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1. Introduction 
 
   This note carries three purposes involving 
our latest advances on the radial basis function 
(RBF) approach. First, we will introduce a new 
scheme employing the boundary knot method 
(BKM) [1] to nonlinear convection-diffusion 
problem. It is stressed that the new scheme 
directly results in a linear BKM formulation of 
nonlinear problems by using response 
point-dependent RBFs, which can be solved by 
any linear solver. Then we only need to solve a 
single nonlinear algebraic equation for desirable 
unknown at some inner node of interest. The 
numerical results demonstrate high accuracy 
and efficiency of this nonlinear BKM strategy. 
Second, we extend the concepts of distance 
function, which include time-space and variable 
transformation distance functions. Finally, we 
demonstrate that if the nodes are symmetrically 
placed, the RBF coefficient matrices have either 
centrosymmetric or skew centrosymmetric 
structures. The factorization features of such 
matrices lead to a considerable reduction in the 
RBF computing effort. A simple approach is 
also presented to reduce the ill-conditioning of 
RBF interpolation matrices in general cases.  
 
2. BKM linear formulation of nonlinear 
problems 
 
Chen and Tanaka [1] found that if only 
boundary knots are used, the BKM can 
formulate linear analogization of nonlinear 

differential equations with linear boundary 
conditions. Consider the Burger-like 
convection-diffusion equation [2] 
 

∇2u − uxu = 0   (1) 
 
with inhomogeneous boundary condition 
 

u = −2 / x    (2) 
 
Eq. (2) is also a particular solution of Eq. (1). 
The geometry of the problem is an ellipse with 
semi-major axis of length 2 and semi-minor 
axis of length 1. Note that the origin of the 
Cartesian co-ordinates system is dislocated to 
the node (3,0) to circumvent singularity at x=0. 
Using the scheme given in [1], Eq. (1) is 
restated as  
 

∇2u + u = u + ux u .  (3) 
 
When only the boundary nodes are employed, 
the resulting BKM formulation will be a linear 
algebraic equation in terms of 2D Helmhotz 
non-singular general solution. For details of 
such BKM procedure see [1]. The numerical 
solutions of this normal BKM procedure have 
the average relative errors 3.9e-2 for N=5, 
1.1e-1 for N=9, 1.4e-1 for N=13 at some inner 
nodes, where N is the number of boundary 
nodes used. It is noted that the performances are 
unstable and solutions inaccurate. If we use 
interior points in the BKM, the accuracy and 
stability will be improved greatly at the expense 



of sacrificing linear formulation as in the dual 
reciprocity BEM (DRM) [2]. It is note that the 
convection term rather than nonlinear 
constitution here causes the deficiency of the 
BKM solutions if not using inner points. 
   In the DRM, it is reported that the use of the 
fundamental solution of convection diffusion 
equation can significantly improve the solution 
accuracy of transient convection diffusion 
problem with only one inner point. This 
suggests us that a non-singular general solution 
of convection-diffusion operator may be much 
more suitable for this problem. By analogy with 
the fundamental solution of the 
convection-diffusion equation, the response 
knot-dependent non-singular general solution of 
Eq. (1) is given by  
 

u r, x( ) = e
−u x −xk( ) 2φ

u
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where radial function  is the zero order Bessel 
Jo or modified Bessel function Io of the first 
kind dependent on the sign of flow velocity u. 
In this case it is the latter. The RBF 
approximation is given by 
 

ui = αk e
−ui xi −xk( ) 2

I0

ui
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N

∑ . (5) 

 
Note that the above RBF representation differs 
from the normal one in that we here use the 
response point-dependent RBFs even if we do 
not know the value of u. In terms of the BKM 
using only boundary knots, Eq. (1) is 
analogized by substituting boundary conditions 
into Eq. (5), namely,  
 

αke
xi −xk( ) xi I0 rik 2 xi( )= −2 / xi

k=1

N

∑ . (6) 

 
The formulation (6) is a set of simultaneous 
linear algebraic equations and can be solved 
easily by any linear solver.  
   Then we can evaluate the value of u at any 
inner nodes of interest through the solution of a 
single nonlinear equation (5). Note that the RBF 
expansion coefficients in Eq. (5) are now 
already evaluated from Eq. (6) and the only one 

unknown is the value of u at a specified single 
inner knot. This study used simple bisection 
method to handle such a single nonlinear 
equation. There are no concerns here relating to 
the expensive repeated evaluation and inverse 
of Jacobian matrix, stability issue and the 
careful guess of initial solutions.  
   In summary, the present nonlinear BKM 
scheme can be viewed as a two-step procedure. 
First, the linear BKM formulation of nonlinear 
problems is produced using response 
node-dependent RBFs. Then, the second step is 
to calculate the solution at any inner node of 
interest through solving a single nonlinear 
algebraic equation.  
 
