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Abstract

Let H = —A + V be a two dimensional Schrodinger operator
with a real potential V(x) satisfying the decay condition |V (z)| <
C(z)™® &6 > 6. Let Hy = —A. We show that the wave operators
s-limy_, 1 oo €t e~ Ho gre hounded in Lp(RZ) under the condition that
H has no zero resonances or bound states. In this paper thecondition
Jre V(z)dx # 0, imposed in a previous paper (K. Yajima, Commun.
Math. Phys. 208 (1999), 125-152), is removed.

1 Introduction

Let H= —A+V and Hy = —A be Schrodinger operators in L*(R?). We
assume that V' is multiplication by a function V' (z), which satisfies the fol-
lowing condition:

Assumption 1.1. V() is real-valued and |V (x)| < C(z)7, x € R?, for
some 0 > 6.
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It is well-known that under this assumption the wave operators Wy de-
fined by the limits

Wiu= lim e e Hoy 4 e L*(R?),
t—+too
exist and are complete, i.e. RanW, = L2 (H), the absolutely continuous
subspace of L?*(R?) for H, and the singular continuous spectrum of H is
absent.
In this note we prove the following theorem:

Theorem 1.2. Let Assumption 1.1 be satisfied. Suppose that O is neither an
eigenvalue nor a resonance of H, viz. there are no solutions u € HE (R?) of
—Au+ Vu =0, which satisfy for |a| <1

o (u Ca- M) — (e, Ja] o (L)

jf?
Then the wave operators W are bounded in LP(R?) for all p, 1 < p < co.

In [2], one of the authors has shown Theorem 1.2 under the additional
assumption that [, V(x)dz # 0. This additional assumption was made to
simplify the asymptotic analysis as A — 0 of the boundary values R¥(\) =
lim. o R(\ £ ie) on the reals of the resolvent R(z) = (H — z)~! of H. By
applying the recent results [1] of the other author with G. Nenciu on pre-
cisely this asymptotic problem, we show that this additional assumption is
unnecessary.

2 Proof of the Theorem

We choose ¢ > 0 sufficiently small and let x(t) € C§°([0,00)) be a cut-off
function such that x(t) = 1 for ¢t < ¢/2 and x(t) = 0 for t > ¢. We set
X(t) = 1 — x(t). The argument in Sections 2 and 3 of [2] does not use the
assumption [p, V(x)dx # 0, and it implies that the high energy part of the
wave operators W.x(Hp) are bounded in LP(R?) for 1 < p < oo. Thus we
have only to prove that the low energy part W.x(Hy) are bounded in LP(R?)
for 1 < p < o0.

2.1 Preliminaries

It suffices to consider W,. We record some results from [1] and [2] which we
need in what follows.



The following three results are Proposition 2.1, Lemma 4.4 and Lemma
4.1 of [2], respectively. We define the operator W) (V) depending on a

function V' by
1 o
Lvﬁquu::—§—; Ry MV{RS(\) — Ry (\)}ud (2.1)
T Jo

for u € 8§(R?). Here R3()\) = lim.jo Ro(\ & ie) denote the boundary values
of the free resolvent. As is well known, these boundary values exist for A > 0
in B(L**(R?), L>%(R?)) for s > 1/2.

Lemma 2.1. If V € L>3(R?) for some s > 1, then W)(V) extends to a
bounded operator in LP(R?) for any p, 1 < p < oo, and

WO V) sze) < Copll(@)°V ]l (2.2)

Corollary 2.2. Suppose that K is an integral operator with the integral ker-
nel K(x,y) and that K satisfies

/R2 (/R2<x>25!K(x,x — y)\2d:c> v dy = ||K]|, < oo (2.3)

for some s > 1. Then the operator Z, defined by
1 o0

Ju = ——
21 ),

Ry (N K{RS(\) — Ry (\) Jud (2.4)
for u € 8(R?), can be extended to a bounded operator in LP(R?) for any p,
1 <p < oo, and furthermore || Zu||, < Cop|| K ||s|wl,-

Lemma 2.3. Suppose that N(k) satisfies for some s > 3
[(d/dk) N (k) ||n(re.-s p2s) < Cjk* (log k) (2.5)
for 7 =0,1,2 and for 0 < k < c. Then the operator A, defined by

du=—= [ Ry RN () — By () (R)ukdk  (26)

™ Jo
for u € 8(R?), can be extended to a bounded operator in LP(R?) for any p,
1 <p<oo.
For studying the low energy behavior of R*(k?) we define, following [1],

