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Abstract

We study generalized fractal dimensions of measures, called the Hentschel-
Procaccia dimensions and the generalized Rényi dimensions. We consider com-
pactly supported Borel measures with finite total mass on a complete separable
metric space. More precisely we discuss in great generality finiteness and equality
of the different dimensions for negative values of their argument ¢. In particular
we do not assume that the measure satisfies to the so called “doubling condition”.
A key tool in our analysis is, given a measure y, the function g(e), ¢ > 0, defined
as the infimum over all points z in the support of y of the quantity u(B(z,¢)),
where B(z,¢) is the ball centered at = and of radius e.
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1 Introduction and presentation of the results

1.1 Introduction

Generalized fractal dimensions (or multifractal dimensions) of finite Borel measures are
some families of real numbers taking value in [0, +oo] and indexed by real parameter
q € R. Two important families of generalized fractal dimensions are the Hentschel-
Procaccia dimensions (D (q) for the upper dimension, D~ (q) for the lower dimension)
and the generalized Rényi dimensions, which can be seen as discretized versions of
the Hentschel-Procaccia dimensions. In this article we study these two families of
dimensions for negative values of their argument: ¢ < 0. More precisely we investigate
the finiteness of these dimensions and the equivalence of the different definitions. As
for the setting, we work with positive and regular Borel measures of finite mass with
compact support on a complete separable metric space (X, ). No further condition
on the measure is assumed. In particular we do not suppose that p satisfies to the so-
called “doubling condition”. Note also that we do not resort to the Besicovitch covering
Theorem (which is only valid on more specific spaces X). The case of non compactly
supported measures will be treated in the companion paper [GT].

Interest in such families of fractal dimensions, also called generalized entropies,
goes back, at least to the late 50’s with the work of Rényi on information theory
[R]. For twentysome years generalized fractal dimensions are also known in theoretical
physics to enter the game of many interesting phenomena, and specially dimensions of
measures defined on attractors in dynamical systems [HP] [GP] [HJKPS]. Multifractal
dimensions of Gibbs measures of dynamical systems appear rigorously in numerous
works, e.g. [GV] [PW1] [PW2] [TV1] [TV2] [LPV]. A fruitful multifractal formalism
has been developped in this context, e.g. [BMP] [Ri] [O1]. In astronomy and biology
researchers also came accross these dimensions, e.g. [VBP] [Be].

In quantum dynamics, numerical computations first suggested that the Hentschel-
Procaccia dimensions should play a non trivial role in the phenomenon of anamolous
transport [Ma]. It is recently that these dimensions have been rigorously proved to enter
the game of the transport properties of wave-packets in quantum dynamics, [BGT1]
[GSB1] [T1] (see also [BSB]). In these works the generalized fractal dimensions are
indeed shown to influence directly the speed of the electronic transport. If ¢ € (0, 1) is
the main regime reached by the results of [BGT1][GSB1][T1], dimensions for negative
values of ¢ appeared in [Ma] [BSB], and they are rigorously proved to enter the play
under some assumptions [BGT1|[GSB1] [T1].



However the mathematical study of these objects is fairly recent and actually not
so much is known about them, except for some particular examples. To our best
knowledge most of what is known for ¢ # 1 can be found in Olsen [O1], Pesin [P], Lau
and Ngai [LN], and the recent paper of the two present authors and Barbaroux [BGT?2].
As for the particular point ¢ = 1 we refer to the work of Heurteaux [He| (and reference
therein), and also to [O2][BGT2].

For the purpose of this presentation we briefly recall the definition of the generalized
fractal dimensions we consider in this article. We shall come back to these definitions
in the next section. Set

I(g,¢) = / (B e) ) , g€ B, < >0,

with B(z,e) = {y € X, 0o(z,y) < e}. The lower and upper Hentschel-Procaccia dimen-
sions are then defined for ¢ # 1 as

_ .. logI(q,e) . log I(g,¢)
D (¢) =liminf ——=""" and D%(q) = limsup ——=-—". 1.1
(9) el (g—1)loge (@) elo (g—1)loge (1.1)

We note that in general upper dimensions D' (g) and lower dimensions D~ (q) are
distinct (for an example in quantum transport see [T2]). So that in the present paper
we shall distinct them.

Discrete analogous of the Hentschel-Procaccia dimensions are the generalized Rényi
dimensions, which can be computed by summing either over coverings or over packings
of supp p. For a set of closed balls of radius ¢, say u = B(z;, €)ier, set

S(u,q,6) = ) u(B(zi€))? (1.2)

iel
(implicitely the summation is over ¢’s such that u(B(z;,¢e)) > 0). We assume that I
is finite or countable. The set u = (B(z;,¢€))ier is called centered if z; € suppu for all

i € I. We denote by C®) and C,E":) the set of e-coverings and centered e-coverings of

supp p respectively. Similarly, we denote by P() and PC(E) the set of e-packings and
centered e-packings of supp u respectively (see Section 2.3 for precise definitions). We
then define for ¢ # 1 the centered covering Rényi dimensions as

_ . . logCe(g,¢) : log Cc(g, )
C.D = liminf ———2"2  and C.D"(q) = limsup ———"~. 1.3
(a) elo (g—1)loge (9) €l0 P (g—1)loge (13)
and the centered packing Rényi dimensions as
_ . . . log P.(q,¢) ) log P.(q,¢)
P.D = liminf ——22"2  and P.D"(q) = limsup ——————2~. 1.4
(9) el (g—1)loge (9) £l0 P (g—1)loge (14)
where
C.(q,e) = inf : S(u,q,¢), Pe(q,e) = sup S(u,q,e). (1.5)

uect werl?

Similarly, one can define the covering and packing Rényi dimensions (denoted as
CD*(q) and PD*(q)), taking in (1.5) infimum or supremum over all e-coverings or
all e-packings respectively. One can observe that all dimensions defined above are



positive decreasing functions of their argument ¢ and lower dimensions (with liminf in
the definition) are always not bigger than the upper dimensions.

In the particular case of measures on R?, there exists an alternative definition of
Rényi dimensions with summation over grids [P] [LN] [BGT2]: we shall denote it by
GD*(q) (for grids dimensions). This definition in its spirit is close to PD*(q), for it
uses disjoint cubes that may have an arbitrary small intersection with the support of
the measure. Because of that, for instance, the Lebesgue measure on R with support
[0, 1], has infinite dimensions GD*(q) and PD*(q) for any ¢ < 0 [LN] [BGT2], while
for such a measure D*(q) = P.D*(q) = C.D*(q) = CD*(q) = 1 for any q € R. This
illustrates why dimensions GD*(q) and PD*(q) are not relevant objects to consider
in the regime of negative ¢’s, and we will not discuss these dimensions in the present
paper. However let us mention how usefull the grids dimensions GDi(q) turn out to
be in the regime of positive ¢’s for measures on R?, mainly because they are defined in
a simple way, avoiding the supremum or infimum over particular families of balls. This
has been crucial in many results presented in [BGT2].

At this stage we note that if ¢ < 0, the equality CD*(q) = C.D*(q) holds for any
finite Borel measure on X. It is an easy derivation that we prove in Proposition 2.1.
As a consequence of the above considerations, in the present paper we shall focuss our
attention on the following three dimensions: D*(q), C.D*(q) and P.D*(q), as far as
negative ¢’s are concerned.

Recall that all the dimensions defined previously are decreasing functions of their

argument q. Basic questions about these dimensions are the following:

a) For which ¢’s are these dimensions finite?

b) What are the regularity property of these dimensions (continuity and differentiabil-
ity) and their asymptotic behaviour as ¢ goes to +00?

c) Are these definitions equivalent? In other terms, do the different definitions give rise
to the same dimensions?

In this paper we treat questions a) and c) for compactly supported measures with
finite mass and negative ¢’s. In [GT], we shall discuss a) and c) for non compactly
supported measures with finite mass and negative ¢’s. We briefly list below what can
be found (to our best knowledge) in the litterature about these points.

a) Note that P.D*(0) = C.D*(0) = dim%(supp i) (e-g [M]), so that in R, P.D*(q)
and C.D*(q) are finite for ¢ > 0 and compactly supported measures. If ¢ € (1, +00)
the dimensions D*(g) and GD*(q), are known to be finite (actually non bigger than
d) for any measure on R? (see e.g. [BGT2]). In Lau and Ngai [LN] the finiteness of
P.D*(q) for ¢ < 0 and compactly supported measures is discussed. They show that
P.D™(q) is either defined (i.e. finite) on R or on RT, depending on the finitness of the
quantity we call g* in this paper (see (1.8) below), and moreover P.D"(—o0) = g™.
Finiteness of D*(q) for non compactly supported measure is discussed in [BGT2] for
g > 0 and in [GT] for ¢ < 0.

b) On the domain D*(q) < oo, continuity of D¥(q) and differentiability everywhere
except maybe at a countable set of points derive from general arguments about convex
functions. On the same domain D*(q) < oo, Lipschitz continuity of D~ (g) and thus
differentiability Lebesgue a.e. of the latter is proved in [BGT2| (the proof made for
measures on R extends to the general setting of the present paper).

c) We first mention the general results:



- For ¢ < 0, P.D*(q) = C.D*(q) is proved by Olsen [O1] on spaces X where a Besi-
covitch covering theorem is available (it is done on R?). We will see that it is actually
a general property that holds on any separable complete metric space.

- For ¢ > 0, P.D"(q) = GD%(q) is proved in [LN], and in [O1] it is shown that
C.D*(q) < P.D*(q) for g € (0,1) and P.D*(q) < C.D*(q) for ¢ > 1.

- For ¢ > 1, the equality D¥(q) = GD*(q) is rather immediate and it can be found in
[GY] [P] [BGTZ2].

- For q € (0,1) and measures on X = R?, equivalence between the Hentschel-Procaccia
dimensions D*(q) and the grids dimensions GD*(q) was more difficult to obtain, re-
quiring a substantially different proof (we briefly comment on that around Bound 1.7
below). It has recently been established in [BGT2], where D*(q) = GD*(q) = CD*(q)
is proved. The use of the grid dimensions GD¥(q) was playing a crucial simplifying role.
The proofs of [LN] and [BGT2] readily extend to get D*(q) = GD*(q) = CD*(q) =
C.D*(q) = P.D*(q) = PD*(q) for any ¢ € (0,1) and measures on R.

To our best knowledge this is all as far as general result are concerned. We note
that if CD*(q) = D*(q), ¢ > 1 fails in R? [GY], and if for ¢ < 0, P.D*(q) = GD*(q)
and D*(q) = GD*(q) fail in R? [LN][BGT2], the intermediate regime (0, 1) turns out
to be more stable under the change of definitions since the dimensions all coincide (at
least for measures defined on R?).

