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Abstract

We introduce a general framework for studying the localization of
classical waves in inhomogeneous media, which encompasses acoustic
waves with position dependent compressibility and mass density, elas-
tic waves with position dependent Lamé moduli and mass density, and
electromagnetic waves with position dependent magnetic permeabil-
ity and dielectric constant. We also allow for anisotropy. We develop
mathematical methods to study wave localization in inhomogeneous
media. We show localization for local perturbations (defects) of media
with a spectral gap, and study midgap eigenmodes.
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1 Introduction

We provide a general framework for studying localization of acoustic
waves, elastic waves, and electromagnetic waves in inhomogeneous me-
dia, i.e., the existence of acoustic, elastic, and electromagnetic waves
such that almost all of the wave’s energy remains in a fixed bounded re-
gion uniformly over time. Our general framework encompasses acous-
tic waves with position dependent compressibility and mass density,
elastic waves with position dependent Lamé moduli and mass density,
and electromagnetic waves with position dependent magnetic perme-
ability and dielectric constant. We also allow for anisotropy.

In this first article we develop mathematical methods to study
wave localization in inhomogeneous media. As an application we show
localization for local perturbations (defects) of media with a gap in the
spectrum, and study midgap eigenmodes. In the second article [16] we
use the methods developed in this article to study wave localization for
random perturbations of periodic media with a gap in the spectrum.



Our results extend the work of Figotin and Klein [6, 7, 8, 9, 10,
15] in several ways: 1) We study a general class of classical waves
which includes acoustic, electromagnetic and elastic waves as special
cases. 2) We allow for more than one inhomogeneous coefficient (e.g.,
electromagnetic waves in media where both the magnetic permeability
and the dielectric constant are position dependent). 3) We allow for
anisotropy in our wave equations. 4) In [16] we prove strong dynamical
localization in random media, using the recent results of Germinet and
Klein [13] on strong dynamical localization and of Klein, Koines and
Seifert [17] on a generalized eigenfunction expansion for classical wave
operators.

Previous results on localization of classical waves in inhomogeneous
media [6, 7, 8, 9, 10, 15, 3] considered only the case of one inhomo-
geneous coefficient. Acoustic and electromagnetic waves were treated
separately. Elastic waves were not discussed.

Our approach to the mathematical study of localization of clas-
sical waves, as in the work of Figotin and Klein, is operator theo-
retic and reminiscent of quantum mechanics. It is based on the fact
that many wave propagation phenomena in classical physics are gov-
erned by equations that can be recast in abstract Schrodinger form
[20, 7, 15]. The corresponding self-adjoint operator, which governs the
dynamics, is a first order partial differential operator, but its spectral
theory may be studied through an auxiliary self-adjoint, second order
partial differential operator. These second order classical wave oper-
ators are analogous to Schrodinger operators in quantum mechanics.
The method is particularly suitable for the study of phenomena histor-
ically associated with quantum mechanical electron waves, especially
Anderson localization in random media [6, 7, 10, 15] and midgap defect
eigenmodes [8, 9].

Physically interesting inhomogeneous media give rise to nonsmooth
coefficients in the classical wave equations, and hence in their classical
wave operators. (E.g., a medium composed of two different homoge-
neous materials will be represented by piecewise constant coefficients.)
Thus we make no assumptions about the smoothness of the coefficients
of classical wave operators. Since we allow two inhomogeneous coeffi-
cients, we have to deal with domain questions for the quadratic forms
associated with classical wave operators.

We must also take into account that many classical wave equations
come with auxiliary conditions, and the corresponding classical wave
operators are not elliptic (e.g., the Maxwell operator — see [20, 19, 7,



10, 15]).

This paper is organized as follows: In Section 2 we introduce our
framework for studying classical waves. We discuss classical wave
equations in inhomogeneous media and wave localization. We define
first and second order classical wave operators, and use them to rewrite
the wave equations in abstract Schrodinger form. We state our results
on wave localization created by defects. In Section 3 we study classi-
cal wave operators, obtaining the technical tools that are needed for
proving localization in inhomogeneous and random media. We study
finite volume classical wave operators, discuss interior estimates, give
an improved resolvent decay estimate in a gap, prove a Simon-Lieb-
type inequality and an eigenfunction decay inequality. In Section 4
we study periodic classical wave operators, and prove a theorem that
gives the spectrum of a periodic classical wave operator in terms of
the spectra of its restriction to finite cubes with periodic boundary
condition. In Section 5 we study the effect of defects on classical wave
operators, and give the proofs and details of the results on defects and
wave localization stated in Section 2.

2 The mathematical framework

2.1 Classical wave equations

Many classical wave equations in a linear, lossless, inhomogeneous
medium can be written as first order equations of the form:

1 0 .
K@) gith@) = Do)

5 , (2.1)

R(e) S gifa) = —Diu()

t

where 2 € R? (space), t € R (time), ¢y(x) € C* and ¢(z) € C™ are
physical quantities that describe the state of the medium at position
z and time ¢, D is an m X n matrix whose entries are first order partial
differential operators with constant coefficients (see Definition 2.1), D*
is the formal adjoint of D, and, K(z) and R(z) are n x n and m x m
positive, invertible matrices, uniformly bounded from above and away
from 0, that describe the medium at position x (see Definition 2.3). In
addition, D satisfies a partial ellipticity property (see Definition 2.2),
and there may be auxiliary conditions to be satisfied by the quantities

Yr(x) and ¢y(z).



The physical quantities 1;(2) and ¢¢(z) then satisfy second order
wave equations, with the same auxiliary conditions:

62

Sati(@) = —K(@)D*R(x)Di() (2.2)
2
O o) = ~REDKE)D () (2:3)

Conversely, given (2.2) (or (2.3)), we may write this equation in the
form (2.1) by introducing an appropriate quantity ¢.(z) (or 1 (z)),
which will then satisfy equation (2.3) (or (2.2)).

The medium is called homogeneous if the coefficient matrices ()
and R(z) are constant, i.e., they do not depend on the position z.
Otherwise the medium is said to be inhomogeneous.

Examples:

FElectromagnetic waves: Maxwell equations are given by (2.1) with
d =n =m = 3, Y(r) the magnetic field, ¢y(x) the electric field,
D = D* the curl (D¢ = V x ¢), K(z) = ﬁlg, and R(z) = ﬁfg,,
with p(z) the magnetic permeability and e(x) the dielectric constant.
(By Ij, we denote the k x k identity matrix.) The auxiliary conditions
are V- uyy =0 and V - e¢y = 0.

Acoustic waves: The acoustic equations in d dimensions may be writ-
ten as (2.1), with n = 1, m = d, 14(z) the pressure, ¢,(z) the velocity,

D the gradient (D¢ = V¢, D* = =V - ¢), K(x) ﬁ[l and
R(z) = ﬁld’ with k(z) the compressibility and g(x) the mass den-

sity. The auxiliary condition is V X p¢y = 0. The usual second order
acoustic equation for the pressure is then given by (2.2).

Elastic waves: The equations of motion for linear elasticity, in an
isotropic medium, can be written as the second order wave equation

2
p(x)%d)t(m) = —{VIA@) +2u(@)]V* + V X u(2)V X}y (z), (2.4)

where z € R3, ¢;(z) is the medium displacement, p(x) is the mass
density, and, A(z) and pu(z) are the Lamé moduli. It is of the form
of equation (2.2), with n = 3, D the differential operator given by
Dy = (V) @ (V x ) (a 4 x 3 matrix), K(z) = ﬁ[g, and R(x) =
(A(z) +2p(x)) 1 ® p(z)Is (a 4 x 4 matrix).



