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Abstract

In this paper, we provide a representation theory for the Feynman operator calculus.

This allows us to solve the general initial-value problem and construct the Dyson series.

We show that the series is asymptotic, thus proving Dyson's second conjecture for QED.

In addition, we show that the expansion may be considered exact to any finite order by

producing the remainder term.  This implies that every nonperturbative solution has a

perturbative expansion.   Using a physical analysis of information from experiment versus

that implied by our models, we reformulate our theory as a sum over paths. This allows us

to relate our theory to Feynman’s path integral, and to prove Dyson's first conjecture that

the divergences are in part due to a violation of Heisenberg's uncertainly relations.
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1.0 Introduction

Following Dirac’s quantization of the electromagnetic field in 19271,

and his relativistic electron theory in 19282, the equations for quantum

electrodynamics (QED) were developed by Heisenberg and Pauli3,4 in the

years 1929-30 (see Miller5 and Schweber6).   From the beginning, when

researchers attempted to use the straightforward and physically intuitive time-

dependent perturbation expansion to compute physical observerables, a

number of divergent expressions appeared.  Although it was known that the

same problems also existed in classical electrodynamics, it was noted by

Oppenheimer7 that there was a fundamental difference in the quantum

problem as compared to the classical one.  (Dirac9 had shown that, in the

classical case, one could account for the problem of radiation reaction without

directly dealing with the self-energy divergence by using both advanced and

retarded fields and a particular limiting procedure.)

Early attempts to develop subtraction procedures for the divergent

expressions were very discouraging because they depended on both the gauge

and the Lorentz frame, making them appear ambiguous.  Although the

equations of QED were both Lorentz and gauge covariant, it was generally

believed that, in a strict sense, they had no solutions expandable in powers of

the charge.  The thinking of the times was clearly expressed by Oppenheimer8

in his 1948 report to the Solvay Conference, "If one wishes to explore these

solutions, bearing in mind that certain infinite terms will, in a later theory, no

longer be infinite, one needs a covariant way of identifying these terms; and

for that, not merely the field equations themselves, but the whole method of

approximation and solution must at all stages preserve covariance."
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The solution to the problem posed by Oppenheimer was made

(independently) by Tomonaga10, Schwinger11 and Feynman12,13. (These papers

may be found in Schwinger14.)  Tomonaga introduced what is now known as

the interaction representation and showed how the approximation process

could be carried out in a covariant manner.  Schwinger developed the general

theory and applied it to many of the important problems.  Feynman took a

holistic view of physical reality in his development.  He suggested that we

view a physical event as occurring on a film which exposes more and more of

the outcome as the film unfolds.  His idea was to deal directly with the

solutions to the equations describing the physical system, rather than the

equations themselves.  In addition to solving the problem posed by

Oppenheimer, Feynman's approach led to a new perturbation series, which

provided an easy, intuitive, and computationally simple method to study

interacting particles while giving physical meaning to each term in his

expansion.

Since Feynman's method and approach was so different, it was not clear

how it related to that of Schwinger and Tomonaga.    Dyson15,16, made a major

contribution. Dyson realized that Feynman and Schwinger were both dealing

with different versions of Heisenberg’s S-matrix.  He then formally

introduced time-ordering and provided a unified approach by demonstrating

the equivalence of the Feynman and Schwinger-Tomonaga theories. This

approach also allowed him to show how the Schwinger theory could be

greatly simplified and extended to all orders of the perturbation expansion.

Dyson's time-ordering idea was actually obtained from discussions with

Feynman, who later explored and fully developed it into his time-ordered

operator calculus17.
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1.1 Background

After the problem proposed by Oppenheimer was resolved, attitudes

toward the renormalization program and quantum field theory could be

classified into three basic groups.  The first group consisted of those who

were totally dissatisfied with the renormalization program.  The second

group considered the renormalization program an interim step and believed

that the divergences were an indication of additional physics, which could

not be reached by present formulations.  The first two groups will not be

extensively discussed in this paper.  However, we can associate the names of

Dirac and Landau with the first group, and Sakata and Schwinger with the

second.  (See Dirac18, Sakata19, Schwinger20 and also Schweber6.)

The third group was more positive, and directed its attention towards

investigating the mathematical foundations of quantum field theory with the

hope of providing a more orderly approach to the renormalization program

(assuming that the theory proved consistent). This direction was clearly

justified since part of the problem had been consistently blamed on a

mathematical issue, the perturbation expansion.  Indeed, the whole

renormalization program critically depended on the expansion of the S-

matrix in powers of the coupling constant.  This concern was further

supported since attempts to use the expansion when the coupling constant

was large led to meaningless results.  Additional unease could be attributed

to the fact that, at that time, not much was actually known about the

physically important cases where one was dealing with unbounded operator-

valued functions (distributions).

Researchers working on the mathematical foundations of quantum

electrodynamics, and quantum field theory adopted the name axiomatic field
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theory starting in the fifties. These researchers focused on trying to find out

what could be learned about the existence of local relativistic quantum field

theories based on certain natural assumptions which included the postulates of

quantum mechanics, locality, Poincaré invariance, and a reasonable spectrum.

This approach was initiated by the work of Wightman21, and Lehmann,

Symanzik and Zimmermann22,23.  Here, the quantized field is interpreted

mathematically as an operator-valued Schwartz distribution. Explicit use of

the theory of distributions was a major step, which helped to partially make

the theory (mathematically) sound by smoothing out the fields locally.  (The

recent paper by Wightman24 provides an inspired introduction to the history of

Heisenberg’s early observations on the latter concept and its relationship to

the divergences25.)

The axiomatic approach proved very fruitful, providing the first

rigorous proofs of a number of important general results, and attracted many

able researchers.  The favored name today is Algebraic Quantum Field

Theory.  The books by Jost26, Streater and Wightman27 and Bogolubov and

Shirkov28 are the classics, while more recent work can be found in Haag29.

(See also the book by Bogolubov, Logunov and Todorov30, and the recent

review paper by Buchholz31.)

For a number of reasons, most notably a lack of nontrivial examples,

the axiomatic approach evolved in a number of directions.  One major

direction is called “constructive” quantum field theory.  Here, one focuses

on attempts to directly construct solutions of various model field theories,

which either have exact (nonperturbative) solutions, or have an asymptotic

perturbative expansion which can be summed to the exact solution. In this

approach, instead of formulating the theory in Minkowski spacetime, one

passes to imaginary time and formulates it in Euclidean space (an idea which
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first appeared in Dyson15). This leads to a formulation in terms of

“Schwinger functions”, also known as Euclidean Green’s functions.  The

advantage of this approach is that hyperbolic equations are transformed to

elliptic ones, and Gaussian kernels, for which a very rich set of analytic tools

has been developed, replace Feynman kernels.  The output of this enterprise

is truly impressive.  Constructive solutions have been obtained for a number

of important models. Furthermore, this approach has given us a clearer

picture of the problems associated with the rigorous construction of a

relativistic quantum field theory and provided new mathematical methods.

An early summary of this approach may be found in the lecture notes32,

while more recent progress is contained in the lecture notes33, both edited by

Velo and Wightman (see also references 41 and 6).  The books by Glimm

and Jaffe34 and Simon35 give a different flavor and point of departure.

Although a great deal of work has been done in constructive field

theory over the last thirty years, many difficult problems still remain.  For

example, the appearance of difficulties with the constructive approach to

polynomial types of field theories is discussed in the paper by Sokal36.  He

conjectured that the l j≥4
4  theory (l j 4 in four or more spacetime dimensions)

is a generalized free field, where l is the coupling constant.  This theory

represents a self-interacting boson field. The conjecture was proven by

Aizenman and Graham37 and Fröhlich38.  Three years later, Gawedzki and

Kupiainen39 proved that, if we change the sign of the coupling constant, the

solution exists (as a tempered distribution) and the perturbation expansion is

asymptotic to the solution.  This state of affairs led Wightman (reference 33,

pg. 1) to lament that “We do not know whether the lack of an existence

theorem for solutions with the “right” sign reflects the non-existence of

solutions or merely the lack of a technique to construct them.”   Things are
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further complicated by the fact that the l j 4
4 theory has a perturbative

solution!  This led Gallavotti45 to suggest that constructive approaches other

than the ferromagnetic lattice approximation, used by Aizenman and

Graham, and Fröhlich, may be required.

The most well known method for quantum field theory calculations is

perturbative renormalization theory.  This approach is discussed in most

standard texts on quantum field theory and has an interesting history that is

best told by Wightman40.  (The first book to include Dyson’s reformulation

of the Feynman-Schwinger-Tomonaga theory is the classic by Jauch and

Rohrlich42.)   Early work in the perturbative approach focused on the

development of different renormalization methods with the hope of

identifying those for which rigorous mathematical methods could be used.

The methods generally consisted of two parts.  First, the Green’s functions

were regularized in a relativistically and gauge invariant manner28,40,41,46 to

yield well-defined tempered distributions, even on the light cone.  Then

appropriate counter-terms were introduced so that, in the limit, when the

regularization was removed, the various divergences of the S-matrix were

also removed. It was found that all renormalization procedures are

equivalent up to a finite renormalization (cf. references 40, 41).  Today,

theories are classified as “renormalizable” or “unrenormalizable” according

as the number of renormalizable constants is finite or infinite, respectively.