Further results hold if one assumes a strong condition on the measure called the
doubling condition. Let us recall the definition of a “doubling measure” or “diametri-
cally regular” (we refer to Subsection 3.2 where this condition is discussed). A Borel
measure on the metric space X is said to satisfy to a doubling condition if there exist
two constants K > 1,v > 0 such that

p(B(z,2¢))
w(B(x,¢))

for all z € suppp, 0 < € < v. If a probability measure u, on R, satisfies to a doubling
condition then as noticed in Olsen [O1] it is easy to get D¥(q) = C.D*(q) = P.D*(q),
for all ¢ € R (see below, and Proposition 3.3).

Comparison of the different Rényi dimensions (C.D*(q), P.D*(q), GD*(q)) mostly
consists in geometric arguments, for it reduces in most cases to comparisons of coverings,
packings and grids: all these dimensions are computed with the same sums S(u, g, ¢)
defined in (1.2); only the way of cutting the support of the measure differs. Sometimes
equalities are rather immediate to get, and in other cases one has to resort to a more
involved geometric theorem (like the Besicovitch covering theorem). Comparison with
Hentschel-Procaccia dimensions Di(q) for ¢ < 1 requires different considerations and
is more delicate, for the weight that the measure gives to balls of different size is of the
most importance.

We would like in the few lines below to give an idea of what the issue is. Pick
g < 0. As we will show P.D*(q) = C.D*(q) in full generality, so that to prove the
equality with the dimensions D*(q) it is enough to show 1) D*(q) < C.D*(q) and
2) D*(q) > P.D*(q). Pick z € B(y,¢), y € suppu, € > 0. It is then clear that
B(y,e) C B(z,2¢), so that immediately, for any centered e-covering u = (B(y;,€))ier
and for any g < 1,

I(g,2e) <) /B

iel / Byie

<K (1.6)

)11(1‘3(fv,2f:‘))‘1*1 < 5(u,q,¢),



so that D¥(q) < C.D*(q) follows for ¢ < 1. This is the easy inequality. Difficulties
arise with the converse one: is it true that D¥(q) > P.D*(q) for ¢ < 1?7 Pick again
x € B(y,e), then note that B(z,e) C B(y,2¢), so that for any centered e-packing
v = (B(¥i, €))ic1, one has the following lower bound:

@) > X [ u(B@e) ™ = 3 u(Blu)u(Blyi, 20"

i€l (y“s) el

(B (yi, 2))\ " ,
Z ;<W> n(B(yi,€))?. (1.7)

And one needs to prevent the ratio u(B(y;, 2¢))/u(B(y;, €)) from blowing up for some y;
and &, which would thereby destroy the bound (1.7). Of course if the measure is assumed
to be doubling, then trivially this ratio is bounded by the constant K given in (1.6),
and I(q,e) > K% 'P,(q,¢) follows, leading to D*(q) > P.D*(q) for any ¢ < 1. But
besides this strong assumption on the measure that makes things trivial, what can we
say? If one cannot avoid bad points (i.e. points where the ratio u(B(y;, 2¢))/u(B(yi, €))
becomes very big for some sequence of ¢), at least one could try to show that, in some
sense, the set of such bad points has a small enough mass. This is what has been
achieved in the regime ¢ € (0,1) in [BGT2] for any measure of finite mass in RY.
Unfortunately this idea does not work at all in the regime ¢ < 0 we want to investigate
here, and the techniques dev! eloped in [BGT2] are totally unefficient. Indeed, even a
single point with zero weight can have a destroying effect on (1.7). Consequences: 1)
on a technical point of view, a more involved minoration than (1.7) will be necessary
(see Subsection 4.2) and 2) the equality of the dimensions does not hold anymore for all
measures of finite mass (like in the regime ¢ € (0, 1)), and we shall exhibit the correct
condition on the measure to ensure D¥(q) = P.D*(q) = C.D*(q) < oo for all ¢ < 0. Tt
will hold for the class of measures Py(X) defined in (1.9) and that contains the doubling
measures; we refer the reader to Subsection 3.2, Proposition 3.2 and Observation 3.1 for
further discussions on the link between doubling measures and measures that belong
to the class Pgy(X).

1.2 Presentation of the results

We turn to the description of our results. In Proposition 2.1 we prove in full generality
that for any ¢ <0,
P.D¥(q) = C.D*(q) = CD*(q) -

In the sequel we shall thus omit to refer again and again to the covering Rényi di-
mensions C.D*(q) and CD*(q). We shall use P.D¥(q) as a representative of the
generalized Rényi dimensions for ¢ < 0.

A quantity of major interest in our analysis is the following function:

g(e) = inf p(B(z,¢€)), €>0.

TEsupp p
Introduce then
1 1
g = liminf log g(¢) and gt =limsup log 9(¢) . (1.8)
elo loge 10 loge



We note right away that as proved in Proposition 3.1, g(¢) > 0 for any € > 0 for
compactly supported measures, so that the previous expressions make sense.
Define

Py(X) = {u € M(X), p(X) < oo with compact support, g+ < oo}, (1.9)

where M(X) is the set of positive regular Borel measures on X. As shown in Propo-
sition 3.2, the class Py(X) contains all the doubling measures (i.e. measures satisfying
to (1.6) above) with compact support. But not all measures in Py(X) are doubling, as
shown in Subsection 5.1. So g7 < oo can be seen as a generalization of the doubling
condition. Further generalizations are given by conditions (1.12) and (1.15) below. We
refer to Subsection 3.2 for further discussions.

We first treat the case ¢ < 0 and then consider the particular value ¢ = 0 in
Theorem 1.5. Our first result concerns the upper dimensions for which the picture is
complete.

Theorem 1.1 Let (X, 0) be a complete separable metric space, and p € M(X) with
compact support and finite mass.
(i) For any q < 0, the upper dimensions coincide:

D*(q) = P.D*(q) . (1.10)

(i) Moreover, the dimensions are either finite for all ¢ < 0 or infinite for all g < 0.
(iii) Dt (q) < +oo for ¢ < 0 iff g* < +o0. In addition Dt (—o0) = g*.

Points (ii) and (iii) of Theorem 1.1 are shown in a rather immediate way for the
packing dimensions P.D*"(g) in Theorem 3.2 (and similar results for P.D~(q)). That
D" (q), resp. D~ (q), is finite as soon as g* < oo, resp. g~ < 0o, is immediate too
and is given in Theorem 3.1. The “only if” part of (iii) is the non trivial part and is
proven in Theorem 4.1. It follows that D" (q) and P.D"(q) are simultaneously finite
or infinite in the region ¢ < 0, depending on ¢g*. It thus remains to prove that when
finite the dimensions are equal. This follows from Theorem 4.3.

For some classes of measures it is known that DT (q) = D~ (q) for all ¢ € R. Of
course, for such measures Theorem 1.1 then provides the full picture. However it is
possible that D~ (q) < D™ (q) for some (or all) g € R. This is for instance what happens
in quantum transport in some interesting cases [T2]. So one needs to treat the lower
dimensions separately, and the situation is more complex. If, as proved by Theorem 1.1,
equality of the upper dimensions is a general property for g < 0, it is not anymore the
case for the lower dimensions. However if the upper dimensions are finite, then the
picture of Theorem 1.1 can be completed: equality holds for lower dimensions as well.
This is the content of Theorem 1.2 which follows from Theorem 4.3.

Theorem 1.2 Let (X, 0) and p as in Theorem 1.1. Suppose that the upper dimensions
are finite (D (q) < +oo for ¢ < 0), then the lower dimensions coincide too:

D (q) =P.D (q) <+o0, ¢<0. (1.11)

In addition D~ (—o0) =g~ < g™ < 400 .



Of course by Theorem 1.1,
DT (g) < 400 for some ¢ <0 <= DT(q) < +oo forall g <0 <= pu € Py(X).

As a consequence of Theorem 1.1 and Theorem 1.2, the set Py(X) is the natural
(and optimal) class of compactly supported measures where the generalized fractal
dimensions behave nicely: upper dimensions are finite and equal, and lower dimensions
as well (but of course upper and lower dimensions need not to coincide). We have (we
also incorporate the result of Theorem 1.5 concerning the point ¢ = 0):

Corollary 1.1 Let (X, o) be a complete separable metric space, and p € Py(X). Then
D*(g) = P.D*(q) < +o0, ¢<0,
and D*(—o00) = P.D*(—00) = g% < 400.

Harder is to study the lower dimensions D~ (¢q) when p & Py(X), i.e. when g7 =
+00. We note that concerning the finiteness of lower Rényi dimensions, the situation
is quite clear: the finiteness of P.D™(q) is equivalent to the one of g~. However, D™ (q)
may be finite even if g~ = +o0. It is also possible that D~ (q) < P.D(q) < +oo if
gt =400, g~ < +00. Such examples are developped in Subsection 5.2.

We prove the following criterium for the dimensions D~ (q):

Theorem 1.3 Let (X, p) and pu as in Theorem 1.1. Assume
logloglog 1

Jim sup 28108108 1/9(2)
€10 logl/e

Then for any q < 0, D~ (q) = P.D~(q) = C.D~(q), being finite or not (depending on
the finiteness of g~ ).

=0. (1.12)

The result follows from Theorem 4.3, point (i). As shown in Subsection 5.2, this result
is optimal in the following sense: for any § > 0 one can construct an example where
the limsup in (1.12) is equal to § and D (q) < P.D ™ (q) < +oo for some ¢ < 0.

Note that if g7 < 400 then (1.12) holds, so that Theorem 1.2 is actually a corollary
of Theorem 1.3. However if the upper dimensions are infinite (gt = +0c0), then The-
orem 1.3 still provides a criterium for the equivalence of the lower dimensions. Next
Theorem presents more involved conditions that force D~ (g) to be infinite. For in-
stance if g~ is known to be infinite (and thus P.D~(q) = +o00) then the hypothesis of
Theorem 1.3 can be relaxed to (1.13) below. Theorem 1.4 is a rewriting of Theorem 4.2,
point (i) and point (iii).

Theorem 1.4 Let (X, ) and u as in Theorem 1.1.
(i) Assume that g~ = +oo and that

) logloglog1/g(e)
lim sup
€l0 logl/e

Then D™ (q) = 400 for all ¢ < 0.
(i) Assume that for some p = 2,3... the following condition is fulfilled:
1 1 log, 1
lim sup “Epi2 /TE) /9(e) < liminf 28 2/91E) /9(€)
€l0 logl/e €l0 logl/e

< +oo0. (1.13)

(1.14)

where log, = logo---olog, p times. Then D™ (q) = +oo for all ¢ < 0.