2.2 Wave equations in abstract Schrodinger
form

The wave equation (2.1) may be rewritten in abstract Schrodinger
form [20, 7, 15]:

d
—iE\Ilt = Wy, , (2.5)
where U; = < :’it ) and
t
[0 —ik(x)D*
W= ( iR(x)D 0 ) : (26)

The (first order) classical wave operator W is formally (and can be
defined as) a self-adjoint operator on the Hilbert space

H = L* (]Rd,IC(m)*ldm;(C") @ L? (]Rd,R(m)*ldm;(Cm) , (2.7)

where, for a k x k positive invertible matrix-valued measurable function
S(x), we set

2 d —1g...0k\ _ . Rd k . -1
L (R ,S(x) Lda; C ) = {f.R 5 C*; <f,S(x) f>L2(Rd7dw;@c) < oo}.
The auxiliary conditions to the wave equation are imposed by requir-
ing the solutions to equation (2.5) to also satisfy

U, = Py, (2.8)

where Pﬁ denotes the orthogonal projection onto the orthogonal com-
plement of the kernel of W. The solutions to the equations (2.5) and
(2.8) are of the form

U, = e"™WPEd,, &g H . (2.9)

The energy density at time ¢ of a solution U = Wy () = (Y(x), ¢(x))
of the wave equation (2.1) is given by

1

Eu(t,2) = 5 { (@), K@) de(@))en + (u(), R(x) ™ du(a))en |
(2.10)
The wave energy, a conserved quantity, is thus given by
Eu = 5|43, for any t. (2.11)

Note that (2.9) gives the finite energy solutions to the wave equa-
tion (2.1).



2.3 Wave localization

Let U = W,(z) be a finite energy solution of the wave equation (2.1).
There are many criteria for wave localization, e.g.:

Simple localization: Almost all of the wave’s energy remains in a
fixed bounded region at all times, more precisely:

1
lim inf—/ Eo(t,x)dr = 1. 2.12
R—oo t Ey |z|<R qj( ) ( )

Moment localization: For some (or we may require for all) ¢ > 0,
we have

Sup/d 7€ (t,2) do = Lsup | |23 )2, < 0. (2.13)
t R t

Exponential localization (in the L2-sense): For some C' < oo and
m > 0, we have

sup IXoEu(t, Mz = 5 sup X Wellae < G (2.14)

for all z € RY, where x, denotes the characteristic function of a
cube of side 1 centered at .

It is easy to see that exponential localization implies moment local-
ization for all ¢ > 0, and moment localization for some ¢ > 0 implies
simple localization.

The fact that finite energy solutions are given by (2.9) suggests a
method to obtain localized waves: if Uy € H is an eigenfunction for the
classical wave operator W with nonzero eigenvalue w, i.e., W&y = w¥
with w # 0, then the wave ¥; = e exhibits simple localization.
If in addition || |m|%\110]|%{ < 00, we have moment localization. If ¥ is
exponentially decaying (in the L?-sense), we have exponential local-
ization.

In a homogenous medium, a classical wave operator cannot have
nonzero eigenvalues. (This can be shown using the Fourier transform.)
Thus an appropriate inhomogenous medium is required to produce
nonzero eigenvalues, and hence localized waves. In Subsection 2.5 we
will see that we can produce eigenvalues in spectral gaps of classical
wave operators by introducing defects, i.e., by making local changes
in the medium. Moreover, the corresponding waves will exhibit expo-
nential localization



In the sequel [16] we show that random changes in the media can
produce Anderson localization in spectral gaps of periodic classical
wave operators.

2.4 Classical wave operators

We now introduce the mathematical machinery needed to make the
preceding discussion mathematically rigorous.

It is convenient to work on L? (Rd, dx; (Ck) instead of the weighted
space L? (Rd,S(x)*ldw;(Ck). To do so, note that the operator Vs,
given by multiplication by the matrix S(z)~'/2, is a unitary map from
the Hilbert space L? (Rd, S(x) tdx; (Ck) to L? (Rd, dr; (Ck), and if we

set W = (Vi @ Vi) W (Vg @ V), we have

( 0 —i/K(2)D*/R(z) ) (2.15)
iv/R(z)D/K(x) 0 ’ '

a formally self-adjoint operator on L? (Rd, dz; (C”) ® L? (]Rd, dzx; (Cm).

In addition, if S_T < §(z) < S;I with 0 < S_ < 54 < oo, as it
will be the case in this article, it turns out that if § = Vs, then the
functions ¢(x) and @(x) share the same decay and growth proporties
(e.g., exponential or polynomial decay).

Thus it will suffice for us to work on L? (Rd, dx; (Ck), and we will

do so in the remainder of this article. We set

W =

H®) = L2(R?, dx; CF) . (2.16)

Given a closed densely defined operator T' on a Hilbert space
‘H, we will denote its kernel by kerT and its range by ranT; note
ker T*T = kerT. If T is self-adjoint, it leaves invariant the orthogo-
nal complement of its kernel; the restriction of T to (ker T)L will be
denoted by T'| . Note that T'| is a self-adjoint operator on the Hilbert
space (ker T)J‘ = P#H, where P# denotes the orthogonal projection
onto (ker T)*.

Definition 2.1 A constant coefficient, first order, partial differential
operator D from H™ to (™) (CPDOS,?n) is of the form D = D(—iV),

where, for a d-component vector k, D(k) is the m X n matriz

mm:wwmpam;pwm:%ymtme@. (2.17)



We set
Dy = sup{|D(k); ke T [k =1}, (2.18)

so ||[D(k)|| < D|k| for all k € C?. Note that D, is bounded by the
norm of the matrix [|ay s|] =1,....m -

yeensTl
Defined on

D(D) = {¢p e H™ : Dy € #'™ in distributional sense} , (2.19)

a CPDOg}n D is a closed, densely defined operator, and C§°(R?; C")
(the space of infinitely differentiable functions with compact support)

is an operator core for D. We will denote by D* the C’PDO%,)n given
by the formal adjoint of the matrix in (2.17).

Definition 2.2 A4 CPDOS},L D is said to be partially elliptic if there

ezists a CPDOS,,)] D" (for some q), satisfying the following two prop-

erties:

DD* = 0, (2.20)
DD+ (DYDY > O [(-A) e L], (2.21)

with © > 0 being a constant. (A = V -V is the Laplacian on
L?*(R¢,dzx); I,, denotes the n x n identity matriz.)

If D is partially elliptic, we have
H™ =kerD' @ kerD | (2.22)

and
D*D + (D+)*Dt = (D*D), @ ((D1)*D1) . . (2.23)
Note that D is elliptic if and only it is partially elliptic with D+ = 0.

Note also that a CPDOS},L D may be partially elliptic with D* not
being partially elliptic [17, Remark 1.1].

Definition 2.3 A coefficient operator S on H™ (CO,,) is a bounded,
invertible operator given by multiplication by a coefficient matriz: an
n x n matriz -valued measurable function S(x) on R, satisfying

S I, <S8(x) <SiI,, with 0<S_ <S4 <. (2.24)



Definition 2.4 A multiplicative coefficient, first order, partial differ-
ential operator from H™ to H(™) (MPDOy(zl,zn) is of the form

A=+VRDVK on D(A)=K :D(D), (2.25)

where D is a C’PDOS},Z, K is a CO,, and R is a COy, . (We will
write Ax g for A whenever it is necessary to make explicit the depen-
dence on the on the medium, i.e., on the coefficient operators. D does
not depend on the medium, so it will be omitted in the notation.)

An M PDOg,zn A is a closed, densely defined operator with A* =

VED*VR an MPDO%)TL. Note that /C_%C[?O(Rd; C™) is an operator
core for A.
The following quantity will appear often in estimates:

EA = D+\/ R+K+ . (226)

Definition 2.5 A first order classical operator (C’WOT(LI}n) 1S an op-
erator of the form

_| 0 —uAT (ntm) o 2/(n) o 2y(m)
WA_[iA 0 ] on H =HW H™ (2.27)

where A is an MPDOS}n. If either D or D* is partially elliptic, W 4
will also be called partially elliptic.

A CWOL is a self-adjoint MPDOS) nim: Wa = VEWp VS,

where § = KOR isa COy 4., and Wp is a self-adjoint C’PDOSJZm’ner .
(Note that our definition of a first order classical wave operator is more
restrictive than the one used in [17]. The definition of partial ellip-
ticity is also different; [17] requires both D and D* to be partially
eliptic.)

