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Abstract. In this paper we apply the theory of viscosity solu-
tions of Hamilton-Jacobi equations to understand the structure of
certain Hamiltonian flows. In particular, we describe the asymp-
totic behavior of minimizing orbits of Hamiltonian flows by proving
a weak KAM theorem which holds under very general conditions.
Then, using Mather measures, we prove results on the uniform
continuity, difference quotients and non-uniqueness of solutions of
time-independent Hamilton-Jacobi equations.

1. Introduction

Consider the Hamiltonian differential equations

(1) ẋ = DpH(p, x) ṗ = −DxH(p, x),

where H(p, x) : R2n → R is smooth function. The first objective of this

paper is to understand the asymptotic behavior of certain trajectories

of (1). The second is to make clear the connections between Mather

measures [Mat91] (invariant measures under the flow of (1) with cer-

tain minimizing properties) and viscosity solutions of Hamilton-Jacobi

equations

(2) H(P + Dxu, x) = H(P ).

The third and last objective is to study the regularity properties of

viscosity solutions of the previous equation.

We make the assumption that H is strictly convex in p, and Zn

periodic in x, i.e.

H(p, x + k) = H(p, x)
1
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for all (p, x) ∈ R2n and k ∈ Zn. This hypothesis is satisfied in many

important applications, for instance, the motion of particles in a lat-

tice potential or perturbations of Hamiltonian systems in action-angle

coordinates.

It is well known [Arn99] that by solving a Hamilton-Jacobi PDE

(2) it is possible to construct a change of variables that simplifies the

dynamics of (1). Suppose for each P ∈ Rn there are smooth func-

tions H(P ) and u(x, P ) solving the partial differential equation (2).

Furthermore assume that the equations

(3) p = P + Dxu(x, P ) X = x + DP u(x, P )

define a smooth change of coordinates (x, p) → (X, P ). Then in the

new coordinates (X, P ) the ODE (1) is

(4) Ẋ = DP H(P ) Ṗ = 0.

Therefore, since (4) is trivial to solve, we would have solved (1), up to

changes of coordinates.

Unfortunately there are several points where this method can fail.

Firstly (2) may not have any classical solution. Secondly, for fixed P

there is not uniqueness and therefore u may not be differentiable in P .

Finally, in the very special situation where u is smooth both in P and

in x, (4) may not be solvable or may not define a gobal smooth change

of coordinates.

Ignoring the previous remarks, we point out the following facts:

• Since Ṗ = 0, for each P there exists an invariant set, the graph

p = P + Dxu.

• In this set the trajectories are straight lines (up to a change of

coordinates), because Ẋ = DP H(P ).

• Since DP u is bounded, solutions with initial conditions on the

invariant set have the asymptotic property

lim
t→∞

x(t)

t
= DP H.

It turns out that these statements (or analogs of them) are still true as

long as classical solutions are replaced by viscosity solutions.

Recall that u is a viscosity solution of (2), provided that whenever

φ is a smooth function such that u − φ has a local maximum at a

point x0 (resp. minimum) then H(P + Dxφ(x0), x0) ≤ H(P ) (resp.

≥). A classical-yet-unpublished theorem from Lions, Papanicolaou,
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and Varadhan [LPV88] (see also [Con95], [Con97], [Con96], or [BD98])

guarantees the existence of a viscosity solution of (2). More precisely,

for each P there exists a unique H(P ) and a function u(x, P ) (possibly

not unique), solving (2) in the viscosity sense. Furthermore H is convex

in P and u(x, P ) Lipschitz in x.

If u is a viscosity solution of (2) then it satisfies the following equation

[FS93]

(5) u(x, P ) = inf
x(0)=x

∫ t

0

[
L(x, ẋ) + Pẋ + H(P )

]
ds + u(x(t), P ),

where the infimum is taken over all Lipschitz trajectories x(·) with ini-

tial condition x, and L(x, v) = supp [−v · p−H(p, x)] is the Legendre

transform of H. Furthermore there exists an optimal trajectory x∗(s),

0 ≤ s ≤ t. Let p∗ = P + DvL(x∗, ẋ∗). Then (x∗, p∗) is a solution of the

backwards Hamilton equations

(6) ẋ∗ = −DpH(x∗, p∗) ṗ∗ = DxH(x∗, p∗).