8



Note that point (i) is a particular case of point (ii) where p = 1 and the right
quantity is equal to 4+o0o. In Subsection 5.2 Remark 5.1 we give an example of a
measure where g~ = 400, the limit in (1.13) is equal to +o00 and D™ (q) < +oo for all
g <0.

So far we were only considering the regime ¢ < 0 (whereas [BGT2] was mostly
interested by the regime ¢ > 0). A little bit like ¢ = 1, ¢ = 0 is a special and delicate
point. We recall that it is known (e.g. [M]) that P.D*(0) = C.D*(0) = dim%(supp p),
where dimef(S ) is the lower and upper box counting dimension of the set S C X. The
situation with D*(0) is trickier.

Below we list our results concerning the point ¢ = 0. The results follows from
Theorem 4.3, point (ii) and Theorem 4.2, point (ii).

Theorem 1.5 Let (X, ) and u as in Theorem 1.1.
(i) Suppose that
loglog1
lim sup 28108 1/9(5) _ (1.15)
€l0 log 1/6

(In particular, this is true if g* < 400, i.e. if u € Py(X)). Then D(0) = P.D*(0) =
C.D*(0) = dim%(supp p).
(i) Suppose that lim sup, g[loglog1/g(e)]/[log1/e] < +oo and dim}(supp p) = +o0
(resp. dimp(supp ) = +00), then D1 (0) = 400 (resp. D~(0) = +00) as well.

The paper is organized as follows. In Section 2 we define the generalized fractal
dimensions and supply some relations between them. In Section 3 we introduce the
function g(e), we illustrate its links to the doubling condition and derive some basic
links with the dimensions D*(q) and P,D*(q), in particular their asymptotic behaviour
at —oo. In Section 4 we prove our main results that concern about the finiteness of
the dimensions D¥(q) and their equality to P.D¥*(q). In Section 5 we propose some
counter-examples. In particular a measure that lies in Py(X) but which is not doubling,
and a family of measures where equality of the lower dimensions does not hold.

2 Definitions of generalized fractal dimensions

2.1 General setup

Let (X,p) be a complete separable metric space, ¢ being the distance on X. We
denote by B(z,¢) the closed ball centered at x and of radius ¢, i.e. B(z,¢e) = {y €
X, o(z,y) < €}. Let M(X) be the set a positive regular Borel measures on X. The
results of this paper hold under the additional assumption that the total mass of u is
finite: p(X) < +oo. However, it will be clear from our proofs that the results remain
unchanged if one rescales the mass of the measure y. Thus, with no loss of generality
we shall suppose that p is a probability measure:

wX)=1. (2.1)
We denote by P(X) the set of probability measures on X:

P(X) = {u € M(X), u(X)=1}. (2.2)



We denote by supp u the support of the measure p, that is the smallest closed set F'
such that u(X\F) = 0 [Fe] [M]. It is well-known (e.g. [M]) that for Borel measures on
a separable metric space, supp p is a well defined (unique) set and one has

suppu = {z € X, u(B(z,¢)) > 0 for any € > 0}. (2.3)
Note that with our assumptions on X and y, one has
p(X\suppu) =0. (2.4)
Recall that the functions ¢ — u(B(x,€)) are y-measurable.

We recall the following well known inequalities.

liminf(u(e) — v(e)) > liminf u(e) — limsup v(e), (2.5)
el0 €l0 €l0

limsup(u(e) — v(g)) > limsup u(e) — limsup v(e). (2.6)
el0 el0 el0

2.2 Hentschel-Procaccia dimensions D*(q)

Let p € P(X) be a probability measure on X. For ¢ € R and € € (0, 1), we consider
the following functions with values in R U {+o00}:

1g.e)= [ (B, dula) (2.7)

We make the following important remark: thanks to (2.4), the integration over X in
(2.7) actually leads to the same value when computing I(g,e). This fact will be used
implicitely many times in the paper when minorating I(qg, €).

Definition 2.1 The Hentschel-Procaccia dimensions.
We define the following functions on R with values in R U {400} :

N .. .loglI(q,¢) . log I(g,¢)
-1 f + =1 = St
7 (9) e log(1/¢) ’ (@) malfoup log(1/e)

with the understanding that 7+(q) = +oo if for some € > 0, I(q,€) = +o0, and the
Hentschel-Procaccia dimensions:

(2.8)

~(0) = limin logI(q,¢) +(4) — limsu log I(g,¢)
S (o P 7 I o (e (5 R

with values in [0, 4+00].

In [BGT2] basic regularity properties of these functions 7% (g) and D¥(q) are proven
in the case X = R. As a matter of fact, many of results of [BGT2| can be easily
generalized to any metric space X. In particular, define

¢ =inf{g € R,77(q) < +o0}, ¢* < 1. (2.10)

It is shown in [BGT2] that 75(q) and D*(q) are decreasing functions continuous on
(¢*,+00) and on (q*,1) U (1,400) respectively. Moreover, for any A > ¢*, 7(q)
and D¥(q) are Lipschitz continuous on [A4,+00) and on [A,1) U (1,400) respectively.
(It follows directly for 71 (q), D*(q) from the convexity of 71(q), but for the lower
dimensions it is not trivial).
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2.3 Packings, coverings and generalized Rényi dimensions

To define the generalized Rényi dimensions we shall need to approximate the support
of the measure with balls of arbitrary small radius. One can do that using packings or
coverings. We first describe packings or coverings of a subset S of X (not necessarily
compact), and then turn to the definition of the dimensions.

A finite or countable family u = (B(x;,€));er is a collection of closed balls of radius
e, where z; € X and I is a set of index. For a sake of simplicity, if u = (B(zi, €))ier,
we shall denote by u either the set of balls B(z;,€), ¢ € I (i.e. the family itsef), or the
union of these balls U;c1 B(z;,£). With obvious notations, we write u C u' if the family
u’ contains the family wu.

Coverings. We shall say that u = (B(x;,¢€))scr is an e-covering of S (finite or count-
able) if S C U;erB(zi,¢). We denote by C®)(S) the set of such coverings, and by
Cés)(S) C C©)(8) the set of centered e-coverings of S, i.e. e-coverings for which in
addition x; € S for all 3.

Packings. We shall say that u = (B(zi,€));er is an e-packing of S (finite or countable)
if B(zi,e)NS #0,¢€ I, and B(x;,e) N B(zj,e) =0, i # j. It is a centered e-packing
if in addition z; € S for all i. We denote by P()(S) the set of e-packings, and by
PC(E)(S) C PE)(S) the set of centered e-packings.

We shall say that a centered e-packing u € ’Pée)(S ) is mazimal if one cannot add to
u another centered ball of radius € without intersecting the family w; in other terms
is a mazimal centered e-packing if for any = € S, uU B(z, €) does not belong to P (S)
anymore. The set of maximal centered e-packings will be denoted by PC(’EJ)F(S ).

In the sequel and throughout the paper, we shall drop the reference to the set S
and write C(®), CC(E), P, PC(E), Pc(i)L Note that in practice S will be the support of the
measure /.

We make the following basic observations, which will be quite useful in the sequel
(see [BSa] for related observations).

Observation 2.1 Given a set S, € > 0 and u € 'PC(E), one can complete u either to
get a centered e-packing u' with infinite cardinality, or to obtain a mazimal centered
(e)

e-packing with finite cardinality. In other terms, there exists u' € Pe’, u C u', such
that either cardu’ = oo, or v’ € 'PC(,E) and card v’ < oo.

Indeed, take € > 0 and pick u a centered e-packing: u = (B(z;,€))ics. Suppose its
cardinal is finite and equal to N. Consider all the balls B(y,¢), y € suppu. If one
can find such a ball so that B(y,e) N B(z;,e) = 0 for any 7 € J, then one adds it to
the family v and one obtains a new centered e-packing with cardinality N 4 1. If one
cannot find such a ball B(y, €), then that means that the packing is maximal. Iterating
this procedure leads to Observation 2.1.

It is of interest to get maximal packings because of the following link with coverings:

Observation 2.2 Let u = (B(x;,€))icr be in ’PC(i)L Then v = (B(x;,2¢€));cr belongs to
%,

As an immediate consequence of Observation 2.1 and Observation 2.2 we get:
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Lemma 2.1 A closed subset S C X is not compact if and only if for any € > 0 small
enough, one can find a centered e-packing of S with infinite cardinality.

Proof of Lemma 2.1:
First, recall that since X is complete, S compact is equivalent to S precompact, that
is: for any € > 0, there exists an e-covering of S with finite cardinality (e.g. [D]).

Suppose that S is not compact, but there exists a sequence () going to zero
such that for any k there does not exist a centered ex-packing with infinite cardinality.
Combining Observations 1 and 2 above implies that for each e there exists a 2e-
covering of S with finite cardinality, and thereby for any £ > 0. It implies that S
is compact, which is impossible. Thus, the first (direct) statement of the Lemma is
proved.

Assume now that S is compact. Then for any € > 0 there exists an e-covering
w = (B(yj,€))jes of S with finite cardinality. Let u = (B(z;,¢€))icr € P be any
centered e-packing of S. One observes that each z; belongs to some B(y;,¢) and any
ball of w contains at most one point z;. Therefore, card/ < cardJ < +oo and there is
no centered e-packings with infinite cardinality. O

For a measure p € P(X) and a family v = (B(x;,¢€))icr, define, for ¢ € R, the
following Rényi sums:

S(U7Q76) = ZM(B(xiae)q7 (211)
i€l
where the summation is over ¢’s such that u(B(z;,&)) > 0. We further define, for ¢ € R,

C(g,e) = inf S(u,q,¢), C.(g,e)= inf S(u,q,¢), (2.12)
ueC® wect®
and, for g € R,
P(q,e) = sup S(u,q,¢), P.(q,e) = sup S(u,q,¢). (2.13)
ueP® wePl®

Definition 2.2 The generalized Rényi dimensions
Let ¢ # 1. If V(q,¢€) is one the quantities C(q,¢), Cc(q,€), P(q,€), P.(q,€) in (2.12)
and (2.13), we define its growth exponents by

_ .. logV(q,e) . log V (q,¢)
1% = liminf =2 V71(q) = limsup ———-~ ,

with values in [0,4+00]. We further define the associated lower and upper generalized
fractal dimension by

(2.14)

_ .. logV(g,e) . log V(g ¢)
VD™ (q) = liminf ,  VD%(q) =limsup ,
(9) elo (1—q)log(1/e) (@) elo - (1—q)log(1/e)
with values in [0, +00].
In (2.14) and (2.15) the understanding is that VD¥(q) = +oo if for some ¢ > 0,
V(g,e) = +o0.
The limits in (2.14) define the numbers C*(q), CE(q), P*(q), PE(q) and the ones in

(2.15) define the covering, and centered covering, packing, centered packing dimensions
CD*(q), C.D*(q), PD*(q), P.D*(q) for ¢ € R\{1}.

