

[logl¢y” (20| = log ey (z2)l| < Mizy — 22, (5.4)
implied by (2.11). Indeed, introducing(t) = ¢! (z; + t(zz — z1)), we have
1 1 dlp®)] do (1)
‘dt Iogl‘”(t)" = )q)(t) dt ‘go(t)H < Mizz =z (®-5)
implying (5.4). By passing to the limit — oo, we conclude that
log¢(z1) —109¢ ()| < Mizy — 75 (5.6)

holds provided, z]C Sm.

To prove (5.3), letzy, z, € & with [z, z]c ©. If the segmentZ;, z,] intersects the co-
existence se¥ only in a finite number of points, then (5.3) is an easy consequence of (5.6).
However, this may not always be the case and hence we need a more general argument. Note
that continuity of both sides requires us to prove (5.3) only for a dense set of poiats z,.

This and the fact that each compact subsef afontains only a finite number of multiple points
from.# = {ze 0:1Q(2)| > 3} permit us to assume thaf, z, ¢ ¢ and that the segmer;|, z,]
does not contain a multiple point, i.ezy[ zo]N.#Z = 8.

Suppose now that the bound (5.3) fails. We claim that then there exist a¥p@intz;, z,],

X # 21, 2, and two sequencés,) and(y,) of points from 1, X]N¥ and K, z,]N¥, respectively,
such that the following holds:

(1) Xn # Yy forall nand limh_ o0 Xn = liMy_ 0 Yn = X.
(2) There exists a numbévl’ > M such that
¢(Xn)

vo) > M'[Xn — Ynl (5.7)

Jos

for all n.
The proof of these facts will be simplified by introducing thipschitz ratig which for any pair
of distinct numbers, y € [z1, z5] is defined by the formula

[log¢(X) — logc(y)|
R(x, y) = 1129600 ~109¢I, (5.8)
IX =yl
The significance of this quantity stems from its behavior under subdivisions of the interval.

Namely, ifx andy are distinct points and € (X, y), then we have
R(x,y) < max{R(x, 2), Rz )}, (5.9)
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with the inequality being strict unles(x, z) = R(z, y).

To prove the existence of sequences satisfying (1) and (2) above, we need a few observations:
First, we note thaM’ = R(z;, zo) > M from our assumption that (5.3) fails. Second, whenever
X, Y € [z, o] are such thaR(x, y) > M, then (5.6) implies the existence ¥t y’' € [X, y] such
thatx’, y' € 4 andR(X’, ¥') > R(Xx, y). Indeed, we choos€ to be the nearest point tofrom the
closed set}, y]N¥, and similarly fory’. The fact that the Lipschitz ratio increases in the process
is a direct consequence of (5.9). Finally, if distincty € [z1, z]N¥ satisfy R(X, y) > M,
then there exists a pair of distinct poiks y’ € [x, y]N¥¢ such thatx’ — y'| < %|x —y| and
R(X,y) > R(X,y). To prove this we use (5.9) with = %(x + y) to choose the one of the
segmentsy, Z] or [z, y] that has the Lipschitz ratio not smaller th&ix, y) and then use the
preceding observation on the chosen segment.

Equipped with these observations, we are ready to prove the existence of the desired sequences.
Starting with the second observation above appliedxfee z; andy = z,, we getxy, Xo €
[21, 22]N¥ such thatR(X1, X2) > M’. Notice thatx; # z; andx, # z, sincez;, z, ¢ 4. Next,
whenever the paix,, Y, is chosen, we use the third observation to construct thexpair yn,1 €
[Xn, Yn]N¥ of points such thatXns1 — Yni1l < 3% — Yal aMdR(Xn11, Yns1) = R(Xn, Yn) > M.
Clearly, the sequenc€s,) and(y,) converge to a common limit € [x1, y1], which is distinct
from z; andz.

We will now show that (5.7) still leads to a contradiction with (5.3). First we note that the point
X, being a limit of points fron¢ \ ., is a two-phase coexistence point and so Theorem 2.1(2)
applies in a dis®,. (X) for ¢ > 0 sufficiently small. Hence, there is a unique smooth coexistence
curve® connectingx to the boundary ob, (X) and, sincgXx,) and(y,) eventually lie orfg, its
tangent vector ak is colinear with the segmenty, z,]. Since inD,(X), the coexistence curve
is at least twice continuously differentiable, the tangent vectsg’thas a bounded derivative
throughoutD, (X). As a consequence, in the diBg(X) with 6 < ¢, the curve® will not divert
from the segmentz, z,] by more thanCd?, whereC = C(¢) < oo.