Table 1. Relative errors for BKM linear 
formulation of Burger-like equation  

x y DRM(33) BKM (9) BKM (11) 

4.5 0.0 2.3e-3 2.8e-3 2.5e-3 

4.2 -0.35 2.1e-3 2.3e-3 2.9e-3 

3.6 -0.45 5.4e-3 4.4e-3 6.2e-3 

3.0 -0.45 4.5e-3 1.0e-2 9.2e-3 

2.4 -0.45 1.2e-3 1.2e-2 5.7e-3 

1.8 -0.35 9.0e-4 7.0e-3 3.2e-3 

3.9 0.0 3.9e-3 4.1e-3 5.5e-3 

3.3 0.0 3.3e-3 9.1e-3 1.0e-2 

3.0 0.0 4.5e-3 1.2e-2 1.1e-2 

2.7 0.0 2.7e-3 1.4e-2 1.1e-2 

2.1 0.0 3.2e-3 1.1e-2 4.9e-3 

 
   Table 1 lists the BKM results compared with 
the solutions of the dual reciprocity BEM [2]. 
Average relative errors of the present BKM for 
N=9, 11 are respectively 8.5e-3, 7.5e-3. 
Compared with the previous BKM procedure, 
the solution accuracy is significantly improved 
while still keeping the linear BKM formulation 
of nonlinear problems. However, it is noted that 
the solution accuracy is still not always 
improved with incremental number of boundary 
knots. For example, average relative errors for 
N=13, 15, 17, 19, 21 are respectively 8.3e-3, 
8.3e-3, 8.8e-3, 8.9e-3, 1.9e-2. Namely, the 
highest average accuracy is achieved for N=11. 
As in the other global collocation techniques, 



this is due to the ill-conditioning system matrix 
for large number of knots. Anyway overall 
solution procedure is rather stable. The 
accuracy and efficiency of the present BKM 
scheme are very encouraging.  
   On the other hand, the solutions of the DRM 
[2] were obtained with 16 boundary nodes and 
17 inner points. Therefore, it is not surprising 
that the DRM solutions [2] are slightly more 
accurate than the present BKM ones. It is also 
noted that the DRM formulation is a set of 
simultaneous nonlinear algebraic equations. 
The programming, computing effort and storage 
requirements in the DRM are much higher than 
the BKM. The present case only involves the 
Dirichlet conditions. For more complicated 
boundary conditions, the resulting BKM 
formulation may not be a set of linear algebraic 
equations even if we only employ boundary 
knots. By any measure, however, the size of the 
BKM analogous equations will be much smaller 
than that of the DRM. 
   The essential idea behind this work may be 
extended to the BEM, DRM, method of 
fundamental solution, and multiple reciprocity 
BEM for nonlinear problems. Namely, as in 
handling linear varying parameter problems, the 
response knot-dependent fundamental solution 
may be employed in the nonlinear computing 
even if some parameters of fundamental 
solution are unknown.  
 
3. Redefinition of distance functions 
 
3.1. Time-space distance 
 
   Golberg and Chen [3] summarized the 
Euclidean and geodisc distance function as the 
two kinds of distance functions used in the RBF. 
Chen and Tanaka [1] introduced a time-space 
distance function to eliminate time dependence 
within the framework of the RBF numerical 
schemes. This study further develops this work 
in combination with the Green RBF [1] to 
create efficient operator-dependent RBFs. Note 
that the Green RBF was named after the general 
solution RBF (GS-RBF) in [1]. Here we feel it 
is more proper to call it as Green RBF since it 
uses both the fundamental solution of the 
related operator and inhomogeneous terms 

based on the known Green second identity. 
   First, let us consider the equation governing 
wave propagation  
 

∇ 2u =
1
c2 utt + f p, t( ).  (7) 

Let 
s = ict ,  (8) 

 
where p denotes multidimensional variable and 
i means unit imaginary number, we have 
 

∇ 2u + uss = f p,t( ).  (9) 
 
By analogy with the Euclidean definition of 
distance variable, the time-space distance 
function is defined 
 

rj = rpj
2 + s − s j( )2

= rpj
2 − c2 t − tj( )2

, (10) 

 
where rpj denotes the normal spatial Euclidean 
distance function. The above definition can lead 
to complex distance variable due to the 
presence of minus operation. It is safe to use 
 