(2.15)

12



For ¢ = 0 one recovers the lower and upper box counting dimensions of the support
of pu [Fa)[M],
P.D*(0) = C.D*(0) = dim% (supp p) -

For ¢ = 1 the generalized Rényi dimensions are defined in a different way and are
usually called Rényi dimensions or entropy dimensions. Note that the functions V. D*(q)
may be discontinuous at the point ¢ = 1. We refer the reader to e.g. [He][O1][BGT2]
for the study of this particular point.

2.4 Basic relations between the different dimensions for negative ¢’s

Following immediately from the definitions, one has, for all ¢ € R\{1}, C*(q) < CE(q)
and PF(q) < P*(q), so that if ¢ < 1 (with reverse inequalities if ¢ > 1):

CD*(q) < C.D*(q) and P.D*(q) < PD*(q).

As mentioned in the introduction, as far as the regime ¢ < 0 is concerned, the
dimensions PD¥(q) are not good objects to look at, for they are often infinite as long
as the support of the measure is a strict subset of X. We defined them for a sake of
completeness, but we shall not discuss these dimensions anymore.

Proposition 2.1 Let p € P(X) be a probability measure (we do not assume here that
supppu is compact). For any q <0,

(i) C*(q) = C’i( ), and thus CD*(q) = C.D*(q),

(ii) Ci( )= ( ), and thus C.D*(q) = P.D*(q),

(iii) 7+ (q) < C*(q), and thus D*(q) < CD*(q).

Point (ii) was known in the case X = R? [O1]. If the inequality C.D*(q) > P.D*(q)
was proved for ¢ < 0 in [O1] in great generality, the proof of the converse was resorting
to the Besicovitch covering theorem. We propose a general and elementary proof of
this fact that C.D*(q) < P.D*(q), ¢ < 0, using Observations 2.1 and 2.2.

Proof of Proposition 2.1:

(i) Since C.D*(q) > CD%*(q) is trivial, we show the converse inequality. First observe
that to calculate C(g,¢), it is sufficient to consider coverings u = (B(z;,¢));er such
that B(z;,e) Nsuppu # 0 for all ¢ € I. Indeed one can always eliminate the balls
of u which do not intersect suppu, and thus get a smaller covering v(u) of suppp.
As S(v(u),q,e) < S(u,q,¢), the infimum over all coverings u is equal to the infimum
over coverings v(u). Let us now pick v = (B(z;,€))ier € C©) an e-covering of supp u
such that B(z;,e) Nsuppu # 0 for all ¢ € I. Thus for any ¢ € I, there exists y; €
B(z;,€) Nsupp p such that B(x;,e) C B(yi,2¢). It implies that w = (B(yi, 2¢))ier is a
centered 2e-covering of supp u. Note that for any ¢ < 0,

S(w,q,2¢) < S(v,q,¢).

As a consequence, for any ¢ < 0, C.(q,2¢) < C(g,¢) and thus C.D*(q) < CD*(q)
which concludes the proof of the first equality.

(ii) We turn to the second one. In [O1] it is shown in full generality that for any
q < 0, P.D*(q) < C.D*(q). Since the proof is short, we provide it for the reader’s
convenience. Let u = (B(z;,€))icr be any centered e-packing of suppu and v =
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(B(yk,€/2))kex any centered e/2-covering of suppu. For each i € I choose an in-
teger k(i) such that z; € B(yy(;),€/2) and observe that if i # j, then k(i) # k(j) since
o(w;, ;) > €. It is also clear that B(yy;),e/2) C B(zi,¢). Since ¢ < 0, we obtain

S(u,q,e) = Zﬂq(B(wu Z ,u/ ykz)75/2)

el k(3),iel
< > uI(B(yk,e/2) = S(v,q,¢/2).
keK

Since it is true for any u € ’P(S)7 v E CgE/Q), we obtain P.(q,e) < C.(q,e/2) and the
desired result follows.
Let us show the converse inequality. Take any ¢ > 0 and pick w = (B(z;,€))ies €
C(E) a centered e-packing. If it has infinite cardinality, then, since ¢ < 0, one has
S(w,q,€) > Y;cgpu(X)? = +oo. Therefore, P(q,e) = +oo0 > Cc(q,2¢) whatever
C.(q,2¢) is (finite or not). Assume now that w has a finite cardinality. Then, due to
Observation 2.1, one can complete w to get either a centered e-packing with infinite
cardinality, in which case, by the same reasoning as above P.(q,&) = +o0 > C¢(q, 2¢),
or a maximal centered e-packing w’' = (B(z},€));cy. In the latter case, due to Obser-

vation 2.2, v = (B(z}, 2¢));c belongs to 6‘525), and one has,
S(v,q,2¢) < S(w', g,¢€)

It follows by (2.12) and (2.13) that C.(q,2¢) < P:(q,€). As a consequence, in any case,
we have the inequality C,(q,2¢) < P.(g,¢) and thus C.D*(q) < P.D*(q).
(iii) Let u = (B(zi,€))ier be any e-covering of suppp. It is clear that

102 <Y [ (u(Bly,22)" ). (2.16)
iel (z“s

As p(B(y,2¢)) > u(B(zi,e)) for any y € B(z;,€), (2.16) implies for any ¢ < 1,6 > 0

that I(q,2¢) < S(u,q,€). Thus, I(q,2¢) < C(q,€) and we get (iii). O

3 The function g(¢) and related general results

3.1 Definition and link with the compacity of the support

Definition 3.1 Let u € P(X) be a probability measure. Define for e > 0 the increasing
function

gle) = inf pu(B(z,¢)), g(e) € [0, u(X)] = [0,1], (3.1)

TESupp pu

and its growth exponents, with values in [0, 4+0o0], namely,

1 1
9(e) hminfm, gt = limsup g(€) = lim sup /9(€) ,
loge el log(1/e) clo  loge ci0 - log(1/e)

with the understanding that g© = g~ = +oo if for some € > 0, g(e) = 0.
Among the class of compactly supported measures, a subclass of particular interest will
be

(3.2)

g = hm mf

Py(X) = {u € P(X) with compact support, g+ < oo}. (3.3)
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Obviously the definition of Py(X) above extends to measures u € M(X) of finite mass
(but not necessarily one), as it is written in (1.9).
One can easily see that
g*> sup 75(x),
TESUppu

where y¥(z) are local exponents of the measure p. Strict inequalities may occur.

Proposition 3.1 Let u € P(X) be a probability measure.

(i) If suppu is compact, then g(g) > 0 for any € > 0.

(i) If suppu is not compact, then g(e) = 0 for all € small enough. And thus g~ =g
+o0.

_|_

In particular if p is compactly supported then the expressions in (3.2) make sense.

Proof of Proposition 3.1:
(i) Suppose g(g) = 0 for some £ > 0. Then one can construct a sequence z,, € suppu
such that

Jim p(B(2n,¢€)) = 0.

Since supp p is compact and X is complete, one can extract a convergent sub-sequence
out of it : z,, — y, y € suppu. For kg large enough, z,, € B(y,e/2), for all k > ko,
and then

B(y,e/2) C B(zp,,e), k> ko.

Hence u(B(y,e/2)) < u(B(zn,,€)), k > ko, and the latter goes to zero as k — oo by
construction. On the other hand, according to (2.3) u(B(y,&/2)) > 0 since y € suppp.
Contradiction. Hence g(¢) > 0 for all € > 0.

(ii) Let v = (B(z4,€))icr € P! be a centered e-packing of suppu. Since suppy is
not compact, if £ is small enough, v can be chosen such that its cardinal is infinite by
Lemma 2.1. But

> u(B(zi,e)) < p(X) < +oo,
iel

and thus we get that u(B(z;,e)) — 0, as ¢ — oco. Hence for £ > 0 small enough,
g(e) =0. O

3.2 Relation with the doubling condition

Definition 3.2 A measure p € M(X) is said to satisfy to a doubling condition (or
“u is doubling”) if there exist two constants K > 1,v > 0 such that uniformly in

T € Suppy,

_ w(B(z,2¢))
Ku(@) = swe ~ Bae) =K (34)

or equivalently, there exists a constant K > 1,
B(x,2
limsup | sup M <K.
el0 eesuppp  H(B(z,¢€))

One also says that u is “diametrically regular”.
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We first make a couple of remarks:
a) We adopt here the definition used by Olsen [O1] rather than the one used by Pesin
[P] where (3.4) is required to hold for all x € X, and not only in the support of u.
Indeed such a definition dramatically limitates the range of candidates to the doubling
condition (for instance most of compactly supported measures would not satisfy to it).
Definition (3.4) (like in [O1]) sounds more natural to us.
b) In (3.4) above we used balls of radius 2¢ and . One could equivalently consider any
ratio of the form u(B(z,ve))/pu(B(z,€)), with v > 1. Indeed, once u is shown to be
doubling for one particular v > 1, then the same property holds for any v > 1 [O1].
¢) One can find in the litterature an alternative definition, where the bound K, (z) < K
above is only required to hold for u-almost all € supp u, rather than for all x € supp u
(e.g. [EJJ]). Using Remark b) above, it is not hard to see that these two points of view
are actually equivalent in the case of separable metric space. So that

B(z,?
(34) <= (3.5) <= Timsup |y — ess.sup AEE:2%))

€l0 w(B(z,¢)) =K (3.6)

d) We stress that not all measures with compact support are doubling: see [EJJ] and
Subsection 5.1.

e) One can define a local version of the above doubling condition by inverting the order
of the “limsup” and the “ess.sup” in the r.h.s. of (3.6). A weak form of such a local
doubling condition is introduced in [BSa], where the ratio u(B(z,2¢))/u(B(z,¢)) is
allowed to grow, say logarithmically in €. It is then proved that any regular Borel
measure on X = R? satisfy to such a weak local doubling condition. It is however
not anymore the case if one consider the same weak condition but non local (restore
the position of the “limsup” and the “ess.sup”). Following Proposition 3.2, a weak,
but uniform as in (3.6), doubling condition would actually imply (H2) in (1.15). Note
that doubling conditions of local type are not relevant for the study of generalized
dimensions, for the latter are objects defined globally.