Some model theories in less than four spacetime dimensions

considered in constructive field theory belong to a special subclass of

renormalizable theories called “super renormalizable”, for which the

renormalization process can be carried out without using perturbation

theory32-35.  For these theories, the renormalized perturbation series can be

shown to be Borel summable to the exact nonperturbative solution.  A nice
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summary of these developments was given by Glimm and Jaffe34. On the

other hand, constructive models of the Gross-Neveu type are renormalizable

but not super renormalizable (see reference 33).

Feldman et al43 have studied the mathematical foundations of quantum

electrodynamics from the perturbative point of view (see also Rosen in

reference 33, pg. 201).  Here, a renormalized formal power series

(renormalized tree expansion) is obtained for a measure on the space of

fields within the Euclidean formulation of QED.  (The tree expansion

method is an outgrowth of Wilson’s44 renormalization group approach as

distilled by Gallavotti45 and co-workers.)  It is then shown that QED in four

(Euclidean) dimensions is locally Borel summable.  Their work is truly

remarkable and represents the first (formal) proof that (Euclidean) quantum

electrodynamics can be renormalized using gauge invariant counterterms.

However, in general, it is a nontrivial problem to return from the Euclidean

regime to Minkowski space.  The return trip requires application of the

Osterwalder-Schhrader reconstruction theorem (see reference 32).  This

theorem places conditions on the Euclidean Green’s functions which

guarantees analytic continuation back to the real-time vacuum expectation

values.  When these conditions are fulfilled, the Lehmann, Symanzik, and

Zimmermann (LSZ)22,23,32 reduction formulae may then be used to obtain the

S-matrix.  For technical reasons, they were not able to directly apply the

Osterwalder-Schhrader theorem.  They could still get back to QED in

Minkowski spacetime by following the methods of Hepp46 and Lowenstein

and Speer47.  However, nothing could be said about the convergence

properties of their series.
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1.2 Purpose

It is clear that Dyson’s use of time-ordering was the fundamental

conceptual tool which allowed him to relate the Feynman and Schwinger-

Tomonaga theories.  This tool has now become a natural part of almost

every branch of physics and is even used in parts of engineering.  Its

importance to the foundations of quantum field theory led Segal53 to suggest

that the identification of mathematical meaning for Feynman's time-ordered

operator calculus is one of the major problems. A number of investigators

have attempted to solve this problem.   Miranker and Weiss54 showed how

the Feynman ordering process could be done formally using the theory of

Banach algebras.  Nelson55 used Banach algebras to developed a theory of

“operants” as an alternate (formal) approach.  Araki56, motivated by the

work of Fujiwara, used Banach algebras to develop yet another formal

approach. (Fujiwara57 had earlier suggested that the Feynman program could

be implemented if one used a sheet of unit operators at every point except at

time t, where the true operator should be placed.)   Maslov58 used the idea of

a T-product to formally order operators and developed an operational theory.

Another important approach to this problem via the idea of an index may be

found in the works of Johnson and Lapidus59-61, see also Johnson, Lapidus,

and DeFacio62.

This paper is a part of a new investigation into the physical and

mathematical foundations of relativistic quantum theory.  Our overall goal is

to construct a self-consistent relativistic quantum theory of particles and

fields.  For this paper, we have two specific objectives.  Our first (and major)

objective is to construct a physically simple and computationally useful

representation theory for the Feynman time-ordered operator calculus.
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A correct formulation and representation theory for the Feynman

time-ordered operator calculus should at least have the following desirable

features:

1.  It should provide a transparent generalization of current analytic

methods without sacrificing the physically intuitive and

computationally useful ideas of Feynman.

2.  It should provide a clear approach to some of the mathematical

problems of relativistic quantum theory.

3. It should explain the connection with path integrals.

In the course of his analysis, unification, and simplification of the

Feynman-Schwinger-Tomonaga theory, Dyson made two important

suggestions (conjectures).  The first conjecture concerned the divergences in

QED, while the second was concerned with the convergence of the

renormalized perturbation series.  In addressing the problem of divergences,

Dyson conjectured that they may be due to an idealized conception of

measurability resulting from the infinitely precise knowledge of the space-

time positions of particles (implied by our Hamiltonian formulation) which

leads to a violation of the Heisenberg uncertainty principle.  This point of

view can be traced directly to the Bohr-Rosenfeld theory of measurability

for field operators and, according to Schweber6, is an outgrowth of Dyson’s

discussions with Oppenheimer.

In addressing the renormalized S-matrix16, Dyson suggested that it

might be more reasonable to expect the expansion to be asymptotic rather
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than convergent and gave physical arguments to support his claim.  The lack

of a clear mathematical framework made it impossible to formulate and

investigate his suggestions.

Schweber6 notes that Dyson made two other well-known conjectures.

The “overlapping divergences” conjecture was proved by Salam48, Ward49,

Mills and Yang50, and Hepp51.  Dyson’s conjecture that a certain Feynman

integral converges, necessary for showing that the ultraviolet divergences

cancel to all orders, was proved by Weinberg52.

Our second objective is to provide proofs of the above two

conjectures under general conditions that should apply to any formulation of

quantum field theory which does not abandon Hamiltonian generators for

unitary solution operators. The proof of the first conjecture is, to some extent

expected, and is a partial vindication of our belief in the consistency of

quantum electrodynamics in the sense that the ultraviolet problem is caused

by an effect that is basically “simple”.   Such a result is partly anticipated

since the effect can be made to disappear via appropriate cutoffs. We also

identify (special) conditions under which the renormalized perturbation

series may actually converge.  A proof of the above conjectures is implicit

in, and is one of the major achievements of constructive field theory for the

models studied.   In fact, these theories verify a stronger version of the

second conjecture since, as noted earlier, the renormalized perturbation

series is summable to the true solution.

1.3 Summary

The work in this paper is both a generalization and simplification of

earlier work63-65 that is easier and requires the weakest known conditions.  We
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construct a new representation Hilbert space and von Neumann algebra for the

Feynman (time-ordered) operator calculus.  In order to make the theory

applicable to other areas, we develop it using semigroups of contractions and
the Riemann integral.  A contraction semigroup on a Hilbert space H can

always be extended to a unitary group on a larger space H¢.  Thus, for

quantum theory we may replace the semigroups by unitary groups and assume
that our space is H¢ without any loss in understanding.

The Riemann integral can be easily replaced by the operator-valued

Riemann-complete integral of Henstock66 and Kurzweil67, which generalizes

the Bochner and Pettis integrals (see Gill63).  This integral is easier to

understand (and learn) compared to the Lebesgue or Bochner integrals, and

provides useful variants of the same theorems that have made those integrals

so important.  Furthermore, it arises from a simple (transparent) generalization

of the Riemann integral that was taught in elementary calculus.  Its usefulness

in the construction of Feynman path integrals was first shown by Henstock68,

and has been further explored in the recent book by Muldowney69.

In Section 1.4 we provide a brief review of the necessary operator

theory in order to make the paper self-contained.  In Section 2 we construct an

infinite tensor product Hilbert space and define what we mean by time

ordering.  In Section 3 we construct time-ordered integrals and evolution

operators and prove that they have the expected properties.   In Section 4 we

define what is meant by the phase “asymptotic in the sense of Poincaré” for

operators, and use it to prove Dyson's second conjecture for contraction

semigroups.  We then discuss conditions under which the perturbation series

may be expected to converge.
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In Section 5 we take a photograph of a track left by an elementary

particle in a bubble chamber as a prototype to conduct a physical analysis of

what is actually known from experiment.  This approach is used to rederive

our time-ordered evolution operator as the limit of a probabilistic sum over

paths. We use it to briefly discuss our theory in relationship to the Feynman

path integral, and show that it provides a general and natural definition for the

path integral that is independent of measure theory and the space of

continuous paths.

The results from Section 5 are applied to the S-matrix expansion in

Section 6 to provide a formulation and proof of Dyson's first conjecture.  In

particular, we show that, within our formulation, the assumption of precise

time information over a particle's trajectory introduces an infinite amount of

energy into the system at each point in time.  We use Dyson’s original

notation partly for reasons of nostalgia, but also to point out what we are not

able to explain within our framework.  Also, since all renormalization

procedures are equivalent, there is no loss.

1.4 Operator Theory

In this subsection we establish notation and quote some results from
operator theory used in the paper.  Let H denote a separable Hilbert space

over C (complex numbers), B(H) the set of bounded linear operators, and

C(H)  the set of closed densely defined linear operators on H.

Definition 1.0 A family of bounded linear operators { , }U( ), <t t0 0 £ •  defined

on H is a strongly continuous semigroup (or C0 - semigroup) if
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1. U( ) = I0 0, , 2. U( + ) =  U( )U( )t s t s, , ,0 0 0 , 3. lim U( ) = ,  
0t

t
Æ

" Œ,0 j j j H

U( )t,0  is a contraction semigroup in case U( )t,0 1£ .  If we replace 2 by

2'.  U( ) =  U( )U( )t t s s, , ,t t , 0  <  £ £ £ •t s t , then we call U( )t,t  a strongly

continuous evolution family.

Definition 1.2 A densely defined operator H  is said to be maximal dissipative
if Re , 0,Hj j £  D( )" Œj H , and Ran( ) =I H- H (range of ( )I H- ).

The following results may be found in Goldstein70 or Pazy71.

Theorem 1.2 Let U( )t,0  be a C0 -semigroup of contraction operators on H.

Then

1) H
t

tt
j

j j
= lim

U( )
0Æ

-,0  exists for j  in a dense set.