For 0 < s < t, p∗(s) = P + Dxu(x∗(s), P ), in particular u is differ-

entiable along the optimal trajectory and if u is differentiable at x,

p∗(0) = P + Dxu(x, P ).

The results by A. Fathi [Fat97a], [Fat97b], [Fat98a], [Fat98b], and

W. E [E99] make clear the connection between viscosity solutions and

Hamiltonian dynamics. The main idea is that if u(x, P ) is a viscosity

solution of (2) then there exists an invariant set I contained on the

graph

{(x, P + Dxu(x, P ))}.

Furthermore, I is a subset of a Lipschitz graph, i.e. Dxu(x, P ) is a

Lipschitz function on π(I), where π(x, p) = x. If H is differentiable

at P , then any solution (x(t), p(t)) of (1) with initial conditions on I
satisfies

(7) lim
t→∞

|x(t)−DP Ht|
t

= 0.

We improve the asymptotic estimate (7) using viscosity solutions

methods (theorem 1). Then we prove that there is a one-to-one corre-

spondence between Mather measures and viscosity solutions (see also

[EG99]). This, for instance, explains why viscosity solutions of (2)

may not be unique. Then we give conditions under which the solution
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u(x, P ) is uniformly continuous in P . The proof relies in understand-

ing how viscosity solutions encode information about Mather measures.

Finally, we prove that change of coordinates (3) satisfies a weak non-

degeneracy condition if H is uniformly convex.

I am deeply indebt to Professor Lawrence C. Evans for his sugges-

tions and patience in reading and discussing with me several drafts of

this paper. I would like to thank L. Barreira and W. Oliva discussing

this paper with me and for many references and suggestions.

2. Improved Asymptotics

Suppose that u is a periodic viscosity solution of (2). Define

G = {(x, P + Dxu) : u is differentiable at x} .

Let Ξt be the flow corresponding to (6). Observe that, for all t > 0,

Ξt(G) ⊂ G. Define Gt = Ξt(G). Let

I = ∩t>0Gt.

Then [E99] I is a nonempty closed invariant set for the Hamilton-

ian flow. Furthermore, if H(P ) is differentiable at P , the trajectories

(x(t), p(t)) of the (forward) Hamiltonian flow with initial conditions on

the invariant set I(P ) satisfy

lim
t→∞

x(t)

t
= DP H(P ).

The main result in this section improves the previous asymptotic

estimate.

Theorem 1. Suppose (x(t), p(t)) is a solution of (1) with initial con-

ditions on the invariant set I. Furthermore assume H is twice differ-

entiable at P . Let

‖x− y‖ ≡ min
k∈Zn

|x− y + k|,

i.e., the ”periodic distance” between x and y. Then there exists a con-

stat C such that

|x(t)− x(0)−DP Ht| ≤ C
√
‖x(t)− x(0)‖t.

Suppose there exists a continuous function ω, with ω(0) = 0, such that

|u(x, P )− u(x, P ′)| ≤ ω(|P − P ′|).
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Then

(8) |x(t)− x(0)−DP Ht| ≤ min
δ

‖x(t)− x(0)‖ ∧ ω(δ)

δ
+ Ctδ.

Finally, if u is uniformly differentiable in P in I,

x(t) + DP u(x(t), P )− x(0)−DP u(x(0), P )−DP Ht = 0.

Proof. Let u(x, P ) be a viscosity solution of (2). Then, for some C1

function x∗(s) with x∗(0) = x

u(x, P ) = u(y, P ) +

∫ t

0

[
L(x∗, ẋ∗) + P · ẋ∗ + H(P )

]
ds,

where y = x∗(t). Then, for any other P ′

u(x, P ′) ≤ u(y, P ′) +

∫ t

0

[
L(x∗, ẋ∗) + P ′ · ẋ∗ + H(P ′)

]
ds.