Proposition 3.2
Let i € P(X) be with compact support. If p is doubling, then p € Pg(X): that is
g~ <g" <oo.

Proof of Proposition 3.2:
Fix v > 0. Applying (3.4) n times leads to u(B(z,v/2") > K "u(B(z,v)) for any
x € supp 4. On the other hand, for all € € (0,7) one can find n such that 27! <
e <v2™™. As a consequence

w(B(z,€)) > p(B(z,v2 " 1) > K" 1 (B(z,v)) > 1/Keu(B(z,v)),
where A = log K/log2. Taking the infimum over all z € suppy yields
g(e) > 1/Ke'g(v), for any e € (0,v),

with g(v) > 0 by Proposition 3.1. The result follows with g™ < A. O
The converse to Proposition 3.2 is not true as shown by the example presented in
Subsection 5.1: one can have g™ < +oo but still the measure is not doubling. Condition
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g+t < oo can actually be considered as a weak doubling condition. Indeed note that for
any x € supp i, € > 0 and N € N* one has

p(B(z,2)) p(B(z,3¢))  w(B(z, (N +1e)) _ p(B(z, (N +1)e)) _ p(X)
u(B(z,¢)) u(B(z,2e)) w(B(z, Ne)) w(B(z,e))  ~ g(e)

So that for any e, there exists k = k(z,e,N), 1 < k < N, such that u(B(z, (k +

1)e))/u(B(z, ke)) < (1/g(e))Y/N = exp(1/N log(u(X)/g(e ))) Now if for instance N ~
log(1/¢) then the latter bound leads to u(B(z, (k + 1)e))/u(B(z, ke)) < Ky < oo if

gt < oco. In other terms,

Observation 3.1 If u € Py(X), then there ezxists Ky < oo such that for any ¢ > 0
small enough and for any x € supp p, there exists kz e € N, 1 < kz . < log(1/e) such

that
p(B(, (kz,e +1)¢))
(B, kae)) < K. (3.7)

As one can see the property g7 < oo for compactly supported measures is a very
natural substitute to the rather strong condition (3.4) that defines doubling measures.
If the support of u is not compact, than the key quantity is not g(&) anymore (since it
is zero); we refer to [GT| where this situation is handled.

Property (3.7) can be seen as a non uniform doubling condition in the sence that for
each = € suppp the radius of the balls for which u(z, (k+ 1)¢) and u(z, ke) have com-
parable sizes (that is the spirit of the doubling condition) depends on z and €. However
one recovers some (crucial) uniformity by the fact that k. is uniformly bounded in
x € suppp by some (increasing) function of €.

We note that Observation 3.1 constitutes, sort of say, the foundation of our proof
of the equivalence of the dimensions. It does not appear clearly in the proof of Propo-
sition 4.1 and Theorem 4.3, because we derive stronger results than just equivalence
under the condition g* < oo: we derive the equivalence for the larger classes of mea-
sures that satisfy (1.12) or (1.15).

As for the equivalence between Hentschel-Procaccia dimensions and generalized
Rényi dimensions, the following proposition is rather immediate.

Proposition 3.3 Suppose that the measure is doubling, then D¥(q) = P.D*(q) =
C.D*(q) for all ¢ < 0.

Indeed, one already has D*(q) < P.D*(q) = C.D*(q), and if u = (B(s,¢€))icr € Pc(a),
then

I(ge) > 3 / u(B(z,€)) Yp(z) > 3 u(B (a1, €)) (B, 2€))7 !
icl Y B(zie) icl

> KUY u(B(ai,e))? = K9715(uq,¢) | (38)
i€l

Since this is true for all u € PE ), one has I(q,e) > P.(q,¢) and Proposition 3.3 follows.
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3.3 Basic general relations with the dimensions D*(¢) and P.D*(q)

Theorem 3.1 Let p € P(X) be a probability measure with compact support.
i) If p € Py(X), i.e. gt < oo, then for all ¢ <0 (actually g < 1),

(1-9)g" —g" <75(a) < (1-q)g™, (3.9)
and thus

gt — 9"
(1-49)

In particular, if gt < oo then D*(—oc0) = g*.
ii) If gt = oo but g~ < 0o, then the right inequalities in (3.9) and (3.10) still hold for
77(q) and D™(q).

< D¥(g) < g*. (3.10)

Proof of Theorem 3.1:
The measure p has compact support, so that by Proposition 3.1, g(¢) > 0. Since
qg— 1 <0, it follows that

Hae)= [ w(B,) dula) < g(e)*u(X) = g(e)™"

And the right inequalities in (3.9) and (3.10) follow.

We turn to the left inequalities. Let € > 0,7 > 0. From the definition of g(n + €),
for any v > 0 one can find a point y € suppu such that u(B(y,n+¢)) < g(n+¢) +v.
One can then estimate (using the fact that u(X \ suppu) = 0):

I(g,e) > /B(ym) w(B(z,)) ' du(z) > /B(M) #(B(y,n +€))? du(z)

> (9(n+e)+v)T w(By,n).
Since y € supppy, u(B(y,n)) > g(n). Letting then v going to 0, one gets

I(g,e) > (9(n +¢€))*"g(n), &n>0. (3.11)

We shall use many times this bound later in the paper. In particular, (3.11) is true for
n = ¢. Taking the log and dividing by log(1/¢), yields

log I(g,¢) log(g(2¢)) logg(e)
log(1/e) z(1-4) loge loge

Estimates (2.5)-(2.6) finish the proof. O

Theorem 3.2 Let p € P(X) be a probability measure.
(i) Suppose p has a compact support. Then for all ¢ <0,

(—9)g* < PF(9) < (1 - q)g™, (3.12)

and thus
—q
(1-4q)

with the understanding that if g7 = 400 (resp. g~ = +00) then for all ¢ < 0 P (q) =
P.D*(q) = +oo (resp. P7(q) = P.D™(q) = +00).
In particular, if g* < oo (resp. g~ < 00) then P.DV(—o0) = g* (resp. P.D (—o0) =
9 )-

(ii) If suppu is not compact, then P,D*(q) = +o0 for any q < 0.

9" < P.D*(q) < g7, (3.13)
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Proof of Theorem 3.2: (i) Since p has a compact support, g(¢) > 0 by Proposi-
tion 3.1. From the definition of g(¢), there exists € suppu so that u(B(z,¢)) < 2g(e).

Consider the ball B(z,¢). It is a particular packing u = (B(z,¢)) € Pc(a) of supppu, so
that for ¢ <0

Pe(g,€) = S(u,q,¢) = p(B(z,€))? = (29(¢))?. (3.14)
On the other hand, note that, for any ¢ < 1 and for any centered e-packing u =
(B(xi,€))icr € PE,
S(u,g,€) = Y p(B(xs€)? = u(B(wie))u(B(wi,e))? !
iel iel
< g(e) " u(X) = g(e)" . (3.15)
Estimates (3.14) and (3.15) lead to the desired result.
(ii) Assume that p has a non compact support. By Lemma 2.1, for any € > 0 small

enough there exists a centered e-packing with infinite cardinality. This yields immedi-
ately P.(q,e) = 400 for any ¢ < 0 and thus P,D*(g) = 4occ. 0

4 General results for D*(q)

4.1 General result for D" (q)

Theorem 4.1 Let p € P(X) be a probability measure on X with compact support.
Suppose that gt = +oo. Then for any ¢ < 0, D' (q) = +o0.

Combining this result with that of Theorem 3.1 shows that the class of measures
Py(X) introduced in (3.3) characterizes the measures which give rise to finite upper
Hentschel-Procaccia dimensions. We have:

Corollary 4.1 Suppose that u € P(X) has a compact support. Then D (q) is finite
for all ¢ < 0 if and only if DT (q) is finite for some ¢ < 0 if and only if p € Py(X).

Proof of Theorem 4.1:
By Proposition 3.1, one has g(n) > 0 for any n > 0. We define, for n > 0, the increasing
finite function

f(n) =log(1/g(n)).

Suppose the theorem does not hold: there exists ¢ < 0 such that D*(g) < +oo. Thus
there exists A > 0 finite such that

1A
I(g,¢e) < (6) , for all € > 0 small enough. (4.1)

Set
B =max(2,2/|q|), and K =2AB/|q|.

Since g7 = 400, we can pick 0 < 79 < 1/3 small enough so that

f(no) > K [log ol - (4.2)
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The bound (3.11) yields for any & € (0,79):
(g(mo)) 14D (4.3)
By taking the log, (4.3) together with (4.1) leads to

fw) 2 (1 +q])f(v +¢e) — Alog(1/e) (4.4)

for all v € (0,m0), € > 0. We define now a decreasing sequence (1 )r>0 as follows: 7
is defined as in (4.2), and for all k£ > 0,

)
)

I(g,e) > g(mo— ¢

_ _ lq|
Nk+1 =Nk — €k, Ek = €XP o4 (nk) .

Of course, this definition is correct only if 7 — e > 0 for all k. We will show this is
indeed the case. Define for £k > 1 the numbers

k-1
B(1+jlq|/2
Ch, = 1o — 2770 (1+jlal/ )‘
j=0

Since B = max(2,2/|q|) and n9 < 1/3, it is easy to check that C, > Coo = mo —
20 77(])3 (14719l/2) 5 (. We shall show now that for all k > 1 the following bounds hold:

M > Cr, f(k) > (1+ lal/2)* f (no)- (4.5)

First, one observes that (4.2) implies

q q
€0 = €exp (—%f(no)) < exp (%Klog 770) =g

Thus, m = no — 0 > o —nd = C1 > 0 since B = max(2,2/|q|). Next, (4.4) with
v =1, € =¢g yields

f(m) = (1+1ql) f(no) — Alog 1/e0 = (1 + |q|/2) f (10)-

Therefore, (4.5) is true for k£ = 0. Assume now that (4.5) holds for all ¥ < p and show
that it holds for k = p+1. Since n, > 0, the number ¢, is well defined and due to (4.2)
and (4.5) we obtain

q
ep < exp (—%(1 +lal/2) f(no)) < B2y o BORlal/2),
Therefore,
B
Mp+1 =1Tp — €p = Cp — Mo (1+plal/2) Cp+1 > 0.
Next, (4.4) and (4.5) yield

Fnp+1) = (1+lal) f(mp) — Alog 1/ep = (1 + |al/2) f(np) > (1 + gl /2)"* f (o).