2) R z H zI H( ,  ) = ( )-- 1 exists for z > 0  and R z H
z

( ,  ) £
1 .

Theorem 1.3 Suppose H is a maximal dissipative operator.  Then H generates
a unique C0 -semigroup U( ) | 0t t,0 £ < •{ }  of contraction operators on H.

Theorem 1.4 If H is densely defined with both H and H* dissipative, then H is

maximal dissipative.

2.0 Infinite Tensor Product von Neumann Algebras

In this section we define time-ordered operators and construct the
representation space which will be used in the next section to develop our

theory of time-ordered integrals and evolution operators.  Much of the
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material in this section was developed by von Neumann72 for other purposes,
but is perfectly suited for our program.  In order to see how natural our
approach is, let Hƒ = ƒ̂sH(s) denote the infinite tensor product Hilbert space of

von Neumann, where H( s) =H for s Œ [a,b]  and ƒ̂ denotes closure.  If B(Hƒ)

is the set of bounded operators on Hƒ, define B(H(t)) Ã B(Hƒ) by

 B(H(t))=   I ( ) I ( )> -H H( ) ( ) ˆ ( ),t t H t H ta s t s t s a s={ ƒ ƒ ƒ ƒ " Œ≥ > ≥ B(H)}, (2.1a)

where Is denotes an identity operator, and let B#(Hƒ)  be the uniform closure of

the von Neumann algebra generated by the family {B(H(t)),  Et Œ }.  If the

family { ( ) | E}H t t Œ  is in B(H), then the corresponding operators

{ ( ) | E}H t t Œ ŒB#(Hƒ) commute when acting at different times: t sπ fi   

 ( ) ( ) = ( ) ( ).H H H Ht s s t  (2.1b)

Definition 2.0 The smallest space FDƒ  Õ Hƒ  which, leaves the family

{ ( ) | E}H t t Œ  invariant is called a Feynman-Dyson space for the family. (This

is the film.)

We need the following results about operators on Hƒ.

Theorem 2.1: (von Neumann72 The mapping Tq
t: B(H) Æ B(H(t)) is an

isometric isomorphism of algebras. (We call Tq
t  the time-ordering morphism.)

Definition 2.2 The vector F = ƒ
s

sf  is said to be equivalent to Y = ƒ
s

sy  and we

write F Yª , if and only if
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f ys s s
s

, - < •Â 1 . (2.2)

Here, ◊ ◊,
s
  is the inner product on H(s), and it is understood that the sum is

meaningful only if at most a countable number of terms are different from

zero.

Let HF = = ª Œ
Ï
Ì
Ó

¸
˝
˛=

Âcl Y Y Y Y F  ,   ni
i 1

n

i , N  (closure), F  ŒHƒ , and let PF

denote the projection from Hƒ onto HF.  The space HF is known as the

incomplete tensor product generated by F .  The details on incomplete tensor

product spaces as well as proofs of the next two theorems may be found in

von Neumann72.

Theorem 2.3 The relation defined above is an equivalence relation on Hƒ and

1) if Y  is not equivalent to F , then HF « HY = {0} (i.e., HF ^ HY);

2) if y fs sπ  occurs for at most a finite number of s, then F Y= ƒ ª = ƒ
s

s
s

sf y ;

3) if T ŒB#(Hƒ), then P PF FT T=  so that PFT ŒB#(HF).

The second condition in Theorem 2.3 implies that, for each fixed F = ƒ
s

sf ,

there is an uncountable number of Y = ƒ
s

sy  equivalent to F , while the third

condition implies that every bounded linear operator on Hƒ restricts to a

bounded linear operator on HF for each F .

We can now construct our film FDƒ.  Let ei i Œ{ }N  denote an arbitrary

ordered complete orthonormal basis (c.o.b) for H.  For each t Œ ŒE,i N,

let i ie et = , E et
i

t E

i= ƒ
Œ

, and define FD
i
 to be the incomplete tensor product

generated by the vector E i .  Setting FDƒ = ≈
=

•

i 1
FD

i
, it will be clear in the next

section that FDƒ is (one of an infinite number of) the natural representation
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space(s) for Feynman’s time-ordered operator theory.  It should be noted that
FDƒ is a nonseparable Hilbert (space) bundle over [a, b]. However, it is not

hard to see that each fiber is isomorphic to H.

In order to facilitate the proofs in the next section, we need an explicit

basis for each FD
i
.   To construct it, fix i and let f i  denote the set of all

functions j(t)  t EŒ{ } mapping E Æ » {0} N  such that j(t) is zero for all but a

finite number of t.  Let I(j) = j( )  Et t Œ{ } denote the function j and set

E eI(j)
i

t E
t, j(t)
i= ƒ

Œ
 with e et,0

i i= , and j(t) = k fi e et,k
i k= .

Theorem 2.4 The set EI(j)
i iI(j) fŒ{ } is a (c.o.b) for each FD

i
.

For each F Yi i iF, ,Œ  set a E b EI(j)
i i

I(j)
i

I(j)
i i

I(j)
i= =F Y, , , ,  so that F i

I(j)
i

I(j) F
I(j)
i

i

=
Œ

Â a E ,

Y i
I(j)
i

I(j) F
I(j)
i

i

=
Œ

Â b E  and F Yi i
I(j)
i

I(k)
i

I(j)
i

I(k)
i

I(j) F i

, , .=
Œ

Â a b E E  Now,

E E e eI(j)
i

I(k)
i

t,I(j)
i

t,I(k)
i

t

, , ,= =’ 0  unless j(t) = k(t), "t  Œ E , so that

F Yi i
I(j)
i

I(j)
i

I(j) F i

, .=
Œ

Â a b

We need the notion of an exchange operator.  (Theorem 2.6 is in

reference 63.)

Definition 2.5 An exchange operator E[ , ' ]t t  is a linear map defined for pairs

t, t’Œ [a, b] such that :

1.  E[ , ' ]t t : B(H(t)) Æ B(H(t¢)) onto,

2.  E E[ , ] [ , ' ]t s s t  = E[ , ' ]t t ,

3.  E[ , ' ]t t E[ , ] = 1t t' ,
4.  if s t tπ , ' , then E[ , ' ] ( = ( )t t s sH H)  " ŒH( )s B(H(s)).

Theorem 2.6
1) E[ , ]◊ ◊  exists and is a Banach algebra isomorphism on B#(Hƒ).

2) E E E E[ , ] [ , ' ] = [ , ' ] [ , ]s s t t t t s s' '  for distinct pairs ( , ' )s s  and ( , ' )t t  in E.
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3.0 Time-Ordered Integrals

In this section we construct time-ordered integrals and evolution
operators for a fixed family H t t( )  EŒ{ } ÃC(H) of generators of contraction

semigroups on H.  We assume that, for each t, H t H t( ) ( ) and *  are dissipative

(so that the family is maximal dissipative for each t).  In the following

discussion we adopt the notation:

1). (e.o.v): "except for at most one s value";

2). (e.f.n.v): "except for an at most finite number of s values"; and

3). (a.s.c): "almost surely and the exceptional set is at most countable".

The s value referred to is in our fixed interval E.

For the given family H t t( )  EŒ{ } ÃC(H), define exp{ ( )}tH t  by

exp{ ( )} ˆ exp{ ( )} ,
[ , ) ( , ]

t tH t H t
s b t

s
s t a

s= ƒ ƒ ( ) ƒ ƒÊ
Ë

ˆ
¯Œ Œ

I I (3.1)

and set H H Hz ( ) = ( ) ( ) ,  > 0t z t z t zR( , ) , where R( , )z t z tH H( ) = I ( )ƒ

-
-( ) 1 is the

resolvent of H( )t .  It is known that H tz ( ) generates a uniformly bounded

contraction semigroup and lim
z

zH t H t
Æ •

( ) = ( )f f  for f ŒD (t)( ).H

Theorem 3.1 Suppose for each t, H t t( ){ Œ } ÃE C(H) generates a strongly

continuous contraction semigroup on H.  Then H H H H( ) ( ) = ( ) ( ) ,  Dt t t tz zF F F Œ ,

(where D denotes the domain of the family H( )t t{ Œ }E ), and
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1. The family Hz t t( ) E{ Œ } generates a uniformly bounded contraction

semigroup on FDƒ for each t and lim
z

z t t
Æ •

ŒH H( ) = ( ) ,  DF F F .

2. The family H( )t t{ Œ } ÃE C(Hƒ) generates a strongly continuous contraction

semigroup on FDƒ (so that H( )t t{ Œ } ÃE C(FDƒ)).

Proof: The proof of 1. is standard.  Note that H Hz t z z t z( ) = ( ) I2R( , ) - ƒ  and

R( , )z t zH( )
ƒ

£ 1 , so exp{ } exp{ }exp{ ( , )}s t sz sz z tzH R H( ) = ( )
ƒ ƒ

- £2 1.  Now recall

that lim ( , )
z

z z t
Æ •

{ } ŒR H( ) = ,  F F F FDƒ, so that, for F ŒD, we have that

lim lim ( , ) lim ( , )
z

z
z z

t z t z t z z t t t
Æ • Æ • Æ •

{ } { } =H H H H H H( ) = ( ) ( ) = ( ) ( ) ( )F F F FR R .

To prove 2., first recall (Gill73) that a tensor product norm, ◊
ƒ
, is uniform if,

for ƒ̂ Œ
Œs E

sT B(Hƒ),

ƒ̂ £
Œ ƒ Œ

’
s

s
E

s s
E

T T . (3.2)

Using the uniform property of the (Hilbert space) tensor product norm, it is

easy to see that exp{ ( )}tH t  is a contraction semigroup.