The Schrodinger-like equation (2.5) for classical waves with the
auxiliary condition (2.8) may be written in the form:

_z-%‘l't = (Wa) 1%y, € (kerWy)" = (ker A)* @ (ker A*)%,

(2.28)
with W4 a CWOSLIJZm as in (2.27). Its solutions are of the form
U, = e Wa)id | T e (ker Wy)t (2.29)

10



which is just another way of writing (2.9).
Since

A4 0 ] (2.30)

(WA)2 = [ 0 AA*

if @, = (¢y, ) € H™ @& H™ is a solution of (2.28), then its com-
ponents satisfy the second order wave equations (2.2) and (2.3), plus
the auxiliary conditions, which may be all written in the form

0? . ,

ﬁd)t = —(A*A) ¢y, with ¢ € (ker A), (2.31)
0? , .

50 = —(AA*)  py , with ¢y € (ker A)L . (2.32)

The solutions to (2.31) may be written as

1
2

1
¢t = CO8 <t(A*A)L> ¢0 + sin <t(A*A)i> no » ¢03 No € (ker A)La
(2.33)
with a similar expression for the solutions of (2.32).
The operators (A*A); and (AA*), are unitarily equivalent (see
Lemma A.1): the operator U defined by

L
2

_1
Up = A(A*A)  *¢ for ¢ € ran(A"A)7, (2.34)
extends to a unitary operator from (ker A)* to (ker A*)*, and
(AA*) | = U(A*A) U . (2.35)

In addition, if

V=75 w0 -

U is a unitary operator from (ker A)1@(ker A)* to (ker A)* @ (ker A*)+
and we have the unitary equivalence:

1
l o i ] , with T4 the identity on (ker )+, (2.36)

b

U(Wa)ul = (4] & |-t

(2.37)

Thus the operator (A*A); contains full information about the
spectral theory of the operator (W4), (e.g., [7, 17]). In particular

o(Wa)) =0 (] u (o ((ral)). (2.38)

11



and to find all eigenvalues and eigenfunctions for (Wy),, it is neces-
sary and sufficient to find all eigenvalues and eigefunctions for (A*A) | .
For if (A*A) 1,2 = w2, with w # 0, 1,2 # 0, we have

(Wa)s (Vur oA ) = 2w (v £ 2402 ). (239

Conversely, if (Wa)1 (Ytw, Pt0) = Fw (Yiw, d1w), with w # 0, it
follows that (see [17, Proposition 5.2])

. 1
(A A)J.¢:I:w = w2¢:l:w and ¢4y = iaA@b:I:w . (2'40)

Definition 2.6 A second order classical wave operator on H(™ (C’WOT(LQ))

is an operator W = A*A, with A an MPDOS},Z for some m. (We
write W r = Ak AR ) If D in (2.25) is partially elliptic, the

C’WOq(f) will also be called partially elliptic.

Note that a first order classical wave operator W4 is partially ellip-
tic if and only if one of the two second order classical wave operators
A*A and AA* is partially elliptic.

Definition 2.7 A classical wave operator (CW O ) is either a cwol

or a C’WO%Z). If the operator W is a CWO, we call W1 a proper
CWO.

Remark 2.8 A proper classical wave operator W has a trivial kernel
by construction, so 0 is not an eigenvalue. However, using a dilation
argument, one can show that 0 is in the spectrum of W [17, Theorem
A.1], so W1 and W have the same spectrum and essential spectrum.

2.5 Defects and wave localization

We now describe our results on defects and wave localization. We
can produce eigenvalues in spectral gaps of classical wave operators
by introducing defects. Moreover, the corresponding waves exhibit
exponential localization. The proofs and details are given in Section 5.

A defect is a modification of a given medium in a bounded do-
main. Two media, described by coefficient matrices Ko(x), Ro(x) and
K(z), R(x), are said to differ by a defect, if they are the same outside

12



some bounded set 2, i.e., Ko(z) = K(z) and Ro(z) = R(z) if z ¢ Q.
The defect is said to be supported by the bounded set €.

We recall that the essential spectrum oss(H) of an operator H
consists of all the points of its spectrum, o(H ), which are not isolated
eigenvalues with finite multiplicity. Figotin and Klein [8] showed that
the essential spectrum of Acoustic and Maxwell operators are not
changed by defects. We extend this result to the class of classical
wave operators: the essential spectrum of a partially elliptic classical
wave operator (first or second order) is not changed by defects.

Theorem 2.9 Let Wy and W be partially elliptic classical wave op-
erators for two media which differ by a defect. Then

Uess(W) = Uess(WO)- (241)

If (a,b) is a gap in the spectrum of Wy, the spectrum of W in (a,b)
consists of at most isolated eigenvalues with finite multiplicity, the
corresponding eigenmodes decaying exponentially fast away from the
defect, with a rate depending on the distance from the eigenvalue to
the edges of the gap.

In view of the unitary equivalence (2.37), Theorem 2.9 is an im-
mediate corollary to Theorem 5.1 and Corollary 5.3. For second order
classical wave operators, the exponential decay of an eigenmode is
given in (5.11). For first order classical wave operators, the exponen-
tial decay of an eigenmode follows from (2.40), (5.11), and (3.19).

We now turn to the existence of midgap eigenmodes and exponen-
tially localized waves. The next theorem shows that one can design
simple defects which generate eigenvalues in a specified subinterval of
a spectral gap of Wy, extending [8, Theorem 2] to the class of classical
wave operators. We insert a defect that changes the value of Ko(z)
and Ry (z) inside a bounded set of “size” ¢ to given positive constants
K and R. If (a,b) is a gap in the spectrum of Wy, we will show that
we can deposit an eigenvalue of W inside any specified closed subin-
terval of (a,b), by inserting such a defect with \/%z large enough.
We provide estimates on how large is “large enough”. Note that the
corresponding eigenmode is exponentially decaying by Theorem 2.9,
so we construct an exponentially localized wave.

Theorem 2.10 (Existence of exponentially localized waves) Let
(a,b) be a gap in the spectrum of a partially elliptic classical wave op-
erator Wy = Wi, r,, select i € (a,b), and pick § > 0 such that the

13



interval [p— 0, pu+ 98] is contained in the gap, i.e., [n— 9, u+38] C (a,b).
Giiven an open bounded set 2, zp € 2, 0 < K, R,{ < oo, we intro-
duce a defect that produces coefficient matrices K(x) and R(x) that
are constant in the set Qy = xo + (2 — x0), with

K(z) = K1, and R(x) = RL, for x €. (2.42)

Then there is a finite constant C, satisfying an explicit lower bound
depending only on the order (first or second) of the classical wave
operator, and on Dy, i, &, and the geometry of 2, such that if

—>C, (2.43)
then the operator W = Wi » has at least one eigenvalue in the interval
[ =6, +4].

Theorem 2.10 follows from Theorem 5.4 and (2.37). For second
order operators the explicit lower bound is given in (5.16), for first
order operators it can be calculated from (5.16) and (2.37).

3 Properties of classical wave opera-
tors

In this section we discuss several important properties of classical wave
operators, which provide the necessary technical tools for proving lo-
calization in inhomogeneous and random (see [16]) media.

3.1 A trace estimate

Partially elliptic second order classical wave operators satisfy a trace
estimate that provides a crucial ingredient for many results.

Theorem 3.1 ([17, Theorem 1.1]) Let W be a partially elliptic sec-
ond order classical wave operator on H™, and let PV# denote the or-
thogonal projection onto (kerW)*. Then

tr (V*Pi(W +1)2"V) < Cd,n,Ki,Ri,D+,Di-,® V%2 <00, (3.1)

14



for r > v, where v is the smallest integer satisfying v > %. V is the

bounded operator on H™ given by multiplication by an n x n matriz-
valued measurable function V (x), with

Viez = Ixy1 @)V @)V (@)l < 00 . (3.2)
yezZ4

(xy, denotes the characteristic function of a cube of side length L
centered at y.) The constant Cd,n,Ki,Ri,DJr,D}r,@ depends only on the

fized parameters d,n, Ky, Ry, D, Dﬂ;, O.