We see that (4.5) hold for k = p + 1 and thus for all k.
Now we can finish the proof of the Theorem. Since 7, > Cf > C» > 0 for all &,
(4.5) implies
F(Coo) > flm) > (14 1g1/2)* f (no)-
Letting k go to oo, we obtain f(Cs) = +00. This is impossible since C, > 0 and thus
9(Co) > 0. The theorem is proved. O



4.2 A technical lower bound

In this subsection we derive an abstract lower bound for the integral I(g,d). It is the
basic result we shall use in the next two subsections.

Proposition 4.1 Let ¢ <0, and A,d,e > 0. Then, for A/§ large enough (depending
only on q),

I(g,0) > K(q,¢,[A/0]) Pe(g,€ + A), (4.6)
(IA/é] denotes the integer part of A/§), where
{ K(g,e,N) = exp (-2lal¢V10g 1/9(e)), €=l fora<o, )
K(0,e,N) = exp (—1/Nlog1/g(e)). '

Proof of Proposition 4.1:
Let ¢ < 0, 4,6 > 0,A > ¢ and set N = [A/d] € N*. We define n = ¢ + A. Let

(B(zi,n))icr € Pc(") be a centered n-packing of suppu. Recalling (2.4), one has

169)2Y [ uB@8) du(a) (48)
el B(zi,n)
We shall prove that for any w € suppy,
Alw,g,e b N) = [ a(B,0)" du@) > Klg,e, Nu(Blom)? - (49)
w,n

where K (g, ¢, N) is the finite positive constant defined in (4.7). Note that K(q,e, N) is
uniform in w, which is crucial. Let k be any integer between 0 and N. Obviously, since
g <0 and B(z,§) C B(w,e+ (k+1)d) for any x € B(w,e + kd), one has the following
inequalities

A(w,q,¢,0,N) > w(B(z,8))"  dp(z) > / w(B(z,8))" dp(z)

~/B(w,e+N6) B(w, e+kd)
> u(B(w,e+ k) u(B(w,e + (k+1)8))7 1.

Therefore,
A(w,q,6,6,N) _ p(B(w, e + k) (u(B(w, e+ (k+ 1)5)))‘1_1
uw(B(w,m)* —  u(B(w,n)) u(B(w,n))
for any £k =0,1,2,..., N — 1. We define positive numbers

w(B(w,e + kb))  w(B(w,e+ kd))
ty = = . k=0,1,2,..,N.
‘ w(B(w,n)) u(B(w,e+ A))
Note that, since w € suppu and u(B(w,n)) < 1, one has tg > u(B(w,e)) > g(e), and
thus,

(4.10)

p(B(w, e +[A/6]9))

)<ty <t1 <..<ty = <1. 4.11

A Stost S SN =T B e ) S 1
Since (4.10) is true for any £k =0,1,2,..., N — 1, one gets
A o, N _

@360 N) 5 g g =L (4.12)

w(B(w,m))? "~ kelo,N-1]
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We would like to prevent L from becoming too small. We shall get a control from below
for L using the function g(¢). What we shall do here is actually similar in its spirit to
the simple arguments that led to Observation 3.1. For ¢ = 0 it is basically the same,
as for ¢ < 0 we derive a better (but slightly trickier) bound. Consider first the case

q < 0. Then for any Kk =0,1,---, N — 1 one has tkt,;j_llﬂql) < L, which yields

1
logt > ——(logty —log L). 4.13
gk+1_1+|q|(gk gL) (4.13)

We proceed to the following natural change of variables z; = logty + (log L)/|g|. Then
(4.13) leads to

1
2x+1 > €z, where €= <1
1+ |q|
By a repeated use of that inequality one gets
2y > N 2. (4.14)

Moreover from (4.11) one derives zg = logtg + (log L)/|q| > log g(e) + (log L)/|q| and
zn < (log L)/|g|- Then (4.14) gives

log L
lal

> ¢V <log g(e) + 28 L>

lq|

and finally
N

3
> .
log L > |q| 3 oy log g(¢)

Since ¢ = 1/(1 + |g|) < 1, one can assume that N is large enough so that &V < 1/2.
Hence, since log g(¢) < 0, we have log L > 2|q|¢V log g(¢).
As for the case ¢ = 0, (4.13) leads to log g1 > logty — log L and thus

0>logty >logto — NlogL >logg(e) — Nlog L,
which implies log L > 1/N log g(e).

So depending on g < 0 or ¢ = 0 we have

{ L > Ki(g,e, N) = exp (—2lal¢V log 1/9(c)) i a <0, (4.15)

L > Kjy(e,N)=exp(—1/Nlog1/g(e)) if g=0.

Clearly, putting together Inequalities (4.12) and (4.15) leads to (4.9). So for any
centered n-packing u = (B(z;,7));c1, combining (4.8) and (4.9) one gets, for any ¢ < 0,

I(q,6) > K(q,&,N) Y _ u(B(zi,n))Y,
el

where n = ¢ + A. Taking the supremum other all such packings yields (4.6). O
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4.3 Criteria for non finiteness of D~ (q)

In this subsection we study the finiteness, or more precisely the non finiteness, of the
lower dimensions D~ (g). Of course, if g~ < 400 then by Theorem 3.1, D~ (q) is finite
for any ¢ < 0. So, as far as the finiteness of D™ (q) is concerned, the remaining open
question concerns the case g~ = +o00. Since the latter implies that gT = 400, we
already know by Theorem 4.1 that D" (q) = +oo for any g < 0, and by Theorem 3.2 we
also know that P.D~(q) = P.D%(q) = +oo for any ¢ < 0. What happens to D~ (q)?
Is it always infinite as well? Or could it be finite?

One may think that typically the dimensions D~ (g) should be infinite if g~ = +o0,
juste like P.D~(q). However in Subsection 5.2 Remark 5.1, we give an example where
g = 4oo but the dimensions D~ (g) are all finite for ¢ < 0. So the question is: are
there any conditions which will ensure that the dimensions are indeed infinite. Below
we provide a series of such criteria, in terms of the behaviour of the function g(e).

For any p = 1,2, ... we define
log; u =logu, log,,;u = log(log,u), (4.16)

assuming that u is big enough so that the arguments of each logarithm are positive,
and also for p =0, 1, ...

eXpyU = U, €XPjU = exXpu, exXpP, iU = exp(exp,u), (4.17)
Theorem 4.2 (i) Assume that g~ = +oo and that

logs1/g(e)

lim su < +o00. 4.18
€l0 P 10g1/€ ( )
Then D™ (q) = 400 for all ¢ < 0.
(i) Assume that
logy1
lim sup 2821/9) _
el0 IOgl/g

and P.D*(0) = dim%(suppy) = +o0o (resp. P.D~(0) = dimp(suppy) = +00). Then
D*(0) = +oo (resp. D™(0) = +00) as well.

(#ii) Assume that for some p = 2,3... and for some a €]0,+0o0], the two conditions are
fulfilled:

log, 1
lim inf ng—/g(g) =a, (4.19)
€l0 logl/s
1 1
lim sup 2&2+2/9() (4.20)
€l0 10g1/€

Then D~ (q) = +oo for all ¢ < 0.

Remarks

a) Note that (i) is similar to (iii) with p = 1 and a = +o0.

b) The example described in Subsection 5.2 Remark 5.1 shows that the condition (4.18)
is actually optimal.

c) Points (i) and (ii) extend the results of Theorem 4.3 below if P.D ™ (g) turns out
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to be infinite. Indeed, in this case, Points (i) and (ii) say that the limit in (H1) and
(H2) needs not to be zero but only finite, to get the equivalence (in the sense that both
dimensions D~ (q) and P.D™(q) are infinite).

d) One can give an alternative proof of points (i), (iii) of this Theorem in spirit of
the proof of Theorem 4.1. Namely, assuming that D~ (¢) < +oo for some g < 0, one
obtains (4.4) on some sequence &, — 0. Iterating this inequality, one can show that
it is incompatible with the two conditions of the Theorem for p = 1 (¢~ = +oo and
(4.18)) or for p > 2 ((4.19) and (4.20)).

Proof of Theorem 4.2:
Point (i). Set
logy 1
v =1+ limsup M.
€l0 log1/e
Let ¢ < 0,6 > 0. Apply Proposition 4.1 with A = ¢, § = £!*¥, and thus N = [¢77].
Since logsz 1/g(e) < (v — 1/2)log 1/¢ for € small enough, one gets, with v = |log{|,

I(q,9)

%

exp (—2lg] exp(—((1/e)" — 1) + (1/2)" /%)) Pu(q, 2€)
> exp(—|q|) Pe(g, 2¢),

Vv

for £ small enough. Then, using that log(1/§) = (1 + v) log(1/e), we obtain that,

.. .logI(q,9) 1 _
lim inf > P .
wih log(1/6) — 14v ¢ (@)

Since g~ = 400, one knows that P, (q) = 400 and thus the latter inequality yields the
result.

Point (ii). The proof is similar and based on the bound of Proposition 4.1 for ¢ = 0.
Point (iii). We suppose a # +o00. The proof for & = +00 is similar.

First recall (3.14): in full generality P.(g,€) > (2g(¢))9. It follows from Proposition 4.1,
with A =¢, N = [¢/d], that, for ¢ < 0 and all §,& > 0

1
lal
with & = (1 + |q|)~!. Let 6 > 0, we define ¢, via the relation

log(1/8) = exp,_5((1/26)*7*"),

where the choice of n > 0 is fixed so that

log I(q,6) > log(1/2g(2¢))) — 26%/° ! log(1/g(e)), (4.21)

log, 1/9(8)_

1 1
0 < lim sup M oz 1/e

<a—4n < a =liminf
€l0 logl/a " el0

As a consequence, for ¢ small enough (depending on 7), [log, 1/g(2¢)]/[log(1/2¢)] >
a — 1, and thus

log 1/(g(2¢)) _ exp, o((1/2¢)*7")
log(1/9) — log(1/9)

— exp, 5((1/26)°7")/ exp, 5((1/26)°777), (4.22)
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which goes to infinity as 6 — 0. On the other hand, for any & small enough,

log, 15 1/(g(¢))
log(1/¢)

It follows that for v = |log&| > 0 given, and for any & small enough,
¢/%10g1/g(e) < €/%exp,((1/e)*7%7)
— exp(—ye expy_ (1/2)7 M) exp,((1/6)7 %M, (4.23)
the latter going to zero as § — 0. It follows from (4.21)-(4.23) that

log I(g, 6)
5,0 log(1/0)

< a-—3n.