Thus

u(x, P )− u(x, P ′) ≥u(y, P )− u(y, P ′)+

+

∫ t

0

[
(P − P ′) · ẋ∗ + H(P )−H(P ′)

]
ds.

If H is twice differentiable (or at least C1,1) at P we have

H(P ′) ≤ H(P )− ω · (P ′ − P ) + C|P ′ − P |2,

where ω = −DP H(P ). Thus

u(x, P )− u(x, P ′) + u(y, P ′)− u(y, P ) ≥

(P − P ′) ·
∫ t

0

[ẋ∗ − ω]− Ct|P ′ − P |2.

The left hand side can be estimated by

u(x, P )− u(x, P ′) + u(y, P ′)− u(y, P ) ≤ ‖x− y‖.

Choose |P − P ′| =
√

‖x−y‖
t

then

|
∫ t

0

[ẋ∗ − ω] | ≤ C
√
‖x− y‖t.

Now assume that there exists a continuous function ω, with ω(0) = 0,

such that

|u(x, P )− u(x, P ′)| ≤ ω(|P − P ′|)
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then we have

u(x, P )− u(x, P ′) + u(y, P ′)− u(y, P ) ≤ ‖x− y‖ ∧ ω(|P − P ′|).

Finally if u is uniformly differentiable in P we get

x(t) + DP u(x(t), P )− x(0)−DP u(x(0), P )−DP Ht = 0.

This last equality shows that whenever the expression

X = x + DP u

is well defined in the invariant set, we have Ẋ = DP H. �
In section 4 we investigate sufficient conditions for the existence of a

modulus of continuity ω(δ) for u. Such conditions in conjunction with

estimate (8) yield a sharper asymptotic estimate.

3. Mather measures

Let (x(t), p(t)) be a trajectory with initial conditions on the invariant

set I. For E ⊂ T n × Rn define the measure

µT (E) =
1

T

∫ T

0

1E(x(t), p(t)).

µT is a probability measure and since p(t) is bounded we can extract

a weakly converging subsequence to some measure µ. Since I is closed

this measure will be supported on I. Such measures are called a Mather

measures. The two theorems in this section prove the equivalence of

our definition of Mather measure and the usual one [Mat91], i.e., that

µ minimizes ∫
L + P · vdη,

over all probability measures η that are invariant under the flow Ξt.

Theorem 2. Suppose µ a Mather measure, associated with a periodic

viscosity solution of

H(P + Dxu, x) = H(P ).

Then µ minimizes ∫
L + P · vdη,

over all probability measures η that are invariant under the flow Ξt.
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Proof. If the claim were false, there would be an invariant probability

measure ν such that

−H =

∫
L + P · vdµ >

∫
L + P · vdν = −λ.

We may assume that ν is ergodic, otherwise we could choose an ergodic

component of ν for which the previous inequality holds. Take a generic

point of (x, v) in the support of ν and consider its orbit x(s). Then

u(x(0), P )−H(P )t ≤
∫ t

0

L(x(s), ẋ(s)) + P · ẋ(s)ds + u(x(t), P ).

As t →∞
1

t

∫ t

0

L(x(s), ẋ(s)) + Pẋ(s)ds → −λ,

by the ergodic theorem. Hence

−H ≤ −λ,

which is a contradiction. �
Next we prove that any of Mather’s measures is ”embedded” in a

viscosity solution of a Hamilton-Jacobi equation. To do so recall the

result from [Mn96]: suppose µ is a ergodic minimizing measure. Then

there exists a Lipschitz function W : supp(µ) → R and a constant

H(P ) > 0 such that

−L− P · v = H(P ) + DxWv + DpWDxH.

By taking Was initial condition (interpreting W as a function of x

alone instead of (x, p) - which is possible because supp µ is a Lipschitz

graph) we can embed this minimizing measure in one of our measures

νt. More precisely we have:

Theorem 3. Suppose µ is a ergodic Mather measure. Then there exists

a viscosity solution u of (2) such that u = W on supp(µ). Furthermore,

for almost every x ∈ supp(µ) the measures νt obtained by taking mini-

mizing trajectories that pass trough x coincides with µ.