3.2 Finite volume classical wave operators

Throughout this paper we use two norms in R? and C¢:

d >

2| = <Z|wi|2> : (3.3)
=1

lz|| = max{|z;|, i=1,...,d}. (3.4)

We set B,(r) to be the open ball in R?, centered at x with radius
r>0:

By(x) ={y €RY; |y —a| <r}. (3.5)

By Ar(z) we denote the open cube in R?, centered at x with side
L>0:

Ar(z)={y eRY |ly — =] < L/2}, (3.6)

and by A () the closed cube. By A we will always denote some open

cube Ar(x). We will identify a closed cube Az (x) with a torus in the
usual way, and use the following distance in the torus:

dpy,y) = min ly—y' +ml < L for yy/ € Kpfw).  (37)
me

We set ”H(An) = L*(A,dz;C"). A CPDOS},L D defines a closed
densely defined operator Dy from H(An) to ”H,(Am) with periodic bound-
ary condition; an operator core is given by Cpg (A, C"), the infinitely
differentiable, periodic C"-valued functions on A. The restriction of a
CO,, § to A gives the bounded, invertible operator Sy on ”HE{L). Given
an MPDOg}n A as in (2.25), we define its restriction A, to the cube

A with periodic boundary condition by
1
Ap = VRADAVKL on D(Ay) =K, *D(Da) , (3.8)

15



a closed, densely defined operator on ”H,Exn). The restriction Wy of the
second order classical wave operator W = A*A to A with periodic
boundary condition is now defined as W = A} Ax.

If the C’PDOT(LI}n D is partially elliptic, then the restriction Dy
is also partially elliptic, in the sense that equations (2.20) and (2.21)
hold for Dy, (D1)a, and Ay. (A is the Laplacian on L%(A, dz) with
periodic boundary condition.) This can be easily seen by using the
Fourier transform; here the use of periodic boundary condition plays
a crucial role. We also have (2.22) and (2.23) with H(An).

If A =Ar(z), we write 7—[,5,72, Wy, , and so on.

Given a second order classical wave operator W on H(™, we define
its finite volume resolvent on a cube A by

Ra(z) = (Wy —2)7! for z¢ a(Wa). (3.9)

If W is partially elliptic, it turns out that (WW,), has compact
resolvent, i.e., RA(z)PV#A is a compact operator for z ¢ o(W,). Note
that it suffices to prove the statement for z = —1. We will prove a
stronger statement.

In what follows, we write F' ~ G if the positive self-adjoint op-
erators F' and GG are unitarily equivalent, and we write F' < G if
F ~ J for some positive self-adjoint operator J < G. Note that,
if 0 < F < @G, then trf(G) < trf(F), for any positive, decreasing
function f on [0, 00).

Proposition 3.2 Let W be a partially elliptic second order classical
wave operator. Then for any finite cube A and p > % we have

tr {(WA + 1)*PPVLVA} < ntr {(K_R_G)(—AA) + 1)—7’} < o0.
(3.10)

Proof: Using Lemma A.1 and (2.24), we get

(Wa)L = (\//C_ADT\RADA\//C_A)L > R_ (\/}C_ADT\DA\/}C_A)L(?)-II)

~ R_(DyKaD}), > K_R_(D,D}), ~ K_R_(D}D,), .
It follows from (3.11), (2.23), and (2.21) that

tr {(Wa + 1), b =tr {(Wa) 1 +1) 7"} (3.12)
<tr {(K-R_ (D}Dy), +1)77}

16



< tr {(KR [(DT\DA)L ® ((DL)T\(DL)A)L] * 1)‘1’}
<tr {(K_R_G) [(—Ar) ® I)] + 1)_p}
— ntr {(KfRf@(—AA) + 1),,1} <0,

if p > ‘%. |
Since (W), > 0 has compact resolvent, we may define

Ny (B) =t X(—oo0,5)(Wa) L), (3.13)

the number of eigenvalues of (W, ), that are less than E. If E <0, we
have Ny, (E) = 0, and if E > 0, Ny, (E) is the number of eigenvalues
of Wy (or (Wy).) in the interval (0, E). Notice that Ny, (E) is the
distribution function of the measure ny, (dE) given by

[ BB, ([@E) = tr (B(Wa)1) (314

for positive continuous functions h of a real variable.
We have the following “a priori” estimate:

Lemma 3.3 Let W be a partially elliptic second order classical wave
operator. Then for any finite cube A and E > 0 we have

d

Ny, (E) < nN_a,(z=%5) <nCa (g5=s) 1Al (3.15)
where Cy is some finite constant depending only on the dimension d.
Proof: We have

Nw,(E) < Ng p (D4 Dy) (E) (3.16)

< Nk_n. (D;DA+(DL);(DL)A)(E) (3.17)

< NK_R_G[(fAA)®In](E) = nN—AA(%M) (3.18)

where (3.16) follows from (3.11) and the Min-max Principle, (3.17) fol-

lows from (2.23), (3.18) follows from (2.21), plus a simple computation
for the equality.

The second inequality in (3.15) is given by a standard estimate.
|
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3.3 An interior estimate

The following interior estimate is an adaptation of [17, Theorem 4.1]
to both finite or infinite volume.

Lemma 3.4 Let W = A*A be a second order classical wave operator,
and let A denote either an open cube or R, Let p € C3(A) and
T € L (A, dx), with 0 < p(z) < 7(x) and |Vp(z)| < er(z) a.e., where
c is a finite constant. Then, for any ¢ € D(Wy) we have

lpArgl)” < allrWags|® + (£ +4e223) [ryl>  (3.19)
for all a > 0, where Z4 is given in (2.26).

Proof: This is proved as [17, Theorem 4.1], keeping track of the
constants. N

3.4 Improved resolvent decay estimates in a
gap

We adapt an argument of Barbaroux, Combes and Hislop [1] to sec-
ond order classical wave operators, obtaining an improvement on the
rate of decay given by the usual Combes-Thomas argument (e.g., [6,
Lemma 12], [7, Lemma 15]). Our proof, while based on [1, Lemma
3.1], is otherwise different from the proof for Schrédinger operators,
as we use an argument based on quadratic forms avoiding the ana-
lytic continuation of the operators. This way we can accomodate the
nonsmoothness of the coefficients of our classical wave operators.

We will prove the decay estimate for both infinite and finite vol-
umes (with periodic boundary condition). We start with infinite vol-
ume. Recall that B, (z) denotes the open ball of radius r centered at
x.

Theorem 3.5 Let W = A*A be a second order classical wave opera-
tor with a spectral gap (a,b). Then for any E € (a,b) and £,0' > 0 we
have

X8, (2) R(E) X, (|| < CpemetHE) e=mele=y] (3.20)

for all z,y € R, with

1 [(E-a0b-B) 1
e = 4EA\/(a+b+2) G+ 1) = a=, (3:21)
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and

(3.22)

2 4 1
CE:maX{a+b+ b+ )}.

(
E—a’  b-—FE
In addition,

1XB, () AR(E)X B, (4|l (3.23)

1

< Cp (2B +168%)7 eme(tH+1) emmela—y]

for all z,y € R with |z —y| > €+ (' + 1.
Proof: We start by defining the operators formally given by
Wy =e¥™We *%, acR. (3.24)

To do so, let us consider the bounded operator

Go = VRD(a)VEK , ||Goll < |0]Z4. (3.25)

Then
Ay = " Ae *" = A+iG, on D(A). (3.26)
(A%)y = e¥TA* T = A* 4iG5 on D(AY),  (3.27)

are closed, densely defined operators. (Note (A*)y # (4n)*.) We
define W, = (A*),A, as a quadratric form. More precisely, for each
a € R% we define a quadratic form with domain D(A) by

Wa [] = ((A") o4, Aath) - (3.28)

Note that if « =0, W = W), is the closed, nonegative quadratic form
associated to the classical wave operator W.
It follows from (3.26) and (3.27) that

Wa [t = W [] = 20 Re (49, Gat)) — (Gath, Gath),  (3.29)
SO
Wa[9] = W]l < 1Gavll (41401 + 1Gats]?)
< dsW ] + (L + 9)]af?Z [l (3.:30)

for any s > 0. It follows [14, Theorem VI.1.33] that W, is a closed
sectorial form on the form domain of W. We define W, as the unique
m-sectorial operator associated with it [14, Theorem VI.2.1].
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For each o € RY, we set

W = W -GG, (3.31)
00 = 1+ |a*27, (3.32)

note
w49l > 1. (3.33)

It follows from (3.29) that

(W@ 4 gle)) =3 (Wa— B) (W) 49) 2 = (3.34)