= -l—(_)o7
or in other terms D~ (q) = +oo0. O

4.4 Criteria for the equivalence of D*(q) and P.D*(q)

So far we investigated when are the dimensions D*(q) finite or infinite for a given
compactly supported measure. We showed that the finiteness of D (q) and P.D"(q)
are totally characterized by the one of g*. As for the lower dimensions, if the finiteness
of P.D™ (q) is equivalent to the one of g, this is not the case with D~ (g). The next
question, which is as natural as important, is: if, for ¢ < 0 (or ¢ = 0), the dimen-
sions are finite, then do the Hentschel-Procaccia and the generalized Rényi dimensions
coincide? We shall answer positively to this question, for both D*(g) and D~ (q),
provided gt < oco. If now gt = oo, but g~ < oo, then we give a criterium that im-
plies D~ (q) = P.D™(q). In Subsection 5.2 we exhibit a family of measures such that
D~ (q) < P.D™(g) < 400, on some interval (—oo, qp).
Consider the following two conditions on the rate of decay of the function g(¢).

logloglog(1
(Hl) lln’lsup Og Og Og( /g(s)) — 07

€0 log1/e
loglog(1
(H2) lim sup 08081/ 9%¢)) og(1/9(c)) =0.
el0 logl/e

Note that
(p is doubling with compact support) = (g7 < +00) = (H2) = (H1).

Theorem 4.3 Suppose u has a compact support.
(i) Assume Hypothesis (H1) holds. Then for any q < 0,

D*(q) = P.D*(q). (4.24)
(i) Assume Hypothesis (H2) holds. Then for any q¢ <0

D*(q) = P.D*(q). (4.25)
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Corollary 4.2 One has

(i) If gt < 400, then for any ¢ < 0, D*(q) = P.D*(q) < +oo.

(i1) If gt = 400, g~ < +0o and (H1) holds, then D (q) = P.D (q) < 400 for any
g <0.

(ii) If g+ = 400 but (H2) holds, then D*(0) = P.D*(0) (both being finite or infinite).

Remarks

a)If gt = 400, g~ < +oo but (H1) does not hold, it is possible that D~ (q) < P.D™(q),
both dimensions being finite according to Theorems 3.1 and 3.2. We give such examples
in Section 5.2, which shows that the condition (H1) above is optimal: for any é > 0
one can construct examples for which g~ < +o0, limsup, o logs(1/g(¢))/log1/e = &
but with D~ (q) < P.D™(g) on some interval (—oo, gp)-

b) If ¢ = 0 and gt = +oo, in general one cannot say whether D*(0), P.D*(0) are
finite or not (the same for g~ and D~ (0), P.D~(0)). The second point of Theorem 4.3,
provides a criterium for their equality.

c) If g = +o0, then Point (i) of Theorem 4.3 says that D~ (q) = P.D™(q) = +o0 if
limsuplogs(1/g(e))/log1/e = 0. This a particular case of Point (i) of Theorem 4.2
which says that this is still the case if lim suplogs(1/g(g))/log1/e < +oo.

Proof of Theorem 4.3:
The heart of Theorem 4.3 is Proposition 4.1.

The fact that D¥(q) < C.D*(q) = P.D*(q) for all ¢ < 0 follows from Proposi-
tion 2.1. We show the converse inequalities P.D*(q) < D*(q).

Let v > 0. Apply Proposition 4.1 with A = ¢, and § = e!*¥ (hence N = [¢77)).
Hypotheses (H1) if ¢ < 0 and (H2) if ¢ = 0 are so that for » > 0 being given, and for
any € > 0 small enough, K (q,e,[¢77]) is non smaller than some constants K*(g,v) > 0,
uniformly in ¢ (this is similar to the proof of Point (i) of Theorem 4.2). So that (4.6)
yields, for any € > 0 small enough,

I(q,€"*) > K*(q,v)Pe(q, 2).

Thus taking the log, dividing by (1 — ¢)log1/e and taking the liminf or lim sup, one
gets, for any v > 0,

DE(q) > 1iypczaﬂt(q). (4.26)

And the theorem follows. O

5 Examples and counter examples

Throughout this section we mean by f(n) ~ g(n), as n — oo, that there exists two
constants C; and Cq such that for n large enough

C1g(n) < f(n) < Cag(n).

5.1 Example where ¢ < gt < 400

Let v and a two positive reals. We define a measure p on R by u = 3, ~; ands,, where
zn = exp(—expyn) and a, = p({zn}) = z5. (5.1)

Note that supp p = (U,>1{zn}) U {0} C [0,1]. We shall show that
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Proposition 5.1
(i) p is not doubling.
(ii) One has a = g~ < g+ = aeY < +o00. In particular p € Py(R).

This compactly supported measure u is then a very simple exemple both of a mea-
sure with g~ < g* and of a measure which is not doubling, but that still belongs to
the class Py(R), since g+ < co. The latter then implies that for this measure p one has
D*(q) = P.D*(q) for any ¢ < 0, by Corollary 1.1.

Proof of Proposition 5.1:
To verify Point (i), note that for n large enough so that z,/2 > x,t1, u(0,2,/2) =
> heni1 @k ~ Qny1, and p(0,z,) = Y232, ag ~ a,. As a consequence

(0, zy,) N( Tn, )“’

N(O, wn/2) Tn+1

which goes to infinity as n goes to infinity. Hence limsup, o[u(0,2¢)/u(0,¢€)] = o0,
and p is not doubling.

We turn to Point (ii). Let € > 0. There exists a unique n such that z,11 < ¢ < z,.
Note that at the point x = 0 one has

o]
p(—e,€) = Y ap~ant1 =Tpy (5.2)
k=n+1

One easily sees that g(e) = infpesuppp pt(z — 6,2 + €) = p(—¢,¢). Indeed if z = z,
with k > n + 1 then clearly u(zp — e,z +€) > p(0,e) = pu(—¢,¢), and if & < n, then
w(zg — e,z +€) > pu({xr}) = ar > ap >> any1, and thus by (5.2), p(zr — e,z +€) >
u(—e,€). As a consequence for € € [zni1,%,) small enough, x5 | < g(e) < 225 ,;.
Thus,

alogl/xp1 —log2 < log1/g(¢) < alogl/wny1 e

log1/Tn11 — logl/e — logl/z, ’
and @ < g~ < g < ae?. Since the left and right bound are reached for particular
sequences €, = Tp11 and &, = =, /2 respectively, it implies that g~ = a and gt = ae.

O

5.2 Examples where D~ (q) < P.D(q), with P.D~(q) finite or not

We pick a; > ag > 0 two reals. Let a,, be sequence of real in (0, 1], ag a small real to
be Line (5.7) below, and
ant1 = exp (—expa, ). (5.3)

The sequence a,, is monotone and fast decaying. We define intervals I,, = [a,, a¥], for
v €](1 + a2)™1, 1] (this condition comes from Lemma 5.2). Note that due to the fast
decay of the a,’s, the intervals I,, are disjoints. We further define the measure p on
each interval I, as follows:

p(dz) = Cpp(z)dz, p(x) = exp(—expz™*?), (5.4)
and the constant C,, is such that

u(In) = ak”, (5.5)



with Kv > 1. Note that

o0
suppu = {0} U | J I, C [0,1].
p=0

We first make useful observations. Straightforward computations show that

ol p N ap") < O < 20V p 7N (0" /2). (5.6)

We choose ag small enough such that
C,>1, foralln > 0. (5.7)

In the following we shall need the following bound: for any 8 > 0 for n large enough
(depending on S, a1, a3a),

p(x) >al forallz eI, p<n-1. (5.8)

Indeed observe that since p(z) is increasing and a, decreasing, we have for « € I,, p <
n —1: p(z) > p(ap) > p(an_1). Due to the definition of p(z) and an, p(an—1) > a2 for
any (3 > 0 for n large enough, so we obtain (5.8).

Proposition 5.2 For the measure u described above one has
()
g =K, and limsup logloglog 1/9(¢) = aj. (5.9)
€l0 logl/e
As a consequence g7 = 400 and thus D (q) = P.D"(q) = +oo0.
(i) Moreover, one has

77 (q) = max(Kv|q|,1+ |q|]) and P;(q) = max(K]|q|,1+ |q|)-
Or in other terms

7 (9) = P (¢) =1+ |q| if —(K-1)71<¢<0,
(@) =1+lql<Klg|=P;(q) if —(Kv—-1)1<qg<-—
77 (q) = Kvlq| < Klg| = P, (q) if ¢<—(Kv—1)"".

(K - 1)717

In particular D~(q) < P.D~(q) < +oo for g < —(K — 1)}, and D~ (~0) = Kv <
K =P D (—o0)=g .

Remark 5.1 One can also construct an example, based on the one proposed above,
where g~ = 400 and a1 = +oo in (5.9), but still D™ (q) < oo. To get such an
example, it is enough to let the parameters oy, K, v vary with the interval one considers:
A1, 02,0, Kny Un on Iy, with a1, > aop, going to infinity as well as Ky, and vy, is going
to zero. We keep the following relations : Knpvp = v > 1 fized, and vy E](l—l—ag,n)_l, 1]
(so that Lemma 5.2 is satisfied).

As a result, g~ = lim, o0 K, = +00 and

loglog log(1
T sup (28108 og(1/g(¢))
€10 log(1/e)

So for any ¢ < 0, D¥(q) = P.D*(q) = +o0, but D~(gq) = max(v|q|/(1 + |g|,1) <
D™ (—o0) =7 < 4o0.

= lim a1, = +oc0.
n—00 ’
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To prove Point (i) of Proposition 5.2, we shall first show that the infimum, when
computing g(e) = infyequpp u p(x — €, + €), is obtained for z = 0.

Lemma 5.1 For any ¢ > 0 small enough, one has g(e) = u([0,¢€]). Moreover g(e) <
Ce¥ for some constant C > 0.

Proof of Lemma 5.1:

For any ¢ > 0 one can find a unique n such that aj,; < ¢ < ay;. We shall assume
that n is large enough so that (5.8) holds.

Since € > a ¢, for any « € I, p > n+ 1 we have u([z — ¢,z +€]) > p([0,€]) =
u([0—¢e,04¢]). Therefore, when calculating g(e), one does not need to consider z from
intervals I, p > n + 1. It is sufficient to take z = 0 and = € I, p < n.