Now we are ready to derive the anticipated contradiction:nFaxd letd, be the maximum of
|Xn — X] and|y, — X|. Let& be a unit vector orthogonal to the segmemt £,] and consider the
shifted pointsx, = x, + 2Cd2e andy, = y, + 2CJ2@. Then we can write

) _ () CO6) COVR)
Cyn) O ¢y C(yn)

(5.10)

Assuming than is sufficiently large to ensure that,/1 + 4C262 < ¢, the segmentq{,, y;] lies

in D, (X) entirely on one “side” of¢” and is thus contained i, for somem € R. On the other
hand, given the bounded derivative of the tangent vect@f,teach segmenky, x/] and [yn, y;]
intersects the curve exactly once, which in light ok, y, € ¢ happens at the endpoint. This
means that alsaxf, x,]C -“n and [y, y,]C -m for the samen. Consequently, all three ratios
can be estimated using (5.3), yielding

[Xn = Xpl + X5 = Yol + 1¥n — Yal
[Xn — Ynl

R(Xn, Yn) < M < M + 4MC5,, (5.11)
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where we used thak;, — y,| = |[Xn — Yn| @nd|X, — Ya| > 6n. Butd, — 0 withn — oo and thus
the ratioR(x,, yn) is eventually strictly less thaM’, in contradiction with (5.7). Hence, (5.3)
must have been true after all. O

The previous lemma will be particularly useful in terms of the following corollary.
Corollary 5.2 Suppose that Assumptions A and B hold andlet ¥ < x, wherex is the

constant from Assumption B. Then there exist constants o and Ly < oo such that the
following is true forallL> Lsand all s< c¢/L:

(1) Form e R and ze %% o1y (M) with Ds(z) C 0, we have

Ds(z) C S/ (M). (5.12)
(2) For ze 0 withDs(z) C 0, the set
Q' ={meR:Ds(z) C S (M} (5.13)
in non-empty and
Ds(2) C % (Q). (5.14)
(3) Fory, <«/(2L), @ c R and ze %, (Q) N %3 (Q) withDs(z) C €, we have
Ds(2) C % (Q). (5.15)

Proof. Let M be as in Assumption B. We then choase- 0 sufficiently small and., < oo
sufficiently large to ensure that far > L, we have

K 1
— — —Le*t > 2c 5.16

8M M - ( )

First, we will show that the claims (1), (2), and (3) above reduce to the following statement valid
for eachm e R: If z, Z are complex numbers such that the bolmé 7| < 2¢/L, the inclusion

[z,Z) c 0,andz e 0\ 7%, (m) hold, then also
[Z, Z/) C ﬁ\yg/(zu(m). (5.17)

We proceed with the proof of (1-3) given this claim; the inclusion (5.17) will be established at
the end of this proof.

Ad (1): Letz € Sy With Ds(z) C & and assume that (5.12) fails. Then there exist spnee

O\ Sz (M) with |z—Z'| < sand |z, Z]c &. Butby (5.17), thisimpliesq, z) N.%% 21, (M) = 0,
which means that7], Z]N.%% L) (M) = @. This contradicts the fact thate 7%, )(m).

Ad (2): Let z € ¢ with Ds(z) c . By the definition of stable phases, there is at least one
m e R such thatz € ., C S%,L)(M). Combined with (5.12), this proves that the s&tis
non-empty. To prove (5.14), it remains to show thg(z) c 0 \ .7 .)(M) whenevem ¢ Q'

By the definition ofQ’, m ¢ Q' implies that there existsz e Ds(z) such thatz’ € &'\ %, ().
Consider an arbitrary’ € éDs(z). For such &’, we have thalz — 2’| < 2c/Land [Z,2") c 0,

so by (5.17), we conclude that' [z") C &'\ .21 )(M). Since this is true for alt” € dDs(2),

we get the desired statemé(z) C &'\ %Ly (M).

Ad (3):LetQ Cc R,z e %, (Q) N i) (Q) andDs(z) C 0. If me Q, thenz e .7, (m) C
%21 (M) by the definition 0f7%;, (Q) and the condition that, < #/(2L). With the help of
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(5.12), this implies thalDs(z) ¢ 7%, (m) for all m € Q. Recalling the definition 0%, (Q),
we are left with the proof thabs(z) ¢ 0 \ S (M) wheneverm ¢ Q. Butif m ¢ Q,
thenz € 0\ z,.(m) because we assumed that %, (Q). By (5.17) we conclude that
[z,Z) C O\ S%2u) (M) wheneverz' e dDs(z), which provedds(z) C 0 \ F% L) (M).

We are left with the proof of (5.17), which will be done by contradiction. Assume thus that
m € R and letz, Z' be two points such that — Z| < 2¢c/L, [z, Z) c 0 andz e 0\ S, . (M)
hold, while (5.17) fails to hold, so that,[Z) N .7% /L) (M) # 0. Letz, € [z, Z) N S% /@ (M).
Since |, Z) ¢ 0, we have in particular that{, zZlc ¢. Let z, be defined as the nearest point to
z; on the linear segmentq, z] such thatz, ¢ .3;,aL),(m). By continuity of the functiongy, we
have |1, zo]C %, (M) C .7, (M) so that the bounds in Lemma 5.1 are at our disposal. Putting
(5.2-5.3) together, we have