N

_1
2

(W@ 4 6@) 7% (@) — ) (W@ 4 6@) ¥ 1y,

as everywhere defined quadratic forms, where

H (W + 9(a>)‘% (W@ = ) (W) 1 @)
d

1
2

<1404+ E < o,

(3.35)
an
_1 _1
Vo= (WO 40©) 2 (4°Go + G A) (WO +6) 7 (3.36)
extends to a bounded self-adjoint operator with
1Yall < 2[alEa, (3.37)
in view of (3.25), (3.31), (3.32), (3.33), and
_1 2
HA (W(O‘) + 9(a>) 24 (3.38)

= <(W(a) + g(a))_% b, A* A (W(a) + g(a))_% 11)>

= [[%l1” + <(W(“) + o(a))_% 6, (GoGa —0@) (W) 4 9@) 2

)

< gl = | () +0) ¢H < . (3.39)

Since (a, b) is a gap in the spectrum of W and E € (a,b) , we have
that the interval

a—E b—FE—|of*E% (3.40)
a+60@ 7 b+ 0 — 252 '

_( a—FE b—E—|a|QE§1>

a+1+|a]?Z’ b+1
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is a gap in the spectrum of the operator

[SIE
[SIE

(W<a> + 0<a>)* (W<a> - E) (W<a> + 0<°‘>)* , (3.41)

containing 0, as long as

S

- F

—A

o <

(3.42)

We now use [1, Lemma 3.1] to conclude, if in addition to (3.42) we
also require

lof <

1 E — b—FE —|a|?=E?
- ( (1) ( — |Oé| A) , (343)
424\ (a+14|af?E%) (b+1)

that 0 is not in the spectrum of the operator in (3.34), and

H [(W@ + 9@)*% (We — E) (W<a> + 9<a>)5] - (3.44)
S o =2max { o 1£7+—|0;|25?4’ b— Ebj—|;|25124 }
Since
D(W,) C D(W,) = D(W) =D ((W(O‘) + 0<a>) %> , (3.45)
we may use (3.33) and (3.44) to obtain, for all ¢ € D(W,),
| (We — E) ¢ll > (3.46)

1

(W = B) (W) + 9@)*% (W 4+ ) ¢H

M

(W) 4 9@)

> Q!

[0}

1
(W +0) o > 0, ol

Since (3.46) holds for all @ € R?, and W* = W_,, W@ = w(-o),

0(®) = 9=2) and Q(® = Q=) we see that we also have (3.46) for
W. We can conclude that E ¢ o(W,) and
H(Wa - E)71H < Qoz ) (347)

for all a € R? satisfying (3.42) and (3.43).
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We now take |a| < mpg, where mp is given in (3.21). Then both

(3.42) and (3.43) are satisfied, and we also have |o|24 < \/b_TE, S0
Q, < Cp, with Cg as in (3.22), and (3.47) gives

|R(BE)|| < Cr , with Ro(E) = (Wo — E)™". (3.48)

We may now prove (3.20) . Let xo,y0 € RY, ¢ > 0, and take
@ = %(IIIO - yO)- We have

XBi(w0) BIE)X B, (yo) = XBi(20)€ " "Ra(E)e““XB,(yo)  (3.49)

= e*m\fEO*yo|XBz(:no)eia'(m7$0)Ra (E)ea.(miyO)XBz’ (y0) »

SO

X B, (20) R(E)X B, (y0) (3.50)

—a-(z—x0 ea~(x—y0)||ooe—m\x0—yo| )

< CellxB,(z)® NoollXB, 40)

Since
HXBZ(ZO)ej:w(x—:vo)“oo < elalt — emEé, (3.51)

(3.20) follows from (3.50) and (3.51).

To prove (3.23), we use Lemma 3.4. We let |zg — yo| > £+ ¢ + 1,
and pick p € Cj(R?), With Xp,(z) < P < XB,44(00) and [Vp(z)] < 2.
We have

IXB.(20) AR(E) X B, (yo) | < IPAR(E) X, (49)]] (3.52)

1

< (2B+16Z2)” (154 (w0) RE) X, (o)
so (3.23) now follows from (3.20) m

We now turn to the torus, i.e., we prove a version of Theorem 3.5
for the restriction of a second order classical wave operator to a cube
A with periodic boundary condition. We use the distance (3.7) in the
torus.

Theorem 3.6 W be a second order classical wave operator whose
restriction with periodic boundary condition to a cube Ar(xo) has a
spectral gap (a,b). Then for any E € (a,b) and € > 0, with L > 2(+38,
we have

||XB[($)R$07L(E)XB[,(:U) ||:1:0,L < Cg e2mp,Lilo=mp, L. dL(T,y) (3.53)
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for all z,y € Ar(zg), where

mg .
me.Le= o with cr o = <71_22ﬁ3) + 1) , (3.54)
L—-2

y

and mg and Cg are as in Theorem 8.5.

Proof: Let us fix ml,yl € AL( 0)s by redefining the coefficient op-
erators we may assume =0 = L(z +y1) and 21,1 € AL(0).
2
x1 —y1|. Let L > 2¢ + 8, we pick a
real valued function ¢ € CJ(R) with 0 < £(t) < 1 for all t € R,
such that £(t) = 1 for [t| < & + L ¢(t) =0 for |t} > £ — 1, and
-1
€M) < (5 —5-2) forallt € R We set &(z) = [T{,; () for
x € R%. Notice supp ®(z) C Az(0).
We now proceed as in the proof of Theorem 3.5 with A (0) sub-
stituted for R and definition (3.24) replaced by

In particular, dL(xl,y1) =

(Wo.p)a = e2@@yy o=@ = o e R (3.55)

and instead of (3.25), consider the bounded operators

(Go,)a =/ Ro,L (D(V (2(2)ar-)))g 1, \/ Ko,L - (3.56)
Since
v@@an| < (LR 41)lal=endal (357

for all x € Ar(0), with cr, ¢ as in (3.54), we have
1(Go,p)all < crplalEa. (3.58)

We now proceed as in the proof of Theorem 3.5, except that we
must now substitute cy, ¢|a| for [ in the estimates. Thus, if | < ZE£

we conclude that E ¢ o((Wo,)a) and

Ll

I(Ro,)a(E)| < Cp , with (Rop)a(E) = (Wo,L)a — E) . (3.59)

To prove (3.53), we take o = x1 — Y1), and complete the

mg (
CL,Z‘$1*y1|

proof of as before (with z1,y; substituted for z,y in (3.53)), as

HXBZ(Il)ei'i)(m)a.mfa.mlHOO _ HXBZ(wl)eia-(zfml)Hoo < omE,Ltl (3.60)
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3.5 A Simon-Lieb-type inequality
(r)

The norm in H, ’ and also the corresponding operator norm will both
be denoted by || ||a, or || ||,z in case A = Ap(z). (We omit r from the
notation.) If A; C Ay are open cubes (possibly the whole space), let

J//\\f:Han) — H(A? be the canonical injection. If A; = Ap (x;), 1 = 1,2,

we write || H;iéf for the operator norm from HS\TI),I(iL’I) to 7—[5{22@2),
w2,Ly Ar,(z2)
and JCElyLl - JALf(m)'

Given a function ¢ € L>®(R?), with supp¢ C A, we do not distin-
guish in the notation between ¢ as a multiplication operator on H(Ar)
and on H. If D is a CPDOY), , and ¢ € C} (RY), real-valued, with

supp¢ C A1 C Ay, we can verify that, as operators,

Dy, Jy?¢ = Jy?Da,¢ on D(Dy,) . (3.61)
It follows for the MPDOS), A that

Ap, J3?¢ = J3?Ar ¢ on D(Ay,) . (3.62)
We set

Al¢] = VRD[g]VK (3.63)

where D[¢], given by multiplication by the matrix valued function
D(—iVé(z)), is a bounded operator from H™ to (™) with norm
bounded by Dy||V¢| . Thus A[¢] is a bounded operator given
by multiplication by a matrix-valued, measurable function, with (see
(2.26))

JAL < ZAl Voo - (3.64)

We denote by A [¢] its restriction to the cube A; it also satisfies the
bound (3.64).
We will use the fact that AyRa(z) is a bounded operator with

IAARA()IR < IIRA(2)la (2l Ra(2)]la + 1) - (3.65)

The basic tool to relate the finite volume resolvents in different
scales is the smooth resolvent identity (SRI) (see [2, 6, 7, 17]).