222
jpjj tcrr ∆+= . (11a) 

 

( )2222
pjjpjjj rtcHrtcr −∆−∆= . (11b) 

 

jpjj tcrr ∆−=  & jpjj tcrr ∆+= . (11c) 

 
The definition (11a,b,c) of distance function 
differ from the standard radial distance function 
in that the time variable is handled equally as 
the space variables. Note that distances (11a) 
are respectively used in two RBFs for one 
problem. In general, hyperbolic and elliptic 
equations have solutions whose arguments have 
the form p+at and p+ibt respectively, where a 
and b are real. Namely, 
 

u p, t( ) = f ζ( )  (12) 
 
where  is some linear combination of p and t. 
This provides some theoretical support to use 
time-space distance functions (10) and (11). 
However, the above situations do not hold for 



parabolic-type diffusion equation 
 

∇ 2u =
1
k

ut + f p, t( ).  (13) 

 
Its transient fundamental solution is well known 
 

u* =
1

t j − t( )d 2 exp −
rp

2

4k t j − t( )
 

 
  

 

 
  H tj − t( ), (14) 

 
where d is the space dimensionality, H is the 
Heaviside function. We can define the 
corresponding time-space RBF (TS-RBF) as 
 

φ rp ,t, t j( )= h rp ,t, t j( )u* (r, t,t j ) ,  (15) 

 
Here h is chosen according to problem feature. 
It is stressed that in this case the response and 
source nodes must be totally staggered to avoid 
singularity in time dimension.  
   On the other hand, Chen et al. [4] proposed 
time-space non-singular general solution  
 

u* = Ae
−k t− tj( )φ rp( ),  (16) 

 
for diffusion problem and  
 

u* = C cos c t − t j( )( )+ Dsin c t − t j( )( )[ ]φ rp( ) (17) 

 
for wave problems, where (rp) is the zero 
order Bessel function of the first kind for 2D 
problems and sin(rp)/rp for 3D problems. For 
example, consider the free symmetrical 
vibration of a very large membrane governed 
by the equation 
 

∂ 2z

∂r 2 +
1
r

∂z

∂r
=

1
c2

∂ 2 z

∂t 2  (18) 

 
with z=f(r), ∂z ∂t = g r( ) when t=0. We have the 
solution [5] 
 

z r, t( ) = ξf ξ( )cos ξct( )
0

∞

∫ J0 ξr( )dξ +

1
c

g ξ( )sin ξct( )
0

∞

∫ J0 ξr( )dξ
 (19) 

 
where upper-dashed f and g are the zero-order 

Hankel transforms of f(r) and g(r), respectively. 
In terms of the Green RBF [1], we have 
 

z r, t( ) = Acos c t − t j( )( )+ Bsin c t − tj( )( )[ ]J0 r( ). (20) 

 
Substituting the non-singular general solutions 
(16), (17) and (20) into Eq. (15) produces the 
TS-RBF without singularity.  
   The time-space distance function and 
corresponding TS-RBF are also expected to be 
applicable to transient data processing such as 
motion picture and movie.  
 
3.2 Varying parameter problems 
 
   The Green-RBF is constructed based on the 
canonical form of some operators such as the 
known Laplace or Helmholtz operators. 
However, many engineering problems do not 
possess such standard form operators. This 
section will show that some cares may be taken 
to handle these problems. 
   The general second order partial differential 
system with varying coefficient can be stated as 
 

R
∂ 2 u

∂x2 + S
∂ 2u

∂xy
+ T

∂ 2u

∂y2 = 0, (21) 

 
where R, S and T are continuous functions of x 
and y. We can translate it into the canonical 
Laplacian by a suitable change of independent 
variables [5] 
 

ξ = f1 x, y( ), η = f2 x, y( ). (22) 
 
The corresponding distance function of the 
Euclidean norm is given by 
 

r = ξ − ξj( )2
+ η − η j( )2

. (23) 

 
Substituting Eq. (22) into Eq. (23), we define 
the distance function in terms of the original 
independent variables of x and y as  
 

r = f1 x, y( )− f1 xj , y j( )[ ]2

+ f2 x, y( )− f2 x j , yj( )[ ]2 .