To prove strong continuity, we need to identify a dense core for the
family H( )t t{ Œ } ÃE C(FDƒ).  Let D1 denote the ordered tensor product of the

domains of the family H t t E( )  Œ{ } Ã C(H), (so that D D1 Ã )

D D D Ei

i 1

n
i

1 = ƒ = ƒ
Ï
Ì
Ó

Œ Œ }
Œ

=

Â
s E s

s sH s H s s( ( )) ( ( )),j j . (3.3)

It is clear that D1 is a dense core in Hƒ, so D D0 1= «FDƒ is a dense core in

FDƒ.  Using our standard basis, if F Y, ŒD0 , F = ÂÂ a EI(j)
i

I(j)
i

I(j)i

,  Y = ÂÂ b EI(k)
i

I(k)
i

I(k)i

;
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then, since exp{ ( )}tH t -( )ƒI  is invariant on FD
i
 and Iƒ  is the identify on FDƒ,

we have

exp{ ( )} , exp{ ( )} ,t tH Ht a b t E E-( ) = -( )ƒ ƒÂÂÂI II(j)
i

I(k)
i

I(k)I(j)i
I(j)
i

I(k)
iF Y , (3.4a)

and

exp{ ( )} , , exp{ ( )} ,t tH t E E e e H t e es s s s
s t

t t t t-( ) = -( )ƒ
π

’I II(j)
i

I(k)
i

, j( )
i

,k( )
i

, j( )
i

,k( )
i (3.4b)

= -( )exp{ ( )} ,tH t e et t t tI , j( )
i

, j( )
i  (e.o.v), 

= -( )exp{ ( )} ,tH t e eI i i   (e.f.n.v.),

fi -( ) = -( )ƒ ÂÂexp{ ( )} , exp{ ( )} ,t tH t a b H t e eI II(j)
i

I(j)
i

I(j)i

i iF Y   (a.s.c). (3.4c)

Since all sums are finite, we have

lim exp{ ( )} , lim exp{ ( )} ,
t t

t t
Æ

ƒ
Æ

-( ) = -( ){ } =ÂÂ
0 0

0H t a b H t e eI II(j)
i

I(j)
i i i

I(j)i

F Y  (a.s.c).(3.4d)

The if and only if part is now clear.  Since exp{ ( )}tH t  is bounded on Hƒ   and

the above limit exists on D0  (which is dense in FDƒ), we see that exp{ ( )}tH t

extends to a contraction semigroup on FDƒ.  Now use the fact that, if a

bounded semigroup converges weakly to the identity, it converges strongly

(see Pazy71, pg. 44).

We now assume that the family H t( )  t EŒ{ } ÃC(H) has a weak Riemann

integral Q H t dt
a

b

= ŒÚ ( ) C(H).  It follows that the family H t tz ( )  EŒ{ } Ã B(H) also

has a weak Riemann integral Q H t dtz z

a

b

= ŒÚ ( ) B(H).  Let Pn  be a sequence of
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partitions (of E) so that the mesh m( )P  as nn Æ Æ •0 .  Set

Q H t t Q H s sz n z l
l

n

l z m z q
q

m

q, ,,= =
= =

Â Â( ) ( )
1 1

D D ; Q H Q Hz,n z

n

z,m z

m

,= =
= =

Â Â( ) ( )t t s sl
l

l q
q

q
1 1

D D ; and

D DQ Q Qz z,n z,m z z,n z,m,= - = -Q Q Q .  Let F Y F F, ; ,Œ = =Â ÂÂD  i

i
I(j)
i

I(j)
i

I(j)i
0

J KJ

a E

Y Y= =Â ÂÂi

i
I(k)
i

I(k)
i

I(k)i

L ML

b E , and set f = I(j)
i

I(j)i

ia e
KJ

ÂÂ  and y = ÂÂ b e
KJ

I(j)
i

I(j)i

i .  Then we

have:

Theorem 3.2 (First Fundamental Theorem for Time-Ordered Integrals)

D F Y DQz I(j)
i

I(j)
i

I(j)i
z

i i  (a.s.c)., ,= ÂÂ a b Q e e
KJ

(3.5)

 Note The form of (3.5) is quite general since DQz  can be replaced by other

terms which also give a true relationship.  For example, it is easy to show that

the family Hz t  t E( ) Œ{ } is weakly measurable, weakly continuous, weakly

differentiable, etc if and only if the same is true for the family H tz  t E( ) Œ{ } .

Proof:  D F Y DQ Qz I(j)
i

I(k)
i

I(k)I(j)i
z I(j)

i
I(k)
i, ,= ÂÂÂ a b E E  (we omit the upper limit).  Now

D D DQz I(j)
i

I(k)
i

n

z I(j)
i

I(k)
i

m

z I(j)
i

I(k)
iE E t t E E s s E El

l
l q

q
q, ( ) , ( ) ,= -

= =

Â Â
1 1

H H

= -
= π = π

Â ’ Â ’D Dt e e H t e e s e e H s e el
l

l q
q

q

l

l l l l

q

q q q q

1 1

n

t, j(t)
i

t,k(t)
i

t t
z t , j(t )

i
t ,k(t )
i

m

t, j(t)
i

t,k(t)
i

t s
z s , j(s )

i
s ,k(s )
i, ( ) , , ( ) ,

= -
= =

Â ÂD Dt H t e e s H s e el
l

l q
q

ql l l l q q q q

1 1

n

z t , j(t )
i

t , j(t )
i

m

z s , j(s )
i

s , j(s )
i( ) , ( ) ,

= DQ e ez
i i,  (e.f.n.v).  This result leads to (3.5).

Theorem 3.3 (Second Fundamental Theorem for Time-Ordered Integrals)

If the family H tz  t E( ) Œ{ }  has a weak Riemann (Riemann-Complete) integral,

then
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1. the family Hz t  t E( ) Œ{ } Ã B#(FDƒ) has a weak Riemann (Riemann-Complete)

integral.

2. If, in addition, we assume that for each F  with F = 1 ,

sup ( ) ( ) ,
t a

t

s s ds
Œ

-( ) < •Ú
E

z zH HF F F
2 2

, (3.6)

then the family Hz t  t E( ) Œ{ } has a strong integral Qz z[ , ] ( )t a s ds
a

t

= Ú H
 

which

generates a uniformly continuous contraction semigroup on FDƒ.

Notes:

1. It is sufficient that sup ( ) ( ) ,
t a

t

s E s E E ds
Œ

-( ) < •Ú
E

z
i

z
i iH H

2 2
 for each i.

2. Condition (3.6) is satisfied if Hz
i( )s E

2
 is Lebesgue integrable for each i.  In

this case, we replace the Riemann integral by the Riemann-Complete integral.

3. In general, the family Hz  E( )t t Œ{ } need not be a Bochner or Pettis integral,

as it is not required that H Hz z( ) , ( ) ,t tF F F  be (square) Lebesgue integrable.

It is possible that Hz ( )t dt
a

b

F
2

Ú = • & Hz ( ) ,t dt
a

b

F F
2

Ú = •, while (3.6) is zero.

For example, let f t( ) be any nonabsolutely (square) integrable function and

set Hz ( ) = ( )It f t ƒ .  Then the above possibility holds while

H Hz z( ) ( )s s ds
a

t

F F F
2 2

0-( ) ∫Ú ,  for all t in E.

Proof:  The proof of 1. is easy and follows from (3.5).  To see that (3.6)

makes Qz  a strong limit, let F ŒD0 .  Then
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Q Qz,n z,n I(j)
i

I(h)
i

I(j),I(h)i
k m z k I(j)

i
z m I(h)

i

k,m

n

t t ( ) ( )F F D D, ,=
Ê

Ë
Á

ˆ

¯
˜ÂÂ Âa a H s E H s E

KJ

=
Ê

Ë
Á

ˆ

¯
˜ÂÂ Â

π

2

I(j)
i

I(j)i
k m z k , j( )

i
, j( )

i
, j( )

i
z m , j( )

i

k m

n

t t ( ) ( )a H s e e e H s e
KJ

s s s s s s s sk k k k m m m k
D D , ,

+
Ê

Ë
Á

ˆ

¯
˜ÂÂ Â

2 2
I(j)
i

I(j)i
k z k , j( )

i
z k , j( )

i

k

n

t ( ) ( )a H s e H s e
KJ

s s s sk k k k
( ) ,D . (3.7)

This can be rewritten as

 

Qz,n I(j)
i 2

I(j))i
z,n

i i

k z k
i

z k
i i

k

n

t ( ) ( )  

F

D

ƒ
= {

+ -Ê
Ë

ˆ
¯

¸
˝
˛

ÂÂ

Â

2 2

2 2 2

a Q e e

H s e H s e e a s c

KJ

,

( ) , ,( . . ).

(3.8)

The last term can be written as

( ) , sup ,Dt ( ) ( )  ( ) ( )k z k
i

z k
i i

k,

n

n
E

z
i

z
i i2 2 2 2 2

H s e H s e e M H s e H s e e ds
t a

t
-Ê

Ë
ˆ
¯ £ -Ê

Ë
ˆ
¯Â Ú

Œ

m ,

where M is a constant and mn  is the mesh of Pn , with mn Æ 0 as n Æ •.  Now

note that Hz
i

z
i(t) (t)E H e

ƒ
=  and Hz

i i
z

i i(t) (t)E E H e e, ,= (e.o.v) so that

sup , sup ,
t a

t

t a

t
H s e H s e e ds s E s E E ds

Œ Œ

-Ê
Ë

ˆ
¯ = -Ê

Ë
ˆ
¯Ú Ú

E
z

i
z

i i

E
z

i
z

i i( ) ( ) ( ) ( )
2 2 2 2

H H  (a.s.c).