Consider = € I, p <n — 1. Since ¢ < a¥ and C}, > 1, using (5.8), we obtain:

u(lz — e,z +€)) = p(lz — e,z + €] N L) > ale > gl thlv, (5.10)

We turn to the case where x € I,. We shall study separately the cases € €]ay, 1, an]
and € €lan,a’].
1) Assume ay, | < € < an. Recall z € I,,. Using (5.8), we have

wlz—e,x+e)) > al e > arlf, (5.11)

Further, since ¢ < a, one has u([0,e]) = u([0,a},4]), and the fast decay in p of

u(lp) = a{f” implies, as n goes to infinity,

w(0,e]) = D ullp) ~ pllat) = anty. (5.12)
p=n+1

Since K > 1 one can take § small so that v + 8 < Kv and (5.11)-(5.12) yield
u([z —e,xz+¢]) > p([0,€]), ze€ I, (5.13)

for n large enough, so we do not need to take into account the points £ coming from
I,. Next, the bound (5.12) implies ([0, ¢]) < X. Since K > 1, taking 3 small enough,
we see from (5.10) that p([z — e,z +¢€]) > p([0,¢]) for x € I,,, p <n — 1. Finally, as n
goes to infinity,

9(e) = p((0,¢]) ~ alty < K, < € [, anl. (5.14)

2) Assume now ¢ €lay,a’] and recall z € I,. Observe that
((0,]) = (10, &% 11) + p([am <)) (5.15)
Since p is increasing u([z,z + €]) > wu([an, an + €]), and thereby
w(lz — e,z +¢]) 2 p([an; an +¢]) = p(lan; €]) + u(le, € + an)). (5.16)

Since Cy, > 1, due to (5.8)

Kv/2 v
u(le e+ an)) > plan)an > afl 1an > apfy > antf” > p((0, alr 1)), (5.17)
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provided f is small enough and n large enough. The bounds (5.15)-(5.17) yield u([z —
g,z +¢]) > u([0,¢]) for z € I, and to calculate g(¢), it is thus sufficient to consider
1([0,€]) and to compare it with p(jz — e,z +¢€]), z € I, p < n — 1 (bounded from
below by (5.10)). Assume first that a, < € < a% /3. Then

w([an,e]) < Cuplan/3)e < 20 p7 (ar;/2)p(ay,/3)e < M (5.18)
for any M > 0 if n is large enough. On the other hand, if € € [aX /3, a%], then
wlan,e]) < p(In) = ay” < (3e)". (5.19)
Finally, (5.15), (5.18) and (5.19) imply
1([0,€]) < 2287, + M + X < 2K € € [an,a’]. (5.20)

Since K > 1, for 8 small enough K > 1+ /v, and (5.10) implies p([z — &,z + €]) >
([0, €]) and thus g(e) = p([0,€]). O

Proof of Proposition 5.2:

Concerning g, note that Lemma 5.1 implies that g— >
subsequence €, = aZ. One has g(e,) = p([0,a%]) ~ p(l,) =
g =K.

To show the second claim of (5.9), we need to bound g(e) from below. First, it is clear
that

Consider then the

K.
akv = ¢X. Therefore,

g9(e) = u([0,€]) > pu(Int1) = aX¥,. (5.21)

for any € € [ay 4, ay].
1) Assume that € € [a}, | 1,2a,]. Then (5.21) and the definition of a, yield

1 2
loglog1/g(e) <log(Kv) + —7 < —7
an n
for n large enough. Therefore,
1 2
logloglog1/g(e) <log2+ ajlog— <log2+ ajlog — (5.22)
a €

n

2) Let now € € [2a,, a]. Since C, > 1, we can estimate:

g9(e) = p([0,€]) > p(lan,€]) > p(le/2,€]) > €/2p(e/2) = /2 exp(—exp(2/€)*?). (5.23)

Since ag < a1, one can easily see that (5.22) and (5.23) imply

log loglog 1
ogloglog1/g(e) _ - (5.24)

lim su
€l0 log 1/6

Then, considering the sequence &, = a, shows that the equality actually holds in (5.24).
Indeed, due to (5.12), one has

g(en) = p([0,ant1]) ~ anKjfl = exp(—Kvexp(a,*)) = exp(—Kvexp(e,*!)). (5.25)

We turn to the second part of the Proposition, i.e. the one concerning the dimen-
sions. It is clear that (5.9) implies gt = +o0o and thus (Theorem 4.1) that the upper
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dimensions are infinite: D7 (q) = P.D"(q) = +oo for all ¢ < 0. As to the lower di-
mensions, they are finite since g~ = K < +oo. We first compute P, (¢) and show
that
Pe (q) = max(K]|q|, 1+ [q])-

We already know that P, (q) > g |q| = K|g|. Note that P.(q,e) > P, ,(q,c), where
P, 1,(g,€) stands for the generalized Rényi sums of y restricted to the first interval Io.
One thus trivially gets P r,(q,¢) > Ce? !, and thus P, (g) > 1+ |g|. It remains to
show that P (¢) < max(K]|q|,1+ |g|). To that aim, pick a sequence &, = a%. Then
centered packings of supp u consist in the interval [0, a’] plus centered packings of the
intervals Iy, k < n — 1 (since for any = € Iy, k > n, the ball [z — e,,z + &,] contains
all the other intervals Ij, k > n). We recall (5.10): for z € I,, p < n — 1 one has
w(z — e,z +€]) > €1P/¥. In addition, note that suppu C [0,1], so that for any
centered packing of supp u, the number of intervals of radius &, and centered in I,
k <n—1,is less than e !. Tt follows that, for any 8 > 0 (provided n is large enough),

P.(g,e) < w([0,a%))? + e, el +h/M)a

1\ Kldl 1\ 1+(1+8/v)ldl
()~
En En

As a consequence, for any f > 0, P, (¢) < max(K|q|,1+ (14 B8/v)|q|). The result
follows.

We turn to 77 (g) and show that

IN

7 (q) = max(Kv|q|, 1+ |q|).

The main part of the work is to show that 7~ (¢) < max(Kv/|g|,1+|q|). That’s what

we start with, and to that aim, we shall control the integral I(q, ) on each interval Ij;:
we set Ji(q,€) = [, p([z —e,z+ €])9'du(x). We pick a sequence &, = 2ay,.
1) We start with the integrals Ji(g,¢) for £ > n+ 1, and show they can be bounded by
a constant. First note that if z € Iy, k > n+ 1, then (5.8) implies u([z — ep, z +€,]) >
w(lan, 2an]) > anCrp(an) > anaﬁ 112> ai’il for any 8 > 0 and n large enough depending
on . Now, for n large enough,

> Jilgen) < ai‘i(f_l) > (i) (5.26)
k>n+1 k>n+1
< 20228 Vp(lunr) = 20755 DT (5.27)
< 2, (5.28)

where we took 8 < 1/2Kv(1+ |q|)~L.
2) We now evaluate the integral J,(q,&,) that we split in two parts: a left part L, =
[an,al — 2ay] and a right part R, = [a¥ — 2ay, al]. Note that for any x € Ly,

T+en
(2 —En, T+En) > plz+en/2,z+6n) = Cr / pz)dz > on%p(x+gn/2). (5.29)
T+en/2
As a consequence, on L, = [an,al — 2a,],
g—1
/ (= e, +€,)7 Mdu(z) < CE (%) / p(x+en/2)  p(x)dz.  (5.30)
n L’n

One has the following trivial lemma:
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Lemma 5.2 Recall v €](1 4+ a2) 1, 1[. For any q < 0, and for any n large enough
(depending on v and q) and for all x € Ly, = [an, a’,—2ay,], one has p(z+e,/2)? 1 p(z) <
1.

Indeed, p(z + €,/2)? 1 p(z) < 1 is equivalent to (after taking a double log),

1

1
. < —
T4en/2 x

log(1+1q|) +

. Jog(1+14l) 140,

= en/2> 2 ((1-zlog(1+]g))/* —1) .

., (5.31)

as = goes to zero (i.e. n goes to +00). Since &, = 2a,, (1 + a2)v > 1 and = < af the
last inequality is true for n large enough, which proves Lemma 5.2.

It thus follows from (5.29), using (5.6), that

q—1
/ w5 —em+e0)T dp(z) < CO (%") o (5.32)
Ly
< ) (5.
<1 (5.34)

for n large enough. It is on L,, = [a,,a% —2a,] that the difference between the Hentshel-
Proccacia and the Rényi dimensions takes place. Instead of being large, like with Rényi
sums, the part of J,(q,e,) computed on [ay,al — 2a,] is very small. The key is the
double exponential in the definition of p(x).

We turn to the right part of I,: R, := [a} — 2an,a%]. On this part, one has
w(x — en,x +€pn) > u(Ry,) for any = € R,. Let us show that u(R,) > 1/2u(I,) for n
large enough. In fact,

(L) = Cn/ p(z)dz < Cralp(ar — 2a,),
Ly

and ,
a"n

p(Ra) = Co [ p(@)do>Co [ pla)ds > Cuanpla; - an).
R,

ay —an
Using again Lemma 5.2, with z = a¥ — 2a, (and thus z + &,/2 = a¥, — a,) and say
q = —1, one gets p(a”, — a,) > p(a’ — 2a,)"/?, and thereby, for n large enough,

p(Rn) Cranp(ay, — 2an)1/2 > Crayp(ay, — 2an)

(L)

As a consequence, u(Ry) > 1/2u(I,) for n large enough.
We can now estimate:

v v

/ w(z —en, +e)? tdu(z) < p(Rn)? < (u(In)/2)? = C1a%” = Cre?*”  (5.35)

n

with some finite constants C1, Ca uniform in n. Putting together (5.34) and (5.35), one
gets

M@en) = [ + [ <c@er. (5.36)
n R’IL
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3) We turn to Ji(q,€), k < n — 1. Recall (5.10): p(z —en,z +€,) > etV for any
B > 0 for n large enough. Thus,

n—1 n—1
3" k(g en) < QTAMED N (1) < CelHAMED), (5.37)
k=1 k=1

Finally, (5.28), (5.36) and (5.37) yield
I(g,en) < C(eff +e{ P/ (5.38)
for n large enough depending on 5. As a consequence,

77 (q) < max (Kvl|q|,(1+8/v)(1+lql))

for any B > 0. It follows that 7~ (¢) < max(Kv|q|,1+ |q|)-

It remains to show the converse inequality. First, I(q,e) > Jo(g,€) = /, T w(lx —
e,z + €))7 tdu(x) > Ce9 L. Therefore 7~ (q) > 1+ |q|.

Now, if € € [an/2,d%], note that for any = € I,, u([z — e,z + ¢]) < u([0,a%]) =
Yoh—o #(Ix) < 2u(Iy), for large n. Thus, for large n,

92\ Kvlql
I(q,€) > Jn(g,€) > Cu(I,)? = CaX¥1 > C <g> .

And if € € [a},, 1, 0,/2], then
Ige) > [ u(lw-ea+e)™du(e) > Culln)? = Cal
In41
K|q| Kvq|
o) 2o
€ €

As a consequence 7 (q) > Kv|q| and the Proposition is proved. O

Y
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