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Abstract

In this paper we construct an analytical separation (diagonalization) of the full (minimal
coupling) Dirac equation into particle and antiparticle components.  The diagonalization
is analytic in that it is achieved without transforming the wave functions, as is done by
the Foldy-Wouthuysen method, and reveals the nonlocal time behavior of the particle-
antiparticle relationship.  It is well known that the Foldy-Wouthuysen transformation
leads to a diagonalization that is nonlocal in space. We interpret the zitterbewegung, and
the result that a velocity measurement (of a Dirac particle) at any instant in time is ±c, as
reflections of the fact that the Dirac equation makes a spatially extended particle appear
as a point in the present by forcing it to oscillate between the past and future at speed c .
This suggests that although the Dirac Hamiltonian HD  and the square-root Hamiltonian,
H Hs D= -U UFW FW

1 , are mathematically, they are not “physically,” equivalent.
Furthermore, we see that although the form of the Dirac equation serves to make space
and time appear on an equal footing mathematically, they are still not on an equal footing
from a physical point of view.  It appears that the only way to justify a physical
relationship between the Dirac and the square-root equations is via their relationship to
the Klein-Gordon equation.

We then show explicitly that the Pauli equation is not valid for an analysis of the
Dirac hydrogen atom problem in s-states (hyperfine splitting).  We conclude that there
are serious physical and mathematical problems with any attempt to show that the Dirac
equation is insufficient to explain the full hydrogen spectrum.
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I. Introduction

A standard assertion is that quantum electrodynamics (QED) is an almost perfect
theory that is in excellent agreement with experiments.  Those readers with some
operational contact with the subject will also point out that they are not happy with the
divergences and the renormalization procedures, and that a meaningful mathematical
formulation is still missing after more than fifty years.  Furthermore, in a real sense, the
difficult computational analysis seems a rather high price for the meager (but important)
results obtained.

Most pedestrians and too many experts are unaware of, or choose to ignore, the
fact that QED does not account for the complete spectrum of hydrogen.  All but the Lamb
shift and a minor portion of the hyperfine splitting must be computed from a combination
of the Dirac equation and the corresponding Pauli approximation.  These results are then
given as input to the QED computation. This is, of course, irrelevant from a practical
point of view, and there are other important applications.  However, from a foundational
(and/or theoretical) point of view, to accept this state of affairs is equivalent to changing
the definition of what we mean by a physical theory.

II. Purpose

Historically, when Lamb and Retherford1 confirmed suspicions that the 2s1 2  state

hydrogen was shifted above the 2p1 2  state, the Pauli approximation to the Dirac equation

was (essentially) used to decide that the Dirac equation was not sufficient. In light of the
above issues and the tremendous success (historically) of eigenvalue analysis in physics
and engineering, it is not inappropriate for us to reinvestigate the physical and
mathematical foundations of spin 1/2 particles with an eye towards identifying the
conceptual and technical limitations to our understanding of the hydrogen spectrum as an
eigenvalue problem.

The first successful attempt to resolve the question of how best to handle the
square-root equation:
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This means that equation (1) can be written as:
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In this case, Y  must be viewed as a vector valued function or spinor.  To be more
precise, Y Œ ( ) = ( )ƒL L2 3 4 2 3 4R C R C,  is a four-component column vector

Y = ( )y y j j1 2 1 2, , ,
t
.  In this approach, y y y= ( )1 2,

t
 represents the particle (positive

energy) component, and j j j= ( )1 2,
t
 represents the antiparticle (negative energy)

component of the theory (for details, see Thaller3).

A fair understanding of the Dirac equation can only be claimed in recent times,
and we now realize that Dirac replaced the complex number field by elements of a
Clifford algebra.  (See, in particular, Biedenharn4 or deVries5 along with the references
therein.  For a general reference to Clifford algebras, the work by Hestenes6 offers a good
introduction.)

Despite successes, both practical and theoretical, there still remain a number of
conceptual, interpretational, and technical misunderstandings about this equation.  It is
generally believed that it is not possible to separate the particle and antiparticle
components directly without approximations (when interactions are present).  The crude,
and sometimes incorrect, approximations found in the literature might have led to this
belief.  In addition, the algebraic approaches of Foldy-Wouthysen7, Pauli8, and Feynman
and Gell-Mann9 have no doubt further supported such ideas.