Proof. Consider the terminal value problem V (x, 0) = W (x) if

x ∈ supp(µ) and V (x, 0) = +∞ elsewhere, with

−DtV + H(P + DxV, x) = H(P ).

Then, for x ∈ supp(µ)

V (x,−t) = W (x).
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Also if x 6∈ supp(µ) then

V (x,−t) ≤ V (x,−s),

if s < t. Hence, as t → ∞ the function V (x,−t) decreases pointwise.

Since V is bounded and uniformly Lipschitz in x it must converge

uniformly (because V is periodic) to some function u. Then u will be

a viscosity solution of

H(P + Dxu, x) = H(P ).

Since u = W on the support of µ, the second part of the theorem is a

consequence of the ergodic theorem. �
Finally, to complete the picture, recall a theorem from [EG99] that

states that any Mather measure is supported on the graph p = P +

Dxu, for any u viscosity solution of (2). This theorem shows that any

viscosity solution of (2) encodes all the information about all possible

Mather measures.

In case in which, for the same P , there are distinct Mather measures

ν1 . . . νk with disjoint supports, we could use the functions W1 . . . Wk as

initial condition (with +∞ outside the union of supp νi) to construct a

viscosity solution of (2). By adding arbitrary constants to Wi we can

change the solution, therefore proving non-uniqueness.

4. Uniform Continuity of Viscosity Solutions

This section adresses the question whether viscosity solutions of (2)

are continuous or not in P . Obviously, adding an arbitrary function

of P to u produces another viscosity solution. We could think that

by defining a new family of solutions v = u + f(P ), with an appro-

priate choice for f (for instance such that v(0, P ) = 0) we would get

a continuous family of solutions v. However, the non-uniqueness ob-

servation from the previous section implies that such results are not

to be expected, in general. However, as we prove bellow, when there

is a unique Mather measure ν (unique ergodicity) then, u is uniformly

continuous in P on the support of ν.

Proposition 1. Suppose ν is a Mather measure as in the previous

section. Let Pn → P . Then there exists a point x in the support of ν

such that for any T

sup
0≤t≤T

|u(x∗(t), P )− u(x∗(t), Pn)| → 0,
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as n →∞, provided u(x, Pn) = u(x, P ).

Proof. We start by proving an auxiliary lemma

Lemma 1. There exist a point (x, p) in the support of ν, and sequences

xn, x̃n → x, pn, p̃n → p, with (xn, pn) ∈ supp ν optimal pair for P , and

(x̃n, p̃n) optimal pairs for Pn.

Proof. Take a generic point (x0, p0) in the support of ν. Let x∗(t)

be the optimal trajectory for P with initial condition (x0, p0). Then

for all t > 0

H(P + Dxu(x∗(t), P ), x∗(t)) = H(P ).

Also, for almost every y, we have

H(P + Dxu(x∗(t) + y, Pn), x∗(t)) = H(Pn) + O(|y|),

for almost every t. Choose yn with |yn| ≤ |P − Pn| such that the

previous identity holds. By strict convexity of H in p, we get

ẋ∗(t)ξ + θξ2 ≤ C|Pn − P |,

where

ξ = [P − Pn + Dxu(x∗(t), P )−Dxu(x∗(t) + yn, Pn)] ,

and

ẋ∗(t) = −DpH(P + Dxu(x∗(t), P ), x∗(t)).

Note that∣∣∣∣ 1

T

∫ T

0

ẋ∗(t)ξ

∣∣∣∣ | ≤ |P − Pn|+
|u(x∗(0), P )− u(x∗(T ), P )|

T
+

+
|u(x∗(0) + yn, Pn)− u(x∗(T ) + yn, Pn)|

T
.

Therefore we may choose T (depending on n) such that∣∣∣∣ 1

T

∫ T

0

ẋ∗(t)ξ

∣∣∣∣ ≤ 2|P − Pn|.