We can now use (3.6) to get

Qz,n I(j)
i 2

I(j))i
z,n

i i
n z

i
z

i i(t) (t) .  F
ƒ

£ + -( )
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
ÂÂ Ú

2 2 2 2
a Q e e M E E E ds a s c

KJ

t a

t

, sup , ,( . . ).m H H
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Thus, Qz,nF converges strongly to QzF  on D0 and hence has a strong limit on

FDƒ.  To show that Q t az[ ],  generates a uniformly continuous contraction, it

suffices to show that Q t az[ ],  and Q t az [ ]* ,  are dissipative.  Let F be in D0, then

Qz I(j)
i

I(j)
i

I(j)i
z

i i[ ]  (a.s.c)t a a b Q e e
KJ

, , ,F F = ÂÂ  and, since Q t az,n[ ],  is disspative for

each n, we have

Q t a e e Q t a e e Q t a Q t a e e Q t a Q t a e ez
i i

z,n
i i

z z,n
i i

z z,n
i i[ ] [ ] [ ] [ ] [ ] [ ], , , , , , , , , ,= + -[ ] £ -[ ]

Letting n Æ •, we get Q t a e ez
i i[ ], , £ 0, so that Qz[ ]t a, ,F F £ 0.  The same

argument applies to Qz[ ]* ,t a .  Since Qz[ ]t a,  is dissipative and densely defined,

it has a (bounded) dissipative closure on FDƒ.

It should be noted that the theorem is still true if we allow the

approximating sums for condition (3.6) to diverge but at an order less than

m dd
n
-1+  , 0 1< < , that is, sup ,

t a

t

E E E dsH Hz
i

z
i i(t) (t)

2 2
-( ) = •Ú , with

( ) ,Dt ( ) ( )  Mk z k
i

z k
i i

k,

n
2 2 2

H s e H s e e n-Ê
Ë

ˆ
¯ £Â m d .

We also note that:

Qz I(j)
i 2

I(j))i
z

i i[ ]  t a a Q e e a s c
KJ

, , ( . . ),F
ƒ

= ÂÂ
2 2

(3.9)

in either of the above cases.  This representation makes it easy to prove the

next theorem.

Theorem 3.4

1.  Q Q Qz z z  (a.s.c),[ , ] [ , ] [ , ]t s s a t a+ =

2. s
t h a t a

h
s

t h t

h
t

h h
- -  = ( ) (a.s.c),z z z

zlim
[ , ] [ , ]

lim
[ , ]

Æ Æ

+ -
=

+
0 0

Q Q Q
H

3. s t h t
h

- =  (a.s.c),zlim [ , ]
Æ

+
0

0Q



25

4. s t h t
h

- = I  (a.s.c), .zlim exp [ , ]
Æ

ƒ+{ } ≥
0

0t tQ

Proof: In each case, it suffices to prove the result for F ŒD0 .  To prove 1., use

Q Qz z I(j)
i 2

I(j))i
z z

i i (a.s.c)[ , ] [ , ] [ , ] [ , ] ,t s s a a Q t s Q s a e e
KJ

+[ ] = +[ ]
ƒ

ÂÂF
2 2

 

= ÂÂ ƒ
a Q t a e e t a

KJ

I(j)
i 2

I(j))i
z

i i
z= (a.s.c)[ , ] , [ , ] .

2 2
Q F

To prove 2., use 1 to get Q Q Qz z z  (a.s.),[ , ] [ , ] [ , ]t h a t a t h t+ - = +  so that

lim
[ , ]

lim
[ , ]

,
h

KJ

h

t h t

h
a

Q t h t

h
e e t

Æ
ƒ

Æ ƒ

+
=

+
=ÂÂ

0

2

0

2
2Qz

I(j)
i 2

I(j))i

z i i
z ( )  (a.s.c.).F FH

The proof of 3., follows from 2., and the proof of 4. follows from 3.

Theorem 3.5 Suppose that lim [ , ] , [ , ] ,
z

z
Æ •

=Q t a Q t af y f y  exists for f  in a dense

set " Œy H (weak convergence).  Then:    

1. Q t a[ ],  generates a strongly continuous contraction semigroup on H,

2. lim , ,
z

z[ ] = [ ]
Æ •

Q Qt a t aF F  for F ŒD0  and Q[ ]t a,  is the generator of a 

strongly continuous contraction semigroup on FDƒ,

3.  Q Q Q[ , ] [ , ] [ , ]t s s a t a+ =  (a.s.c.),

4. lim
[ , ] [ , ]

lim
[ , ]

,
h h

t h a t a

h

t h t

h
t

Æ Æ

+ -
=

+
0 0

Q Q Q
F F F = ( )  (a.s.c.)H

5. lim [ , ] ,
h

t h t
Æ

+
0

0Q F =  (a.s.c.)  and

6. lim exp [ , ]
h

t h t
Æ

+{ } ≥
0

0t tQ F F=  (a.s.c.), .

Proof:  The proofs are easy.   For 1., first note that Q t a[ ],  is closable and use

Q t a Q t a Q t a Q t a Q t a Q t a[ ] = [ ] [ ] [ ] [ ] [ ]z z z, , , , , , , , , ,f f f f f f f f+ -[ ] £ -[ ]  and let
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z Æ • .   Then do likewise for f f, ,Q t a*[ ]  to get that Q t a[ ],  is maximal

dissipative.  To prove 2., use (3.9) in the form

Q Qz z' I(j)
i 2

I(j))i
z z'

i i[ ] [ ] [ ] [ ]t a t a a Q t a Q t a e e
KJ

, , , , ,-[ ] = -[ ]
ƒ

ÂÂF
2 2

, (a.s.c.).

This proves that Q Qz
s[ ] [ ]t a t a, ,æ Ææ .  Since Q[ , ]t a  is densely defined, it is

closable.  The same method as above shows that it is maximal dissipative.

Proofs of the other results follow the methods of the previous theorem.

Since Q[ ]t a,  and Qz[ ]t a,  generate contraction semigroups, set

U Q[ ] = exp{ [ ]},t a t a, ,  U Qz z[ ] = exp{ [ ]},  for E.t a t a t, , Œ  They are evolution operators

and the following theorem is a slight modification of a result due to Hille and

Phillips74, known as the second exponential formula.

Theorem 3.6 If Q Q' [ , ] [ , ]t a w t a=  is the generator of a strongly continuous

contraction semigroup, and U Qw t a w t a[ ] = exp, [ , ]{ } , then, for each n and

F Œ ( )[ ]+D t a nQ[ , ] 1 , we have  (where w is a parameter)

U
Q

Q Uw
n

k

n
n

w
nt a I

w t a

n n
w t a t a d[ ] [ ],

[ , ]
! !

( ) [ , ] , .F F= +
( )

+ -
Ï
Ì
Ó

¸
˝
˛

ƒ
=

+Â Ú
1 0

11
x xx (3.10)

Proof:  The proof is easy.  Start with U Q Uz
w

z z

w

t a I t a t a d[ ] [ ], [ , ] ,F F F-[ ] =ƒ Ú
x x

0

 and

use integration by parts to get that

U Q Q Uz
w

z z z

w

t a I w t a w t a t a d[ ] [ ], [ , ] ( ) [ , ] , .F F F F-[ ] = + - [ ]ƒ Ú x xx2

0

It is clear how to get the n-th term.  Finally, let z Æ •  to get (3.10).
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Theorem 3.7 If a t b< < ,

1. lim , ,
z

z[ ] = [ ] ,  
Æ •

ŒU Ut a t aF F F FDƒ,

2. ∂
∂

Œ
t

t a t t a t a tU U Uz z z z z[ ] = [ ] = [ ] ,  , ( ) , , ( )F F F FH H FDƒ, and

3. ∂
∂

Œ …
t

t a t t a t a t b aU U U Q[ ] = [ ] = [ ] ,  D( [ ]) D ., ( ) , , ( ) ,F F F FH H 0

Proof:  To prove 1., use the fact that Hz ( )t  and H( )t  commute along with

U U Q Q[ ] [ ]z
zt a t a d ds e e dss t a s t a, , ( ) [ , ] ( ) [ , ]F F F- = ( )Ú

-

0

1 1

= ( ) -( )-

Ú s e e t a t a dss t a s t aQ Q Q Q[ , ] ( ) [ , ] , ,1

0

1
z [ ] [ ]z F , so that

U U Q Q[ ] [ ] [ ] [ ]z zt a t a t a t a, , , ,F F F F- £ - .

To prove 2., use

U U U U U Uz z z z z z[ ] [ ] [ ] [ ] I [ ] I [ ]t h a t a t a t h t t h t t a+ - = + -( ) = + -( ), , , , , , , so that, 
U U

U
Uz z

z
z[ ] [ ]

[ ]
[ ] It h a t a

h
t a

t h t

h

+ -( )
=

+ -( ), ,
,

,
.