III. Complete Separation

It turns out that a direct analytic separation is actually quite simple and provides
additional insight into the particle and antiparticle components.  In order to see this, let
A x( , )t  and V( )x  be given vector and scalar potentials and, after adding V( )x  and
making the transformation p p AÆ pp == --(( ))e c , write (2) in two-component form as:
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with B V mc= -[ ]( )2 h  and D c i= ◊[ ](s pp)) h .  From an analytical point of view, we see

that equation (4) is an inhomogeneous partial differential equation.  This equation can be
solved via the Green’s function method.  Thus, we then must solve
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It is easy to see that the solution to equation (5) is
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Using equation (7) in (3a), we have
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In a similar manner, we obtain the complete equation for j :
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where B V mc' ( )= +[ ]2 h  and v t t iB t( ) ( )exp{ ' }= -q , which allows us to solve for y :
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Thus, we have decomposed L2 3 4R C,( )  as L L L2 3 4 2 3 2 2 3 2R C R C R C, , ,( ) = ( )≈ ( ) .  The

first copy of L2 3 2R C,( )  contains the particle (positive energy) wave component

y y y= ( )1 2,
t
, while the second copy of L2 3 2R C,( )  contains the antiparticle (negative

energy) wave component j j j= ( )1 2,
t
.   The only unsettled issue is the definition of the

appropriate inner product for the two subspaces, which will account for the quantum
constraint that the total probability integral is normalized.  We can satisfy this
requirement if we set y c y c y c,( ) = +1 1 2 2 , and y c y c, ,( ) = ( )A

A A ,

j h j h, ' , '
'( ) = ( )A
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Define the particle and antiparticle inner products by
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It is clear that r ry jdx dx
R R3 3

1Ú Ú= = , so we now have a complete separation of the

particle and antiparticle wave functions.

In the standard representation, the charge conjugation operator is Cy y= UC ,
with U iC = bba2 .  A simple computation establishes the following theorem.

Theorem 1. Equations (8) and (9) are mapped into each other under the charge
conjugation transformation.

Equations (8) and (9) offer an interesting alternative to the many attempts to decompose
the Dirac equation into particle-antiparticle and/or parity-sensitive pairs.  They also offer
a different approach to the study of large Z (hydrogen-like) atoms.  Although not a part of
our direction, one should be able to show that (under physically) reasonable conditions,
equation (8) is stable in the large Z limit for such atoms.

IV. Interpretations

Writing the Dirac equation and the direct separation in two-component matrix
form, we have:
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We call (14) the analytic diagonalization of the Dirac equation because the wave
function has not changed.

The standard approach to the diagonalization of the Dirac equation (without an
external potential V) is via the Foldy-Wouthuysen representation.  Assuming that A does
not depend on t, the following generalization can be found in deVries5:
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In this case, F F1 2[ ] = [ ]t

FW

t
U y j , and H Hs D= -U UFW FW

1  (see Thaller3 for details).
Equation (15) is the object of the next paper of this series, and will be studied in detail
there.  However, it is known (see Gill10) that when A is zero, H ps = bb ++ 22c m c2 2 4  has
the following analytic representation:
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Here, the Kn are modified Bessel functions of the third kind andm = mc h . Equation (16)
is the first example of a physically relevant operator, which has a “natural”
representation as the confinement of a composite of  three singularities, two negative and
one (hard core) positive, within a Compton wavelength such that, at the point of
singularity, they cancel each other providing a finite result.

Gill first derived equation (16) using the method of fractional powers of closed
operators.  As will be shown in the follow-up paper, this method (simplified) has the
advantage of allowing us to construct corresponding representations for a large class of
vector potentials.  Loss and Lieb11 derive a version of (16) using Fourier methods.
However, this approach does not generalize to nonzero A  and/or nonconstant m , both of
which are of independent interest.

We can now interpret the zitterbewegung, and the result that a velocity
measurement (of a Dirac particle) at any instant in time is ±c, as reflections of the fact
that the Dirac equation makes a spatially extended particle appear as a point in the
present by forcing it to oscillate between the past and future at speed c .