Lemma 3.7 (SRI) Let W = A*A be a second order classical wave
operator, and let A; C Ay be either open cubes or RY, and let ¢ €
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CYH(RY) with supp¢ C Ay. Then, for any z ¢ o(Wa,) U o(Wh,) we
have

RBay ()37 = T o, (2)+ (3.66)
R, (2) AR, 0137 An, B, () — Ry (2) AR, I3 An, (8] R, (2)
as bounded operators from HS\HLI to HS\TL[L .
Proof: This lemma can be proved as [17, Lemma 7.2]. R

We will now state and prove a Simon-Lieb-type inequality (SLI)
for second order classical wave operators. This estimate is a crucial
ingredient in the multiscale analysis proofs of localization for random
operators, where it is used to obtain decay in a larger scale from decay
in a given scale [12, 11, 5, 2, 6, 7, 13].

Let us fiz ¢ € N. (In [16] we will work with a periodic background
medium, and we will take ¢ to be the period.) We will take cubes
Ap(z) centered at sites x € ¢Z% with side L € 2¢gN (so in a periodic
background medium with period ¢ the background medium will be the
same in all cubes in a given scale L). For such cubes (with L > 4q),
we set

Ti@) = {yeqzh ly—all=%-a}, (3.67)
Yo(r) = Apg@\Ars(@) = |J Ay),  (3.68)
YETL(z)
Ti(@) = K s(@)\Ay_n(2), (3.69)
Iy = XT ) (2) = Z Xy,q €., (3.70)
yGTL(x)
Note
1T (z)| < d(L —2¢q + 1)47L. (3.72)

In addition each cube Ay (x) will be equipped with a function ¢, r,
constructed in the following way: we fix an even function ¢ € C§(R)
with 0 < £(#) < 1 for all t € R, such that &(t) = 1 for [t| < 4, £(t) =0
for |t| > %Tq, and |£'(t)| < % for all ¢t € R. (Such a function always
exists.) We define

L, if |t| < % - %1
(t) = { £(|t| _ (% _ Sq)) il > (% _ 3q) (3.73)



and set
d

$u,1(y) = prly —a) for y € RY, with ¢r(y) = [[ éely). (3.74)

=1

We have ¢, € C3(R?), with suppé, . C Ar(z) and 0 < ¢, 1, < 1.
By construction, we have

Xp L 51Pol = XpL 51, XprL 3bsr=Par, (3.75)
2T 34 )3

~ 3\/_

r L (V¢x,L) = V¢x,La |V¢x L| < —q (3.76)

Similarly, we also construct a function p, 1, € C’&(Rd), 0<psr <
1, such that

~ ~

Fw,L Pz, L = Fm,L , Fw,L Pz, = Pzx,L 5 (377)
d
< Bl (3.78)
q

Lemma 3.8 (SLI) Let W be a second order classical wave operator.
Let z,y € qZ% L,0 € 2N, and Q be a set, with Q C Ap_sq(y) C
AL*?’II(I‘)' Then, if z ¢ U(Wm,L) U U(Wy,g), we have

ITz,0 Re,n(2)X0l2,r < V2 ||Ty Ry e(2) e, LR, 1. (2)Cy tlla,r »

(3.79)

with )
7. = Sz, (2] + 199¢22)” (3.80)
where E4 is given in (2.26).
Proof: We proceed as in [6, Lemma 26]. Using (3.75), (3.66), and
I'z,0¢y0 = 0, we obtain
oL Raer(2) 15y X0 = TanRe 1(2) 57 dy0x0
= TurRer(2)A; [0 AyiRye(2)xo (3.81)
— Do nRaer(2)AL 1 T5 70 Ay eldy el Rye(2) xo
We now use (3.76) and (3.64) to get
ICa L Re () A [yl 75y Ay Ry (2)xally (3.82)
— Dy R ()T e A% [y, A5 Ty Ay e Ry e (2) xal|2F
22 AlI0e B () gl ]Iy Ay Ry (2) e

IN
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and
1Tt R, (2) A5 1. Ty Ay [0y, Ry e (2) X0l (3.83)
= |TapRar(2) A5 1Ty ey Ay eldy Dy e Ry e(2)xalle L
< %EAHF%LR%L(Z) sl vt By o(2)xally.e
= %EA||fy,£Ax,LRx,L(Z)Fx,L||x,L||Fy,zRy,g(z)XQ||y74 :

We now appeal to Lemma 3.4 using (3.77) and (3.78). For ¢ €
Hy, (™ and a > 0 we get

IPy,eAy,e By 0(2) 0 < oy eAy Ry o(2)xally .
< a0y Wy Ry u(2)xavll; (3.84)
+ (a + 199922 ) ITy ¢ Ry,e(2)xat N e
(al2l? + 1 + 199422 [Ty 1Ry () x09)|12, -

IN

Choosing a = |z|7!, we get

10042 ) ¥ 11, By (<) x0yo
(3.85)

“fy,éAy,éRy, ( )XQ“M < (

Similarly, we get
1Ty e Az,p Re,r(2)Ts LH:I: L (3.86)

< (2|z|+ 100‘1”2) 1Ty, Re,.(2) 2, Ll

— (2lel+ 198222) * Ty Ryt ()Tl
Since
“F:v,LRx,L(Z)XQHx,L = “F:v,LR:v,L( ) e X ||ye ) (3.87)

the lemma follows from (3.81)-(3.86). W

3.6 The eigenfunction decay inequality

The eigenfunction decay inequality (EDI) estimates decay for general-
ized eigenfunctions from decay of finite volume resolvents. resolvents.

We start by introducing generalized eigenfunctions for classical
wave operators. (We refer to [17] for the details.) Given v > d/4, we
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(r)

define the weighted spaces (we will omit v from the notation) Hy’ as
follows:
HD = LR, (1 + |2[2) 2 de; C7) .

7—[(,7") is the space of polynomially L?-bounded functions. The sesquilin-
ear form

(61,62) 00 o0 = [ B1(@) - (e}, (3.88)

to each other. By O we will denote the adjoint of an operator O
with respect to this duality. By construction, Hg) c H" C ”H,g),
the natural injections s : HS:) — H® and o : HO — 7 being

where ¢ € HE:) and ¢9 € 7—[(_7), makes ”Hgf) and H™) conjugate duals

continuous with dense range, with zJﬂr =1 .
Given a second order classical wave operator W = A*A, where A
isa M PDOS},L, we define operators Wy on H(™ as follows: A, is

the restriction of the operator A to ”HT), i.e., A is the operator from

1™ to ™ with domain D(Ay) = {¢ € D(A) N H; Ap € 1™,
defined by A;¢ = A¢ for ¢ € D(Ay). Ay is a closed densely defined
operator, and we set A_ = (Ai)T, a closed densely defined operator
from H™ to H™. We define W, = A% A, = Al A, which is a
closed densely defined operator on "HS:L) with domain D(W,) = {¢ €
D) N HY; W¢ € HM}, and Wyp = W for ¢ € D(W,) [17,
Theorem 4.2]. We define W_ = WL a closed densely defined operator
on H™. Note that W is the restriction of W_ to H™.

Aimeasurable function ¢ : R? — C" is said to be a generalized
eigenfunction of W with generalized eigenvalue A, if ¢ € ™ (for

some v > f—,f) and is an eigenfunction for W_ with eigenvalue A, i.e.,
% € D(W_) and W_t) = M. In other words, v € H™ and

<W+¢’¢>H$),H(j) = >\<¢a¢>7{$)7%£n) for all p € D(W,).  (3.89)

Eigenfunctions of W are always generalized eigenfunctions. Con-
versely, if a generalized eigenfunction is in (™, then it is a bona fide
eigenfunction.

