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Abstract

Let H = −∆ + V be a two dimensional Schrödinger operator
with a real potential V (x) satisfying the decay condition |V (x)| ≤
C〈x〉−δ, δ > 6. Let H0 = −∆. We show that the wave operators
s-limt→±∞ e

itHe−itH0 are bounded in Lp(R2) under the condition that
H has no zero resonances or bound states. In this paper thecondition∫
R2 V (x)dx 6= 0, imposed in a previous paper (K. Yajima, Commun.

Math. Phys. 208 (1999), 125–152), is removed.

1 Introduction

Let H = −∆ + V and H0 = −∆ be Schrödinger operators in L2(R2). We
assume that V is multiplication by a function V (x), which satisfies the fol-
lowing condition:

Assumption 1.1. V (x) is real-valued and |V (x)| ≤ C〈x〉−δ, x ∈ R2, for
some δ > 6.
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It is well-known that under this assumption the wave operators W± de-
fined by the limits

W±u = lim
t→±∞

eitHe−itH0u, u ∈ L2(R2),

exist and are complete, i.e. RanW± = L2
ac(H), the absolutely continuous

subspace of L2(R2) for H, and the singular continuous spectrum of H is
absent.

In this note we prove the following theorem:

Theorem 1.2. Let Assumption 1.1 be satisfied. Suppose that 0 is neither an
eigenvalue nor a resonance of H, viz. there are no solutions u ∈ H2

loc(R
2) of

−∆u+ V u = 0, which satisfy for |α| ≤ 1

∂αx

(
u− a− b1x1 + b2x2

|x|2

)
= O(|x|−1−ε−|α|), |x| → ∞. (1.1)

Then the wave operators W± are bounded in Lp(R2) for all p, 1 < p <∞.

In [2], one of the authors has shown Theorem 1.2 under the additional
assumption that

∫
R2 V (x)dx 6= 0. This additional assumption was made to

simplify the asymptotic analysis as λ → 0 of the boundary values R±(λ) =
limε↓0 R(λ ± iε) on the reals of the resolvent R(z) = (H − z)−1 of H. By
applying the recent results [1] of the other author with G. Nenciu on pre-
cisely this asymptotic problem, we show that this additional assumption is
unnecessary.

2 Proof of the Theorem

We choose c > 0 sufficiently small and let χ(t) ∈ C∞0 ([0,∞)) be a cut-off
function such that χ(t) = 1 for t ≤ c/2 and χ(t) = 0 for t ≥ c. We set
χ̃(t) = 1 − χ(t). The argument in Sections 2 and 3 of [2] does not use the
assumption

∫
R2 V (x)dx 6= 0, and it implies that the high energy part of the

wave operators W±χ̃(H0) are bounded in Lp(R2) for 1 < p < ∞. Thus we
have only to prove that the low energy part W±χ(H0) are bounded in Lp(R2)
for 1 < p <∞.

2.1 Preliminaries

It suffices to consider W+. We record some results from [1] and [2] which we
need in what follows.
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The following three results are Proposition 2.1, Lemma 4.4 and Lemma
4.1 of [2], respectively. We define the operator W (1)(V ) depending on a
function V by

W (1)(V )u = − 1

2πi

∫ ∞
0

R−0 (λ)V {R+
0 (λ)−R−0 (λ)}u dλ (2.1)

for u ∈ S(R2). Here R±0 (λ) = limε↓0 R0(λ ± iε) denote the boundary values
of the free resolvent. As is well known, these boundary values exist for λ > 0
in B(L2,s(R2), L2,−s(R2)) for s > 1/2.

Lemma 2.1. If V ∈ L2,s(R2) for some s > 1, then W (1)(V ) extends to a
bounded operator in Lp(R2) for any p, 1 < p <∞, and

‖W (1)(V )‖B(Lp) ≤ Csp‖〈x〉sV ‖2. (2.2)

Corollary 2.2. Suppose that K is an integral operator with the integral ker-
nel K(x, y) and that K satisfies∫

R2

(∫
R2

〈x〉2s|K(x, x− y)|2dx
)1/2

dy ≡ ‖K‖s <∞ (2.3)

for some s > 1. Then the operator Z, defined by

Zu = − 1

2πi

∫ ∞
0

R−0 (λ)K{R+
0 (λ)−R−0 (λ)}u dλ (2.4)

for u ∈ S(R2), can be extended to a bounded operator in Lp(R2) for any p,
1 < p <∞, and furthermore ‖Zu‖p ≤ Csp‖K‖s‖u‖p.

Lemma 2.3. Suppose that N(k) satisfies for some s > 3

‖(d/dk)jN(k)‖B(L2,−s,L2,s) ≤ Cjk
2−j〈log k〉 (2.5)

for j = 0, 1, 2 and for 0 < k < c. Then the operator A, defined by

Au = − 1

πi

∫ ∞
0

R−0 (k2)N(k){R+
0 (k2)−R−0 (k2)}χ(k2)u k dk (2.6)

for u ∈ S(R2), can be extended to a bounded operator in Lp(R2) for any p,
1 ≤ p ≤ ∞.

For studying the low energy behavior of R±(k2) we define, following [1],

U(x) =

{
1 if V (x) ≥ 0,

−1 if V (x) < 0,
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and

v(x) = |V (x)|1/2, w(x) = U(x)v(x).