 (24) 

 



   In the following we illustrate one special 
case. Let us consider [6] 
 

ym ∂ 2u

∂x2 +
∂ 2u

∂y2 = 0 , ��y ≥ 0, m −2( ),  (25) 

 
its general solution is  
 

u = r2
−2 βw r 2( ),   (26) 

 
where =m/2(m+2), w is the hypergoemetric 
functions, 
 

r =
r1
r2

,     (27a) 

 

r1 = x − xj( )2
+

4

m + 2( )2 y
m+ 2

2 − yj

m+2
2

 

 
 

 

 
 

2

,  (27b) 

 

r2 = x − xj( )2
+

4

m + 2( )2 y
m+ 2

2 + yj

m+2
2

 

 
 

 

 
 

2

.  (27c) 

 
Let  

ξ = x, η =
2

m + 2
y

m+2
2 , (28) 

we have 
∂ 2u

∂ξ 2 +
∂ 2u

∂η 2 = 0 .   (29) 

 
Substituting Eq. (28) into Eq. (23) also yields 
the distance function (27b). Similar situation 
holds for another example  
 

∂ 2u

∂x2 + y
∂ 2u

∂y2 + α
∂u

∂y
= 0 , y ≥ 0( ), (30) 

 
where  is a coefficient.  
   The above analyses show that for one certain 
problem, we can use multiple different 
definitions of distance variable simultaneously 
such as Eqs. (27a,b,c). The use of RBF should 
fully consider the features of the targeted 
problems.  
 
3.3. Wavelet RBF 
 
   Chen and Tanaka [1] constructed 

pre-wavelet RBFs with rj
2 + cj

2  instead of r 

into the RBFs, where cj is dilution parameters. 
For example, numerical experiments with 

pre-wavelet TPS rj
2 m ln rj

2 + c j
2  manifests 

spectral convergence as in the multiquadratic 
(MQ). This work can be generalized by 
 

u = ckφ
k=1

N

∑ λk rk + dk( ), (31) 

 
where  and d are respectively dilate and 
location coefficients of the wavelet.  is the 
RBF which can be here seen as a wavelet parent 
function. Such wavelet-like RBF may be 
especially attractive for adaptable handling 
geometry singularity and localized shock-like 
solutions due to its inherent multiscale feature 
combined with a spatial localization.  
   Fasshauer and Schumaker [7] summarized 
some wavelets using sphere RBFs. It will be 
beneficial to pay more attentions on this aspect, 
especially for creating orthonormal wavelet-like 
RBF.  
 
4. Coefficient matrix structures and 
ill-conditioning 
 
   It is well known that the RBF interpolation 
matrix has symmetric structure irrespective of 
the geometry and node placements. This study 
will show that the RBF matrix also carries the 
centrosymmetric structure if the nodes are 
symmetrically placed. Let us consider a 
d-dimension space problem. The Euclidean 
distance norm is defined as 
 

rij = xi
k( ) − x j

k( )( )2

k=1

d

∑ . (32) 

 
The symmetric node spacing is understood as  
 

xi
k( ) + xN +1−i

k( ) = x j
k( ) + x N+1− j

k( ) = c k( ), (33) 
 
where c(k) are constants. Thus, it is obvious  
 

rij = rN+ 1− i,N+1− j .  (34) 
 
Based on Eq. (34), one can easily verify that the 



RBF coefficient matrices have centrosymmetric 
structure as shown in Eq. (34) for even order 
derivative and skew centrosymmetric structure 
as shown below  
 

aij = −aN +1−i,N +1− j   (35) 
 
for odd order derivative, where a denotes an 
entry of a matrix. Therefore, if the nodes are 
symmetrically placed, the RBF coefficient 
matrices for derivatives have either symmetric 
centrosymmetric or skew symmetric 
centrosymmetric structures. 
   Centrosymmetric matrices can easily be 
decomposed into two half-sized matrices. Such 
factorization merit leads to a considerable 
reduction in computing effort for determinant, 
inversion and eigenvalues. For more related 
details see [8-9]. On the other hand, even if the 
total node spacing is not symmetric, such 
decomposition processing can still effectively 
reduce the ill-conditioning of the resulting RBF 
matrices by preconditioning 
 

��

��
A =

I −J

I J

 
  

 
  A

I I

−J J

 
  

 
   (36) 

 
where A means a RBF matrix of even order, J is 
contra-identity matrix. A similar but distinct 
preconditioning transform matrix exists for odd 
order matrix. 
   In addition, we observe that as in the 
traditional collocation method [10], very large 
entries of RBF derivative matrices appear in the 
upper and lower two rows and middle columns 
and largely account for the ill-conditioning of 
large-size RBF system. Accordingly some 
elementary matrix transformations can simply 
significantly reduce the RBF ill-conditioning 
with very little effort. 
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