Cm(zl)‘ ‘ {(20) g2 Ly oM|z1 -2
@) @) = '

Now, sincez; € %) (M) andz; & Y3z ,aL) (M), we can infer that the left-hand side is larger
thane®/“L) . Hence, we must have

(5.18)

K 1 L. 2C
— — ——e > — 5.19
|Zl ZZl = 8ML M =L 5 ( )
where the last inequality is a consequence of (5.16). Mow, € [z, Z) implies|z; — 25| <
|z — Z|, which contradicts the assumption that- Z'| < 2¢/L and thus proves (5.17). O

5.2 Proofs of Lemmas 4.2-4.4.

Here we will establish the three technical lemmas needed for the proof of Theorem 2.3. Through-
out this section, we fix distineh, n € R and introduce the abbreviationd = .7.({m, n}) and
V. = % ({m, n}). We will also let f andg be the functions defined in (4.20-4.21).

First we will need to establish a few standard facts concerning the local inversion of ana-
lytic maps and its behavior under perturbations by continuous functions. The proof is based on
Brouwer’s fixed point theorem.

Lemma5.3 Letz e C,e > 0, and lety: D.(z9) — C be an analytic map for which

1
16/ (20)17H|¢'(2) — ¢/ (20)] < > (5.20)

holds for all ze D.(z). Letd < €|¢'(z0)|/2. Then, for everyw € Ds(p(20)), there exists a
unique point ze D, (zp) such that)(z) = w.
In addition, lety € [0, 6/2) and letd: D, (zy) — C be a continuous map satisfying

10(2)| < 7, Z € De(20). (5.21)
Then for each = D, (zo) with ¢(2) € D,(¢(20)) there exists a point'z= D, (o) such that
$(2) +0(2) = ¢(2). (5.22)

Moreover,|Z — z| < 2y|¢'(z0)| 2.
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Proof. Following standard proofs of the theorem about local inversion of differentiable maps (see,
e.g., [12], Section 3.1.1), we search the inversevdds a fixed point of the (analytic) function
z- w2 =2+ ¢'(20) 1 (w — ¢(2)). The condition (5.20) guarantees timt> w(2) is a
contraction oD, (zo). Indeed, for every € D.(zy) we have

W' @) =[1-¢'(20)7'¢' )| < I¢'(20)|7}|¢' (D) — ¢'(20)| < 3, (5.23)

which implies thatjw (2) — w(Z)| < %|z — Z| for all z,Z € D.(z). The actual solution to
¢(2) = w is obtained as the limit = lim,_, z, of iterationsz,,1 = w(z,) starting atz,. In
view of the above estimates, we hgeg,; — z,| < %|zn — Zp—1| and, summing oven, we get
1Z0 — 20| < 2|21 — 20| < 2|¢p'(20)|Hw — ¢ (20)|. Sincelw — ¢(20)| < J, we have that, as well
as its limit belongs td, (zo).

Next we shall attend to the second part of the claim. The above argument allows us to define
the left inverse ofp as the functionp™: Ds(p(z0)) — D (z0) such thatp~1(w) is the unique
valuez € D.(zy) for which ¢(z) = w. Lety € [0,/2) and letz € D.(zo) be such that
¢ (2) € D,(¢(20)). Consider the functio : Ds(¢(z0)) — C defined by

¥ (w) = ¢(2) — (¢~ (w)). (5.24)

By our choice ofz and (5.21), we havgl (w)| < 27 for anyw € Ds(¢(20)). Thus,¥ maps the
closed disdD,, (¢ (2o)) into itself and, in light of continuity of, Brouwer’s Theorem implies
that¥ has a fixed pointo’ in Dy, (¢(20)). From the relationt (w’) = w’ we then easily show
that (5.22) holds foz’ = ¢~1(w’). To control the distance betweerandz, we just note that
the above Lipschitz bound ap allows us to conclude that' — z| < 2|¢'(z0)| X (Z) — ¢(2)].
Applying (5.22) and (5.21), the right-hand side is bounded Ay 2z)| 2. O

Now we are ready to start proving Lemmas 4.2-4.4. The first claim to prove concerns the
relation of the solutions of (2.17-2.18) and the roots of the functiatefined in (4.20).
Proof of Lemma 4.2Let a, M andz be the constants from Assumption B. leeand L4 be the
constants from Corollary 5.2 with = «. The proof will be carried out for the constarBs, C;
andL, chosen as follows: We let
1 g _16+4 l0g(Tn/0m) |

am’ 2 a

B, =

N 10
and C; = —,
a

(5.25)

and assume that, is so large that.; > L4 and forallL > L, we haveC,e~"t < B;L~% and
1 1

c K 2 1
Bi+B)L %< 2<-——, 264+ <> Z(M+MHB+B)L <=, (526
(B1+ Byp) << +L_4’ [i( + M%) (B1 + Byp) <5 ( )

26t 4y 2MBL Y < LY g > 2V2e, (5.27)

aLl™4+2e" <47 and Ciett < iBL7Y (5.28)