From equation (14), we conclude that the coupling of the particle and antiparticle
wave functions in the first-order form of the Dirac equation hides the second order
nonlocal time nature of the equation.  From (16), we see explicitly that (15) is nonlocal in
space.  Thus, the implicit time nonlocality of the Dirac equation is mapped into the
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explicit spatial nonlocality of the square-root equation by the Foldy-Wouthuysen
transformation. These observations imply that the Dirac Hamiltonian HD  and the square-
root Hamiltonian, H Hs D= -U UFW FW

1 , are mathematically, but not physically, equivalent.
Furthermore, the only way we can justify using the square-root equation to interpret the
Dirac equation is their relation to the Klein-Gordon equation.  In the second paper, we
show that there is an alternate relationship between the square-root and Dirac equations.

V. The Hydrogen Atom

In this section, we reconsider the standard analysis of the Dirac equation for the
hydrogen atom problem from an exact point of view.  We assume that A r= ¥( )mmI r3 ,
V c r= -h g , and g = e c2 h .  Rewrite (3a) and (3b) in eigenvalue form:

( ) (E V mc c- - = ◊2 y s jpp)) , (17a)

( ) (E V mc c- + = ◊2 j s ypp)) . (17b)

Eliminating j  in terms of y  and vice versa, we obtain the following equations:
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(We also get (18) from equations (8) and (9) via straightforward integration, using the
Riemann-Lebesgue Lemma.)  We call (18a) and (18b) the Slater equations since they
were first used by one of his students as early as 194012, and appeared in his book13, first
published in 1960 (see Appendix 29).  (It is difficult to understand, given the continuous
historical interest in the Dirac equation, why Slater’s work on this equation is not well
known.)  For obvious reasons, we concentrate on (18a).  First note that, if we drop the
middle term and replace ( )E V mc- + 2  by 2 2mc , we get the Pauli approximation to the
Dirac equation:

( ) ( )E V mc
e

mc m
- - = - ◊ +2

2

2 2
y s y yh

B
pp

. (19)

As noted earlier, the Pauli equation was used to extract the hyperfine splitting portion of
the hydrogen spectrum to complete the predictions of QED.  It follows that the conditions
that justify the Pauli approximation and the dropping of the middle term of (18a) are both
of fundamental importance for the foundations of QED.
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There are a number of other equations and/or “apparent” approximations that
have been given the name and/or used in lieu of the Pauli equation (see for example,
Greiner14, Mizushima15 or Bethe and Salpeter16).  We do not consider these equations
since, although they are related to the Dirac equation, they do not give additional
information and it is far from obvious that they have any mathematical or physical
justification when applied to the only calculation that matters, the s-states of hydrogen.

Recall that there is a finite probability of finding the electron at the origin in s-
states, but the required condition for the validity of (19) is ( ) .E V mc mc- + <<2 22   Thus,
this condition is not satisfied for any s-state calculation.  It follows that, from a
foundational point of view, use of the Pauli equation to compute the hyperfine splitting of
s-states is far from convincing.  On the other hand, the condition is easily seen to be
satisfied for all other states.  A more reasonable approximation is to use mc E mc2 2- <<
to replace ( )E V mc- + 2  by 2 12

0mc r r+( ) , where r e E mc e mc0
2 2 2 22= + @( ) .  The

above condition is always satisfied (13ev compared to 0.5Mev).  This approach also has
the additional advantage of removing the nonlinear eigenvalue problem posed by (18a)
without substantially affecting the final result.  In this case we have
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Using standard computations, we get (see Slater13, hL r p= ¥  is the angular momentum,
and hS is the spin, S = s 2)
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Putting these expressions in (20), we have:
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When mmI = 0 , (22) becomes
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Equation (23) has (using r e E mc0
2 2= +( )) the same eigenvalues as the unperturbed

Dirac equation so that our interest centers on the following terms (op means operator)
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The delta term in equation (24a), except for the additional factor 1 0

1+( )-r r , would

normally be used to compute the hyperfine splitting of s-states in the Pauli
approximation.  It is easy to see that, with this additional factor, the same calculation
would give a value of zero for the splitting.  In all other states this factor is small
(1 0>> r r ) and may be dropped.