Now set F Fz z[ ]t t a= U ,  and use (3.10) with n = 1 and w = 1 to get:

U Q U Qz z z z z z[ ] [ ]t h t I t h t t h t t h t dt t+ = + + + - + +
Ï
Ì
Ó

¸
˝
˛

ƒ Ú, [ , ] ( ) , [ , ]F F1
0

1
2x xx , so that

U Q

U
Q

z
z z z

z
z z z

z
z

z

[ ] I [ ]

[ ]
[ ]

t h t

h
t

t h t

h
t

t h t
t h t

h
d

t t t t

t

+ -( )
- =

+
-

+ - +
+

Ú

,
( )

,
( )

( ) ,
,

F F F F

F

H H

1
0

1 2

x xx

.

It follows that
U Q Qz

z z z
z

z z z
z

z

[ ] I [ ] [ ]t h t

h
t

t h t

h
t

t h t

h
t t t t t+ -( )

- £
+

- +
+

ƒ ƒ ƒ

,
( )

,
( )

,
F F F F FH H

1
2

2

 .

The result now follows from Theorem (3.4)-2 and 3.
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To prove 3., note that H H H H Hz ( ) ( ) z z ( ) = z z ( ) ( )t t t t tF F F= { } { }R R( , ) ( , ) , so that

z z ( )R( , )H t{ } commutes with U[ ]t a,  and H( )t . Now show that

H H H

H H H

z z z' z' z z'( ) [ ] ( ) [ ] [ ] [ ] ( )

                                                    z z ( ) z' z' ( ) ( )  z,z

t t a t t a t a t a t

t t t

U U U U

R R

, , , ,

( , ) ( , ) , ' ,

F F F F

F F

- £ -[ ]
+ -[ ] Æ Æ •0

so that, for F ŒD( [ ])Q b a, , H Hz z( ) [ ] ( ) [ ] [ ]t t a t t a
t

t aU U U, , ,F F FÆ =
∂
∂

.

The previous theorems form the core of our approach to the Feynman

operator calculus.  Our theory applies to both hyperbolic and parabolic

equations.  In the conventional approach, these two cases require different

methods (see Pazy71).  It is not hard to show that the requirements imposed in

these cases are stronger than (our condition of) weak integral.  This will be

discussed in a later paper devoted to the general problem on Banach spaces.

4. Perturbation Theory

Definition 4.1 The evolution operator U Qw t a w t a[ ] = exp, [ , ]{ } , is said to be

asymptotic in the sense of Poincaré, if for each n and each Fa
nD t aŒ ( )[ ]+Q[ , ] 1 ,

we have

lim ,
[ , ]
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=
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Â
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1

1

1

1
U

Q Q
[ ] F F (4.1)

This is the operator version of an asymptotic expansion in the classical

sense, but here Q[ , ]t a  is an unbounded operator.
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As noted earlier, Dyson16 analyzed the (renormalized) perturbation

expansion for quantum electrodynamics and suggested that it actually

diverges.  He concluded that we could, at best, hope that the series is

asymptotic.  His arguments were based on (not completely convincing)

physical considerations, but no precise formulation of the problem was

possible at that time.  However, the calculations of Hurst75, Thirring76,

Peterman77, and Jaffe78 for specific models all support Dyson’s contention that

the renormalized perturbation series diverges. In his recent book91 (pg. 13-16),

Dyson’s views on the perturbation series and renormalization are reiterated:

“ … in spite of all the successes of the new physics, the two questions that

defeated me in 1951 remain unsolved.”  Here, he is referring to the question of

mathematical consistency for the whole renormalization program, and our

ability to (reliably) calculate nuclear processes in quantum chromodynamics.

(For other details and references to additional works, see Schweber6,80,

Wightman84 and Zinn-Justin79.)

The general construction of a physically simple and mathematically

satisfactory formulation of quantum electrodynamics is still an open problem.

The next theorem establishes Dyson's (second) conjecture under conditions

that would apply to any (future) theory that does not require a radical

departure from the present foundations of quantum theory (unitary solution

operators).  It also applies to the renormalized expansions in some areas of

condensed matter physics where the solution operators are contraction

semigroups.

Theorem 4.2 Suppose the conditions for Theorem 3.5 are satisfied.  Then:

1. U Qw t a w t a[ ] = exp, [ , ]{ }  is asymptotic in the sense of Poincaré.
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2. For each n and each Fa
nD t aŒ ( )[ ]+Q[ , ] 1 , we have
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where F F( ) ,t t aw
a= U [ ] .

Proof:  From (3.10), we have
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Replace the right hand side by
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Now, expand the term Uz [ ]x t a,  in a two-term Taylor series about zero to get

U Qz z z[ ] =x xxt a I t a R, [ , ]ƒ + + .

Put the above in I, compute the elementary integrals showing that only the Iƒ

term gives a nonzero value (of 1 1( )n + ) when w Æ 0.  Then let z Æ •  to get
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This proves that U Q[ ] = expt a t a, [ , ]{ } is asymptotic in the sense of Poincaré.  To

prove (4.2), let Fa
nD t aŒ ( )[ ]+Q[ , ] 1  for each k n +1,£  and use the fact that

(Dollard and Friedman81)
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Letting z Æ •  gives the result.

Our conditions are very weak.  For example, the recent work of Tang

and Li82 required that H t( )  be Lebesgue integrable.

There are well known special cases in which the perturbation series

may actually converge to the solution. This can happen, for example, if the

generator is bounded or if it is analytic in some sector.  More generally, when

the generator is of the form H H H( ) ( ) ( )t t ti= +0 , where H0 ( )t  is analytic and

Hi t( )  is some reasonable perturbation, which need not be bounded, there are

conditions that allow the interaction representation to have a convergent

Dyson expansion.  These results can be formulated and proven in our

formalism.  However, the proofs are essentially the same as in the standard

case so we will present them in a later paper devoted to the operator calculus

on Banach spaces. The recent book by Engel and Nagel83 provides some new

results in this general area.

There are also cases where the (renormalized) series may diverge, but

still respond to some summability method.  This phenomenon is well known

in classical analysis.  In field theory, things can be much more complicated.  A
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good discussion, with references, can be found in the review by Wightman84

and the book by Glimm and Jaffe34.

5. Sum Over Paths

In this section we first review and make a distinction between what is

actually known and what we think we know about the foundations for our

physical view of the micro-world.  The objective is to provide the

background for a number of physically motivated postulates that will be

used to develop a theory of measurement for the micro-world (sufficient for

our purposes).   This will allow us to relate the theory of Sections 3 and 4 to

Feynman's sum over paths approach and prove Dyson's second conjecture.

This section differs from the previous ones in that we shift the orientation

and perspective from that of mathematical physics to that of theoretical

physics.

 In spite of the enormous successes of the physical sciences in the past

century, our information and understanding about the micro-world is still

rather meager.  In the macro-world we are quite comfortable with the view

that physical systems evolve continuously in time and our results justify this

view.  Indeed, the success of continuum physics is the basis for a large part

of our technical advances in the twentieth century.  On the other hand, the

same view is also held at the micro-level and, in this case, our position is not

very secure.  The ability to measure physical events continuously in time at

the micro-level must be considered a belief which, although convenient, has

no place in science as an a priori constraint.
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In order to establish perspective, let us consider this belief within the

context of a satisfactory, and well-justified theory, Brownian motion.  This

theory lies at the interface between the macro- and the micro-worlds.  Some

presentations of this theory (the careful ones) make a distinction between the

mathematical and the physical foundations of Brownian motion and that

distinction is important for our discussion.

When Einstein85 began his investigation of the physical issues

associated with this phenomenon, he was forced to assume that physical

information about the state of a Brownian particle (position, velocity, etc)

can only be known in time intervals that are large compared with the mean

time between molecular collisions. (It is known that, under normal physical

conditions, a Brownian particle receives about 1021 collisions per second.)

Wiener took the mathematical step and assumed that this mean time

(between collisions) could be made zero, thus providing a mathematical

Brownian particle.  This corresponds physically to the assumption that the

ratio of the mass of the particle to the friction of the fluid is zero in the limit

(see Wiener et al86).

From the physical point of view, use of Wiener's idealization of the

Einstein model was not satisfactory since it led to problems of unbounded

path length and nondifferentiability at all points.  The first problem is

physically impossible while the second is physically unreasonable.  Of

course, the idealization has turned out to be quite satisfactory in areas where

the information required need not be detailed, such as large parts of

electrical engineering, chemistry, and the biological sciences.  Ornstein and

Uhlenbeck87 later constructed a model that, gives the Einstein view

asymptotically, but in small-time regions, is equivalent to the assumption

that the particle travels a linear path between collisions.  This model
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provides finite path length and differentiability. (The theory was later

idealized by Doob88.) What we do know is that the very nature of the liquid

state implies collective behavior among the molecules. This means that we

do not know what path the particle travels in between collisions. However,

since the tools and methods of analysis require some form of continuity,

some such (in between observation) assumptions must be made.  It is clear

that the need for these assumptions is imposed by the available mathematical

structures within which we must represent physical reality as a model.

Theoretical science concerns itself with the construction of

mathematical representations of certain restricted portions of physical

reality.  Various trends and philosophies that are prevalent at the time temper

these constructs.  A consistent theme has been the quest for simplicity.  This

requirement is born out of the natural need to restrict models to the

minimum number of variables, relationships, constraints, etc, which give a

satisfactory account of known experimental results and possibly allow the

prediction of heretofore unknown consequences.  One important outcome of

this approach has been to implicitly eliminate all reference to the

background within which physical systems evolve.  In the micro-world, such

an action cannot be justified without prior investigation.  We propose to

replace the use of mathematical coordinate systems by "physical coordinate

systems" in order to (partially) remedy this problem.