Let us fix a valueL > L; and choose a poirdy € ./2.) and a numbes < (B; + By)L—d
such thatDs(zg) ¢ &. Corollary 5.2(1) combined with the first bound in (5.26) implies that
Ds(z0) C /1
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We will apply Lemma 5.3 for suitable choices ¢fandd defined in terms of the functions
Fmn: Ds(zo0) > CandF{): Ds(z0) — C defined by

&’ (@)
o’ @
We will want to defineg(2) as the logarithm of ) (2), andd(z) as the logarithm of the ratio
Frgfg(z)/Fm,n(z), but in order to do so, we will have to specify the branch of the complex log-
arithm we are using. To this end, we will first analyze the image of the funcﬁgjh)g(z) and
Fi(2)/Fnn(2).

According to Assumption B2, for any € Ds(zo) C %L, We havelF{)(2)] € (2/3,3/2)
in view of the second bound in (5.26) with the observation ﬂwat log g A simple calculation
and the bound (2.11) show that AFg-) () deviates from Ard={\)(zo) by less than ®1(B; +
Bo)L~¢ < 1. Indeed, the difference Ag|)(2) — Arg F{-)(20) is expressed in terms of the
integral of 5,F;)/F\}) along any path ifDs(zo) connectingzo andz. The latter logarithmic
derivative is bounded uniformly byN throughoufDs(zp). ConsequentlyFé{% mapsDs(zg) into
the open set of complex numbese®: p € (4, 3), lo — wol < 3}, wherewy = Arg Finn(20).
The function F{")(2)/Fm,n(2), on the other hand, mafiss(zo) into the open set of complex
numbers{p€®: p € (%, %), lo| < %1}, as can be easily inferred from Assumption B2 and the
second bound in (5.26). Given these observations, we choose the branch of the complex logarithm
with cut along the rayre='®/2: r > 0}, and define

and Fr;Lr), (2) =

(5.29)

¢(2) = log F)(2) (5.30)
and

0(2) =1 P @ 5.31

(2) =log Fn@®)’ (5.31)

Having defined the functiong andd, we note that, by Assumptions A and Bjs analytic while

@ is twice continuously differentiable throughdt(zy). Moreover, these functions are directly
related to the equations = 0 and (2.17-2.18). Indeed,(z) = 0 holds for some € Dg(zy) if
and only if F{") (2) is anL?-th root of —(0n/Gn), i-€.,¢ (2) = (109(0h/0m) + i 7 (2k + 1)) L~ for
some integek. Similarly, z € Ds(zp) is a solution of (2.17-2.18) if and only §f(z) + 6(2) is of
the form(log(gn/gm) + i 7 (2k + 1))L~9 for some integek. Furthermore, these functions obey
the bounds

@ <Ip@<2M, 14 ¢ @) <2(M+M?*)(B1+ B)L ™, (5.32)
and
10(2)] < 267t 10(2) — 0(2)| < 2v/2e " 1z —Z| (5.33)
for all z, Z € Ds(z9). Here the first three bounds are obvious consequences of Assumption B,
while the third follows from Assumption B by observing that the derivative mai(z) is
bounded in norm by 22 times the right hand side of (2.10). Note that, in light of (5.26), these
bounds directly verify the assumptions (5.20) and (5.21) of Lemma 5.3 fer2e 7" and any

€ < s. We proceed by applying Lemma 5.3 with different choices td give the proof of (2-4)
of Lemma 4.2, while part (1) turns out to be a direct consequence of the bounds (5.32-5.33).
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Indeed, let us first show that far < B;L~9 the discDs(z) contains at most one solution
to (2.17-2.18) and at most one root of the equatfor= 0. We will prove both statements
by contradiction. Starting with the solutions to (2.17-2.18), let us thus assumetlzate
Ds(zp) are two distinct solutions to the equations (2.17-2.18). Setbing- ¢(z1) + 6(z;) and
wy = ¢(22) + 6(z) this means thai; — w, is an integer multiple of 2iL 9. However, the
bounds (5.32) and (5.33) combined with the first bound in (5.27) guarante@uthat w,| <
4e~"t + AMB; L9 < 2L~9 and thusw, = w,. But then the boun@i (z1) — ¢ ()| > @|z1 — 25|
implies thatf(z;) —6(z>)| > a|zy— 2|, which, in view of the second bound in (5.27), contradicts
the second bound in (5.33). Hence, we must havezhad z, in the first place. Turning to the
equationf = 0, let us now assume that andz, are two different roots of this equation. Setting
w1 = ¢(z1) andw, = ¢(z,), we again haver; = wo, this time by the first bound in (5.32) and
the very definition ofB,, which implies that MB; = 1. But once we have; = w,, we must
havez; = z, since|¢(z1) — ¢(22)| > a|zz — 22| by our lower bound o’ (z), implying that
there exists at most oree Dy(zy) that solves the equatioh = 0. If such a solutiorz exists,
Assumption B immediately implies thdt (z) # 0, and s is a non-degenerate root éf