Slater13 used equation (24b) to compute the s-state (hyperfine) splitting and
obtained the correct result.  Since this term is (part of the) focus of our investigation, we
repeat some of Slater’s calculations.  In the s-state the total angular momentum J is equal
to S.  Hence, following standard procedures, we replace S S r r◊( ) - ◊ ◊( )[ ]mm mmI I op

r r2 4( )( )

by S S S S r◊( ) ( ) - ◊( )[ ]mmI op
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The important issue is the computation of the s-state expected value of
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where l = ◊( )2 3e mc I op ave
h S mm .  Slater13 assumed the nonrelativistic radial wave

function for s-states.  (For the 2s1 2  state, R r r r( ) ( )exp( )/= - -1
2
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1
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where r mB = ¥ -0 529178 10 10.  is the Bohr radius.)  Using the normalization
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Setting r h= r  and r h0 0= r , we have
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By a change of variables (u = +r r0 ) and integration by parts, it is easy to see that r0  is

a cutoff and that the dominant contribution is r0
1- .  We get the same result for all s-states,

while it is not hard to show that equation (24b) is (almost) zero for all other states.

It would appear that the correct approach for s-state (hyperfine) splitting gives the
same results as those obtained from the Pauli equation.  Furthermore, equation (24b)
introduces a natural cutoff, which removes the conceptual difficulty of a point magnetic
dipole interaction as implied by use of the delta term in the Pauli equation.  In addition, it
is not hard to show that Slater’s approach goes through, giving the same result, if we use
(the correct) Dirac solution for the first-order calculation.

However, to provide input for the precise results of QED, we must first correct the
normalization condition to

y s y2 2 2 2
0

2
4 1 1+ ◊ +( )[ ] =Ú ( p x)) m c r r d . (27)

Clearly, the additional term will give a small correction.  However, if it changes the
hyperfine splitting values in the eight or ninth decimal place (in GHz), it is important.
(For example, the measured values of the 2s1 2  state hyperfine splitting in hydrogen is

0.177566850(10) Ghz, see Mizushima15.)  As we shall see later, the correction is much
smaller.

Problem 1. (Physical)
The first problem for the physical foundations is to provide a complete
computational analysis of equation (25a) to the second order using (27) for input
in QED.

Problem 1. (Mathematical)
The first problem for the mathematical foundations of QED is to prove that
perturbation theory can (or cannot) be applied to equation (25a) (using (27)).

We now approach the more difficult issue facing any attempt to completely
understand the Dirac problem for full coupling, namely, the A2  term:

e

mc r r

e

mc r r r
I

2 2

2
0

2 2 2

2
0

42 1 2 1
A
+( ) = +( )

m qsin
. (28)

In every treatment of the Dirac hydrogen atom problem, this term (with r0 0= ) is either
ignored or assumed to be small.  Clearly, it cannot be ignored in any investigation of the
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foundations.  Furthermore, it is easy to show that this term will be small in all except s-
states.

The first observation is that this term appears to be more singular than the
Coulomb potential, so that perturbation analysis may not be appropriate.  However, this is
not completely clear since the sin2q  term vanishes on the spin axis and could strongly
modify the singular nature of this term.  This brings us to another set of important
problems for the foundations of QED:

Problem 2. (Physical)
The second problem for the physical foundations of quantum electrodynamics is
to construct a complete solution of the eigenvalue problem for the Dirac equation
with the Coulomb and magnetic dipole interaction (or equivalently (18a)).

This problem must be solved in order to provide conclusive support for the assumption
that the Dirac equation does not account for the complete spectrum of hydrogen.

Problem 2. (Mathematical)
The second problem for the mathematical foundations of quantum
electrodynamics is to prove or disprove that the A2  term can be treated as a
perturbation of the Coulomb problem.

If we take an engineering approach and assume that we can treat the A2  term as a
perturbation, then for the 2s- state the expected value is

r R r r

r r r
dr d

dI
I

0
2 2 2

0
40

2

0

1
3

3
0

2
1
2

2

0
201

1
1

m q q q h r m r r r
r r r

p( )
sin (sin )

( ) exp( )
.