We also need

M±(k) = U + vR±0 (k2)v, k > 0.

Define the orthogonal projections in L2(R2) by

P = ‖V ‖−1
1 v ⊗ v, Q = 1− P.

It follows from the results in [1] and Assumption 1.1 that

M±(k) = U + c±(k)P + vG0v +O(k2 log k) (2.7)

in the operator norm of B(L2), where c±(k) = a± + b± log k, and G0 is the
integral operator with the integral kernel

G0(x, y) = − 1

2π
log |x− y|.

The term O(k2 log k) stands for a B(L2)-valued C2 function Ñ(k), which
satisfies

‖dj/dkjÑ(k)‖B(L2) ≤ Ck2−j〈log k〉, 0 < k < c, (2.8)

for j = 0, 1, 2. The differentiability of the expansion (2.7) is easily verified
using the results in [1]. Note that the decay rate V (x) = O(〈x〉−δ), δ > 6,
suffices in order to differentiate twice. The error term is handled using an
appropriate version of the remainder in Taylor’s formula and the results in
[1]. Hereafter we denote operators which satisfy (2.8) indiscriminately by
O(k2 log k).

Let M0 = U + vG0v. It is known (cf. [1, Theorem 6.2]) that

QM0Q is invertibel in QL2(R2),

if and only if 0 is neither an eigenvalue nor a resonance of H and, in that
case,

M±(k)−1 = g±(k)−1{P − PM0QD0Q−QD0QM0P

+QD0QM0PM0QD0Q}
+QD0Q+O(k2 log k), (2.9)
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where g±(k) = c± log k + d± with non-vanishing constant c±, and where we
introduced the notation D0 = (QM0Q)−1, see formula (6.27) of [1]. Notice
that each of the operators in the braces is a rank one operator. With α =
‖V ‖1, and v1 = QD0QM0v we have

P = α−1v ⊗ v, PM0QD0Q = αv ⊗ v1, (2.10)

QD0QM0P = αv1 ⊗ v, QD0QM0PM0QD0Q = αv1 ⊗ v1. (2.11)

Lemma 2.4. The operator QD0Q−QUQ is an operator of Hilbert-Schmidt
type.

Proof. Since QM0Q is invertible in QL2(R2), the operator T = P + QM0Q
is invertible in L2(R2) and D0 = QT−1Q. Clearly

T = U + {vG0v + P + PM0P − PM0Q−QM0P} ≡ U(1 + S).

Here P , PM0P , PM0Q, and QM0P are rank one operators, and vG0v is of
Hilbert-Schmidt type, since v(x) = O(〈x〉−δ/2), δ/2 > 3. Thus S is a Hilbert-
Schmidt operator. Since U is invertible, we have that 1 +S is also invertible.
Using

(1 + S)−1 = 1− S(1 + S)−1,

it follows that T−1−U is a Hilbert-Schmidt operator, which implies the result
in the lemma.

2.2 The Proof

By the stationary representation formula for the wave operators we have

W+χ(H0)u = χ(H0)u− 1

2πi

∫ ∞
0

R−(λ)V {R+
0 (λ)−R−0 (λ)}χ(λ)u dλ.

(2.12)

The operator χ(H0) has a smooth and rapidly decreasing integral kernel, so
it is bounded in Lp(R2) for any 1 ≤ p ≤ ∞. Hence, we need to study the
operator W1 defined by the integral on the right of (2.12). Change to the
variable k determined by λ = k2, and use the formula

R±(k2)V = R±0 (k2)vM±(k)v, (2.13)

cf. Section 4 in [1]. Then

W1u = − 1

πi

∫ ∞
0

R−0 (k2)vM−(k)−1v{R+
0 (k2)−R−0 (k2)}χ(k2)u k dk. (2.14)
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By virtue of (2.9), (2.10), (2.11), and Lemma 2.4, we have

M−(k)−1 = d(k)F + L+ U +O(k2 log k), d(k) = g−(k)−1, (2.15)

where F is of rank 3, and L is of Hilbert-Schmidt type. It follows that
the integral kernels K1(x, y) and K2(x, y) of vFv and v(L + U)v satisfy the
condition (2.3) of Corollary 2.2. Thus,

W11u = − 1

πi

∫ ∞
0

R−0 (k2)vFv{R+
0 (k2)−R−0 (k2)}χ(k2)u k dk, (2.16)

W12u = − 1

πi

∫ ∞
0

R−(k2)v(L+ U)v{R+
0 (k2)−R−0 (k2)}χ(k2)u k dk, (2.17)

are bounded in Lp(R2) for 1 < p < ∞. On the other hand vO(k2 log k)v
satisfies the condition (2.5) of Lemma 2.3, since the error term in (2.15) is
found using the Neumann series, cf. [1], and since the error term in (2.7)
satisfies (2.8). Therefore we can apply Lemma 2.3 to conclude that

W13u = − 1

πi

∫ ∞
0

R−0 (k2)vO(k2 log k)v{R+
0 (k2)−R−0 (k2)}χ(k2)u k dk

(2.18)

is bounded in Lp(R2) for 1 ≤ p ≤ ∞. Thus,

W1 = W11d(|D|) +W12 +W13

is bounded in Lp(R2) for 1 < p <∞, since d(|D|) is bounded in Lp(R2) for
1 < p <∞ by the standard Fourier multiplier theorem.
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