Next, we will show that within £1e‘TL-neighborhood of each solutiory of the equations
(2.17-2.18) there is a root df. Indeed, let = C;e~*" andd = 5e~L. By the first bound in
(5.32) and our choice &, we then havé < €|¢'(z9)|/2, so the first part of Lemma 5.3 is at our
disposal. Sinceg is assumed to be a solution to (2.17-2.18), we havedtt|d + 6(zp) is of the
form (log(gn/0m) +i7 (2k+1))L~9, wherek is an integer. In light of the boun@(z)| < 277",
the discDs(¢(zp)) contains the pointy = ¢ (z9) + 6(Zo). By the first part of Lemma 5.3, there
exists a poink € D, (zp) such thatp(z) = w, implying thatz is a root of f .

Third we will prove that ifzy is a root of f, then there exists a solution to (2.17-2.18) in
D¢, (20). By the relation betwee andg we now know tha# (zo) is of the form(log(gn/dm)+
iz(2k + 1))L~9 for some integek. We again set = Cie~’" andd = 5e *L. Choosing
n = 2e~*L and noting that 2 < ¢, we apply the second part of Lemma 5.3 to conclude that there
must be a point’ € D, (z) such thatp(z) + 8(2) = ¢(z0) = (109(Qn/m) + i 7 (2k + 1))L 9,
which means that' is a solution to (2.17-2.18).

Finally, we show that iy € ., N 7, then there exists a solution to (2.17-2.18) in the disc
Dg, -4(Z). To this end, we first note thay € .7, N .7, implies thate (o) + 6(20) is purely
imaginary. Combined with the first bound in (5.33) we conclude that within a distance of at most
(110g(Qm/an)| + 7)L =9 + 2e~7L from ¢ (z0), there exists a point of the form = (109(0},/Am) +
iz (2k 4+ 1))L~9 for some integek. We now set = B,L~9/2 andd = (| log(gm/an)| + 4)L 1.

By the first condition in (5.28), we then hayg(zy) — w| < J, while the first bound in (5.32)
together with the definition 0B, implies thatd < ¢|¢’(z9)|/2. We therefore can use the first part

of Lemma 5.3 to conclude that there must be a pgirt D, (z5) such thatp(Z) = w, implying
thatz is aroot off = 0. Finally, by the already proven statement (3) of the lemma, there must be
a solution of the equations (2.17—2.18) within a distance strictly lessGharf from z. Since

e + Cie™ < B,L~9 by the second condition in (5.28), this gives the desired solution of the
equations (2.17-2.18) in the diBg,| (o). O

Next we will prove Lemma 4.3 which provides a lower bound bfz) on the boundary of
certain discs.
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Proof of Lemma 4.3Let @ andM be as in Assumption B3, lét = « /2, and letc andL,4 be the
constants from Corollary 5.2. We will prove the claim with

& = (2eM||qllc)™ and  C, = maxé,, 22ea71) (5.34)
and, giverC > C,, with L, defined by the condition that, > L, and

CeL <c/L, L% t<1 €M <2 and 2(M + M?)|qlloC2Ll% <1 (5.35)
hold wheneveL > L.

Fix L > L, and choose a poiity € %/aL) N (Fm U Fn) with ]D)Cq(zo) C 0. Lets < Ce,
and note that by (5.35) we hage< c/L. Applying Corollary 5.2(1) to the disBs(zy) we find
thatDs(zo) C Sy C F/L. In particular, the bounds of Assumption B are at our disposal
wheneverz € De¢,, (20). The proof will proceed by considering two separate cases depending
(roughly) on whetheff (zg)| is “small” or “large.” We will first address the latter situations. Let
us therefore suppose thit(z)| > 4L% ((zo)Ld. In this case, we will show that (4.23) holds
with s(z9) = &€ . (Note thats(zg) < Ce. < Ce, by our definition ofC,.) A crucial part of the
proof consists of the derivation of an appropriate estimate on the derivativel@fts < Ce, and
let z be such thalz — 7| < s. Recalling the definition (4.2) dd(z) and using Assumptions B2-
B3, the second and third bound in (5.35) and the fact that one of the \ial(@s)| and|¢n(zo)|
must be equal tg(z), we have

1@ = L[anbn @ 2" + abn (0 @)
< L9 dnMlcn(@0)] + 6nMIgn(zo) |- ezl et (5.36)

< 4eM)|qlloo L9 (20) -

wheneverz € %, .. As argued abovez € Dg, () implies that ko, ZJC 7/, so by the
Fundamental Theorem of Calculus we have

[1@] 2 |10 — 4eMldlL (20 s > A9 c@ (=50 )  (637)
2

for all z € Ds(zp). The bound (4.23) now follows by lettirg)T e .