Thus

1

T

∫ T

0

|P + Dxu(x∗(t), P )− Pn −Dxu(x∗(t) + yn, Pn)|2 ≤

≤ C|P − Pn|.

Choose tn for which

|P + Dxu(x∗(tn), P )− Pn −Dxu(x∗(tn) + yn, Pn)|2 ≤ C|P − Pn|.
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Let xn = x∗(tn), x̃n = x∗(tn) + yn, pn = P + Dxu(x∗(tn), P ), and p̃n =

Pn + Dxu(x∗(tn) + yn, P ). By extracting a subsequence, if necessary,

we may assume xn → x, x̃n → x, etc.

To see that the lemma proves the proposition, let x∗n(t) be the optimal

trajectory for P with initial conditions (xn, pn). Similarly let x̃∗n(t) be

the optimal trajectory for Pn with initial conditions (x̃n, p̃n). Then

u(xn, P ) =

∫ t

0

L(x∗n, ẋ
∗
n) + P · ẋ∗n + H(P )ds + u(x∗n(t), P ),

and

u(x̃n, Pn) =

∫ t

0

L(x̃∗n, ˙̃x∗n) + Pn · ˙̃x∗n + H(Pn)ds + u(x̃∗n(t), Pn).

On 0 ≤ t ≤ T both x∗n and x̃∗n converge uniformly to x∗. and,

since by hypothesis u(xn, P ), u(x̃n, Pn) → u(x, P ), we conclude that

u(x̃∗n(t), Pn) − u(x∗n(t), P ) → 0 uniformly on 0 ≤ t ≤ T . Therefore

u(x∗(t), Pn)− u(x∗(t), P ) → 0 uniformly on [0, T ]. �

Theorem 4. Suppose ν is an ergodic Mather measure with ν|supp(ν)

uniquely ergodic with respect to the restricted flow. Assume Pn → P .

Then

u(x, Pn) → u(x, P ),

uniformly on the support of ν, provided that an appropriate constant

C(Pn) is added to u(x, Pn).

Proof. Fix ε > 0. We need to show that if n is sufficiently large

then

sup
x∈supp(ν)

|u(x, Pn)− u(x, P )| < ε.

Choose M such that ‖Dxu(x, P )‖, ‖Dxu(x, Pn)‖ ≤ M . Let δ = ε
8M

.

Cover supp ν with finitely many balls Bi with radius ≤ δ. Choose

(x, p) as in the previous proposition. Let (x∗(t), p∗(t)) be the optimal

trajectory for P with initial condition (x, p). Then there exists Tδ and

0 ≤ ti ≤ Tδ such that xi = x∗(ti) ∈ Bi. Choose n sufficiently small

such that

sup
0≤t≤Tδ

|u(x∗(t), P )− u(x∗(t), Pn)| ≤ ε

2
.

Then, on each y in Bi

|u(y, P )− u(y, Pn)| ≤ |u(y, P )− u(yi, P )|+ |u(yi, P )− u(yi, Pn)|+

+ |u(yi, Pn)− u(y, Pn)| ≤ 4Mδ +
ε

2
≤ ε.
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�
Actually, the hypothesis that ν is uniquely ergodic is not too re-

strictive since by Mane’s result [Mn96] “most” Mather measures are

uniquely ergodic (in the sense that after applying small generic pertur-

bations to the Lagrangian there is a uniquely ergodic Mather measure).

5. Non-Degeneracy

In this section we will show that under the hypothesis that H is

strictly convex the change of coordinates (3) satisfies a non-degeneracy

condition.

As motivation for our computations consider the following proposi-

tion

Proposition 2. Suppose both H(P ) and u(x, P ) are smooth functions

and H(P ) is strictly convex at P . Then for any vector ξ

(9) c|ξ|2 ≤ lim
T→∞

1

T

∫ T

0

∣∣[I + D2
xP u(x(t), P )

]
ξ
∣∣2 ≤ C|ξ|2,

with 0 < c ≤ C, and (x(t), p(t)) a solution of (1) with initial conditions

on the invariant set I. In particular 0 < | det [I + D2
xP u(x(t), P )] | <

∞ a.e..