We denote a physical coordinate system at time t by Rp
3 ( )t .  This

coordinate system is attached to an observer (including measuring devices)

and is envisioned as R3  plus any background effects, either local or distant,

which affect the observer's ability to obtain precise (ideal) experimental

information about physical reality.  This in turn affects our observer's ability
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to construct precise (ideal) representations and make precise predictions

about physical reality (in the micro-world).

More specifically, consider the evolution of some micro-system on the

interval E = [a,b].  Physically this evolution manifests itself as a curve on X ,

where

  R Xp
E

3 ( )t
t Œ

’ = .

Thus, true physical events occur on X  where actual experimental

information is modified by fluctuations in Rp
3 ( )t , and by the interaction of

the micro-system with the measuring equipment.   Based on the success of

our models, we know that such small changes are in the noise region, and

they have no effect on our predictions for macro-systems.  However, there is

no a priori reason to believe that the effects will be small on micro-systems.

In terms of our theoretical representations, we are forced to model the

evolution of physical systems in terms of wave functions, amplitudes, and/or

operator-valued distributions, etc.  There are thus two spaces, the physical

space of evolution for the micro-system and the observer's space of

obtainable information concerning this evolution.  The lack of distinction

between these two spaces seems to be the cause for some of the confusion

and lack of physical clarity.  For example, it may be perfectly correct to

assume that a particle travels a continuous path on X.  However, the

assumption that the observer's space of obtainable information includes

infinitesimal spacetime knowledge of this path is completely unfounded.

This leads to our first postulate:

Postulate 1.  Physical reality is a continuous process in time.
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We thus take this view, fully recognizing that experiment does not

provide continuous information about physical reality, and that there is no

reason to believe that our mathematical representations contain precise

information about the continuous spacetime behavior of physical processes

at this level.

Since the advent of the special theory of relativity, there is much

discussion about events, which generally means a point in R4  with the

Minkowski metric.  In terms of real physics, this is a fiction which is

frequently useful for reasons of presentation but so widely used that, to

avoid confusion, it is appropriate to define what we mean by a physical

event.

Definition 5.1 A physical event is a set of physical changes in a given system

that can be verified directly by experiment or indirectly via subsequent

changes, where conclusions are based on an a priori agreed-upon model of

the physical process.

This definition corresponds more closely to what is meant by physical

events.  It explicitly recognizes the evolution of scientific inference and the

need for general agreement about what is being observed (based on specific

models).

Before continuing, it will be helpful to have a particular physical

picture in mind that makes the above discussion explicit.  For this purpose,

we take this picture to be a photograph showing the track left by a p-meson

in a bubble chamber (and take seriously the amount of information

available).  In particular, we assume that the following reaction occurs:
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p m n+ +Æ + .

 We further assume that the orientation of our photograph is such that the p-

meson enters on the left at time t=0 and the tracks left by the µ-meson

disappear on the right at time t=T, where T is of the order of 10 3- sec, the

time exposure for photographic film.   Although the neutrino does not appear

in the photograph, we also include a track for it.  In Figure I we present a

simplified picture of this photograph.

Figure I

We have drawn the photograph as if we continuously see the particles

in the picture.  However, experiment only provides us individual bubbles,

which do not necessarily overlap, from which we must extract physical

information.  A more accurate (though still not realistic) depiction is given in

Figure II.
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Figure II

Let us assume that we have magnified a portion of our photograph to

the extent that we may distinguish the individual bubbles created by the p-

meson as it passes through the chamber.  In Figure III, we present a

simplified model of adjacent bubbles.

    t j -1 t j t j +1   t j + 2

Figure III

Postulate 2. We assume that the center of each bubble represents the

average knowable effect of the particle in a symmetric time interval about

the center.
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By average knowable effect, we mean the average of the physical

observables.  In Fig III, we consider the existence of a bubble at time t j  to

be caused by the average of the physical observables over the time interval

t tj j-[ ]1, , where t j j j- -= +1 11 2( / )[ ]t t  and t j j j= + +( / )[ ]1 2 1t t .  This postulate

requires some justification.  In general, the resolution of film and the

relaxation time for distinct bubbles in the chamber vapor are limited.  This

means that if the p-meson creates two bubbles that are closely spaced in

time, the bubbles may coalesce and appear as one.  If this does not occur, it

is still possible that the film will record the event as one bubble because of

its inability to resolve events is such small time intervals.

Let us now recognize that we are dealing with one photograph so that,

in order to obtain all available information, we must analyze a large number

of photographs of the same reaction obtained under similar conditions (pre-

prepared states).  It is clear that the number of bubbles and the time

placement of the bubbles will vary (independently of each other) from

photograph to photograph.  Let l-1 denote the average time for the

appearance of a bubble in the film.

Postulate 3.  We assume that the number of bubbles in any film is a random

variable.

Postulate 4.  We assume that, given that n bubbles have appeared on a film,

the time positions of the centers of the bubbles are uniformly distributed.

Postulate 5.  We assume that N(t), the number of bubbles up to time t in a

given film,  is a Poisson-distributed random variable with parameter l .
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To motivate Postulate 5, recall that t j  is the time center of the j-th

bubble and l-1 is the average (experimentally determined) time between

bubbles. The following results can be found in Ross89.

Theorem 5.1 The random variables Dt t t tj j j= - -1 0 ( = 0) are independent

identically distributed random variables of exponential type with mean l-1,

for 1 £ £j n.

The arrival times  t t t1 2, , ,L n are not independent, but their density

function can be computed from

P P P Prob rob rob robn n nt t t t t t t t t t1 2 1 2 1 1 2 1, , , | , , ,|L L L[ ] = [ ] [ ] [ ]- . (5.1a)

We now use Theorem 5.1 to conclude that, for k ≥1,

P Prob robk k k kt t t t t t| , , , .|1 2 1 1L - -[ ] = [ ] (5.1b)

We don’t know this conditional probability however, the natural

assumption is that given n bubbles appear, they are equally (uniformly)
distributed on the interval.  We can now construct what we call the

experimental evolution operator.  Assume that the conditions for Theorem
3.5 are satisfied and that the family  { , , , }t t t1 2 L n  represents the time positions

of the centers of n bubbles in our film of Fig III.  Set a = 0 and define

 QE n[ , , , ]t t t1 2 L  by

QE n jt

t

j

n

E s s ds
j

j

[ , , , ] [ , ] ( )t t t t1 2
1 1

L =
-

ÚÂ
=

H . (5.2a)

Here, t0 0 0= =t , t j j j= + +( / )[ ]1 2 1t t  (for 1 £ £j n), and E sj[ , ]t  is the

exchange operator defined in Section 2.  The effect of our exchange operator
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E sj[ , ]t  is to concentrate all information contained in [ , ]t tj j-1  at t j .  This is

how we implement our postulate that the known physical event of the bubble

at timet j  is due to an average of physical effects over [ , ]t tj j-1  with

information concentrated at t j .  We can rewrite  QE n[ , , , ]t t t1 2 L  as

QE n j
j

jt

t

j

n

t
t

E s s ds
j

j
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1

1
1

L =
È

Î
Í
Í

˘

˚
˙
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ÚÂ
=

D
D

H . (5.2b)

Thus, we indeed have an average as required by Postulate 2.  The evolution
operator is given by

U t
t

E s s dsn j
j

jt

t

j

n

j

j

t t t t1 2
1

1
1

, , , exp [ , ] ( )L[ ] =
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˘
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Ï
Ì
Ô
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¸
˝
Ô

Ǫ̂-
ÚÂ

=

D
D

H . (5.3a)

For F ŒFDƒ, we define the function U[ ( ]N t),0 F  by:

 
U[ ( ]N t U N t), , , , ( )0 1 2F F= [ ]t t tL . (5.3b)

The function U[ ( ]N t),0 F  is a FDƒ -valued  random variable, which represents

the distribution of the number of bubbles that may appear on our film up to

time t.   In order to relate U[ ( ]N t),0 F  to actual experimental results, we must

compute its expected value.  Using Postulates 3, 4, and 5, we have

U U Ul [ ] [ ( ] [ ( ] ( P (t N t N t N t n rob N t n
n

, ), ), ) )0 0 0
0

F F F= [ ] = { = } =[ ]
=

•

ÂE E , (5.4a)
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d d d
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0

t
2

1

n

n-1
n 1

1 n-1
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t t t

t
t t
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=Ú Ú Ú
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t

t

t
t t

t t
L L (5.5a)

and
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P (rob N t n
t

n
t

n

)
!

exp{ }=[ ] =
( )

-
l

l . (5.6)

The integral in (5.4a) acts to distribute uniformly the time positions t j  over

the successive intervals [ , ]t jt -1 , 1 £ £j n, given that t j -1  has been determined.

This is a natural result given our lack of knowledge.

The integral (5.4a) is of theoretical value but is not easy to compute.

Since we are only interested in what happens when l Æ •, and as the mean

number of bubbles in the film at time t is lt , we can take t j jt n j n= £ £( / ), , 1

( Dt t nj = /  for each n).  We can now replace Un t[ ,0]F  by Un t[ ,0]F , and with this

understanding, we continue to use t j , so that

Un jt

t

j

n

t E s s ds
j

j

[ ,0]F F=
Ï
Ì
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¸
˝
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ÚÂ
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H .  (5.5b)

We define our experimental evolution operator Ul [ ]t,0 F  by

U Ul

l
l[ ] [ ,0]t

t

n
t t

n

n
n,

!
exp{ }0

0

F F=
( )

-
=

•

Â . (5.4b)

We now have the following result, which is a consequence of the fact that

Borel summability is regular.