Next we will address the cases with(zy)| < 4Lde|_((zo)Ld. Lets < Ce. and pickz such
that|z — zo| = s. This point belongs to the dide,, (zo) which we recall is a subset of; . .
The second-order expansion formula

1 t
(@)= 1@+ F@@-2)+@-2" [ & [ &V (z+a-02)  (639)
0 0
then yields the estimate
[f@)] 2 [f(z0) + (2= 20) f'(20)]| — K(Cer) L2 (20)" (5.39)
where
K = %C(zo)"-dL‘zd sup{lf"(2)|: ze %, |1z— 20| < CeL}. (5.40)

Proceeding as in the bound (5.36), we easilyiget 2e]|qllo[M2(1 — L=%) + ML~¢] which
implies thatK < 2€||q]|o[M? 4+ M].
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It remains to estimate the absolute value on the right-hand side of (5.39). AbbreWiatiag
bm(zo) andby, = b, (z0), we can write

f'(z0) = LY (bmGmc ™ (20)™ + butn¢ ™ (z0)-)

= L9 (B — b)ame P (20)- + b L  (20).
Suppose now, without loss of generality, that(zo)| > |¢n(20)| and, thereforelym(zo)| = ¢ (20),

becausezyg € ./, U .. Applying Assumption B3 together with the assumed upper bound
on|f(z)l, we get

(- 20) t(20) + f(20)] > (GOmse™"®"" — de (14 sLIM)) L (z0)™, (5.42)

where we recalled thaz — z| = s. Sinces < Ce,, the third inequality in (5.35) gives
thatsLM < CML%_ < 1. Let nows be so large thas > Ce . Using this bound in the
first term in (5.42) and using the second inequality in (5.35) we thus get

(2 —20) f'(20) + f(20)| > (2aCoe™ — 8) L% ((20)" > 3L ¢ (20)"". (5.43)
Moreover, using the above bound Knand the last inequality in (5.35), the last term on the right-
hand side of (5.39) can be shown not to excEédLg(zo)'-d. Putting (5.39) and (5.43) together
with these estimates, we have(z)| > 2LdeLg(zo)Ld for all z € D¢, (Z0) such thas = |z — z|
satisfiessCe, < s < CeL. The proof is finished by taking T Ce, .

The last statement of the lemma is an immediate consequence of the fact that whenever the

above procedure picks(zg) = &e,_ and&, < C, then the argument (5.36-5.37) implies the
stronger bound

(5.41)

inf  |f(2)] > 2L%, ¢ (20)"". (5.44)

z: |2-20| <8(20)
Now, if f has a root ifDg,, (Zo), then this bound shows that we could not have cha$ey) =
&€ . Therefores(zp) must be equal to the other possible value, s€z) = Ce, . O

Proof of Lemma 4.4We will prove (4.24) withAg = 2Co||qll1, whereCo is as in (2.14) fot = 0.
LetLoandM be asin Assu[nption B and le; andc be as in Corollary 5.2. LeE € (0, oo) and
let us choosé 3 > maxL,, Lo} in such a way that

c
max{Ce ", CL%e 3} < o MCL% " < log2 (5.45)
14 2d —3L9y
EL y.+ MCL e 2" 7t < 7L, (5.46)
and . -
"W oo and MCL¥e 2t 4 L9t < 2dlogL + logCy (5.47)

hold forallL > L.

We will treat separately the cases € %, N % /(20) andzy € %, \ %/ (Z0). Let us
first consider the former case, so tdatzy) = e~*-. The first condition in (5.45), the fact that
Dcs, z)(20) € € andy, < x/(2L) therefore allow us to use Corollary 5.2(3), from which we
conclude thaics, (z)(20) C %, . Forz € Dcs, (z0)(20) we may thus apply thé = 0 version of
(2.14) to the functiorg(z) = Zm.n),L(2). Combined with the bound (5.3), the second condition
in (5.45) and our definition oAz this immediately gives the desired bound (4.24).
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Next we will attend to the cases when € %, \ %L, SO thatd (zg) = Lde3L%. Let

us defineQ’ as in (5.13) withs = Co (%), i.e., @ = {(k € R: Dy z) C L/ (K)}. By

Corollary 5.2(2), the se®’ is non-empty antcs, () (20) C %/ (Q'). Letz € Des, (2, (20) and

let us estimatay(z). We will proceed analogously to the preceding case; the only difference is

that this time we have

9(2) = Z¢.L(2) + h(2), (5.48)
where the extra ter(z) is given by
d
ha= > afa”@] . (5.49)
ke Q' ~{m,n}

Now |Z¢, (2)| is estimated as before: Using thate %, (Q’), the bounds (2.14) and (5.3)
immediately yield thaiZo 1 ()] < Collqll1LL (zo)¢ (o). (Here we used that the term
eMLICa @)L is pounded by~2L""t < &, (z0) as follows from (5.46).)