Lemma 3.9 (EDI) Let W be a second order classical wave operator,
and let ¢ be a generalized eigenfunction of W with generalized eigen-
value E. Let v € q¢Z% and L € 2gN be such that E ¢ o(Wy.1). Then
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for any set Q C Ap_34(x) we have

Ixe¥ll < VElTe,L Re,L(E)Xllz Ll Te,c0ll (3.90)
with yg as in (3.80).
Proof: We fix v > f—,f such that ¢ € D(W_) and W_¢) = Ev. We
write J,,, = J57.
(n)
z,L
Jrxe¥ = xady.10s,0% = XoRe L (E) (WL — E)J; 102,00 (3.91)

= xaRen(E)A; 7 L Ao, L] + X Ra,1(E) Ty [ A% [pr L] A1)

Proceeding as in the proof of Lemma 3.8, we have

Using [17, Lemma 4.1], we can show that, weakly in H

|xoRen(B) A5 L5 LAl )| (3.92)
= |xoRer(B)AL Ton T2 L AT e s ot
< WAz IxoRy L (B)AL  Tot o175 Tl
= 34z ||Ty 1 Ap L Re p(B)Xallot T Dot llo.r
1
< iz, (21B) + 1094527 x
[ 025 P P [ PR
Similarly,
|xaRe(B)I2 A 6 ) A0 (3.93)

- HXQRx,L(E)Fx,LJ;,LA*[‘ﬁx,L]f‘f’%LAJ’be,L

oA,

and, using Lemma 3.4, which is also valid for the operator A_ (see
[17, Theorem 4.1], we have

< %{BEAHF:I:,LR@L(E)XQ

z,L

ITap At < llps, A (3.94)
< alTarWogpl” + (2 + 299422 ) 0 0
= (alBI? + & + 199422 T, el

for any a > 0.
Choosing a = |E|~! in (3.94), (3.90) follows from (3.91)-(3.94). &
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4 Periodic classical wave operators

In this section we study classical wave operators in periodic media.
The main theorem gives the spectrum of a periodic classical wave
operator in terms of the spectra of its restriction to finite cubes with
periodic boundary condition.

Definition 4.1 A coefficient operator S on H™ is periodic with pe-
riod ¢ > 0 if S(x) = S(x + ¢j) for all x € R? and j € Z%.

Definition 4.2 A medium is called periodic if the coefficient opera-
tors K and R that describe the medium are periodic with the same
period q. (We will always take the period ¢ € N without loss of gen-
erality.) The corresponding classical wave operators will be said to be
periodic with period q (q-periodic).

If k,n € N, we say that K <n if n € kN and that k <nif k <n
and k # n.

Theorem 4.3 Let W be a q-periodic second order classical wave op-
erator. Let {{,; n =0,1,2,...} be a sequence in N such that ly = q
and by < lpiq for eachn =0,1,2,.... Then

o (Wou,) Co(Woge,,,) Co(W) forall n=0,1,2,..., (4.1)

n+1
and

o(W) = o (Woe,)- (4.2)

el

The analogous result for periodic Schrodinger operators is well
known [Ea]. Periodic acoustic and Maxwell operators are treated in
[6, Theorem 14] and [7, Theorem 25], respectively. We will sketch a
proof, using Floquet theory. We refer to [18, Section XIII.6] for the
definitions and notations of direct integrals of Hilbert spaces.

We let @ = A,(0) be the basic period cell, @ = A2z (0) the dual

q

basic cell. (Ap(z) = {y € R%; —% <y < x+ %,i =1,...,d};
we should also take Q@ = A,(0), but we will not since it will make
no difference in what follows.) For any r € N we define the Floquet
transform

D
_ ™) 0 —r2(A 1.1
7.y ) _>/@ HY dk = L? (Q, dk; 1)) (4.3)
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by

TS Ry —m), 2 eQ ke, (44)

Fo)ho) = (55
meqZ

if ¢ has compact support; it extends by continuity to a unitary oper-
ator.

The g-periodic operator W is decomposable in this direct integral
representation, more precisely,

FWF* = /@ " Wo k) di, (4.5)

where for each k € R? we set Dg(k) to be the restriction to Q
with periodic boundary condition of the operator given by the ma-
trix D(—iV + k) (see (2.17) ), a closed, densely defined operator,

and let Wo(k) = Aj(k)Ag(k) with Ag(k) = /RgDo(k)y/Kg. (If

(r)

for p € %”Zd, Up denotes the unitary operator on Hp,’ given by

multiplication by the function e~ then for all k¥ € R¢ we have
WQ(k +p) = U;WQ(k)Up.)
Since

[Aq(k +h) = Aq (k)| < [h[Ea, (4.6)
follows from the resolvent identity that the map
ke R o (Wolk) + )7 € B(HE) (4.7)

is operator norm continuous, so we conclude from (4.5) that

o(W) = U o (Wo(k)). (48)
ke

If ¢ € qZ¢, similar considerations apply to the operator Wo ¢, which
is g-periodic on the torus Ay(0). The Floquet transform

FeH) - @ HY (4.9)
ke2Z7.9nQ

is a unitary operator now defined by

(Fob) (k) = (%)5 S ey m),  (4.10)

meqZ4nk(0)
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where z € Q, k € QTWZ_dﬂ Q. € H(()fg, (x — m) being properly
interpreted in the torus Ay(0). We also have

FoWo Fj = @ Wo(k), (4.11)
ke Z740Q
and
cWor)= U o (Wolk). (4.12)
ke2Z7.9nQ

Theorem 4.3 follows from (4.8) and (4.12).

5 Defects and midgap eigenmodes
We now prove the results in Subsection 2.5.

Theorem 5.1 (Stability of essential spectrum) Let Wy and W
be second order partially elliptic classical wave operators for two media

which differ by a defect. Then
Uess(W) = Uess(WO)- (5'1)

Proof: We will first prove the theorem when the defect only changes
R, i.e., we will show

Uess(WlCo,R) = Uess(WlCo,Ro)- (5'2)

The general case will follow, using Remark 2.8 and Lemma A.1, as
then

Uess(WlCo,Ro) = Uess(WlCo,R) = Oess ((WKZO,’R)L) (53)
= Oess ((WR,ICO)L) = Uess(WR,lCo) = Uess(WR,lC)
= Oess ((WR,IC)L) = Oess ((WKZ,’R)L) = Uess(WlC,R) .

To prove (5.2), we proceed as in [8, Theorem 1]. Let 7 (z) = R(z)—
Ro(x), by our hypotheses it is a bounded, measurable, self-adjoint
matrix-valued function with compact support. We write 7 (x) =
T+ (z)—T-(z), with 71 (z) the positive/negative part of the self-adjoint
matrix 7 (x). We let 71 denote the bounded operators given by the
matrices 71 (z), they would be coefficients operators except for the
fact that the functions 71 (x) have compact support, so they are not

32



bounded away from zero. We may still define operators define non-
negative self-adjoint operators Wy, 7... We have

WICO,R = (WK:O:RO + W}c077’+) — WKZO,T_ , (5.4)

as quadratic forms. (Note that Q(Wi, =) = Q(Wio,ro) C QWi 72),
where Q(W) denotes the form domain of the operator W.) Thus (5.2)
follows from [18, Corollary 4 to Theorem XIII.14] and the following
lemma.

Lemma 5.2 Let Wi r be a second order partially elliptic classical
wave operator, and let T be like a coefficient operator, except for the
fact that the function T (x) has compact support, so it is not bounded
away from zero (i.e., T =0). Then

tr {Wir+1) " Wis(Wikr+I)7"} <o (5.5)
if r > v+ 1, where v is the smallest integer satisfying v > %.