Proof. Let Dξu = DP uξ. Applying D2
ξξ to equation (2) we get

c
∣∣I + D2

xξu
∣∣2 + DpHD3

xξξu = D2
ξξH,

since by uniform convexity D2
pH > c. Integrating, we conclude∫ T

0

DpHD3
xξξu = O(1),

uniformly in T . Thus

c|ξ|2 ≤ lim
T→∞

1

T

∫ T

0

∣∣[I + D2
xP u(x(t), P )

]
ξ
∣∣2 .

The proof of the other inequality is similar, using the second derivative

bound D2
ppH ≤ C. �

With the help of difference quotients we can make the previous

proposition precise in the case where u is a viscosity solution. An

analog of the inequality

lim
T→∞

1

T

∫ T

0

∣∣[I + D2
xP u(x(t), P )

]
ξ
∣∣2 dt ≤ C|ξ|2
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was proved in [EG99]; the next theorem is a slightly different version

such estimate.

Theorem 5. Suppose H(P ) is twice differentiable at P . Then for

almost every y sufficently small (for instance, we may take |y| ≤ |P −
P ′|2)

lim sup
T→∞

1

T

∫ T

0

|P ′ + Dxu(x(t) + y, P ′)− P −Dxu(x(t), P )|2dt ≤

≤ C|P ′ − P |2,

where (x(t), p(t)) is a solution of (1) with initial conditions on I.

Remark. The idea of considering difference quotients in P with

”slightly” shifted functions in x has to do with the fact that u(x(t), P ′)

may not be differentiable along x(t). However for almost every y ∈ Rn

u(x(t) + y, P ′) will be differentiable for almost every t.

Proof. Note that

(10) H(P + Dxu(x(t), P ), x(t)) = H(P )

and for almost every y sufficiently small,

(11) H(P ′ + Dxu(x(t) + y, P ′), x(t)) = H(P ′) + O(|P − P ′|2).

Subtracting (11) from (10) we obtain the inequality

DpH(P + Dxu(x(t), P ), P )ζ + θ|ζ|2 ≤ DP H(P ′ − P ) + C|P − P ′|2,

where

(12) ζ = P ′ + Dxu(x(t) + y, P ′)− P + Dxu(x(t), P ),

using the strict convexity of H and twice differentiablity of H. Observe

that

lim
T→∞

1

T

∫ T

0

DpH(P + Dxu(x(t), P ), P )ζ = DP H(P ′ − P ),

since ẋ = DpH. Thus

lim sup
T→∞

1

T

∫ T

0

|ζ|2 ≤ C|P − P ′|2,

as we claim. �
The converse result is
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Theorem 6. Suppose H(P ) is strictly convex at P . Then for almost

every y sufficently small (for instance |y| ≤ |P − P ′|2 will do)

lim sup
T→∞

1

T

∫ T

0

|P ′ + Dxu(x(t) + y, P ′)− P −Dxu(x(t), P )|2dt ≥

≥ c|P ′ − P |2.

Proof. Using the notation from the previous theorem and the hy-

pothesis that H is strictly convex at P we obtain the inequality

DpH(P + Dxu(x(t), P ), P )ζ + θ|ζ|2 ≥ DP H(P ′ − P ) + c|P − P ′|2.

Thus, by integration, we conclude

lim sup
T→∞

1

T

∫ T

0

|ζ|2 ≥ c|P − P ′|2,

as we claim. �
This last theorem shows that strict convexity of H implies that at

least in a measure-theoretic sense, the graphs (x, P + Dxu(x, P )) and

(x, P ′ + Dxu(x, P ′)) are distinct. Therefore the change of coordinates

(3) is in a weak sense non-degenerate.
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lagrangiens. C. R. Acad. Sci. Paris Sér. I Math., 324(9):1043–1046, 1997.
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