Therefore, we just need to produce an appropriate bourjd(@y. To that end, we note that,
since o, Z]|C %, (Q') and|z — zo| < CoL(Z), we have from (5.4) and Assumption B2 that

d d d S —7
\Ck(L)(Z)|L < |C|<(L)(ZO)|L eMCLYL (20) < \Ck(Zo)|L eMCLYoL (zo)+L et (5.50)

whenevek € Q'. Sincezy € %,

,.» Which implies|§k(")(z)| < ¢(z0)e77t/2 whenevek ¢ {m, n},
we thus have

(@) < MO L g ) (5.51)
for everyk € @'\ {m, n}. Using the last bound in (5.47), we conclude tffEt)| is bounded by
Collqll1L 95 (20)¢ (2z0)-°. From here (4.24) follows. O

5.3 Proof of Lemmas 4.5 and 4.6.

Here we will establish the two technical lemmas on which the proof of Theorem 2.5 was based.
Throughout this section we will assume that a multiple paiate & is fixed and thatQ =
Q(zm). We will also usef, § and¢ to denote the functions defined in (4.46—4.48).

Lemma 4.5 is an analogue of Lemma 4.3 from Section 4.2 the corresponding proofs are also
analogous. Namely, the proof of Lemma 4.3 was based on the observation thaf ejf)pwas
itself large in a neighborhood af, or it was small, in which case we knew thdt(z)| was large.
In Lemma 4.5, the functiorf(z) is more complicated; however, a convenient reformulation in
terms of Vandermonde matrices allows us to conclude that at least one among (&5 firdd
derivatives is large. This is enough to push the argument through.

Proof of Lemma 4.5Abbreviatingg = |Q| and usingA(q) = 2q%@+Y/2q! /g and the constants

K = K(Q) andL, from Lemma 4.1 andV from Assumption B, let = 1/(3K) andLs > Lg
be such that

MR <2 2IqIiM? < L¥%  and  A@Q)LZY%¢ < ¢/ (5.52)
forall L > Ls. A choice ofLs yielding (5.52) is possible in view of (4.49).
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Choosingzy € C, we useF (2) to denote the functiofir (z) = f~(z)5(zo)‘Ld. First, we claim
that if (4.50) fails to hold for somé& > Ls, then we have

FO@Zo)| < —<—L%,  ¢=0,....q—1 5.53
| )| 7 q (5.53)

Indeed, let us observe that, if (4.50) fails to hold, then there must exist a collection of pgints
withk =1, ...,q, such that

|z« — 20l = §R. and [F (29| < L%, (5.54)
forallk = 1,..., q. Further, notice that, foz — z9| < R_, we have the bound
eum(z—zM)Ldé(Zo)—Ldi < este(om(z—zo))Ld < eM Ld RL’ me Q, (5.55)

implying |[F@(2)] < 23,0 dm lom|L9% in view of the first condition in (5.52). In particular,
we have|F@(2)|R! < 2||q[:MIL~¢ for all z in the R_-neighborhood of,. With help of the
second condition in (5.52), Taylor’s theorem yields

[={(9)
‘Z (ZO)(zk—zo)f‘ <2L%, k=1,....q (5.56)
Now we will write (5.56) in vector notation and use our previous estimates on Vandermonde
matrices to derive (5.53). Lat= (Xo, X1, . . ., Xq—1) be the vector with components
 FO@) (2 —120 ¢
X, = R (=0,1,...,9-1 5.57
£ L 1 (lzk_zol) ) 5 = ,q 5 ( )

and letN = (Ni,) be theq x g-matrix with elementNy , = |z — z|'R‘ = (k/q)‘. The
bound (5.56) then implies that the vecfiik has each component bounded by?2, and so
INX|| < ZﬁLdeL. On the other hand, sind€is a Vandermonde matrix, the norm of its inverse
can be estimated as in (4.8). Namely, using the inequalitletN| > q~9@-Y/2 and||N|| < q,
we get

INI9Y @-1/2+a@- Y
_ 5.58
IN7Y) < dety <@ (5.58)
But then||x|| < [N"1|||Nx|| < g¥@-1/22_/gLde implying
L=¥IFO(zg)] < e1(LYRL) x|l < A(Q)LZ =9, (5.59)

where we used thdt?(LYR.)~¢ is maximal forf = q — 1, in which case it equals?d~9/d, With
the help of the last condition in (5.52), the claim (5.53) follows forlalt Ls.

Having proved (5.53), we will now invoke the properties of Vandermonde matrices once again
to show that (5.53) contradicts Lemma 4.1. kdde theg-dimensional vector with components

Vi = ei¢m(L)+vm(Z—ZM)Ldé:(ZO)—Ld me Q. (5.60)

Let O = (O m) be theq x g matrix with matrix element®, m = of,. (Here¢ takes values
between 0 and — 1, whilem € Q.) Recalling the definition oF(z) the bound (5.53) can be
rewritten ag[Qy],| < €/,/q. It therefore implies that

10yl < e. (5.61)
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The matrixQ corresponds to the — oo limit of the matrix M in (4.3) evaluated aty. In
particular, sincey € .7, (m) for all L and allm € Q(zy) and in view of the second bound
in Assumption B2, the bound (4.5) applies@as well. Having thugO~!|| < K with the
constanK from Lemma 4.1, we can conclude that