Proof: Let Q denote the support of 7 (z), we pick a function p €
CYH(RY) with xq < p(x) < Xg» Where Q = suppp is a compact set. We
have

T <T.p* <T.R"'p*R. (5.6)

Thus, using || ||gs to denote the Hilbert-Schmidt norm, and setting
¢ =||Vp|lso , we have

tr (Wi + 1) Wier (Wi + 1)} (6.7)
< TRzt {Wier + 1) " A rp* A (Wi +1) "}
B —r2
= TyR_'pAx Wik + 1) || irg (5:8)

2
+ (5.9)

2
HS

+ HX@(WK:,R +1)™"

< T,R”! {‘|X§WK,R(WIC,R +I)7"

HS

(1+4°2%, 1) HXQ(W,C,R +I)T

IN

)2
HS

2
} < oo, (5.10)
HS

v {(favier + 07|

HS

—Ax,Rr

+ (1 + 4¢*=> ) HX@(WIC,R + )"

where the final bound in (5.10) follows from Theorem 3.1 if r—1 > v.
To go from (5.8) to (5.9) we used Lemma 3.4. N

This finishes the proof of Theorem 5.1. &
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Corollary 5.3 (Behavior of midgap eigenmodes) Let Wy and W
be second order partially elliptic classical wave operators for two me-
dia which differ by o defect. If (a,b) is a gap in the spectrum of Wy,
the spectrum of W in (a,b) consists of at most isolated eigenvalues
with finite multiplicity, the corresponding eigenmodes decaying expo-
nentially fast from the defect, with a rate depending on the distance
from the eigenvalue to the edges of the gap. If the defect is supported
by some ball By(xg), and E € (a,b) is an eigenvalue for W with o
corresponding eigenmode 1, ||| = 1, then

Ixa9l1? < (5.11)
1
2CE B4, (E% + e™” (2E + 16 E?%) 2) 0B (G 47+2) o -l

for all x € R% such that |z — x| > @ + 7+ 3, where mg and Cg are
as in Theorem 3.5.

Proof: By Theorem 5.1 W has no essential spectrum in (a, b). Thus,
if £ € o(W)nN (a,b), it must be an isolated eigenvalue with finite
multiplicity; let ¢ be a corresponding eigenvector. To estimate the
decay of ) we have to deal with the fact that the form domains of W
and Wy may be different, and v may not be in the form domain of
Wo. Thus we pick p € C'(RY) such that

1 = XB,1a(20) () < p(T) <1 = XB,, (@) (@) s [Vp(z)] <2, (5.12)
Since W and W, differ by a defect supported by B,(zg), it follows

from (2.25) that D, = pD(A) = pD(Ap), and Ap = Agyp for ¢ € D, .
Thus, if ¢ € D(Ap), we have

(Ao, Aopyp) = (Ao, App) = (Ao, pAp) + (Ao, Alply))
= (pAod, AY) + (Aog, Alplp) = (pAog, AY) + (Ao, Alplt))
= (Aopg, AY) — (Ao[plg, AY) + (Ao, Alpli))
= (Apg, AY) — (Ao[plo, AY) + (Ao, Alpli))
= (pp, W1p) — (Aolpld, A) + (Ao, Ao[pl¥)

= E (pg, ) — (Aolpl, Av) + (Ao, Ao[plh) - (5.13)
Taking ¢ = (Wy — E) !¢, we get
Iatbll? = = (Aolpl (Wo — E) ™ xat, Ags) (5.14)

=+ <A0(W0 — E)_IX:ﬂpa AO [P]¢>
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= - <A0[:0]XBT+2(1'0)(W0 - E)_IX:UZ/), A¢>
+ (XB.a(w0) Ao (Wo = B)xats, Ao[p]ts)
< 224, (VEIXB, o) Wo — B) " xa

HIXB, o2y Ao(Wo — B)™'xa ) 12

where we used (3.64) and || A3||? = (¢, W) = E||9||2.
The estimate (5.11) now follows from (5.14), using (3.20) and
(3.23) in Theorem 3.5. N

The next theorem shows that one can design simple defects which
generate eigenvalues in a specified subinterval of a spectral gap of Wy,
extending [8, Theorem 2] to the class of classical wave operators. Let
Q be a an open bounded subset of R¢, zy € Q. Typically, we take Q to
be the cube Aj(zg), or the ball By (zg). We set Q; = zp+£(Q —x) for
¢ > 0. We insert a defect that changes the value of Ky(z) and Ro(x)
inside €2, to given positive constants K and R. If (a,b) is a gap in the
spectrum of Wy, we will show that we can deposit an eigenvalue of
W inside any specified closed subinterval of (a, b), by inserting such a
defect with \/I%z large enough, how large depending only on D, the

geometry of €2, and the specified closed subinterval.

Theorem 5.4 (Creation of midgap eigenvalues) Let (a,b) be a
gap in the spectrum of a second order partially elliptic classical wave
operator Wy = Wi, r,, select p € (a,b), and pick § > 0 such that the
interval [p— 0, pu+ 98] is contained in the gap, i.e., [n— 9, u+38] C (a,b).
Given an open bounded set §2, zo € Q, 0 < K, R,{ < oo, we introduce
a defect that produces coefficient matrices K(x) and R(x) that are
constant in the set Qp = xo + £(2 — x0), with

K(z) = K1, and R(zx) = Rl for x €. (5.15)

If
1
14 VI . ( 9, 0 2>§
—— > =D, inf < ||Vn|l2 + [ IVnll; + —]|A ) 5.16
Jin > 8 P+ {H nllz + (1IVnlly MH nll2 (5.16)

where the infimum is taken over all real valued C?-functions n on R%
with support in Q and ||n||2 = 1, the operator W = Wi g has at least
one eigenvalue in the interval [ — &, pu + 6].
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Proof: We proceed as in [8, Theorem 2]. In view of Corollary 5.3, it
suffices to show that

ocW)N[u—0,pu+0]#0 (5.17)

if (5.16) is satisfied. To prove (5.17), it suffices to find ¢ € D(W) such
that

(W =)ol < el - (5.18)

To do so, we will construct a function ¢ € D(W), with ||¢]| = 1 and
support in €y, such that (5.18) holds. In this case the inequality (5.18)
takes the following simple form:

[(KRD*D — p) || <6, (5.19)
which is the same as

(DD — )| < ¢, (5.20)
with p/ = 74 and 5':%3.

We start by constructing generalized eigenfunctions for the non-
negative operator D*D corresponding to x/. In order to do this, we
consider £ € S% pick an eigenvalue A = A, > 0 and a corresponding
eigenvector £ = £, \ € C*, || = 1, of the n x n matrix D(x)*D(k)
(see (2.17)). We set

i “—,n-w 00 (BT . 1T
f(@) = furelz) =e \/j e C*(R"CY). (5.21)
Note that, pointwise, we have |f(x)| = 1, and

(D*Df)(2) = 1 f (). (5.22)

To produce the desired ¢ satisfying (5.18), we will restrict f to €2
in suitable manner, and prove (5.20). To do so, let 1y be a real valued
C? function on R? with support in Q and ||n|l2 = 1. We set

p(x) = ne(z)f(x), note [lpll = |Inellz=1. (5.23)
We have ¢ € D(D*D) with support in £, and
(D*D — i) (5.24)
= [D*(=iV)D(~iVne)] f + /& D*(~iV) D(r)
/D () D(=i V) f .
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Thus

I(D"D = 1)ell < D2\ Amlls + 2/ D2 [Vnells. (525

We now use a scaling argument (i.e., write n(z) = (¢~ (z — o) +
7p)) to conclude that to obtain (5.20), it suffices to find n € C?(R?, R)
with support in Q, ||n|lz = 1, and a unit vector x € R?, such that

72D2 Al + 20 E D2 |Vl < 5 (5.26)
which will be satisfied if
¢ 2KRD2||An|l2 + 20 "V KRD,\/u|| V|2 < 6. (5.27)

where we used the fact that A < D%. Thus (5.20) holds if (5.16) is
satisfied. W

A A useful lemma

The following well known lemma (e.g., [4, Lemma 2]) is used through-
out this paper. We recall that, given a closed densely defined operator
T on a Hilbert space ‘H, we denote its kernel by ker 7" and its range by
ranT. If T is self-adjoint, it leaves invariant the orthogonal comple-
ment of its kernel; the restriction of T' to (ker T)J‘ is denoted by T,
a self-adjoint operator on the Hilbert space (ker T)L.

Lemma A.1 Let B be a closed, densely defined operator from the
Hilbert space H1 to the Hilbert space Ho. Then the operators (B*B)
and (BB*) | are unitarily equivalent. More precisely, the operator U
defined by

1 1
Uy = B(B*B) %t for ¢ € ran(B*B)?, (A.28)
extends to a unitary operator from (ker B)* to (ker B*)*, and

(BB*), = U(B*B), U*. (A.29)
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