+( )
- -

+( )
• •

Ú Ú Ú= (29)

In atomic units, h m g r g= = = = = =1 1 2 1 2 30 9136 3 40 0 0
2 2 2, ( ) , ( ) , . , ( )    r gN op ave

I  and

m mI N opg2 2 2
0
2 21 1836= ( ) ,I  so we can write (29) as

1
3

2 0 0
1
4 0

2

0
0

1
4

1m
r

r r r
r r

r rI d+ - + +
+( )

È

Î
Í

˘

˚
˙ -

•

Ú ( )
exp( ) . (30)

Using a table of integrals (see Gradshteyn and Ryzhik17) and the cutoff prescription of

Bethe16 (page 110), we have ( )exp( ) ( )1 r r r e
e

- = - -
•

Ú d Ei ,

( ) exp( ) ( )r r r r0 0 04 4- =
•

Ú d  and - + - = -
•

Ú 1 00 0
0( )exp( ) ( )r r r r rrd e Ei , where

Ei C k kk

k

k( ) ln ( ) ( !)- = + + - [ ]
=

•

Âe e e1
1

 and C is Euler’s constant.  Using these results in

(30), we get
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1
3

2 0 0
1
4 0

2

0
0

1
4

1m
r

r r r
r r

r rI d+ - + +
+( )

È

Î
Í

˘

˚
˙ -

•

Ú ( )
exp( )

                          = 1
3

2 0
0

1
4 0

2
04

10m e r r r rr
I Ei e Ei- - + + + + -È
ÎÍ

˘
˚̇

( ) ( ) ( ) . (31)

It is clear that - -Ei( )e  will diverge to • like - lne  as e Æ 0.  If we fix e  at r0 , and

note that er r0 1 0@ + , then

1
3

2 0
0

1
4 0

2

1
3

2 0
0

5
4 0

2
0

0

1

4
1

4
2

1

0m e r r r e

m r r r r r

r
I

I

k k

k

Ei e Ei

C
k k

- - + + + + -È
ÎÍ

˘
˚̇

@ + + + + -È

Î
Í

˘

˚
˙

Ï
Ì
Ó

¸
˝
˛
fi

=

•

Â

( ) ( ) ( )

( ) ln
( )

( !)
                                

1
3 0

2
1
2

2

0
20

1
16

2 1
1836

2 2 1
8

2 2 5
16

4 1
2

2 1
2

21
1

r m r r r
r r r

g g g g g gI N

d
g C

( ) exp( )
( ) ( ) ln .

- -
+( ) @ + + + -[ ]{ }•

Ú  (32)

If we note that ( ) ( )1 1836 1 132 2 2@ g , then this last term is of order (>) g 7 .  Thus, if there
is any (mathematical) justification for the calculation procedures, we can see that the A2

term does not make a significant contribution.

Conclusion

In this paper we have shown that the full (minimal coupling) Dirac equation can
be analytically separated (diagonalized) into particle and antiparticle components without
transforming the wave functions, as is done by the Foldy-Wouthuysen method.  This
diagonalization reveals the nonlocal time behavior of the particle-antiparticle
relationship.  We have shown that a more physically reasonable interpretation of the
zitterbewegung, and the result that a velocity measurement (of a Dirac particle) at any
instant in time is ±c, are reflections of the fact that the Dirac equation makes a spatially
extended particle appear as a point in the present by forcing it to oscillate between the
past and future at speed c .

We have also shown that one of the most difficult issues facing any attempt to
completely understand the Dirac problem for full coupling is the singular nature of the
A2  term.  This term is small in all but s- states, where it diverges when treated as a
perturbation.  If we introduce a cutoff, the contribution is of order g 7 , so one might be
inclined to dismiss the term (as is traditionally done).  However, this term appears to be
more singular than the Coulomb potential, so that perturbation analysis, and indeed, the
whole eigenvalue approach may be incorrect.  Although this is not completely clear since
the sin2q  term vanishes on the spin axis and could strongly modify the singular nature of
this term, this problem must be solved in order to provide conclusive support for the
assumption that the Dirac equation does not account for the complete spectrum of
hydrogen.  This is clearly an important problem for the foundations of QED.
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Assuming that the problems posed in this paper can be solved in the positive, it
would appear that the correct approach for s-state (hyperfine) splitting gives the same
results as those obtained from using the Pauli equation.  Furthermore, equation (24b)
introduces a natural cutoff, which removes the conceptual difficulty of a point magnetic
dipole interaction as implied by use of the delta term in the Pauli equation.
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