[EEN

lyll < IO7HIOy| < K[Oy] < Ke < 3 (5.62)
using our choice = 1/(3K). On the other hand, leh be an index for which the maximum in
the definition off(z) is attained. Then we have

[ atis (zg) | = @lmEIT 2 g MR - % meQ,  (563)

according to the first condition in (5.52). Moreove#, > 1 and thug|y| > % in contradiction to
(5.62). Thus, (4.50) must hold for soméz,) € [R_/q, R ] oncelL > Ls. d

Lemma 4.6 is also quite similar to the corresponding statement (Lemma 4.4) from two-phase
coexistence.
Proof of Lemma 4.6We will prove the Lemma foAs = 2e(Co + 3)(M + M?)||q|l1, whereM
andCy are the constants from Assumption B.
Let c andL 4 be the constants from Corollary 5.2 for= . Sincezy € ¢ is a multiple point
with Q(zw) = Q, we clearly have thaty, € %,.(Q) whenevere is small enough. Sincé is
open, we also have th@lt;(zy) ¢ ¢ whenevers is sufficiently small. As a consequence, there
is a constant s = Le(zu) such thazy € %,/ (Q) N %2 (Q) andDg, (zw) C & whenever
L > L. Using Corollary 5.2, we reach the conclusion tlat(zy) C %, (Q) whenever
L > maxLe, L4} ands < c/L. We now choosé g > max{Lg, L4} in such a way that

pL<c/L,  pl <2,  (1+2p0)e7 < (M +M?)pZ,

(5.64)
AM + M2)p2L9 <1, MR <2

wheneverL > Lg. By the above conclusion and the first condition in (5.64), we then have
DPL (zm) C %L (Q) whenevell > L.

To prove (4.51), let us recall the definition 8%, (z) in formula (2.13) from Assumption B4.
Then we can writg(2) aSEQ,L(Z)C(ZM)_Ld + h(z), where

_ G @D\ pm(Urom(z—zwL?
h(z)_réqm[( ((ZM)) _ gémLr+ ) } (5.65)

Our goal is to show that bOtEQ,L(Z)C(ZM)_Ld andh(z) satisfy a bound of the type (4.51).
We will begin with the bound oh(z). First we recall the definition af,(L) to write

r%L)( d rgll_)( d r%L)( d )
({CTM?)L z(ciwz?))L (Ccm(zZMM)))L et (5.66)

The first term on the right-hand side is to the leading order eqLéIﬂtETZM)Ld, which is approxi-
mately equal t@'m@2L’ To control the difference between these two terms, and to estimate the
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deviations from the leading order behavior, we combine the bound (2.10) with the second-order
Taylor formula and (2.11) to show that, for alk D, (zv) and allm € Q,

log(¢m” @ /¢ (@w)) = vm(z = 2w)| < €7 + %(M + ML (5.67)

where we have chosen the principal branch of the complex logarithm. Combining this estimate
with the second and third condition in (5.64) and the bound (2.9) from Assumption B2, we get

ILYlog(ch @)/ (zw)) = vm@Z = zw)L? —igm(L)| < 3(M + MA)pELY.  (5.68)
Using the fourth condition in (5.64) and the fact theit — 1| < e|w| wheneveqjw| < 1, we get
h(2)| < 3e(M + M?)|qll L%p2E@)"" . (5.69)

Now &(2)L° < &(zo)- eML'R < 2¢4(z0)L by the fifth condition in (5.64), so we finally have the
bound|h(z)| < AZ(z0)-"L9pZ, with A given by A = 6e(M + M?)||q]|1.

It remains to prove a corresponding bound K@,L(z)g(zM)—Ld. First we recall our previous
observation thab (zw) C %, (Q), so we have Assumption B4 at our disposal. Then (2.14)
yields

= —Ld < d —7L ﬂ L

[FoL@i@n | < Colflahe | ST
Also, by the definition ofZ,,. (Q), we have that (z) = MiNmeg |(m(2)| wheneverz € D (zv).
Forz e D (zw), we can therefore find a inder € Q such thati¢n(2)| = ¢(z). With the help
of (5.3) and the bound (2.9) from Assumption B, we thus get

ze Dy (zw). (5.70)

Ld

(@ 1Y (em(20) || tm(2) G0 @0) |1 R L Lder
< < eV™te . 571
[C(ZM)] _‘C(ZM) {m(20) _‘ C(2m) &7
Combined with the estimate (5.68) foe= 7, and the last three conditions in (5.64), this gives
d
[ - ]L < eMRLLT LT MM 2 (7)< 2e7(20)". (5.72)
¢(2v)

Using the third condition in (5.64) one last time, we can bound the right-hand side (5.70) by
2eCollqll1(M 4+ M2)L9p2&(z)- . Combined with the above bound ¢m(z)|, this finally proves
(4.512). O
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