{1 if V(z) >0,

U@ =11 itvi) <o,



and

We also need
M*(k) = U +vRs (K*)v, k> 0.
Define the orthogonal projections in L*(R?) by
P=|V|i'v®v, Q=1-P.
It follows from the results in [1] and Assumption 1.1 that
M=*(k) = U + ¢*(k)P + vGov + O(k* log k) (2.7)
in the operator norm of B(L?), where ¢*(k) = a® + b logk, and Gy is the

integral operator with the integral kernel

1
Go(z,y) = ~5- log [z — y|.

The term O(k*logk) stands for a B(L?)-valued C? function N(k), which
satisfies

|d’ JdKI N (k)| nr2y < Ck*(logk), 0<Fk<c, (2.8)

for j = 0,1,2. The differentiability of the expansion (2.7) is easily verified
using the results in [1]. Note that the decay rate V(x) = O({(x)~°%), § > 6,
suffices in order to differentiate twice. The error term is handled using an
appropriate version of the remainder in Taylor’s formula and the results in
[1]. Hereafter we denote operators which satisfy (2.8) indiscriminately by
O(k?*log k).

Let My = U + vGov. It is known (cf. [1, Theorem 6.2]) that

QM,oQ is invertibel in QL*(R?),

if and only if 0 is neither an eigenvalue nor a resonance of H and, in that
case,

M*(k)™" = g* (k)" {P — PMoQDoQ — QDoQMoP
+ QDoQMyPMyQDyQ}
+QDoQ + O(K*log k), (2.9)



where g*(k) = c¢tlogk + d* with non-vanishing constant ¢*, and where we
introduced the notation Dy = (QMyQ)™!, see formula (6.27) of [1]. Notice
that each of the operators in the braces is a rank one operator. With a =

V|1, and v1 = QDyQMyv we have

P=alv®u, PMyQDyQ = av @ vy, (2.10)
QD()QM()P = av; v, QD()QMOPM()QD()Q = av] Q Vy. (211)
Lemma 2.4. The operator QDyQ — QUQ is an operator of Hilbert-Schmidt
type.
Proof. Since QM@ is invertible in QL?(R?), the operator T' = P + QMyQ
is invertible in L?*(R?) and Dy = QT'Q. Clearly
T =U+ {vGov+ P+ PMyP — PMyQ — QMyP} =U(1+5).

Here P, PMyP, PMyQ, and QMyP are rank one operators, and vGgv is of
Hilbert-Schmidt type, since v(x) = O({z)~%/?), §/2 > 3. Thus S is a Hilbert-
Schmidt operator. Since U is invertible, we have that 14 S is also invertible.
Using

14+8) ' t=1-51+957",

it follows that 7-! —U is a Hilbert-Schmidt operator, which implies the result
in the lemma. ]

2.2 The Proof

By the stationary representation formula for the wave operators we have

o0

Wox(Hou = X(HoJu — - [ RV O) = R
(2.12)

The operator x(Hp) has a smooth and rapidly decreasing integral kernel, so
it is bounded in LP(R?) for any 1 < p < co. Hence, we need to study the
operator W, defined by the integral on the right of (2.12). Change to the
variable k determined by A\ = k2, and use the formula

RE(K*)V = RE(K*)vM=(k)v, (2.13)

cf. Section 4 in [1]. Then

Wiu = —i_ h Ry (KoM~ (k) "w{R§ (k*) — Ry (k*)}x(K*)uk dk. (2.14)

T Jo



By virtue of (2.9), (2.10), (2.11), and Lemma 2.4, we have
M~(k)™ = d(k)F + L+ U + O(k*logk), d(k) =g~ ()",  (2.15)

where [’ is of rank 3, and L is of Hilbert-Schmidt type. It follows that
the integral kernels Ki(z,y) and Ky(x,y) of vFv and v(L + U)v satisfy the
condition (2.3) of Corollary 2.2. Thus,

Wiu = —% /OO Ry (K vFo{R{ (k%) — Ry (K*)yx(k*)u k dk, (2.16)
Wiyu = —% h R (K)v(L + U)v{R{ (K*) — Ry (E*)}x(K*)uk dk, (2.17)

are bounded in LP(R?) for 1 < p < oo. On the other hand vO(k?log k)v
satisfies the condition (2.5) of Lemma 2.3, since the error term in (2.15) is
found using the Neumann series, cf. [1], and since the error term in (2.7)
satisfies (2.8). Therefore we can apply Lemma 2.3 to conclude that

1 o0
Wisu = . Ry (E*)vO(k*log k)v{R$ (K*) — Ry (K*)Yx(k*)uk dk
T Jo
(2.18)
is bounded in LP(R?) for 1 < p < oo. Thus,
W1 - Wlld(|D|) + W12 + W13

is bounded in LP(R?) for 1 < p < oo, since d(|D]) is bounded in LP(R?) for
1 < p < o0 by the standard Fourier multiplier theorem.
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