Theorem 5.4 Assume that the conditions for Theorem 3.5 are satisfied.  Then

lim , lim ,
l

l
l

l
Æ • Æ •

= =U U U[ ] [ ] [ ,0]t t t0 0F F F. (5.7)

Since l lÆ • fi Æ-1 0, this means that the average time between bubbles is

zero (in the limit) so that we get a continuous path.  It should be observed that
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this continuous path arises from averaging the sum over an infinite number of

(discrete) paths.  The first term in (5.4b) corresponds to the path of a p-meson

that created no bubbles (i.e., the photograph is blank).  This event has

probability exp{ }-lt  (which approaches zero as l Æ •).  The n-th term

corresponds to the path of a p-meson that created n bubbles, (with probability

[( ) / !]exp{ }l lt n tn - ) etc.  Before deriving a physical relationship, let

P t s[ ; , ]l = 0 if s £ 0 and, for 0 < s < •, define it as:

 P t s e
t
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where n s= È ˘l  is the greatest integer £ ls.  We can now write U[ ,0]t F  as

U U

U

[ ,0] [ ,0]

      [ ,0]

t d P t s s

s E u u du

s s

s jt

t

j

s

j

j

F F

F F

=

=
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

Æ •

•

È ˘

È ˘
=

È ˘

Ú

ÚÂ
-

lim [ ; , ] ,

exp [ , ] ( )

l l

l

l

l

t

0

1 1

H
. (5.9)

Equation (5.9) means that we get both a sum over paths and a probability

interpretation for our formalism.  This allows us to give a new definition for

path integrals.

Suppose the evolution operator U[ ,0]t  has a kernel, K x x( ),  ;  ( ),  t t 0 0[ ],

such that

1. K x x K x x K x x x
R
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0 0 ( ), and

2. U K x x x
R
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0 0 0( ).

Then, from equation (5.9), we have that
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Thus, whenever we can associate a kernel with our evolution operator, the

time-ordered version always provides a well-defined path-integral as a sum

over paths.  The definition does not (directly) depend on the space of

continuous paths and is independent of a theory of measure on infinite

dimensional spaces.  Feynman suggested that the operator calculus was more

general, in his book with Hibbs90 (see pg. 355-6).

6. The S-Matrix

The objective of this section is to provide a formulation of the S-matrix

that will allow us to investigate the sense in which we can believe Dyson's

first conjecture.  At the end of his second paper on the relationship between

the Feynman and Schwinger-Tomonaga theories, he explored the difference

between the divergent Hamiltonian formalism that one must begin with and

the finite S-matrix that results from renormalization.  He takes the view that it

is a contrast between a real observer and a fictitious (ideal) observer.  The real

observer can only determine particle positions with limited accuracy and

always gets finite results from his measurements.  Dyson then suggests that

"... The ideal observer, however, using non-atomic apparatus whose location

in space and time is known with infinite precision, is imagined to be able to

disentangle a single field from its interactions with others, and to measure the

interaction.  In conformity with the Heisenberg uncertainty principle, it can

perhaps be considered a physical consequence of the infinitely precise

knowledge of (particle) location allowed to the ideal observer, that the value

obtained when he measures (the interaction) is infinite."  He goes on to
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remark that if his analysis is correct, the problem of divergences is attributable

to an idealized concept of measurability.

In order to explore this idea, we work in the interaction representation

with obvious notation.  Replace the interval [t, 0] by [T, -T], H( )t  by

( / ) ( )-i th HI , and our experimental evolution operator Ul [ , ]T T- F  by the

experimental scattering operator Sl [ , ]T T- F , where

S Sl

l
l[ ] [ ]T T

T

n
T T T

n

n
n,

( )
!

exp , ,- = -[ ] -
=

•

ÂF F
2

2
0 (6.1)

S Hn jt

t

j

n

T T i E s s ds
j

j

[ ] I, exp ( / ) [ , ] ( ) ,- = -
Ï
Ì
Ó

¸
˝
˛-

ÚÂ
=

F Fh t
11 (6.2)

and H H x x
RI I( ) ( ( ), ) ( )t t t d t= Ú 3

 is the interaction energy.  We follow Dyson for

consistency (see also the discussion), so that dmc 2  is the mass counter-term

designed to cancel the self-energy divergence, and

H x A x x x x xI( ( ), ) ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), )t t ie t t t t t t mc t t t t= - -m my g y d y y2 . (6.3)

We now give  a physical interpretation of our formalism.  Rewrite equation

(6.1) as

S Hl

l
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In this form, it is clear that the term - ƒilhI  has a physical interpretation as the

absorption of photon energy of amount lh in each subinterval [ , ]t tj j -1  (cf. Mott

and Massey92).  When we compute the limit, we get the standard S-matrix (on
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[T, -T]).  It follows that we must add an infinite amount of photon energy to

the mathematical description of the experimental picture (at each point in

time) in order to obtain the standard scattering operator.  This is the ultraviolet

divergence and shows explicitly that the transition from the experimental to

the ideal scattering operator requires that we illuminate the particle throughout

its entire path.  Thus, it appears that we have, indeed, violated the uncertainty

relation.  This is further supported if we look at the form of the standard S-

matrix:

 
S H[ ] IT T i s ds

T

T
, exp ( / ) ( )- = -{ }-ÚF Fh , (6.5)

and note that the differential ds in the exponent implies perfect infinitesimal

time knowledge at each point, strongly suggesting that the energy should be

totally undetermined.  If violation of the Heisenberg uncertainty relation is the

cause for the ultraviolet divergence, then as it is a variance relation, it will not

appear in first order (perturbation) but should show up in all higher-order

terms.  On the other hand, if we eliminate the divergent terms in second order,

we would expect our method to prevent them from appearing in any higher

order term of the expansion.  The fact that this is precisely the case in

quantum electrodynamics is a clear verification of Dyson's conjecture.

If we allow T to become infinite, we once again introduce an infinite

amount of energy into the mathematical description of the experimental

picture, as this is also equivalent to precise time knowledge (at infinity).  Of
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course, this is the well-known infrared divergence and can be eliminated by

keeping T finite (see Dahmen et al93) or introducing a small mass for the

photon (see Feynman12, pg. 769).  If we hold l fixed while letting T become

infinite, the experimental S-matrix takes the form:

S Hl t

l
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This form is interesting since it shows how a minimal time eliminates the

ultraviolet divergence.  Of course, this is not unexpected, and has been known

at least since Heisenberg94 introduced his fundamental length as a way around

the divergences.  This was a prelude to the various lattice approximation

methods.   The review by Lee95 is interesting in this regard.

In closing this section, we record our exact expansion for the S-matrix

to any finite order.   With F( ) [ , ]-• Œ • -•( )[ ]+D nQ 1 , we have
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It follows that (in a theoretical sense) we can consider the standard S-matrix

expansion to be exact, when truncated at any order, by adding the last term of

equation (6.7) to give the remainder.  This result also means that whenever we

can construct an exact nonperturbative solution, it always implies the
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existence of a perturbative solution valid to any order.  However, in general,

only in particular cases can we know if the series at some n (without the

remainder) approximates the solution.

Discussion

In this paper we have shown how to construct a natural representation

Hilbert space for Feynman's time-ordered operator calculus.  This space

allows us to construct the time-ordered integral and evolution operator

(propagator) under the weakest known conditions.  Using the theory, we have

shown that the perturbation expansion relevant to quantum theory is

asymptotic in the sense of Poincaré.  This provides a precise formulation and

proof of Dyson's second conjecture16 that, in general, we can only expect the

expansion to be asymptotic.

Our investigation into the extent that our continuous models for the

micro-world faithfully represent the amount of information available from

experiment has led to a derivation of the time-ordered evolution operator in a

more physical way.  This approach made it possible to prove that the

ultraviolet divergence is caused by a violation of the Heisenberg uncertainty

relation at each point in time, thus partially confirming Dyson's first

conjecture.

We used Dyson’s original notation so as to explicitly exhibit the

counter-term necessary to eliminate the self-energy divergence that occurs in
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QED.  This divergence is not accounted for and is outside the scope of the

current investigation.  Thus, within our present framework, we cannot say that

all the divergences arise from our disregard of some simple physics, and are

not the result of deeper problems.  Thus, Dyson’s concerns about the

mathematical consistency of quantum electrodynamics, and quantum field

theory in general, is still an open problem.

Although we are not working in the framework of axiomatic field

theory, our approach may make some uneasy since Haag's theorem suggests

that the interaction representation does not exist (see Streater and Wightman27

pg. 161).  (Haag's theorem assumes, among other things, that the equal time

commutation relations for the canonical variables of a interacting field are

equivalent to those of a free field.)  In trying to explain this unfortunate result,

these authors point out that ( see pg. 168) "… What is even more likely in

physically interesting quantum field theories is that equal time commutation

relations will make no sense at all; the field might not be an operator unless

smeared in time as well as space. "  The work in Sections 5 and 6 of this paper

strongly suggests that there is no physical basis to assume that we know

anything about canonical variables at one instant in time (see postulate 2 and

the following paragraph).  Thus, our approach actually confirms the above

comments of Streater and Wightman.
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